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Chapter 1

Introduction

"We need renewable and green sources of energy." This is a sentence
that has kept material scientists and chemists on the hunt for almost
five decades now. Among the multiple sources of renewable energy,
solar power has emerged as a viable resource. For instance, in 2022,
electricity production remained unchanged compared to the previous year.
Production from renewable sources rose by 20 percent to 47 billion kWh.
The contribution from solar power production increased by 54 percent,
while wind power production was up by 17 percent in the Netherlands [1].
Solar photovoltaics is becoming the lowest-cost option for new electricity
generation in most of the world, which is expected to propel investment
in the coming years.

Silicon is considered the industry standard material for the large scale
production of solar cells. The theoretical maximum power conversion
efficiency (PCE) of a single junction (electron rich and electron deficient)
solar cell is 33.7 % as defined by the Shockley–Quessier limit [2, 3]. The
majority of currently available solar cells are based on silicon and deliver
a PCE of up to 26 %[4–7] which is about 80 % of the Shockley–Queisser
limit. Such high efficiency is because the band-gap of silicon allows most
of the light in the visible and UV spectrum to be absorbed efficiently
which allows for the generation of an electron-hole pair (or exciton). In
silicon, the binding energy for an exciton is 0.01 eV which is low enough
for it to be dissociated at room temperature [8, 9]. Doping silicon with
electron rich or deficient dopants can allow creation of electron and hole

6
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Figure 1.1: (a) Diagrammatic representation of the three stages of charge
generation and separation in a bulk-heterojunction solar cell.
1: Exciton generation in the donor material
2: Exciton goes into the CT state.
3: Charges separate and move into the CS state beyond which
they are transferred to the load.
(b) Energy diagram of the different states that play an important
role in charge transfer in a bulk-heterojunction solar cell.

carriers respectively in the same material thereby forming a p-n junction.
This junction in turn facilitates the transport of charge carriers from
the materials to the electrodes. To obtain high conversion efficiencies,
80 % of the theoretical limit, requires, however, monocrystalline wafers
whose processing causes high production costs. In contrast, devices made
from less expensive polycrystalline or amorphous silicon wafers show a
reduction of the PCE to around 10-14 % [10, 11].
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Instead of using inorganic materials, the use of organic molecules
(either polymers or small molecules) in photovoltaic devices is attractive
due to their ease of processing from solution, higher flexibility due to
low bulk modulus, and the non-toxicity of the compounds used [12, 13].
However, these materials require significantly higher energy for charge
carrier generation. Low dielectric screening and substantial disorder
in the materials generally lead to strongly bound, localized electronic
excitations, hampering the efficient generation of free charge carriers and
their transport processes [14]. Hence, what is sought after, is the use of a
different acceptor molecule whose unoccupied levels are lower than that
of its donor counterpart. This allows the formation of donor-acceptor
heterojunctions. A schematic depiction of generation of local excitons, CT
state and the HOMO (highest occupied molecular orbital) and LUMO
(lowest unoccupied molecular orbital) energy levels, respectively, are
shown in Figure 1.1. Light absorption in one of the materials, often
in the donor material, generates a localized exciton. This exciton then
moves to a state, commonly referred to as the charge transfer state (CT
state) in which the excited electron from the LUMO of the donor moves
to the LUMO of the acceptor while the hole rests on the HOMO of the
donor. This facilitates the excitonic separation and then free charge
carriers are generated which diffuse into the respective material to reach
the electrodes [15–17]. Under ideal circumstances it is expected that the
CT state has a lower energy compared to the localized excitons of both
the donor and the acceptor. In short, current generation from a solar
cell can be written in three steps broadly as numbered in Figure 1.1.

1. A photon is absorbed, and an electron is promoted from the HOMO
to the LUMO of the donor material leaving a hole behind in the
HOMO. This is characterized by the excitation energy written as
EOpt

g which is the difference between the band-gap (HOMO-LUMO
gap) of the material and the exciton binding energy in the donor.

2. This step is followed by an exothermic reaction where the exciton
moves in the CT state with the energy of ECT.
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Donor Acceptor
Figure 1.2: Structural representation of a DPP-based monomer (donor) and

a fullerene based PCBM (acceptor).

3. Finally, these charges diffuse into the bulk of the systems and reach
a charge-separated state (CS) which is an endothermic reaction
to move from the CT state. This charge separated energy is the
difference between the HOMO energy of the donor and the LUMO
energy of the acceptor material.

It must be understood that the mechanism stated above is a simplifi-
cation of the actual processes that govern charge separation, other factors
such as reorganization energies, non-adiabatic couplings (see Chapter 6)
play a vital role as well. However, we stick to the energy picture only
for the moment. We can clearly see that it is now an uphill task to find
two right materials, one as a donor and one as an acceptor, and ensure
that the energy levels of these materials are favorably aligned to improve
power conversion efficiency (PCE). To overcome these factors limiting
the PCE of organic photovoltaic devices, significant effort is directed
towards tuning electronic and structural properties of the materials by
altering the architecture of donor and acceptor compounds [12, 18, 19].

Among the intensively studied donor-acceptor materials are oligomers
based on diketopyrrolopyrroles (DPP) for donors and fullerene (C60)
based compounds (PCBM) for acceptors [5, 20–22], see the unit in
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Figure 1.2. They can be easily modified by adding various aromatic
and π-conjugated substituents to the backbone and different side chains
to DPP, affecting both the solubility and crystallinity of the polymer
as well as its electronic properties. With suitably chosen substituents,
a low band-gap internal donor-acceptor architecture leads to efficient
harvesting of the solar energy spectrum and a PCE of around 8% in
blends with fullerene acceptors [23–26].

In order to improve this PCE the initial step is to understand how the
charge transfer actually happens and what factors play an important role
in determining the extent of charge generation and transfer. It is known
that charge separation may occur after excitation of either the donor or
the acceptor. The efficiency of charge generation depends on the electron
affinity and ionization potential of the donor and acceptor and the excited
state energy. Energy barriers can be present that regulate the kinetics of
the charge transfer process. However, what was observed in these systems
is that excitation of the donor and acceptor to the first charge transfer
state (CT1) happens with equal rate but for the second charge transfer
state (CT2) excitations from the acceptor are orders of magnitude slower
[27]. This difference is sometimes directly observable in the external
quantum efficiency (EQE) spectra of polymer-fullerene solar cells. The
main cause of this difference remained unaccounted for as the charge
generation in these large systems are not vividly understood as the size
of these systems do not permit a full quantum treatment for simulations
within a reasonable time and using limited computational resources.
In this thesis we intend to understand the mechanisms driving charge
transfer using a multiscale modeling approach ranging from classical
simulations using Molecular Dynamics to quantum simulation involving
post Density Functional theory methods.

At this point we would like to leave the reader with some questions
to ponder upon which will be the focal points of this thesis and shall be
revisited at the end.

1. Can we model the different excited states, in particular the charge
transfer states, in bulk heterojunction solar cells?
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2. How do processing techniques have an influence on the local mor-
phology of the blend?

3. Are current methods to model electronically excited states suffi-
ciently scalable to systems of size which can accurately represent
realistic materials?

From the above, more specific questions arise, e.g., what processing
techniques are used experimentally, what are appropriate molecular
simulation models for materials processing and what can be learned from
them, what are the current methods for studying electronic excitations
in complex molecular materials, and how are morphology and charge
transfer linked [28]. We will address each of these questions in steps in
the subsequent chapters.

Thesis structure

This thesis is divided into three major parts:

• Classical simulation of the polymer-PCBM system to perform
structural analysis.

• Understanding a hybrid embedding approach where more precise
calculations are embedded in the classical model.

• Combining the knowledge of the polymer-PCBM morphology and
embedding to perform charge transfer analysis on the actual poly-
mer model.

Chapter 2 ’Methodologies’ summarizes the theoretical framework that
is needed for a complete understanding of the techniques developed and
employed in the remained of the thesis. Topics covered in this part
include some essential theory of quantum mechanics for many electron
systems, specifics of density-functional theory (DFT), many-body Green’s
functions based approaches for electronic excitations (GW -BSE), classical
molecular mechanics models for structure simulations, and combined
quantum-classical methods.
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In the next step we intend to proceed with the first challenge: classical
simulation of the polymer-PCBM system. Chapter 3 ’All-atom Force-
field generation using a Classical and Quantum approach’ discusses the
primary steps needed to be done before starting a molecular dynamics
simulation: Force-Field generation and its validation. Having generated
a reliable force-field, Chapter 4 titled ’Structural analysis for DPP2Py2T-
PCBM interface using Molecular Dynamics’ discusses how the force-field
has been used to study the DPP-PCBM interface and the effects of the
processing techniques on the morphology of the blend. This concludes
the classical study of the DPP-PCBM interface.

With some representative atomistic morphologies at hand, we now
have a building ground to study electronic excitations in them using the
GW -BSE method. The size of the respective system make such simula-
tions with traditional GW -BSE implementations for the whole system
computationally infeasible. Hence, we developed a hybrid embedding
scheme which embeds a fraction of the system that has been treated with
GW -BSE within a DFT environment further encapsulating the embedded
system into a classical MM environment. Chapter 5 ’Development and
testing of a hybrid Quantum-Classical embedding scheme’ discusses how
such a model has been developed and tested on three sample systems
each depicting a different use case. Once the model has been tested it
is finally used in Chapter 6 to study the ’Excitonics at a DPP2Py2T-
PCBM interface’ including not only energy level calculations but also
estimates for the rates of temperature-activated conversion processes
between localized and charge-transfer excitations.

The thesis is concluded with a brief summary in Chapter 7.



Chapter 2

Methodologies

Based in parts on the paper: Gianluca Tirimbo, Vivek Sundaram,
Onur Caylak, Wouter Scharpach, Javier Sijen, Christoph Junghans,
Joshua Brown, Felipe Zapata Ruiz, Nicolas Renaud, Jens Wehner,
Björn Baumeier, J. Chem. Phys. 152, 114103 (2020) and the book
chapter: Wouter Scharpach, Zhongquan Chen, Vivek Sundaram, Björn
Baumeier, Time-Dependent Density Functional Theory and Green’s
Functions Methods with the Bethe–Salpeter Equation in ”Excited States
and Photodynamics: from Photobiology to Photomaterials”, Elsevier
(in print, 2023).

In this chapter we summarize the essentials of the various theoretical
frameworks and derived computational methodologies used in this thesis.
Beginning with density-functional theory for electronic ground states, we
cover the theory underlying the many-body Green’s function methods and
Bethe–Salpeter Equations to model electron-hole excitations. We then
give a brief overview of classical simulations using Molecular Dynamics
in different ensembles and finally conclude the chapter with a method
describing how a QM system can be coupled with a classical system.
Classical simulation is needed for the generation of the bulk morphology
(Chapter 3 and Chapter 4). Studies in Chapter 5 and Chapter 6 rely on
quantum-quantum and quantum-classical embedding.

13
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2.1 Density-Functional Theory

In this section, we briefly recapitulate the basics of density-functional
theory as a method to obtain an effective single-particle description of
the electronic ground state of an atomic, molecular or solid system made
out of M atoms and N electrons. For the sake of a simpler presentation,
we consider a spin-singlet, closed-shell system: most of the statements
can easily be generalized to take the spin variables into account explicitly.
Throughout this chapter we will use Hartree atomic units, i.e., with a
reduced Planck constant ℏ = 1, all charges in units of the elementary
charge, positions in units of the Bohr radius, and masses in units of the
electron mass. The coordinates Rα of the individual nuclei with charges
Zα and ri of the individual electrons are combined into the variables
R = (R1,R2, . . . ,RM ) and r = (r1, r2, . . . , rN ), respectively. With this,
the (non-relativistic) many-body Hamiltonian reads

Ĥ = −1
2

M∑
α=1

M−1
α ∆Rα

︸ ︷︷ ︸
T̂nuc

+ 1
2

M∑
α,β=1,

α ̸=β

ZαZβ

|Rα − Rβ|

︸ ︷︷ ︸
V̂nuc-nuc

−1
2

N∑
i=1

∆ri

︸ ︷︷ ︸
T̂el

+ 1
2

N∑
i,j=1,

i ̸=j

1
|ri − rj |

︸ ︷︷ ︸
V̂el-el

−
M∑

α=1

N∑
i=1

Zα

|ri − Rα|︸ ︷︷ ︸
V̂nuc-el

,

(2.1)

where T̂ and V̂ are the respective operators for the kinetic and potential
energies involving the nuclear (nuc) and electronic (el) subsystems. The
time evolution of the many-body wave function Ψ(r,R, t) is obtained by
solving the time-dependent Schrödinger equation [29]

ĤΨ(r,R, t) = i ∂
∂t

Ψ(r,R, t) (2.2)
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and can be used to calculate the expectation value of an observable
described by an operator Â as

A(t) = ⟨Â⟩Φ =
∫

Ψ∗(r,R, t)ÂΨ(r,R, t)d3N rd3M R. (2.3)

This allows – formally – to extract information about structural, electronic
and optical properties of the system, as well as the dynamic response to
an external perturbation (described by an additional potential term in
(2.1)) as measured, e.g., by spectroscopic techniques.

In practice however, (2.2) is exactly solvable only for M = N = 1,
which is a hydrogen atom, so we will need to explore several approx-
imations to make the problem tractable [30]. The standard method
of solving a partial differential equation such as (2.2) is the method of
separation of variables in which one makes a product function ansatz, i.e.,
Ψ(r,R, t) = Φ(r,R)U(t). If the Hamiltonian in (2.1) is not explicitly
time-dependent, its expectation value, the total molecular energy Emol, is
constant according to (2.3), and the time evolution of the wave function
is given by U(t) = C exp (−iEmolt). The spatial component Φ(r,R) of
the wave function and the total energy are obtained as solutions of the
stationary Schrödinger equation

ĤmolΦ(r,R) = EmolΦ(r,R). (2.4)

Note that in (2.4) both r and R are explicit variables of this eigenvalue
problem. Since the nuclei are much heavier than the electrons, one can
further assume that the electrons adjust instantaneously to the nuclear
motion, i.e., the electrons move adiabatically. To express this situation
in formal terms, we consider a fixed arrangement of nuclei R. The
Hamiltonian representing the electronic system that interacts with the
fixed nuclear configuration reads

Ĥel = Ĥel(R) = T̂el + V̂nuc-el(R)︸ ︷︷ ︸
1-electron operator

+ V̂el-el︸ ︷︷ ︸
2-electron operator

. (2.5)
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In this situation, R is no longer a variable of the electronic system, but a
fixed parameter for the electronic degrees of freedom. The corresponding
stationary electronic Schrödinger equation is given by

Ĥel(R)Φν(r; R) = Eν(R)Φν(r; R), (2.6)

where
{

Φν(r; R)
}

is a set of adiabatic electronic wave functions. Those
can be used as a basis to expand the molecular wave function Φ(r,R)
according to

Φ(r,R) =
∑

ν

Ξν(R)Φν(r; R). (2.7)

Entering this Born–Oppenheimer separated [31] wave function into (2.4)
yields – after some steps [32] – a coupled set of equations for the coeffi-
cients

{
Ξν(R)

}
:

EmolΞν(R) =
(
Eν(R) + T̂nuc + V̂nuc-nuc

)
Ξν(R) +

∑
µ

AνµΞµ(R), (2.8)

where the integrals Aνµ are matrix elements of the transition between
electronic states ν and µ induced by the dynamics of the nuclei. In the
adiabatic approximation it is assumed that Aµν = 0, i.e., there are no
transitions between different electronic states, and the nuclear motion
for each electronic state ν is determined by

EmolΞν(R) =
(
Eν(R) + T̂nuc + V̂nuc-nuc

)
Ξν(R). (2.9)

This describes the motion of the nuclei in an effective potential

Uν(R) = Eν(R) + V̂nuc-nuc(R). (2.10)

It is to be noted by the reader that further electronic theory will not
be treating the nuclear dynamics. The nuclear motion will be picked up
again in Section 2.3 when we discuss the classical molecular mechanics
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where we map the nuclear potential energy surfaces to the combination
of electronic and nuclear potential energy surfaces.

2.1.1 Hartree–Fock Theory

The electronic Schrödinger equation (2.6) is in practice still not solvable
for many-body systems, due to the presence of the electron-electron in-
teraction V̂el-el. Without it, the electronic Hamiltonian is simply the sum
of non-interacting single-particle Hamiltonians, i.e., Ĥel =

∑N
i=1 ĥi(ri).

As
[
ĥi(ri), ĥj(rj)

]
= 0, the corresponding N -electron wave function

Φ0
ν is simply a product of single-particle functions

Φ0
ν(r) =

N∏
i=1

ϕ0
νi

(ri) (2.11)

and the total energy is given by

E0
ν =

N∑
i=1

ε0
νi
. (2.12)

However, according to the Pauli principle, the electronic wave func-
tions must be antisymmetric with respect to particle exchange, and
therefore must change sign whenever the coordinates of two electrons
are interchanged. To meet this requirement, the electronic wave func-
tion is constructed from single-particle functions ϕi as a so-called Slater
determinant [33]:

Φ(r; R) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) · · · ϕ1(rN )

ϕ2(r1) · · · ϕ2(rN )
... . . . ...

ϕN (r1) · · · ϕN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.13)
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The idea of the Hartree–Fock theory is that instead of starting from
predetermined single-particle functions and enforcing antisymmetry, we
can start from the requirement of antisymmetry and use the variational
principle[34] to derive a set of equations that determine suitable effective
single particles for the interacting case. Let us take a closer look at the
expression for the total electronic energy (suppressing the parametric
dependence on R) for any given wave function Φ:

E[Φ] =
∫

Φ∗(r)ĤelΦ(r)d3N r. (2.14)

The variational theorem states that this energy functional is minimal for
the true ground-state wave function, i.e., E[Φ] ≥ E0, where E0 is the
ground-state energy. Denote now ΦHF as the many-body wave function
in Hartree–Fock theory as a Slater-determinant ansatz. By a variational
principle, the energy as a functional of the determinant approximates
the true ground-state energy E0:

E[ΦHF] = ⟨ΦHF|Ĥel|ΦHF⟩
⟨ΦHF|ΦHF⟩

≥ E0. (2.15)

Minimizing the above energy functional via the effective single-particle
functions ϕj under the constraint that they are normalized is achieved
by

δ

δϕ∗
j (r)

{
E[ΦHF] −

N∑
i=1

εHF
i

(∫
ϕ∗

i (r)ϕi(r)dr − 1
)}

= 0 (2.16)

and yields a set of equations that allow to determine the functions ϕj :{
−∆r

2 + V̂ext(r) +
∫
n(r′)vC(r, r′)dr′

}
ϕHF

j (r)

−
∫
n(r, r′)vC(r, r′)ϕHF

j (r′)dr′ = εHF
j ϕHF

j (r),
(2.17)
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with vC = |r − r′|−1. Here, we have also introduced the electronic
densities

n(r) =
N∑

i=1
ϕ∗

i (r)ϕi(r) n(r, r′) =
N∑

i=1
ϕ∗

i (r)ϕi(r′). (2.18)

The first integral in (2.17) corresponds to the classical Hartree inte-
gral [35] of the Coulomb interaction VH(r) =

∫
n(r′)vC(r, r′)dr′, and

the second integral defines the exchange potential operator V̂x(r) =∫
n(r, r′)vC(r, r′) · · · dr′. The N -electron problem has thus been mapped

on a set of effective single-particle problems with the Hartree–Fock
potential

V̂HF(r) = V̂ext(r) + V̂H(r) + V̂x(r). (2.19)

Considering the double counting of i and j interactions ϕHF
i and ϕHF

j ,
the total energy of the ground state is

EHF
0 =

N∑
i=1

εHF
i − 1

2(EH + Ex) (2.20)

where

EH =
∫
n(r)vC(r, r′)n(r′)drdr′

Ex = −
∫
n(r, r′)vC(r, r′)n(r′, r)drdr′.

(2.21)

In summary, the Hartree–Fock theory assumes that the many-electron
wave function takes the form of a Slater determinant. Since the exact
wave functions cannot be expressed as single determinants, the problem
with this assumption is that Hartree–Fock methods cannot fully represent
the solution of the exact many-electron Schrödinger equation (2.6) and
the corresponding total energy differs from the true ground-state energy.
This difference is often referred to as correlation energy.
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2.1.2 Hohenberg–Kohn Theorems

With a solution to the N -electron problem in (2.6), potentially from
the Hartree–Fock approximation or some other theory, one can now
determine observables from the wave function of the electronic ground
state alone. However, the electronic Hamiltonian in (2.5) comprises only
one- and two-electron operators, that is, operators that act on either a
single electronic coordinate or two. This raises whether it is necessary to
look for a solution in terms of an N -electron wave function after all.

Consider the second-order density matrix, defined as

P2(r′
1, r′

2; r1, r2) = N(N − 1)
2 × (2.22)∫

Φ∗(r′
1, r′

2, . . . , rN )Φ(r1, r2, . . . , rN ) d3r3 . . . d3rN .

Its diagonal elements P̄2(r1, r2) = P2(r1, r2; r1, r2) form the two-particle
density matrix. A first-order density matrix can be written in terms of
P2 elements as

P1(r′
1; r1) = 2

N − 1

∫
P2(r′

1, r2; r1, r2)d3r2, (2.23)

whose diagonal element P̄1(r1) = P1(r1; r1) is the charge density. Instead
of using (2.14) to determine the total energy from the full 3N -dimensional
wave function ψ, one can obtain the same via

E =
∫ (

T̂el + V̂nuc-el
)
P1(r1)d3r1 +

∫
V̂el-elP̄2(r1, r2)d3r1d3r2, (2.24)

which requires only information about a six-dimensional object. It seems
attractive to minimize (2.24))directly by finding optimal density matrices
P1 and P2, under the constraint that they are constructible from a proper
ψ that is antisymmetric with respect to exchange of electrons. However,
this has in practice not been achieved reliably.

Hohenberg and Kohn realized that one does not even need P̄2 to find
the ground-state energy, and that it is instead completely determined by
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the charge density n(r) = P̄1(r) alone. Two theorems relate the ground
state to the electron density:

1. The density n0, which minimizes the ground-state energy, uniquely
determines the external potential V̂ext(r) acting on the electronic
system. The ground state Φ0 is a one-to-one functional of the
particle density n(r).
(Note that in this theorem, external potentials are considered equiv-
alent if they only differ an additional constant which is independent
of space.)

2. The energy functional

E[n] =
∫
vext(r)n(r)dr + ⟨Φ|T̂ + V̂el-el|Φ⟩ (2.25)

obeys a variational principle with respect to the particle density
n(r) and is minimal for the ground-state density n0(r):

E0 = E[n0] ≤ E[n]. (2.26)

For proofs of these two theorems, the interested reader is referred to Ref.
[36]. Above theorems restrict density-functional theory to studies of the
ground state.

2.1.3 Kohn–Sham Theory

From the Hohenberg–Kohn theorems, it follows that the exact ground-
state energy and density can be found by minimizing a universal energy
functional E[n] under the constraint that

∫
n(r)d3r = N , so

δ

[
E[n] − µ

(∫
n(r)d3r −N

)]
= 0 (2.27)

for n(r) = n0(r). The Lagrange multiplier µ can physically be interpreted
as a chemical potential. However, the expression of the functional in
(2.25) is unsuitable for this purpose, as terms for the kinetic energy
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and the electron-electron interaction are not expressed as functionals of
the density. To work around this problem, Kohn and Sham proposed
two approximations. First, they introduced a fictitious system of N
non-interacting electrons reproducing the exact ground-state density,
described by single-electron wave functions ϕi(r). They are used to con-
struct an antisymmetric (with respect to electron exchange) N -electron
wave function as a Slater determinant like in (2.13). For such a system,
the kinetic energy is

Ts[n] = −1
2

N∑
i=1

∫
ϕ∗

i (r)∆ϕi(r)d3r (2.28)

and the density simply as in (2.18). For the electron-electron interaction,
one splits off the classical Coulomb interaction, called the Hartree energy

EH[n] =
∫
n(r)n(r′)
|r − r′|

d3rd3r′, (2.29)

so that the Kohn–Sham (KS) energy functional reads

EKS[n] = Ts[n] +
∫
vext(r)n(r)dr + EH[n] + Exc[n]. (2.30)

Here, the exchange-correlation functional Exc[n] combines the differences
of the true electron-electron interaction energy with all quantum effects
and the classical Hartree energy as well as errors made in the kinetic
energy expression:

Exc[n] = (T [n] − Ts[n]) + (Eel-el[n] − EH[n]). (2.31)

Instead of finding the ground-state energy via variation with respect to
the density (2.27), one can now perform a variation of (2.30) to find a
set of equations to determine the orbitals ϕi such that the density of the
form n(r) as in (2.18) minimizes EKS[n]. This yields a set of effective
single-particle equations known as the Kohn–Sham equations [37, 38]{

−1
2∆ + vext(r) + vH[n](r) + δExc[n]

δn
(r)
}
ϕKS

i (r) = εKS
i ϕKS

i (r), (2.32)
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with the effective Kohn–Sham Hamiltonian

ĤKS = −1
2∆ + vKS[n](r) = −1

2∆ + vext(r) + vH[n](r) + δExc[n]
δn

(r).

(2.33)

Note that the εKS
i are formally only Lagrangian multipliers used to

introduce the constraints that
∫
ϕ∗

i (r)ϕi(r)d3r = 1 in the minimization,
but are often interpreted as effective single-particle energies. There is
little formal justification to equate them to actual excitations. Two
points are noteworthy about (2.32).

First, the variation of the exchange-correlation energy functional
defines a multiplicative exchange-correlation potential

vxc[n](r) = δExc[n]
δn

(r). (2.34)

As the exact form of Exc[n] is unknown, one has to resort to physically
motivated approximations with varying accuracy. A thorough discussion
of specific functional choices is beyond the scope of this work, and we
therefore refer the reader to Refs. [39, 40]. Instead, we briefly mention
three main types of approximations commonly used among the DFT
community. The simplest of these approximations is the local density
approximation (LDA). The assumption behind this approximation is
that the charge density of the system, which is not homogeneous overall,
is locally similar to the one of the homogeneous electron gas, whose
exchange-correlation energy is known [37]. An improvement upon the
LDA can be obtained by semi-local Generalized Gradient Approximation
(GGA) functionals [41, 42]. These depend not just on the value of the
density at a point (as in the LDA case), but also on its gradient. The
last popular type of approximation is called hybrid functionals [43, 44].
Hybrid functionals are based on the ansatz that the exact exchange
energy is situated between the GGA exchange energy functional and the
Hartree–Fock exchange integral. In these, the Hartree–Fock exchange
integral is mixed with GGA exchange functionals at a constant ratio.
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Second, both vH[n](r) and vxc[n](r), needed to determine the ϕi,
depend on the density, which is in turn determined from the ϕi, requiring
a self-consistent procedure to find the solutions.

2.1.4 Computational aspects

Solving the Kohn–Sham equations (2.32) to find the ground-state energy
as the minimum of (2.30) in practice for any molecular system of interest
needs to be done numerically. This requires in turn the use of several
computational techniques, whose specific choices can affect the overall
accuracy of the obtained result. This section cannot be exhaustive in
this context, but we want to mention the real-space representation of
the Kohn–Sham orbitals in more detail, as it is also relevant for the later
discussions in the chapter.

Numerical solutions to the Kohn–Sham equations are typically ob-
tained by expanding the effective single-particle wave functions ϕi(r) in
some finite basis with Nb basis functions ζj(r) and expansion coefficients
cij according to

ϕi(r) =
Nb∑
j=1

cjiζj(r). (2.35)

Inserting this into (2.32), multiplying from the left with ζk(r), and
subsequent integration yields

Nb∑
j=1

∫
ζk(r)ĤKSζj(r)d3r︸ ︷︷ ︸

Fkj

cji =
Nb∑
j=1

∫
ζk(r)ζj(r)d3r︸ ︷︷ ︸

Skj

cjiε
KS
i , (2.36)

with the integrals Fkj and Skj defining the elements of the so called Fock
matrix F and overlap matrix S, respectively. The Fock matrix comprises
terms from the one-electron contributions to ĤKS (kinetic energy and
external potential) also referred to as core Hamiltonian hcore, from the
classical Hartree contribution J, explicit exchange K in hybrid DFT,
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and from the exchange-correlation potential Vxc. Note that in general,
the basis functions are normalized but not orthogonal to each other, and
S ̸= 1. With this matrix notation, (2.36) can be written as

Fci = εKS
i Sci (2.37)

and the electron density can then be rewritten as

n(r) =
N∑

i=1
|ϕi(r)|2 =

N∑
i=1

Nb∑
j=1

cjiζj(r)
Nb∑
k=1

ckiζk(r) =
Nb∑

j,k=1
Djkζj(r)ζk(r).

(2.38)

Here, we introduce the density matrix D as

Djk =
N∑

i=1
cjicki. (2.39)

The basis set expansion turns the Kohn–Sham equations to a generalized
eigenvalue problem as in (2.37), which can be solved with standard
numerical methods. Several aspects need to be considered for the choice
of the actual functions ζ(r). Obviously, the closer they are to the
eventual ϕ(r), the fewer functions are needed and Nb – and with that
the dimension of the eigenvalue problem – remains small. At the same
time, the expressions for ζ(r) should facilitate easy computations of the
elements of the Fock and overlap matrices. A third consideration is
how to approach the limit of an exact basis. Preferably increasing the
number of basis functions Nb should converge results towards the limit
of a complete basis. This is not necessarily true for non-orthogonal basis
sets, where S ̸= 1. Adding more functions to a non-orthogonal basis can
lead to linear dependencies and finally numerical problems.

Most commonly used implementations of DFT (and related methods)
for finite systems make use of atom-centererd Gaussian Type Orbitals
(GTOs). They have the functional form ζlmγ(r) = Nl,γYlm(θ̄, φ̄)|r −
Rα|l exp(−γ|r − Rα|2), where Rα is the position of the particular
atom, Ylm(θ̄, φ̄) is a spherical harmonic, and Nl,γ ensures normaliza-
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tion. These functions are named as s, p, d, f, . . . depending on the value
of l (0, 1, 2, 3, . . .). All functions with the same l and γ are collectively
referred to as a shell. GTOs are attractive because the elements of the
Fock and overlap matrices can be calculated analytically, see e.g. [45],
except for the contribution from the exchange-correlation potential, for
which a numerical integration procedure is required. However, compared
to the real solution of atomic wave functions (or Slater orbitals), whose
radial (r = |r − Rα|) dependence is exp(−γr), GTOs decay faster and
cannot reproduce the cusp at r = 0. Basis functions with the correct
radial dependence are also known as Slater-type Orbitals (STOs), but
they come with the disadvantage of the difficulty to calculate the matrix
elements. To approximate the r-dependence of STOs, one often has use
several GTOs with different values of the decay constant γ, where a
suitable mix of fast and slow decaying GTOs ensures better (but not
exact) reproduction of the cusp-like feature for r → 0 and the slow decay
for r → ∞. One can bundle a few of these functions in one contracted
function

ζlm(r) =
∑

i

diζlmγi
(r) (2.40)

with fixed contraction coefficients di. Eventually, many GTO basis sets
can be constructed by the choice of the γi, di, and values of l. In the
literature, one will find a plethora of families of such pre-defined sets, with
more or less descriptive names. An example for one widely used basis
set is the def2 family [46]. For carbon, the smallest among this family,
def2-svp, consists of three contracted s-shells, two contracted p-shells,
and one uncontracted d-shell, for a total of 3 · 1 + 2 · 3 + 1 · 5 = 14 variable
coefficients cij per molecular orbital i in (2.35). The functions of the
d-shell are referred to as polarization functions, as they are not needed
for the isolated atom, but add more degrees of freedom to allow the
electron cloud to be polarized in a molecular environment. It should be
stressed that it is the responsibility of any practitioner performing DFT
calculations to carefully check the convergence of their results with the
choice of the basis set. The same notion applies to other computational
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choices, such as the selection of an initial density guess for the start
of the self-consistency procedure, the method to ensure convergence to
the self-consistent solution, convergence criteria, numerical grids for the
vxc and Exc integrations, or the use of efficiency-improving auxiliary
basis sets for Hartree and exchange integrals. For a full account of those
choices, we refer to reader to Ref. [47].

2.2 Many-Body Green’s Functions Methods for
Electronically Excited States

DFT calculations are great for ground state energy calculations. When-
ever there is an incidence of electron promotion to an excited state DFT
calculations no longer accurately represent the underlying physics [48].
One common method to study excited state phenomena is time-dependent
DFT (TD-DFT). However, the real-time TDDFT is too complicated for
calculation purposes, and the linear-response theory only allows for minor
perturbations in the system. In 1965, Hedin derived a set of equations
based on the many-body perturbation theory that enables us to model
addition/removal of electrons within a system [49]. He showed the use of
a Green’s function formalism to the time-dependent Schrödinger equation
to calculate an exact description of single-particle excitations and many
other observables described by single-particle operators, like the ground-
state density and the total energy. Hedin’s equations, however, are
computationally very challenging. This is where the GW approximation
plays an important role: it enables us obtain a simpler set of equations
to solve. In this section, we will discuss the GW approximation, its
significance, physical meaning and practicality.

In Section 2.2.1, we look at the Green’s function approach to for-
mulating the equations needed to model charge transfer, which begins
with the addition, propagation and finally removal of an extra particle
in the system. We arrive at a set of closed form of equations in Section
2.2.2, and look at the approximations needed to solve them. We also
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introduce the self-energy term, and briefly discuss the challenges involved
in computing it before looking at a fully analytical approach to calculate
it. Finally, in Section 2.2.3 we introduce two-particle excitations, that
are treated with the Bethe–Salpeter equation (BSE), connecting the in-
dependent two-particle Green’s function and the interacting two-particle
Green’s function. Towards the end, we also discuss how the BSE can be
cast into a matrix form, revealing Casida-like matrices.

2.2.1 Charged Excitations and the Single-Particle Green’s
Function

Before we recapitulate the major concept behind the GW approach, let
us emphasize that to keep the notation simple we restrict the discussion
to the following case. We consider a closed shell system, with a total
spin of 0, allowing us to neglect spin, as we did in the previous sections.

Let us assume a particle was added to the N -particle system at
(r2, t2) ≡ (2) and allowed to propagate through the system until it was
removed at (r1, t1) ≡ (1). The Green’s function G(12) is defined as
the quantum-mechanical probability amplitude for this process [50, 51].
Note that we will use shorthand notations (r1, t1) ≡ 1 etc. for visual
presentation.

To describe this phenomena for electrons, we need to define annihi-
lation (ψ̂) and creation (ψ̂†) operators, which help to remove or create
an electron in the system respectively. The final state of the system
represented in the many-body wave function |ΨN (r1, t1)⟩ from the initial
state |ΨN (r2, t2)⟩, can be written as

|ΨN (r1, t1)⟩ = ψ̂(r1)Û(t1, t2)ψ̂†(r2) |ΨN (r2, t2)⟩ , (2.41)

where Û(t1, t2) is the evolution operator that propagates the N + 1-
particle state in time and is defined as

Û(t1, t2) = exp(−iĤ(t1 − t2)). (2.42)
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The Green’s function for an electron to be found at (2) if added at (1) is
given by

Ge(1, 2) = −i ⟨ΨN (t1)| ψ̂(r1)Û(t1, t2)ψ̂†(r2) |ΨN (t2)⟩ Θ(t1 − t2), (2.43)

where Θ(t1 − t2) is the Heaviside function, which is 1 (0) for t1 > t2

(t1 < t2).

Let us briefly discuss the Schrödinger and the Heisenberg pictures,
in general terms, before we begin to use them for further simplification.
The state vector |ψ(t)⟩ which is a solution to the Schrödinger equation
is described by action of the time-evolution operator Û(t, t0) on the
initial-state vector |ψ(t0)⟩. The state vector at time t can be written as

|ψ(t)⟩ = exp(−iĤ(t− t0)) |ψ(t0)⟩ . (2.44)

The term ⟨ψ(t)|ψ(t)⟩ can be written as

⟨ψ(t)|ψ(t)⟩ = ⟨ψ(t0)| exp(iĤ(t− t0))exp(−iĤ(t− t0)) |ψ(t0)⟩ (2.45)

because Ĥ is Hermitian. Since the Hamiltonian commutes with itself
([Ĥ, Ĥ] = 0), we can write exp(iĤ(t − t0))exp(−iĤ(t − t0)) = 1̂, and
we have ⟨ψ(t)|ψ(t)⟩ = ⟨ψ(t0)|ψ(t0)⟩. Any observable in the Schrödinger
picture should be the same in the Heisenberg picture as well. Hence, we
can write

⟨A⟩ (t) = ⟨ψ(t)| ÂS |ψ(t)⟩ = ⟨ψH| ÂH(t) |ψH⟩ , (2.46)

where ÂS and ÂH(t) are operators in the Schrödinger picture and Heisen-
berg picture, respectively. Using (2.44) in (2.46), we see that ψH = ψ(t0)
and ÂH(t) = exp(iĤ(t− t0))ÂSexp(−iĤ(t− t0)). What we essentially see
here, is that the time dependence of the state vectors in the Schrödinger
picture can be transferred to the operator in the Heisenberg picture
keeping the state vectors independent of time.
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Using the knowledge of the Schrödinger and the Heisenberg picture
from above, we change the representation to the Heisenberg picture via

|ΨN
H ⟩ = Û(0, t) |ΨN

S (t)⟩
ÂH(t) = Û(0, t)ÂSÛ(t, 0),

(2.47)

which gives us

Ge(1, 2) = −i ⟨ΨN
H | ψ̂(r1, t1)ψ̂†(r2, t2) |ΨN

H ⟩ Θ(t1 − t2). (2.48)

Similarly, the definition of the Green’s function for a hole to propagate
from (2) to (1) follows from (2.48):

Gh(1, 2) = −i ⟨ΨN
H | ψ̂†(r1, t1)ψ̂(r2, t2) |ΨN

H ⟩ Θ(t2 − t1). (2.49)

From the definition of the state in the Heisenberg picture, we know
that the Heisenberg state can be written as the initial state of the
Schrödinger picture ΨH = Ψ0. The combination of the electron and hole
Green’s function gives the one-particle Green’s function as G(1, 2) =
Ge(1, 2) −Gh(2, 1): so,

G1(1, 2) = −i ⟨ΨN
0 | T̂ [ψ̂(1)ψ̂†(2)] |ΨN

0 ⟩ , (2.50)

where T̂ is the fermionic time-ordering operator, which, with the help of
the Heaviside function Θ(t− t′), can be written as

T̂
[
ψ̂(1)ψ̂†(2)

]
= Θ(t1 − t2)ψ̂(1)ψ̂†(2) − Θ(t2 − t1)ψ̂(2)ψ̂†(1). (2.51)

Depending on the time-ordering operator, the Green’s function describes
the propagation of an electron or a hole. Let us convert t1 − t2 = τ for
simplicity. The state vectors for N ± 1 particle systems are defined as

gi(r) = ⟨ΨN−1
i | ˆψ(r) |ΨN

0 ⟩ ,

f∗
i (r) = ⟨ΨN

0 | ˆψ(r) |ΨN+1
i ⟩ ,

(2.52)
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and the single particle excitation energies as

εN−1
i = EN

0 − EN−1
i ,

εN+1
i = EN+1

i − EN
0 .

(2.53)

Upon rewriting the Green’s function in the Schrödinger picture with
these definitions, and supplementing it with the completeness relation∑

i |ΨN±1
i ⟩ ⟨ΨN±1

i | = 1̂, we get the Lehmann representation

G1(r1, r2; τ) = − i
unocc∑

i

fi(r1)f∗
i (r2)exp[−iεN+1

i τ ]Θ(τ)

+ i
unocc∑

i

gi(r1)g∗
i (r2)exp[−iεN−1

i τ ]Θ(−τ).
(2.54)

Let us assume t1 > t2 (so Θ(−τ) = 0) and Fourier-transform (2.54) to
the frequency domain, to obtain

G1(r1, r2;ω) =
unocc∑

i

fi(r1)f∗
i (r2)

ω − εN+1
i − iη

, (2.55)

where we introduced a small imaginary part η to ensure convergence
of the Fourier transform. This representation of the Green’s function
has its poles at εi + iγi, where the real part gives the single-particle
excitation energies, and the imaginary part yields the particle lifetimes
γi = 2π/τN+1. In case of a closed-shell non-interacting systems, with
no restrictions on t1 and t2, gi(r) and fi(r) are simply the occupied and
unoccupied single-particle wave functions. We shall use this later in the
chapter, when we discuss the implementation of the Green’s function
from a computational perspective.

2.2.2 Hedin’s Equations and the GW Approximation

In this section, we look to sketch out a closed set of equations which
define the many-body Green’s function for an interacting set of electrons.
We begin with the many-body Hamiltonian as described in (2.5). In
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terms of field operators, the Hamiltonian can be written as

Ĥel =
∫
ψ̂†(r)ĥ(r)ψ̂(r)d3r

+ 1
2

∫∫
ψ̂†(r)ψ̂†(r′)vC(r, r′)ψ̂(r)ψ̂(r′)d3r d3r′ ,

(2.56)

with ĥ(r) the single-particle Hamiltonian operator

ĥ(r) = −∆
2 + V̂ext(r). (2.57)

From the equation of motion of the field operators in the Heisenberg
picture

i ∂
∂t
ψ̂(r, t) =

[
ψ̂(r, t), Ĥ

]
, (2.58)

we can derive an equation of motion for the Green’s function G1:[
i ∂
∂t

− ĥ

]
G1(r1t1, r2t2) + i

∫
d3r3 vC(r1, r3)G2(r3t1, r1t1, r2t2)

= δ(r1 − r2)δ(t1 − t2),
(2.59)

where G2(r3t1, r2t2, r2t2, r1t1) is the two-particle Green’s function. It can
be seen that the equation of motion for the 1-particle Green’s function
contains a 2-particle Green’s function and then if we write the equation
of motion for 2-particle Green’s function we will see that it contains 3-
particle Green’s function and so on infinitely. To overcome this problem
we define the self-energy Σ(r1t1, r3t3) which is an effective non-local,
non-Hermitian potential. It accounts for all the many-body exchange
and correlation terms that are beyond the scope of Hartree contributions.
It is given by the Green’s function via

i
∫
vel-el(r2 − r3)G2(r3t1, r1t1, r2t2)d3r3

= −
∫

Σ(r1t1, r3t3)G1(r3t3, r1t1)d3r3 dt3 .
(2.60)
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This simplifies (2.59) to:[
i ∂
∂t

− ĥ

]
G1(r1t1, r2t2) −

∫
d3r3 dt3 Σ(r1t1, r3t3)G1(r3t3, r1t1)

= δ(r1 − r2)δ(t1 − t2).
(2.61)

The independent particle Green’s function G0, derived from KS calcula-
tions can be written as shown in 2.2.1 as

G0(r1, r2, ω) =
∑

i

ϕKS
i (r1)ϕKS

i (r2)
ω − εKS

i ± iη
. (2.62)

We will skip further derivation for the self-energy and write down the
closed set of coupled equations, known as the Hedin’s equations to obtain
Σ [52].

G1(1, 2) = G0(1, 2) +
∫
G0(1, 3)Σ(3, 4)G1(4, 2)d(34) (2.63)

Σ(1, 2) = i
∫
G1(1, 3)W (1, 4)Γ(4, 2, 3)d(34) (2.64)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +
∫

δΣ(1, 2)
δG1(4, 5)G1(4, 6)G1(5, 7)Γ(6, 7, 3)d(4567)

(2.65)

P (1, 2) = −i
∫
G1(1, 3)G1(4, 1)Γ(3, 4, 2)d(34) (2.66)

W (1, 2) = vC(1, 2) +
∫
vC(1, 3)P (3, 4)W (4, 2)d(34) . (2.67)

Here G0 is the non-interacting Green’s function, Γ the vertex function,
P the polarizability, W the screened Coulomb interaction and vC the
Coulomb interaction. (2.63) is referred to as the Dyson’s equation for the
Green’s function which relates the Green’s function G0 to the interacting
particle Green’s function G1. In matrix notation we can write the
Dyson equation as G1 = G0 +G0ΣG1 which upon rearranging gives the
interacting particle Green’s function as

G1 = (G−1
0 − Σ)−1. (2.68)
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The screened interaction W (12) describes the effective potential of an
interacting electron at (1) at (2) including all polarization effects. This
essentially means that when an electron moves in an interacting system
it carries a ring of positive charge around it due to repulsion from other
electrons. This positive charge screens the bare Coulomb interaction on
the electron at (2). Such screened electrons are called quasi-particles
(QP). Now we invert (2.67) to find the relation of the screened coulomb
interaction to the microscopic polarizability. With the dielectric function

ϵ̄(1, 2) = δ(1, 2) −
∫
vC(1, 3)P (3, 2)d(3) (2.69)

the (2.67) can be cast into a convenient form

W (1, 2) =
∫
ϵ̄−1(1, 3)vC(3, 2)d(3) . (2.70)

The density response χ is calculated by taking the partial derivative of
the perturbation w.r.t. the external potential in the ground state as the
dielectric function is a function of the ground state only. Further details
can be found in the book chapter this chapter has been derived from. It
is related to the inverse of the dielectric constant by

ϵ̄−1(1, 2) = δ(1, 2) +
∫
vC(1, 3)χ(3, 2)d(3) . (2.71)

Hence, the screened coulomb interaction W can be calculated from the
dielectric response χ via

W (1, 2) = vC(1, 2) +
∫
vC(1, 3)χ(3, 4)vC(4, 2)d(34) . (2.72)

Evaluating this system of coupled equations poses severe computational
problems, especially the calculation of the derivative with respect to G
in Γ as shown in (2.64). This is when we introduce the GW formalism
which neglects all higher vertex corrections which reduces the vertex
correction to

Γ(1, 2, 3) = δ(1, 2)δ(1, 3). (2.73)
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G G0

W

PΣ

Γ

Figure 2.1: Schematic representation of the self-consistent GW cycle. The
vertex correction Γ is approximated to δ(1 − 2)δ(2 − 3) and hence
it is put in gray. The arrows denote the flow of calculations and
G0 is typically obtained from DFT or HF calculations.

This is the RPA approximation and the self energy is merely a product of
the Green’s function and the screened Coulomb interaction: GW . This
simplifies the Hedin’s equations to a self-consistent set of equations

Σ(1, 2) = iG1(1, 2)W (1, 2) (2.74)
P (1, 2) = −iG1(1, 2)G1(2, 1) (2.75)

ϵ(1, 2) = δ(1, 2) −
∫
vC(1, 3)P (3, 2)d(3) (2.76)

W (1, 2) =
∫
ϵ−1(1, 3)vC(3, 2)d(3) . (2.77)

Having seen the expressions for self-energy using the Green’s function
let us see how it is used in practical calculations We know that to calculate
Green’s function we have to extend frequency (ω) from real to a complex
term z = ω + iγ. The Green’s function can be written in the Lehmann
representation as

G1(r, r′, z) =
∑

i

φi(r, z)φ̄i(r′, z)
z − Ei(z)

, (2.78)
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where φi(r, z) (φ̄i(r′, z)) are the right (left) eigenvectors of the non-
Hermitian operator Ĥ = ĥ0 + Σ(r, r′, z) and Ei(z) the corresponding
eigenvalues,

ĥ0φi(r, z) +
∫

Σ(r, r′, z)φi(r′, z)d3r′ = Ei(z)φi(r, z). (2.79)

We have seen the concept of quasiparticles which are electrons shielded
by a cloud of positive charge producing an effective screened Coulomb
potential W . These quasiparticles describe low-lying excitations which
have energies corresponding to the poles of G1 in (2.78). We can write
down the quasiparticle energy expression from its Hamiltonian in the
bra-ket notation as[

ĥ0 + Σ(εQP
i )

]
|ϕQP

i ⟩ = εQP
i |ϕQP

i ⟩ , (2.80)

where ϕQP
i = φi(r, z = εQP

i ). Now that we have all the theoretical
framework to proceed with the GW approximation let us see how we
use this set of equations for practical calculations. We start with KS
orbitals and the initial non-interacting Green’s function G0 is obtained
from (2.62). Then we calculate the self-energy Σ using (2.74)-(2.77).
The Hamiltonian ĥ0 can be written as ĤKS − V̂xc which makes the quasi-
particle Hamiltonian as ĤKS − V̂xc + Σ(εi). The QP eigenvalues and
eigenvectors are calculated from[

ĤKS + Σ(εQP
i ) − V̂xc

]
|ϕQP

i ⟩ = εQP
i |ϕQP

i ⟩ . (2.81)

One can expand the ϕQP
i (r) in the basis of the Kohn–Sham orbitals.

i.e., using

ϕQP
i (r) =

∑
j

cQP
ji ϕ

KS
j (r). (2.82)
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With the expansion, the quasiparticle equations (2.81) turn into an
eigenvalue problem in matrix form:

HQPcQP
i = εQP

i cQP
i . (2.83)

Here, the elements of the matrix HQP are given as

HQP
kj = ⟨ϕKS

k |
[
ĤKS + Σ̂(εQP

i ) − V̂xc
]

|ϕKS
j ⟩

= εKS
j δkj + ⟨ϕKS

k | Σ̂(εQP
i ) − V̂xc |ϕKS

j ⟩
(2.84)

and depend via Σ̂(εQP
i ) on the state of interest, which makes finding the

solutions of (2.83) cumbersome.

Instead, often a perturbative approach is adopted, in which it is
assumed that the off-diagonal elements of (2.84) are negligibly small
and quasiparticle wave functions are identical to the Kohn–Sham wave
functions, ϕKS(r) = ϕQP(r). Then, only the quasi-particle corrections to
the εKS

i are calculated according to

εQP
i = εKS

i + ⟨ϕKS
i | Σ̂(εQP

i ) − V̂xc |ϕKS
i ⟩ . (2.85)

As the self-energy is energy-dependent, and thus depends on εQP
i , the

solution of (2.85) must be found self-consistently. From (2.76) and (2.77)
in the GW approach, it is possible to split the self-energy Σ = iGW
into its bare exchange part Σx = iGvC and its correlation part Σc =
iGW̃ , where W̃ = W − vC, which explicitly depends on the screened
electron-electron interaction. With ωi = εKS

i + ⟨ϕKS
i | Σx − Vxc |ϕKS

i ⟩
and ⟨ϕKS

i | Σc(ω) |ϕKS
i ⟩ = Σc

i (ω), we can rewrite (2.85) into the following
fixed-point problem

ω − ωi = Σc
i (ω). (2.86)

Figure 2.2 illustrates this fixed-point problem for the highest-occupied
molecular orbital (HOMO) of MgO. In the initial step, Σc(ω) is evaluated
at ω = εKS

HOMO, from which a first εQP
HOMO is determined, its value used in
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Figure 2.2: Frequency dependence of the correlation part of the self-energy of
the HOMO, Σc

HOMO(ω) = ⟨ϕKS
HOMO| Σ̂c(ω) |ϕKS

HOMO⟩, of the MgO
molecule.

the next evaluation of Σc(ω) until finally convergence is reached. Due to
the pole structure of the self-energy there are in general several solutions
to Eq. (2.86). In this situation, the spectral weight, defined as

Z(ω) =
(

1 − dΣc(ω)
dω

)−1
, (2.87)

is used to identify the ”true” QP energy by Z(ω) ≈ 1, or |dΣc(ω)/dω| ≈ 0.

In the above, when evaluating the self-energy in the GW approxima-
tion, the self-energy takes the form

Σ(r, r′, ω) = i
2π

∫
G1
(
r, r′, ω + ω′)W (

r, r′, ω
)

dω′, (2.88)

i.e., it is a convolution of G1 with the screened Coulomb interaction W =
ϵ̄−1vC, where vC(r, r′) = |r − r′|−1 is the bare Coulomb interaction and
ϵ̄−1(r, r′, ω) is the inverse dielectric function calculated in the Random-
Phase Approximation (RPA) [53, 54]. Single-particle wave functions
and energies are needed to determine both G and W . Constructing
both based on the KS eigenvalues and eigenfunctions is known as a
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”one-shot” G0W0 calculation. Alternatively, it is possible to use updated
QP energies in G1 and W until eigenvalue self-consistency is reached
(evGW ) [52, 55, 56].

Performing the frequency integration in (2.88) for GW calculations
is numerically challenging. Both the Green’s function and the screened
Coulomb interaction inside the integrand have poles infinitesimally above
and below the real frequency axis. This makes a standard numerical
integration infeasible as the integrand is ill-behaved close to the pole
regions, and alternative methods are needed.

In the contour deformation (CD) approach [57, 58], the real-frequency
integration is carried out by using the contour integral extending the
integrand to the complex plane. In this way, the numerically unstable
integration along the real-frequency axis, where the poles of G1 and W

are located, is avoided. Integration over the full-frequency range can
also be performed using Analytic Continuation (AC). This technique
makes use of the smoothness of the integral of the self-energy along the
imaginary frequency axis. Along this axis, the integral is thus easier
to evaluate than along the real-frequency axis. In practice, first the
self-energy is determined for a set of imaginary frequencies iω and then
continued to the real-frequency axis by fitting the matrix elements Σ(iω)
to a multipole model (either the so-called 2-pole-model [59, 60] or the
Padé approximant [61, 62]).

In what is also known as a fully-analytical approach (FAA) [63, 64]
can be used to perform the integration in (2.88). In fact the screened
Coulomb interaction can be written as a Dyson-like equation W (ω) =
vC + vC ·χ(ω) · vC with χ(ω) the frequency-dependent susceptibility. The
poles of the latter can be found solving a Casida-like eigenvalue problemHres K

−K −Hres

An

Bn

 = Ωn

An

Bn

 . (2.89)

with the elements of the exchange-correlation kernel Kxc omitted. The
self-energy integral can then be solved analytically and a closed expression
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Table 2.1: Comparison of calculated HOMO energies (in eV) based on Kohn–
Sham DFT (KS), G0W0 and evGW with the PPM and FAA meth-
ods, respectively, based on PBE and PBE0 ground state calcula-
tions, and the def2-tzvp basis set. Experimental reference value is
-9.2 eV [66].

PPM FAA
KS G0W0 evGW G0W0 evGW

PBE -6.31 -8.74 -9.10 -8.85 -9.24
PBE0 -7.30 -8.92 -9.10 -9.06 -9.24

for Σ(ω) is obtained. This method is computationally expensive because
solving the eigenvalue problem to obtain the poles of χ scales as O(N6).

Instead of computationally demanding full-frequency approaches
like the above, the frequency dependence of the dielectric function ϵ̄−1

and thus the screened Coulomb interaction can be approximated by a
plasmon pole model (PPM) [53, 65]. This approximation is motivated by
the observation that ϵ̄−1 is usually dominated by a pole at the plasma
frequency ωp, which corresponds to a collective charge-neutral excitation
(a plasmon) in the material. The PPM is computationally the most
efficient method, because the dielectric function ϵ used to compute W
has to be calculated only at a few frequency points to determine the
parameters of the PPM.

We close this section on single-particle excitations by illustrating
the different discussed methods for the self-energy evaluation in GW

using the example of the HOMO energy of benzene. In Table 2.1, we
list the results of plain Kohn–Sham DFT calculations, and combinations
of G0W0 and evGW with PPM and FAA frequency integration for the
self-energy. We also compare the use of GGA (PBE) and hybrid (PBE0)
exchange-correlation functionals in the DFT step. In experiment, the
HOMO energy has been measured as -9.2 eV. On KS level, one can
observe the typical overestimation of this value, which is larger for the
PBE than for the PBE0 functional. When considering the G0W0 results,
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it is apparent that the HOMO energy is lowered significantly by around
2.5 eV starting from PBE and by around 1.8 eV starting from the PBE0
functional, respectively. One can also clearly see that the energies based
on PBE0 are roughly 0.2 eV lower than the ones based on PBE. In other
words, the G0W0 results show a slight dependence on the underlying
Kohn–Sham calculation for the ground state. When the quasiparticle
energies are calculated self-consistently in the evGW variant, the HOMO
energies result about 0.4 eV lower than the G0W0 ones and are with a
value of -9.24 eV very close to the experimental reference. It is particularly
noteworthy that the values are identical for PBE and PBE0 ground state
calculations. However, these observations should not be generalized to
all cases.

2.2.3 Two-Particle Excitations and the Bethe–Salpeter
Equation

The single particle Green’s function, as discussed in Section 2.2, proves
excellent for modeling single particle excitations and hence we can ac-
curately obtain electron addition or removal energies. However, this
approach fails for charge-neutral excitations, two-particle scattering or
for any property that involves excitonic effects (electron-hole pair interac-
tion). These excitonic effects are essentially encapsulated in the dielectric
function ϵ̄(ω), which describes the response of the system to small pertur-
bations. However, we have computed ϵ̄ in the GW approximation which
neglects the vertex function Γ, see (2.74) - (2.77). Reintroducing the
vertex function would require the whole set of Hedin’s equation (2.63) -
(2.67) be solved. Instead, we can write a two-particle Green’s function
and solve for it. This two-particle Green’s function depends on four
points in space and time as it propagates one particle from r3, t3 to r1, t1

and another particle from r4, t4 to r2, t2. For simplicity, we will compact
notation once again where G(r1, t1) = G(1).

Let us begin by assuming that the two particles whose propagation
need to be calculated have no correlation. Hence for independent particles
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we can write the two-body Green’s function as

L0(12, 34) = G(1, 3)G(2, 4). (2.90)

Next step is to move to the interacting particle picture where we calculate
the two-particle Green’s function L(12, 34) from the existing knowledge
of the one-particle Green’s function. Let the system be perturbed by a
small external potential vext which is non-local in space and time. The
two-particle Green’s function L(12, 34) can be written as the change in
the Green’s function G(1, 3) w.r.t the external potential

L(12, 34) = δG(1, 3)
δvext(2, 4) . (2.91)

We rewrite (2.91) such that instead of having the functional derivative
of G(1, 3) we will have the functional derivative of G−1

L(12, 34) = G(1, 5)δG
−1(5, 6)

δvext(2, 4)G(6, 3). (2.92)

Then we insert the Dyson equation for Green’s function (2.68) in the
presence of an external perturbing potential as

L(12, 34) = G(1, 5)δ[G
−1
non-inter(5, 6) − vH(5, 6) − vext(5, 6) − Σ(5, 6)]

δvext(2, 4) G(6, 3)

(2.93)

where Gnon-inter is the Green’s function for non-interacting electrons. The
derivative of vext(5, 6) w.r.t vext(34) only gives δ(2, 5)δ(4, 6). Hence the
equation can be written as

L(12, 34) = L0(12, 34) + L0(16, 53)
[
δvH(5)δ(5, 6)
δvext(2, 4) − δΣ(5, 6)

δvext(2, 4)

]
.

(2.94)

We now use a chain rule and convert the functional derivatives w.r.t
vext to functional derivatives w.r.t G. The functional derivative of the
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Hartree potential w.r.t the Green’s function is −ivC. Thus we can write

L(12, 34) = L0(12, 34) + L0(16, 53)
[
v(5, 7)δ(5, 6)δ(7, 8) − δΣ(5, 6)

δG(7, 8)

]
L(72, 84).

(2.95)

Until now, we have made no approximation and this, in principle, is an
exact way to calculate the two-particle Green’s function for correlated
particles. (2.95) is the Dyson equation for the Bethe–Salpeter equa-
tion [67, 68]. At this point we have to calculate the functional derivative
of the self-energy Σ w.r.t the Green’s function G. This is not an easy task,
and we will make our first approximation here, the GW approximation,
and write the self-energy as a product of the Green’s function and the
screened coulomb interaction, see (2.74), from which it follows that

δ(iGW )
δG

= iW + iGδW
δG

. (2.96)

Here, it is often assumed that δW/δG = 0 as the change of the screening
due to the excitation is small. With that it follows that

L(12, 34) = L0(12, 34) + L0(12, 56)−ivC(5, 7)δ(5, 6)δ(7, 8)︸ ︷︷ ︸
Kx(56,78)

+iδ(5, 8)W (5, 6)δ(6, 7)︸ ︷︷ ︸
Kd(56,78)

L(78, 34).

(2.97)

Kd is normally called the direct interaction and originates from the
screened interaction W between electron and hole and is responsible for
the binding in the electron-hole pair. Kx on the other hand originates
from the unscreened interaction vC and is responsible for the singlet-
triplet splitting. It is normally denoted as the exchange interaction. Kx

and Kd are collectively called the BSE kernel. In the matrix notation
this can be written as:

L(ω) = L0(ω) + L0(ω)K(ω)L(ω). (2.98)
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In the Lehmann representation L0 can be written as a combination
of independent quasi-particle excitations, which in the position and
frequency space yields:

−iL0(r1, r2, r3, r4, ω) =
∑
v,c

[
ϕc(r1)ϕv(r2)ϕ∗

v(r3)ϕ∗
c(r4)

ω − (εc − εv) + iη − ϕv(r1)ϕc(r2)ϕ∗
c(r3)ϕ∗

v(r4)
ω + (εc − εv) − iη

]
(2.99)

where c runs over all unoccupied electronic states and v over all occupied
electron states. It is very challenging to invert a four-point function for
each frequency, hence we will move to the orbital basis. It is noteworthy
that εc and εv here are the quasiparticle corrected energies instead of the
Kohn-Sham energies. Transforming this L0(r1, r2, r3, r4, ω) in transition
space can be written as

L0(r1, r2, r3, r4, ω) =
∑

(n1,n2)
(n3,n4)

ϕn1(r1)ϕ∗
n2(r2)Ln1,n2,n3,n4

0 (ω)ϕn3(r3)ϕ∗
n4(r4)

(2.100)

where

−iLn1,n2,n3,n4
0 (ω) =

∑
v,c

δn1cδn2vδn3cδn4v

ω − (εn2 − εn1) + iη − δn1vδn2cδn3vδn4c

ω + (εn1 − εn2) − iη
(2.101)

So L0 is non-zero only for the diagonal elements when n1 = n3 and
n2 = n4 else the RHS of (2.100) would vanish. Now we assume only
transitions from occupied → unoccupied and unoccupied → occupied
carry a weight. This implies that only those diagonal elements in the
matrix are non-zero which have a transition from v to c or vice-versa. In
the transition basis, assuming that the transition happens from n1/n3 →
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n2/n4, L0 is a matrix written as

iL0(ω) =



(n1n2)|(n3n4) → v′v′ c′c′ v′c′ c′v′

↓
vv 0 0 0 0
cc 0 0 0 0
vc 0 0 1

∆εn2n1 −ω 0

cv 0 0 0 −1
∆εn2n1 −ω


,

(2.102)

where ∆εn2n1 = εn2 − εn1 . Now we can rewrite Ln1,n2,n3,n4
0 (ω) using

occupation factors fi (fv = 1, fc = 0):

iLn1,n2,n3,n4
0 (ω) = (fn1 − fn2)δ(n1, n3)δ(n2, n4)

(εn2 − εn1) − ω
. (2.103)

This allows us to introduce an occupation matrix F, with components:

Fn1,n2,n3,n4 = (fn2 − fn1)δ(n1, n3)δ(n2, n4). (2.104)

We now restrict the further derivation of L0 to the physically meaningful
subspace (vc)(cv) belonging to occupied→unoccupied and
unoccupied→occupied transitions so that we look only at the bottom right
of the matrix in (2.102). We will redefine L0 including the occupation
numbers such that

−iL0 = −iL̃0F with F =


f2 − f1︸ ︷︷ ︸

=−1

0

0 f2 − f1︸ ︷︷ ︸
=1

 . (2.105)

Then we can solve (2.98) for L:

−iL̃(ω) =
[
−iL−1

0 (ω) − iF K(ω)
]−1

. (2.106)
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Note that L(ω) here is actually defined as L = L̃F. As L̃0(ω) is diagonal
the inverse is readily calculated:

−iL̃−1
0 (ω) =

∆εn2n1 − ω 0

0 ∆εn2n1 − ω

 (2.107)

Therefore, we can single out the frequency dependence:

−iL̃−1
0 (ω) =

∆εn2n1 0

0 ∆εn2n1

− ω

1 0

0 1

 , (2.108)

which enables us to rewrite the two particle Green’s function L introduc-
ing an effective two-particle Hamiltonian HBSE:

HBSE =

∆εn2n1 0

0 ∆εn2n1

− iF K(ω) (2.109)

=

∆εn2n1 0

0 ∆εn2n1

− i

 Kvc,v′c′ Kvc,c′v′

−Kcv,v′c′ −Kcv,c′v′ .


and L(ω) = (HBSE − ω)−1.

This Hamiltonian is in general non-Hermitian and is typically labeled:

HBSE =

Hres K

−K −Hres

 (2.110)

where Hres is the resonant part of the BSE Hamiltonian that treats
transitions between occupied and unoccupied states, whereas −Hres is
the anti-resonant part that treats unoccupied to occupied transitions
with negative frequencies:

Hres
vc,v′c′ = ∆εvc,v′c′ +Kvc,v′c′ . (2.111)

K is a two-point function which the difference between the coulomb
repulsion and the screened Coulomb interaction.
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Any Hermitian matrix M can be written in terms of their eigenvalues
εi and their eigenvectors λi as

M =
∑

i

εi |λi⟩ ⟨λi| (2.112)

M−1 =
∑

i

1
εi

|λi⟩ ⟨λi| (2.113)

Hence, effectively L can be written as (HBSE − ω)−1. We would rather
look to solve this instead of trying to solve the Dyson equation (2.106).
In terms of the spectral representation for L(ω)

−iL̃(ω) = (HBSE − ω)−1 =
∑
S

|ζ̄S⟩S ζ̄
ζ ⟨ζS |

ΩS − ω
(2.114)

where S ζ̄
ζ is the overlap between the left and the right eigenvectors and

ΩS and ζS are the eigenvalues and the eigenvectors to the eigenvalue
problem

HBSE |ζS⟩ = ΩS |ζS⟩ , (2.115)

which, using (2.110), is typically written asHres K

−K −Hres

AS

BS

 = ΩS

AS

BS

 , (2.116)

with:

ζS(r1, r2) = AS
vcϕc(r1)ϕ∗

v(r2) +BS
vcϕv(r1)ϕ∗

c(r2). (2.117)

For many systems the off-diagonal blocks K in (2.116) are small and can
be neglected known as the Tamm–Dancoff approximation (TDA). This
makes the BSE matrix a Hermitian matrix. Furthermore, we can also
ignore backward transitions which leads to:

HresAS,TDA = ΩTDA
S AS,TDA (2.118)
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and the resulting electron-hole amplitude:

ζTDA
S (r1, r2) =

∑
vc

AS,TDA
vc ϕc(r1)ϕ∗

v(r2). (2.119)

Hres and K are given by:

Hres
vc,v′c′(ω) = Dvc,v′c′ +Kx

vc,v′c′ +Kd
vc,v′c′ (2.120)

Kcv,v′c′(ω) = Kx
cv,v′c′ +Kd

cv,v′c′ . (2.121)

Transforming again from the transition basis to the non-interacting
quasi-particle basis the respective matrix elements are:

Dvc,v′c′ = (εc − εv)δvv′δcc′ (2.122)

Kx
vc,v′c′ =

∫
ϕ∗

c(r)ϕv(r)vC(r, r′)ϕc′(r′)ϕ∗
v′(r′)d3r d3r′ (2.123)

Kd
vc,v′c′ =

∫
ϕ∗

c(r)ϕc′(r)ϕv(r′)ϕ∗
v′(r′)W (r, r′, ω = 0)d3r d3r′ . (2.124)

Here, as described earlier, we assume that the dynamic properties of
W (ω) are negligible and use the static approximation, which reduces the
computational cost significantly by not demanding self-consistency.

The spin structure of the BSE solutions depends on the spin-orbit
coupling. If the ground state is a spin singlet state and spin-orbit coupling
is small compared to the electron-hole coupling, the single particles can
be classified as spin-up state or spin-down state depending on how the
spins of the electron and hole are oriented. Spin-up state indicates a
spin-up for both electrons and holes |↑↑⟩ and vice-versa. Note that a spin
of ↓ for a hole corresponds to ↑ of an electron, that could be there. This
yields ⟨↑e⟩ ↓h = 1 and ⟨↑e⟩ ↑h = 0. The Hilbert space of the electron-hole
pairs has four distinct subspaces:

|↑↑⟩ , |↓↓⟩ , |↑↓⟩ , |↓↑⟩ ,

where the first arrow indicates the spin of the electron and the second
arrow the spin of the hole. Most of matrix elements defined by (2.122)-
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(2.124) between these subspaces are zero. The BSE Hamiltonian then
obtains the form

HBSE =



D +Kx +Kd 0 0 Kx

0 D +Kd 0 0

0 0 D +Kd 0

Kx 0 0 D +Kx +Kd



|↑↓⟩

|↑↑⟩

|↓↓⟩

|↓↑⟩

.

(2.125)

This Hamiltonian can be diagonalized, yielding two distinct solutions
corresponding to the spin-triplet class and the spin-singlet class. If we
look to solve this Hamiltonian we get three eigenvalues that are equal,
D +Kd and one eigenvalue that is D +Kd + 2Kx which correspond to
the adiabatic triplet states and the singlet state.

|↑↑⟩ , |↓↓⟩ , 1√
2

(|↑↓⟩ + |↓↑⟩)︸ ︷︷ ︸
S=1 triplets

,
1√
2

(|↑↓⟩ − |↓↑⟩)︸ ︷︷ ︸
S=0 singlet

.

What we notice here is that if we have an electron that is spin-up and
a hole that is spin-down (effectively two electrons in the spin-up state),
we get a contribution from their energy difference, hartree-exchange
and also their effective screening. When the electron and hole both are
spin-up (one spin-up, one spin-down electron) we do not get an exchange
term as stated in the Hartree-Fock theory. This allows to solve the BSE
equation separately for both spin types. Kx vanishes for spin-triplet
solutions, whereas it is non-zero and typically repulsive for singlets. The
exchange interaction is thus responsible for the singlet-triplet energy
splitting which yields that the spin-singlet excitation energies are usually
higher than the spin-triplet ones. We therefore get

HBSE
singlet = D +Kd + 2Kx (2.126)

HBSE
triplet = D +Kd (2.127)
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If spin-orbit coupling is large, the matrices no longer decouple and instead
the BSE Hamiltonian must be evaluated using the full spin structure,
which increases the size of the Hamiltonian by a factor of four.

It is to note that traditionally the GW -BSE method has been used
within the solid-state community [69], however in the last decade it has
gained attention for the treatment of electronically excited states of
molecular systems [70–73].

2.3 Overview of Classical Molecular Dynamics

As we saw in Section 2.1, the nuclear dynamics was ignored once the
Born-Oppenheimer approximation [31, 74] was introduced. In this section
we will examine the classical treatment of the nuclei to characterize its
motion primarily using Newton’s Law of motion. Hence, we see how
Equation 2.10 is treated in the classical regime.

2.3.1 Classical Potentials

The basic principles for molecular dynamics (MD) arise from the definition
of a conservative force acting on a particle i given by

Fi = −∇Ri
U(R) (2.128)

where U(R) is a potential that defines the interaction between the particle
i and all other particles in the system and R ∈ R3N is a vector describing
the configurations of all N particles in a 3-dimensional space. U(R) thus
describes the potential energy landscape in which the atom i is located.
The gradient is calculated with regard to the position of atom i. The
second order ordinary differential equation (ODE)

miR̈i = −∇Ri
U(R) (2.129)
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is created by combining the definition of conservative forces with Newton’s
second law where mi is the mass of atom i. The interactions between the
atoms are classically described in the potential energy landscape U(R).
These result from the Born-Oppenheimer approximation, in which we
assume that the degrees of freedom for the electronic and nuclear systems
are distinct. Consequently, continuous potentials that simply depend
on the distance between atoms can be used to describe interactions
between atoms. The potential is also assumed to be completely additive,
which means that the total potential energy surface can be effectively
described as a sum of individual potential energy terms [75]. Owing to
this nature we split the potential into two categories: bonded potentials
and non-bonded potentials,

U(R) = UB(R) + UNB(R). (2.130)

Covalent bonds are used in the first case to describe the bonded interac-
tions between atoms of the same molecule, while dispersion, repulsion,
and/or electrostatic interactions are used in the second case to describe
non-bonded interactions between all atoms. Force Fields describe the
precise definition of the potentials, and their parameters for various
atoms and molecules. There are multiple published force fields such as
CHARMM [76, 77] AMBER [78, 79], GROMOS [80], and OPLS [81, 82].

Firstly, for the bonded inteactions, they are decomposed into three
further subcategories arising from (a) the distance between the bonded
atoms Ub(R), (b) the angle formed between three consecutively bonded
atoms U θ(R), and (c) the torsion formed between four successive bonded
atoms Uϕ(R). Illustration in Figure 2.3 shows the three subcategories.
This decomposition can be written in mathematical terms as

UB(R) =
∑

bonds

Ub(R) +
∑

angles

U θ(R) +
∑

dihedrals

Uϕ(R). (2.131)
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k

lj

r

i

θ φprop

(a) (b)

Figure 2.3: All bonded degrees of freedom are depicted. r is the distance
between atoms i and j whereas θ is the angle formed between
atoms i,j and k. The proper dihedral ϕprop is shown in (a) as the
angle between the planes defined by i,j,k and j,k,l. The improper
dihedral is shown in (b) which is used to keep atoms in a plane
especially useful in case of planar rings. It is defined as the angle
formed between the planes of atoms i,j,k and j,k,l.

Each of these terms can individually be approximated as harmonic
potentials and hence we can write their expressions as:

Ub(R) = 1
2k

b
ij(rij − r0

ij)2

U θ(R) = 1
2k

θ
ijk(θijk − θ0

ijk)2

Uϕ,imp(R) = 1
2k

ϕ,imp
ijkl (ϕijkl − ϕ0

ijkl)2

Uϕ,prop(R) = kϕ,prop
ijkl [1 + cos(nϕijkl − δijkl)]

(2.132)

We can also see that dihedrals are divided into improper (ϕ,imp) and
proper dihedrals (ϕ,prop) which denote out of plane angles and torsional
angles respectively. All these expressions will be revisited in Chapter 3
when we discuss force-field development for the system in use.

Next we consider the non-bonded terms which contain dispersion
interactions arising from the transient dipolar interactions between the
atoms. The repulsive term arises from repulsive interactions between
electrons when they overlap. Atoms can also interact electrostatically
to each other when charged. Repulsion and Van der Waals interactions
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are combined into a single approximation given by the Lennard–Jones
potential.

ULJ =
∑

i,j>1
4ϵij

(σij

rij

)12

−
(
σij

rij

)6
 (2.133)

where ϵij is the depth of the potential well for the two atoms i and j
while σij is the zero of the LJ potential for i and j and rij is the distance
between the two atoms. The two constants σij and ϵij are fed in as
parameters to the simulation. They are normally fitted to the interatomic
interaction of atoms of the same element ϵii and σjj . Mixing rules exist
[83] that approximate the Lennard-Jones constants for different elements
such as the Lorentz-Berthelot [75] rule where σij = 1

2(σii + σjj) and
ϵij = (ϵiiϵjj)

1
2 .

It is to be understood that Molecular Dynamics is a tool to simulate
and understand an experimental system that usually consist of millions
to billions of atoms. Given the computational limitations available at
disposal simulation of the whole bulk system is impossible. Hence, we
intend to be looking at a smaller comparable system, but it would
immediately lead to what we know as finite-size effects [84–87]. This
poses a challenge to imitate the bulk system using a smaller system but
also countering the finite-size effects. The obvious solution is to make
periodic images of the smaller finite system to emulate the larger bulk
system. Let us begin by putting our system of interest into a finite square
box of side L. Now each particle interacts with other particles within the
box and also periodic images of other particles outside the box that are
projected in the box. It is to be known that the bonded potentials are
not affected but the non-bonded ones are. Given that the MD potentials
are additive we can write the total potential of the system as [84]

Utot = 1
2
∑
i,j,n

U(R + nL) (2.134)
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where n ∈ N3 is a vector describing the coordinate of each box in units of
L. The value of n can range upto ∞. This leads to infinite size problems
in the system most of which can be insignificant. Hence, we resolve this
problem in two ways:

• Simple truncation and shift of the Lennard-Jones interaction. The
shifted and truncated Lennard-Jones potential acting on particle i
due to particle j is defined as

ULJ(rij) =

ULJ(rij) − ULJ(rc
ij), for rij ≤ rc

ij

0 for rij > rc
ij ,

(2.135)

where rc
ij is the threshold truncation range. The truncation range

is often set to rc
ij = 2.5σij as the Lennard-Jones potential at

rij = 2.5σij would have decayed to approximately 1/60th of the
well depth ϵij . Another case is that if the box size is not too large
then the threshold is set to half the box size so that periodic images
are not counted twice.

• Minimum image convention. Atoms at the edge of the simulation
boxes would have to interact with virtual particles due to the PBCs,
even if the distance between them is greater than rc

ij . This is done
by correcting the distance between the two particles i and j by

rx
ij = rx

ij − L

⌊(
rx

ij

L
+ 0.5

)⌋
(2.136)

where ⌊a⌋ is the greatest integer smaller than a. Here, rx
ij is the

x-compnent of the vector between the two particles rij .

The other term in the non-bonded potential is the electrostatic
interaction between the atomic charges. Similar problem of having infinite
boxes arises here as well. However, this time we cannot simply assume
a cut-off distance like in case of Lennard-Jones because electrostatics
are long-range interactions and does not decay quickly enough to be
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truncated. This problem is tackled by using Ewald summation which
will not be discussed in detail in this thesis. References for the same can
be found in Refs. [88–93].

2.3.2 MD trajectories

A collection of potentials that describe the interaction between atoms
are approximated using the methods above, and the ODEs described in
Eq. (2.128) and Eq. (2.129) are solved as a series of initial value problems.
Initial conditions are given by momentum pi = mi

dxi
dt position xi of the

atom i . Solving the ODE yields a topological space (6N-dimensional
space) which describes the development of a system with the above
possibilities. The complexity of interatomic potentials makes the solution
of ODEs analytically impossible. However, numerical methods can be
used to approximate the solution. The MD formulation above arose
from the conservative definition of force, where the system in question is
isolated from the environment and free from external influences. This
includes the total energy in the system is conserved. Newtonian equations
of motion in this case are time-reversible and requires the use of the
time-reversible integrator. This means that we need to sample the space
by going over the trajectory in phase space by solving the differential
equation. The volume generated for the system should be incompressible
thereby making it symplectic.

Details of the theory of symplectic integrators and their relationships
to MD are not the subject of this work. More details on these integrators
can be found in [94–96] A symplectic integrator which we summarize
here is the Verlet integrator defined as:

ri(t+ ∆t) = 2ri(t) − ri(t− ∆t) + Fi(t)
mi

∆t2 + O(∆t4) (2.137)

vi(t) = ri(t+ ∆t) − ri(t− ∆t)
2∆t + O(∆t2) (2.138)

where ri is the position, vi is the velocity, ∆t is the time step.
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2.3.3 Simulation ensembles

In the above formulation, the system under consideration is completely
isolated from its environment, contains a certain number of particles
(N), the volume of the box (V) is constant and the total energy (E) is
conserved. Simulation is started using initial positions of atoms which
can be randomly oriented within a simulation box or on a regular grid like
a crystal. A force-field suitable for the underlying system is chosen and
the system is propagated forward in time using a symplectic integrator
to generate a trajectory.

We formulate MD as a system guided only by conservative forces
thereby conserving energy which leads to the simulation of the mi-
crocanonical ensemble [84, 97], also known as NVE simulation. The
underlying system is assumed to be an ergodic, therefore time averaging
of all measurements is similar to ensemble averaging. It is very difficult
to do physical experiments in complete isolation from the area and con-
trol/measure the energy of the system. Therefore, we need to develop
methods where we can exercise more control for instance temperature
and pressure of the system. Hence, the above formulation of the dynamic
equations of motion is extensible to create constant volume and temper-
ature (NVT) or constant pressure and temperature (NPT) simulations
[84]. Temperature and pressure coupling algorithms are used to create
such simulations. Discussion of how they are done, implemented and the
derivation of their equations of motion is described in [98–102].

All MD simulation procedures in the thesis, unless stated otherwise,
contain energy minimization, NVT and NPT in chronological order.

2.4 QM/MM embedding schemes for electronic
excitations with GW -BSE

Excited states in complex molecular systems are in general multiscale,
in the sense that intrinsic quantum-mechanical properties of the basic
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units, i.e. isolated molecules, and the local and global morphology of
the large-scale molecular system are intertwined. For typical sizes of a
system like the polymer-fullerene mixture at the center of this thesis, a
full description of the problem by a quantum-mechanical method of the
complexity like GW -BSE is infeasible and approximations need to be
employed instead.

In embedding approaches, the full system is partitioned into two (or
more) subsystems, where the one of particular interest is treated at a
higher level of theory than the other(s). Examples for such approaches
in which the environment of an electronically active region is replaced
by a polarizable continuum [103–107], or when it is represented by a
classical, molecular mechanics parametrization (QM/MM) [108, 109].
Partitioning in subsystems can also be performed on the level of DFT
itself [103, 110–114], and we will focus on aspects of these approaches in
more detail in Chapter 5.

In this section, we outline the steps involved in evaluating the effects
of the environment on electronic excitation energies in a QM/MM ap-
proach combining the GW -BSE framework and a polarizable atomistic
environment, as implemented in the VOTCA-XTP package.

Assuming a weak coupling between the QM and the MM regions,
they affect each other via electrostatic interactions only: the MM region
is typically represented by a set of static atomic multipoles, and they
form a local field to which the electronic density of the QM region can
react, it gets polarized. If one additionally allows for inducible atomic
multipole moments in the MM region, this region will also react to the
changed density in the QM region. The use of a polarizable distributed
atomic multipole representation for molecules in the MM region is an
extension of the static charge representation used for MD as introduced
in Section 2.3.1. It allows treatment of both the effects of static electric
fields and the polarization response as a self-consistent reaction field.

We indicate static atomic multipole moments [115] as Qm
t , where t is

the multipole rank and m the associated atom in the molecule M . The



58 Methodologies

tensor Tmm′
tu describes the interactions between the multipoles moments

Qm
t and Qm′

u . In the polarizable representation, each atom is additionally
assigned a polarizability αmm′

tu with which induced moments ∆Qm
t due to

the field generated by moments u on a different atom m′ can be created.
Let us consider now a purely classical (MM) system S in state s, which
has been split into regions R and R′ with S = R ∪ R′. Molecules in
region R (R′) are indicated by M (M ′), and atoms in molecule M (M ′)
by m (m). The total classical electrostatic energy of the system is then
given by

E
(s)
class(S) = E(s)(R) + E(s)(R′) + E(s)(R,R′), (2.139)

where

E(s)(R) = 1
2
∑

M∈R

∑
M ′∈R
M ′ ̸=M

E
(s)
MM ′ + 1

2
∑

M∈R
E

(s)
M (2.140)

E(s)(R,R′) =
∑

M∈R

∑
M ′∈R′

E
(s)
MM ′ (2.141)

with

E
(s)
MM ′ =

∑
m∈M

∑
m′∈M ′

∑
tu

(Qm(s)
t + ∆Qm(s)

t )

× Tmm′
tu (Qm′(s)

u + ∆Qm′(s)
u ) (2.142)

and

E
(s)
M =

∑
m∈M

∑
m′∈M
m′ ̸=m

∑
tu

∆Qm(s)
t (α−1)mm′

tu(s)∆Q
m′(s)
u . (2.143)

Eq. (2.139) follows a variational principle with respect to the induced mo-
ments, and a preconditioned conjugate gradient method is used to find the
∆Qm

t , which give the minimum energy. Induced interactions are modified
using Thole’s damping functions [116, 117] to avoid overpolarization.
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Now turning towards the QM/MM setup, one can write its total
energy as the sum of QM, MM, and QM/MM coupling terms:

Eadd
QM/MM = EQM

1 + EMM
2 + V

QM/MM
12 . (2.144)

The interaction between the two regions is explicity evaluated via the
term V

QM/MM
12 , implying that electrostatic interactions between the two

subsystems are handled during the computation of the electronic wave
function by adding the external potential of the multipoles in the MM
region to the QM Hamiltonian as one-electron operators. In turn, the
explicit electrostatic field from the QM density is used to polarize the
MM region. For the GW -BSE approach several such QM densities can
be employed, depending on the state of interest (s). If s is a quasiparticle
excitation, we define

n
(s)
QP(r) = nDFT(r) + fs|ϕQP

s (r)|2, (2.145)

with fs = −1 for occupied and fs = +1 for unoccupied QPs. If s is an
electron-hole excitation, its total density is evaluated as

n(s)(r) = nDFT(r) + n(s)
e (r) − n

(s)
h (r). (2.146)

Here the electron (hole) contribution of the exciton to the density is
computed by integrating the squared excited-state wavefunction ζS with
respect to the hole (electron) coordinates, i.e.,

ρ(s)
e (r) = ρ(s)

e (re) =
∫
drh|ζS(re, rh)|2

ρ
(s)
h (r) = ρ

(s)
h (rh) =

∫
dre|ζS(re, rh)|2.

(2.147)

Inclusion of a polarizable MM region requires a self-consistent pro-
cedure to evaluate the total QM/MM energy of a system in a given
state s. At a single step p within this self-consistent procedure, first a
QM level calculation (DFT for the ground state s = g, DFT+GW -BSE
for electron-hole excited s = x states) is performed in the electric field
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generated by the total moments in the MM region. The resulting QM
energy then reads

E
(s),p
QM = E

(s),p
DFT + δsx Ωp

s (2.148)

and the associated total electron density and its electric field at the
positions of the atoms in the MM region is evaluated. New atomic dipole
moments are induced in the MM region minimizing the classical energy
E

(s),p
class . It is used to determine the total energy of the coupled QM/MM

system as

E
(s),p
QM/MM = E

(s),p
QM + E

(s),p
class . (2.149)

The whole procedure is repeated until the change of total energy is
less than a preselected accuracy, typically 10−5 Ha. From the state-
dependence of the total QM/MM energy in Eq. (2.149), it also follows that
the excitation energy Ω(s) of a complex in the polarizable environment
needs to be obtained from a ”∆-QM/MM-SCF” formulation as the
difference

Ω(s) = E
(s)
QM/MM − E

(n)
QM/MM. (2.150)

An equivalent formulation for quasiparticle excitation energies uses the
respective εQP instead of ΩS in Eq. (2.148).



Chapter 3

All-Atom Force Field for
Diketopyrrolopyrrole Polymers
with Conjugated Substituents

Based on the paper: Vivek Sundaram, Alexey V. Lyulin, Bjoern
Baumeier, J. Phys. Chem. B 124, 11030 (2020).

3.1 Introduction

Now that we have described the system undertaken for study and the
procedure of the study is intended to advance, we begin with the first
step. One must realize that a key element of such approaches is the
simulation of representative structures with atomistic detail, which on
the needed scale can only be obtained with classical Molecular Dynamics
(MD). The resulting morphologies must not only reliably reflect the
overall conformational details of the polymer chains in the bulk and at
the interface to the acceptor, but also accurately capture the dynamics
of torsional degrees of freedom between the segments in the individual
chains, as those can massively influence the localization characteristics
of electronic states and, hence, their dynamics [118–120]. This, in
turn, requires the availability of precise classical force fields which are
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parameterized for the specific chemical composition of the materials
at hand. In this chapter we discuss how we develop an all-atom force
field for a series of diketopyrrolopyrrole polymers with two aromatic
pyridine substituents and variable number of π-conjugated thiophene
units in the backbone (DPP2PymT) [27]. With the end goal to study this
dichotomous role of donor or acceptor excitation, we begin performing
classical simulations to study structural and segmental properties of
the polymer itself. We develop an all-atom force field for this series
by starting out from available intra-fragment parameterizations of the
individual fragment building blocks. The missing bond, angle, and
dihedral bonded parameters for the inter-fragment degrees of freedom are
derived in an iterative procedure from density-functional theory (DFT)
calculations using standard protocols [121–125]. DFT is also used to refine
atomic partial charges for the fully assembled DPP2PymT monomers.
Guaranteeing a priori the transferability of gas-phase optimized force
fields to a wide range of conditions is in general a challenging task. The
bonded potentials, representing the intra-polymer interactions and –
unless the condensed phase dramatically changes these in the polymer
by strongly affecting its electronic structure – we expect them to transfer
to the condensed phase. Certain torsional motion may be constrained by
inter-polymer interactions, which are typically non-bonded interactions,
or excluded volume effects. To scrutinize a posteriori the applicability of
our force field in different conditions, we perform classical MD simulations
of a single Np-DPP2PymT chain with Np = 50, m = 1, 2, 3, and branched
2-hexyldecyl side chains both in solutions with chloroform and water, and
a few of such chains as melts. We investigate in particular the swelling
behavior depending on solvent quality, the glass-transition temperature,
and the mobility of the conjugated segments. Available intra-fragment
parameterizations of the individual fragment building blocks are combined
with inter-fragment bonded and non-bonded parameters explicitly derived
from density-functional theory calculations. To validate the force field
we perform classical molecular dynamics simulations of single polymer
chains with m = 1, 2, 3 in good and bad solvents, and of melts.
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3.2 Methodology
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Figure 3.1: Structure of the (a) Py-T and (b) Py-DPP dimers, respectively,
with explicit labels for atoms involved in the inter-fragment
degrees-of-freedom for which force field parameters need to be
determined.

A force field represents the quantum-mechanical many-body energy
of a molecular conformation, defined by the set of atomic coordinates
{R}, as a sum of classical interactions. The potential energy surface
(PES) is then written in terms of bonded and non-bonded interactions
V ({R}) = Vbonded{R}+Vnon-bonded{R}. The non-bonded ones (Lennard-
Jones and electrostatic) are pairwise additive, i.e., Vnon-bonded({R}) =∑

i<j Vij(Rij), while the bonded ones comprise 2- (bonds rij), 3- (angles
θijk), and 4-body (dihedral angles ϕijkl) interactions.

For developing the DPP2PymT force field, we start from available
parameters in GROMOS 54A7 form for the fragment building blocks of
pyridine (Py), thiophene (T) and diketopyrrolopyrrole (DPP) [126], see
Figure 3.1. These were obtained from the The Automated force field
Topology Builder [127], which extracts bond and angle parameters from
the Hessian of the optimised structure and fits partial charges through the
Kollmann-Singh scheme [128]. Lennard-Jones parameters are taken from
the GROMOS 96 force-field [129]. These intra-fragment parametrizations
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ATB→GROMOS 54A7
no bonded inter-fragment interactions

default Lennard-Jones; dimer partial charges

bond parametrization
∆Vbond(rij) = V DFT

bond (rij) − V FF0
bond(rij)

harmonic potential

angle parametrization
∆Vangle(θijk) = V DFT

angle (θijk) − V FF1
angle(θijk)

harmonic potential

dihedral parametrization
∆Vdihedral(ϕijkl) = V DFT

dihedral(ϕijkl) − V FF2
dihedral(ϕijkl)

periodic potential
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Final DPP2PymT force field
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Figure 3.2: Illustration of the development of a Np-DPP2PymT force field
based using a step-by-step procedure to add inter-monomer po-
tentials to a baseline GROMOS 54A7 monomer parametrization.

need to be supplemented by inter-fragment interactions related to the
linking of the units in the polymer, i.e., Vbonded = V intra

bonded + V inter
bonded. To

obtain

V inter
bonded =

inter∑
ij

V bond
ij (rij) +

inter∑
ijk

V angle
ijk (θijk)

+
inter∑
ijkl

V dihedral
ijkl (ϕijkl)

(3.1)
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we follow a step-by-step refinement procedure based on Py-T and DPP-Py
dimer structures (see Figure 3.1 for atom definitions), respectively, as illus-
trated in Figure 3.2. From the available fragment parameterizations, an
initial force field (FF0) is created in which all inter-monomer bonded po-
tentials are zero, dimer CHELPG partial charges [130] are assigned from
a density-functional theory (DFT) calculation, and Lennard-Jones pa-
rameters are taken from the existing GROMOS force-field with geometric
averaging for atom pairs. Starting from FF0, first harmonic bond poten-
tials are added (FF1), then harmonic angle potentials (FF2), and finally
periodic dihedral potentials (FF3). To determine these additions, the rele-
vant part of the PES must be known for each individual coordinate at each
step of the process. A series of calculations must be performed in which
one of the structural parameters (x = {rij ; θijk;ϕijkl}) is constrained to
a certain value, while all other degrees-of-freedom are optimized. Two
of such relaxed PES scans are required: one with the current force field
(FFn), yielding V FFn(x), and one based on DFT calculations, yielding a
reference V DFT(x). Then, the difference ∆V (x) = V DFT(x)−V FFn(x) is
calculated and used to fit the functional form of the respective potential
term. With its parameters, e.g., the equilibrium value and force constant
for a bond, determined, the terms are added to the force field. Details
will be discussed below in the specific sections.

All DFT calculations used in this work have been performed with
the ORCA software [131], employing the B3LYP hybrid functional [132]
and the def2-TZVP basis set [133]. The VOTCA-XTP package [134,
135] has been used for the assignment of atomic partial charges with the
CHELPG [130] methods. GROMACS 2018.3 [136] with double precision
has been used for all calculations with the classical force field. In the
PES scans the energy has been minimized until the force on each is below
0.1 kJ/mol/nm.
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3.3 Np-DPP2PymT force field

3.3.1 Bond stretching

As mentioned in Section 3.2, we first consider the two bond stretching
potentials between Py-T and Py-DPP, and the results of the respective
PES scan on DFT/B3LYP and force field levels are shown in Figure 3.3.
As expected, the scan with the initial force field (gray open circles) does
not exhibit any minimum in both cases, while its faint linear behavior
can be attributed to non-bonded interactions as the distance between the
two fragments is varied. In contrast, the DFT scans (red squares) clearly
show harmonic behavior with an equilibrium bond length of r0

ij = 1.46 Å
for the bonds highlighted in the respective insets.

The difference ∆Vbond(rij) = V DFT
bond (rij) − V FF0

bond(rij) between the
energy values obtained by B3LYP and FF0 was modelled as a harmonic
potential

Vbond(rij) = 1
2kij(rij − r0

ij)2 (3.2)

where kij the harmonic force constant. However, GROMOS-96 uses a
fourth power potential

Vbond(rij) = 1
4 k̃ij(r2

ij − (r0
ij)2)2 (3.3)

so the determined force constant is converted according to

k̃ij = kij

2(r0
ij)2 . (3.4)

After fitting, the determined parameters as given in Table 3.1 have been
added to the force field, defining FF1. To validate this step, the PES
scans are repeated with the updated force field yielding results shown
as green filled circles in Figure 3.3. For both Py-T and Py-DPP, the
agreement with the DFT/B3LYP reference is very good within ±0.05 Å
of the equilibrium bond length. The observed deviations for larger
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Figure 3.3: PES scans (in kJ/mol) for the (a) C2-C4 bond in Py-T and
(b) C7-C8 bond in Py-DPP, resulting from DFT/B3LYP (red
squares), the initial FF0 parametrization (grey open circles), and
the updated FF1 (green filled circles) force fields, respectively.
The unknown bonds and the atoms involved are highlighted in
the insets.
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i-j k̃ij (kJ/mol/nm4) bij (nm)
Py-T C2-C4 8.44 · 106 0.146

Py-DPP C7-C8 3.80 · 106 0.146

Table 3.1: Determined harmonic parameters for the inter-fragment bond
stretching potentials as used in Eq. (3.3)

variations from the equilibrium can be attributed to anharmonicities
that can by construction not be captured by the classical force field. We
emphasize that such deviations are associated with energies of about
10 kJ/mol or higher, which corresponds to an equivalent temperature of
1200 K. In practice, MD simulations will be performed at much lower
temperatures, and the deviations between FF1 and the reference can be
considered insignificant in this case.

i-j-k κ̃ijk (kJ/mol) θ0
ijk (◦)

Py-T C1-C2-C4 912.28 123
C2-C4-S 807.07 122
C2-C4-C5 802.55 128
C3-C2-C4 896.77 122

Py-DPP N1-C7-C8 2047.80 124
C6-C7-C8 1860.80 127
C7-C8-N2 1658.20 118
C7-C8-C9 1623.20 120

Table 3.2: Determined harmonic parameters for the inter-fragment angle bend-
ing potentials.
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Figure 3.4: PES scans (in kJ/mol) for the angles (a) C1-C2-C4, (b) C2-C4-S,
(c) C2-C4-C5, and (d) C3-C2-C4 in the Py-T structure, resulting
from DFT/B3LYP (red squares), the FF1 parametrization (green
filled circles), and the updated FF2 (pink filled triangles) force
fields, respectively. The atoms defining the respective angles are
also highlighted in the insets.

3.3.2 Angle bending

With the potential for the Py-T and Py-DPP bonds included in force field,
we now turn to the addition of the angle bending potentials. Figure 3.4
shows the results of PES scans of the four angles in the Py-T structure
based on the DFT/B3LYP reference and the FF1 parametrization. The
respective figure for the Py-DPP structure is not shown in this thesis.
However, the equilibrium angle and bending potential values are presented
in Table 3.2. In contrast to the case of the bond potential, the harmonic
force constants for the angle bending cannot be obtained from a simple
fit of ∆Vangle(θijk) = V DFT

angle (θijk) − V FF1
angle(θijk) since the four angles are
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not independent of each other. Instead, we determine the eight unknown
parameters (equilibrium angles θ0

ijk and force constants κijk for the four
angles) simultaneously by minimizing the Frobenius norm of the matrix

Fijk,α = ∆Vangle(θijk,α) − 1
2κijk(θijk,α − θ0

ijk)2, (3.5)

where α indicates the angle values for which the PES has been scanned.
Specifically, we used 41 points in the interval [105◦, 145◦]. In GROMOS-
96, the angle potential is implemented in the form

Vangle(θijk) = 1
2 κ̃ijk(cos(θijk) − cos(θ0

ijk))2, (3.6)

where κ̃ijk = κijk/ sin2(θ0
ijk). The obtained parameters in the form are

given in Table 3.2. Adding those values and the corresponding equilibrium
angles defines FF2. The validation scan of the PES shown as pink
triangles in Figure 3.4 shows a good agreement with the DFT/B3LYP
reference. Similar to the bond potential, significant deviations are only
observed that would occur at energies associated to extremely high
equivalent temperatures and can therefore be considered insignificant for
the intended applications in MD simulations of DPP2PymT.

3.3.3 Dihedral angles

The final bonded potentials that remain to be determined are the periodic
dihedrals formed by C1-C2-C4-S in Py-T and N1-C7-C8-N2 in Py-DPP.
The respective PES scans with DFT/B3LYP (red squares) and FF2 (pink
triangles) for the former are shown in Figure 3.5(a). The cis (trans)
orientation corresponds to 0◦ (180◦), respectively. Without an explicit
dihedral potential as in the FF2 force field, an orthogonal arrangement
of the Py and T fragments is preferred. In the DFT reference calcula-
tion, in contrast, a nearly planar conformation of Py-T is energetically
most favorable, with the trans orientation slightly lower in energy by
0.67 kJ/mol. In both cases, there are two out-of-planarity conformations
due to steric repulsion of the sulphur atom in the thiophene and hydrogen
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Figure 3.5: PES scan (in kJ/mol) for the (a) C1-C2-C4-S dihedral formed
at the Py-T junction and (b) N1-C7-C8-N2 dihedral formed at
the Py-DPP juction, resulting from DFT/B3LYP (red squares),
the FF2 parametrization (pink solid triangles) and FF3 (blue
solid triangles) force fields, respectively. 0◦ is defined for the cis
configuration with respect to the nitrogen of Py and sulphur of T
while 180◦ is the trans configuration. Likewise, cis is defined for
the N1 of Py and N2 of DPP being on the same side and trans
when they are opposite to each other.
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atom from the adjacent ring, separated by a barrier of 0.14 kJ/mol [137].
The energy barrier between cis- and trans-conformations, in contrast,
is about 10 kJ/mol. For the Py-DPP dihedral, we observe at FF2 level
(pink triangles in Figure 3.5(b)) in non-planar trans orientations with
minima at 120◦ and 230◦. The energy barrier is around 44 kJ/mol to
the planar cis and 15 kJ/mol to the planar trans configuration, respec-
tively. In the DFT/B3LYP reference, however, there is a clear absolute
minimum at 180◦ configuration, and two local minima at 40◦ and 320◦.
For a transition from this twisted cis to the planar trans arrangement, a
barrier of about 5 kJ/mol is found, while it is 32 kJ/mol for the inverse
transition.

To obtain the classical potential associated with the dihedral rota-
tion, the difference ∆Vdihedral(ϕijkl) = V DFT

dihedral(ϕijkl) − V FF2
dihedral(ϕijkl) is

represented as

Vdihedral(ϕijkl) = kijkl
ϕ [1 + (cos(nϕijkl − δijkl))] (3.7)

where ϕijkl is the value of the dihedral angle between ijk and jkl planes,
n is the multiplicity which arises due to the fact that multiple points
of minima can be obtained with a separation of a small energy barrier
between 0◦ and 360◦, and δijkl is a phase shift. From the shape of both
DFT/B3LYP reference curves (Py-T and Py-DPP), we see that they
are symmetric about 180◦ and hence n = 2 and the δijkl = 0◦. Adding
the parametrized Eq. (3.7) as in Table 3.3 yields the updated force field
FF3. A PES scan with this parametrization is shown as blue triangles
in Figure 3.5. The overall shapes of the reference PES is reproduced
and FF3 is a massive improvement over FF2. Barrier heights, especially
the one for the cis-trans transition in Py-T, are slightly underestimated,
which is due to the limitations set by the functional form of Eq. (3.7).
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i-j-k-l kijkl
ϕ (kJ/mol) δijkl (◦)

Py-T C1-C2-C4-S 7.5 180

Py-DPP N1-C7-C8-N2 18.50 180

Table 3.3: Determined parameters for the inter-fragment periodic dihedral
angle potentials.

3.3.4 Partial charge calculation

For the development of the inter-fragment bonded parameters, partial
charges are assigned in Py-T and Py-DPP dimers as obtained with the
CHELPG method [130] based on underlying DFT calculations. With
all bonded parameters now at hand on the level of FF3, we turn to
refining the partial charges for the fully assembled molecule shown as
donor in Figure 1.2.

Once all the individual fragments are linked to form the DPP2PymT
monomer, this step is necessary to account for changes in the charge
distribution compared to one observed in the individual dimer structures.
Special care needs to be taken regarding the terminating hydrogens of
the monomer residue: for a DPP2PymT that itself is located at the
termini of the polymer, one hydrogen needs to be excluded from the
CHELPG procedure, while any other residue does not contain hydrogens
at all at the inter-residue bond. To account for this, we perform three
partial charge fits with the charge of either and both of the terminating
hydrogens constrained to zero, respectively. This will ensure charge
neutrality of the polymer independent of the degree of polymerization.
For simulations with addition of side chains, standard partial charge
values as described in OPLS-AA were used [138].

Finally, with the definition of all bonded and non-bonded parameters
for the DPP2PymT monomers at hand, the complete force field can be
assembled for an arbitrary topology, to perform MD simulations, as we
will show for Np-DPP2PymT polymer in solutions and as melts in the
following sections.
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3.4 Np-DPP2PymT in solution
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Figure 3.6: Radius of gyration (in nm) of 50-DPP2PymT in vacuum, starting
from all-stretched chain conformations. Each chain collapses into
a globule (see inset in the bottom right) within the first 200 ps
when simulated in the NVT ensemble at 300 K. Side chains have
not been shown for visual clarity.

We verify the quality of the force field using a series of polymer simu-
lations, beginning in this section with a single chain polymer simulation
in vacuum, then proceed to solvate the polymer chain in water and in
chloroform to cross-check solvent effects as seen in experiments.

To begin with, a single polymer chain with the degree of polymer-
ization Np = 50 and 2-hexyldecyl side chains was simulated for each of
the three polymer systems of m = 1, 2, 3. The simulation was started
with all-stretched chain conformation as shown in Figure 3.6, where the
side chains are removed for visual clarity. This was put in a box of
105 × 30 × 30 nm3 so that any artifacts in energy calculations arising
from the polymer chain interacting with a mirror image of itself can
be avoided. It was energy minimized until the forces on every atom
were below 100 kJ/mol/nm. The integration time step used was 1 fs for
50-DPP2Py1T and 50-DPP2Py2T and 0.2 fs for 50-DPP2Py3T. Van
der Waals interactions were cut off at 1.2 nm. Electrostatic interactions
were evaluated using the Particle-Mesh Ewald [88] technique with a real
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m = 1 m = 2 m = 3

Wf (water) 8.8 · 10−3 9.6 · 10−3 10.4 · 10−3

Wf (chloroform) 5.8 · 10−3 6.3 · 10−3 6.9 · 10−3

Table 3.4: Weight fraction (Wf ) of the polymer in water and chloroform
solution.

space cut-off of 1.2 nm, a fourth order interpolation and a Fourier grid
spacing of 0.16 nm. Upon simulating the structures in vacuum at 300 K
in the NVT ensemble, using the velocity rescaling thermostat [139] with
a time constant for the temperature coupling of 0.5 ps, the polymer chain
collapsed within the first 200 ps into a globule as shown in Figure 3.6.
The systems are considered collapsed when the Rg value has stabilized.

The resulting collapsed polymer structure was then put into two
different kinds of solvents to check for the solubility. Chloroform was
used as the organic solvent (good) and water as the polar solvent (poor)
for the simulations. We used the SPC/E water model [140] and the
GROMOS force field for the chloroform solvent, respectively. The single
polymer globule was solvated in 259888 (59495) molecules of water
(chloroform) and equilibrated in a cubic box of 20 × 20 × 20 nm3 with
periodic boundary conditions. After energy minimization, simulations
in the NVT ensemble were performed for 800 ps at room temperature
(300 K). The solution was then simulated for 1 ns in the NPT ensemble
maintaining the pressure at 1 atm using the Berendsen barostat [141] with
a time constant for pressure coupling of 2 ps. These equilibration steps
were followed by production runs for 5 ns in water and for up to 40 ns
in chloroform. The calculations in water were stopped at 5 ns because
there was no significant change in the values of Rg, as seen (green curve)
in Figure 3.7. The calculations in chloroform yielded an increase in the
values of Rg even after 30 ns for m = 1,3. The resulting weight fraction
(Wf ) in the solution for different values of m are shown in Table 3.4.
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Figure 3.7: Radius of gyration of a single 50-DPP2PymT chain for m = 1,2,3
in water (green) and chloroform (red). Water is a poor solvent and
the polymer remains coiled, while in chloroform (a good solvent)
swelling is clearly visible.

As is apparent from Figure 3.7, the simulations of the solvated poly-
mer chains starting from the coiled conformations exhibit qualitatively
contrasting behavior depending on the solvent: while the chain remains
collapsed into the globule in water, it swells and eventually opens in
chloroform. It has been well established that the intramolecular hydrogen
bonding in the DPP compounds hinders its solubility in any kind of sol-
vent. In order to have the DPP compounds solvated in water their polarity
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Figure 3.8: SASA (in nm2) for the individual segment types (DPP, thiophene,
Py, and alkyl side chains) of single DPP2PymT polymer chains
with m = 1, 2, 3 in water (left) and chloroform (right).

needs to be enhanced by the addition of ionic functional groups [142],
or in some cases also by carboxylic acid functional groups [143]. The
absence of any such functional groups in the simulated polymers leads
to the low solubility in water. In contrast, the addition of alkyl side
chains, as has been implemented in the present simulations enhances
the solubility in organic solvents [21]. This trend of solubility is well
represented by the radius of gyration, Rg, in water and chloroform. We
can see from Figure 3.7 that the values of Rg at t = 0 are different for the
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green and for the red curves. This is because the polymer shows swelling
characteristics in chloroform during NVT and NPT equilibration.

In order to analyze the solubility trend in more detail, we determine
the solvent accessible surface area (SASA) for the segment groups (DPP,
thiophene, pyridine, and alkyl side chains) of the DPP2PymT polymer
chains for m = 1, 2, 3, respectively. Figure 3.8 shows the SASA in water
(left) and chloroform (right). We see that surface areas for DPP, pyridine
and thiophenes, which form the backbone of the polymer chain remain
fairly constant for the duration of 5 ns in both water and chloroform.
However, significant differences can be seen for the SASA of the alkyl
chain. It remains constant in water while it increases rapidly in chlo-
roform. This is in line with the experimental findings suggesting that
the purpose of the side chains in DPP polymers is to aid in solubility
in organic solvents which results in the swelling of the polymer chain in
chloroform [21].

The above shows that MD simulations of Np-DPP2PymT in solutions
yield qualitative results as expected from the literature, supporting the
validity of the developed force field.

3.5 Melt simulations

Conjugated polymers exhibit a significant change in structural character-
istics at high temperatures [144]. As such structural changes often govern
the performance of the polymer in opto-electronic devices [145], we also
carried out simulations of 50-DPP2PymT melts to study glass-transition,
as well as the segmental mobility, by analyzing torsional relaxations of
the conjugated substituents.

3.5.1 Glass transition

Initial configuration with the same degree of polymerization (Np = 50),
for polymer melt simulations, has been created with 15 chains in their
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extended state. One single extended chain was aligned along the x-axis
and duplicated 3 times along the y-axis and 5 times along the z-axis. The
space between each chain was 5 nm. These chains were energy minimized
in a 105 × 30 × 30 nm3 box until the forces on each atom converged to
less than 100 kJ/mol/nm.

For similar DPP polymers without aromatic Py substituents a melting
temperature of about 550 K is known from experiment [146]. We know
as an empirical estimate that the glass transition temperature (Tg) is
approximately two-thirds of the melting temperature [147], leading to an
expected Tg of around 360 K. We therefore assume that a temperature of
600 K is sufficiently high to simulate the 50-DPP2PymT melts initially
above Tg. In particular, the melts are first simulated for 2 ns in the NVT
ensemble at 600 K using the velocity rescaling [139] thermostat with a
time constant of 0.5 ps. The resulting structure from the NVT run was
simulated at 1 atm in the NPT ensemble. The pressure was maintained
using the Berendsen barostat [141] with a constant for pressure coupling
as 2.0 ps until we observed a stable density. These equilibrated systems
were then cooled from 600 K to 100 K at a cooling velocity of 10 K/ns to
determine the glass-transition temperatures.

Figure 3.9 shows the cooling curves for the three polymers. The melt
densities at 600 K increase significantly with the number of thiophene
units, amounting to 923 kg/m3, 973 kg/m3 and 1005 kg/m3 for m =
1,2,3, respectively. Glass-transition temperatures are extracted as the
intersection of linear temperature dependence of the density fitted in
the regions clearly below (from 100 K to 200 K) and above (from 500 K
to 600 K) Tg. It is clear from Figure 3.9 that the transition is not very
definite and occurs gradually, and the glass transition temperatures
are obtained as (357 ± 30) K for m = 1, (346 ± 30) K for m = 2, and
(366 ± 20) K for m = 3, respectively.
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Figure 3.9: Temperature dependence of the density of 50-DPP2PymT melt
(m = 1,2,3) for a cooling rate of 10 K/ns. Linear fits to the data
at low (from 100 K to 200 K) and high (from 500 K to 600 K)
temperatures are used to obtain glass transition temperatures of
(357 ± 30) K for m = 1, (346 ± 30) K for m = 2, and (366 ± 20) K
for m = 3, respectively.
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3.5.2 Segmental mobility

With the details about the glass transition at hand, we study the con-
formational mobility and isomerization rates of the substituents in the
polymer backbone at various temperatures, both above and below Tg. To
this end, we determine the torsional auto-correlation function (TCAF)
and analyze its characteristic time decay. We used snapshots from the
10 K/ns cooling simulation for the starting structures. The structures
were taken between 600 K and 250 K at an interval of 50 K. Energy
minimization, NVT and NPT equilibration for 200 ps was carried out
on the starting structures at each temperature. This was followed by a
production run for 1 ns in the NPT ensemble. We study the segmental
relaxation using a normalized auto-correlation function

Rϕ(t) = ⟨cosϕi(t) cosϕi(0)⟩ − ⟨cosϕi(0)⟩2

⟨cosϕi(0) cosϕi(0)⟩ − ⟨cosϕi(0)⟩2 (3.8)

where cosϕi(t) and cosϕi(0) are the torsional angles at time t and at
start of the simulation, respectively.

The auto-correlation for pyridine-thiophene (Py-T1) and thiophene-
thiophene (T1-T2 & T2-T3) dihedrals at 300 K and 500 K are shown in
Figure 3.10 for m = 1, 2, 3. At 300 K, the TCAFs for all dihedrals relax
only a little remaining at values above 0.9 at large times, indicating
very little change in the relative arrangement of the involved conjugated
segments during 1 ns. The observation that the T-T dihedrals show
slightly more relaxation than Py-T can be attributed to the minimally
softer potential and a barrier-free minimum in the former case [121]. In
contrast, at 500 K, the differences between Py-T1 and T1-T2 are not
very prominent. Both show, after an initial fast decay, a second much
slower component, which is not discernible below the glass transition
temperature.

The TACFs clearly point to two characteristic relaxation processes:
a rapid one with small relaxation time τr corresponding to the torsional
vibrations around the minima of the dihedral potential, and a slow one
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with a large τs corresponding to cis-trans transitions with energy barriers
as discussed in Section 3.3.3. Hence, we determine both relaxation times
and the activation energy for torsional relaxations by fitting a sum of
two exponentials to the TCAFs. The τr increases with temperature
and typically ranges between 5-20 ps below and 30-100 ps above glass
transition temperature for both Py-T (pyridine-thiophene) dihedral and
T-T (thiophene-thiophene) dihedrals.

For the slow relaxation process, τs ranges between 103 − 104 ps at
higher temperatures while it is well above 105 ps for the lower end of the
temperature scale. In Figure 4.5 we see that at low temperatures the
logarithm of τs is inversely proportional to the temperature as expected by
the Arrhenius equation τ = τ0 exp

(
Ea
RT

)
, which holds for polymers below
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their glass-transition temperature. From linear fits in this temperature
range, we obtain activation energies for the segmental relaxation of
(13.3 ± 1.1) kJ/mol for the Py-T1 dihedral and (9.7 ± 0.3) kJ/mol for
T1-T2 dihedral.

These values are qualitatively in correspondence to the dihedral
barriers we obtain from force field parametrization and indicates that
the torsional motion is the driving mechanism for polymer relaxation
and segmental mobility.

3.6 Summary

In this chapter we develop an all-atom force field for DPP2PymT for
m = 1, 2, 3 by linking the individual fragments that form the building
blocks for the polymer. We determine bonded parameters using DFT
methods and electrostatic parameters using the CHELPG scheme. This
developed force field is validated using a series of solution and melt
simulations. Qualitative conclusions drawn from the solution simulations
were in line with the well-established fact that chloroform acts a good
solvent for DPP polymers with alkyl side chains while water shows poor
solvent characteristics. The polymer melt provided reasonable values for
the glass-transition temperature ranging between 340 K to 370 K. As a
final check we also looked at the auto-correlation function for torsional
decay which corroborated well with our force field parameters and softer
dihedrals relaxed with lower relaxation times.



Chapter 4

Effect of Solvent Removal Rate
and Annealing on the Interface
Properties in a Blend of a
Diketopyrrolopyrrole-Based
Polymer with Fullerene

Based on the paper: Vivek Sundaram, Alexey V. Lyulin, Björn
Baumeier, J. Phys. Chem. B 126, 7445 (2022).

4.1 Selection of system size

Once we have the recipe (force-field) to perform the necessary classical
MD calculations we need to be weary of the system size. It may be
noticed that the force-field was developed fragment by fragment. Hence,
it is safe to assume that the degree of polymerization for the DPP2PymT
system would be independent of the force-field parameters. Now, with
the challenge to select the right system size we need to find a balance
between how far do the excitations localize on the system the maximum
system size that can be computationally evaluated. Hence, in order to
select the right system size we will start with the smallest size which is

85
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NRPA Nocc Nunocc NBSE εKS
HOMO εKS

LUMO εQP
HOMO εQP

LUMO ΩTDA
opt Ωfull

opt

1-DPP2Py1T 982 96 191 18336 -5.73 -2.93 -6.76 -1.31 2.79 2.44
2-DPP2Py1T 1935 191 381 72771 -5.66 -3.19 -6.57 -1.73 2.45 2.22
3-DPP2Py1T1 2890 286 571 163306 -5.65 -3.30 -6.52 -1.90 2.31 2.11
4-DPP2Py1T1 3844 381 761 289941 -5.64 -3.36 -6.50 -1.97 2.25 2.06
1-DPP2Py2T 1164 117 233 27261 -5.64 -2.95 -6.65 -1.39 2.68 2.38
2-DPP2Py2T 2300 233 465 108345 -5.55 -3.15 -6.42 -1.73 2.35 2.15
3-DPP2Py2T1 3436 349 697 243253 -5.53 -3.23 -6.38 -1.84 2.25 2.07
4-DPP2Py2T3 4572 465 929 431985 -5.53 -3.26 -6.36 -1.90 2.19 2.03
Exp.2 -5.96 -3.80 1.73

1-DPP2Py3T 1346 138 275 37950 -5.55 -2.96 -6.53 -1.45 2.60 2.34
2-DPP2Py3T 2664 275 549 150975 -5.46 -3.11 -6.32 -1.72 2.29 2.11
3-DPP2Py3T1 3982 412 823 339076 -5.45 -3.17 -6.28 -1.81 2.20 2.05
Exp.2 -5.77 -3.72 1.74

Table 4.1: Number of RPA levels (NRPA), number of occupied (Nocc) and
unoccupied levels (Nunocc = 2Nocc), the product basis set size
for BSE calculations (NBSE), Kohn-Sham HOMO (εKS

HOMO) and
LUMO (εKS

LUMO) energies, quasi-particle HOMO (εQP
HOMO) and

LUMO (εQP
LUMO) energies and optical excitation energies for TDA

(ΩTDA
opt ) and full BSE (Ωfull

opt) for the n-DPP2PymT oligomers. All
energies are given in eV.

the monomer unit and increase the degree of polymerization in each step
until our excitation energies have stabilized while making sure that we
do not go beyond the computationally feasible bounds.

The next step in the process after figuring out the suitable system
size is to build a donor-acceptor interface with one or more of the
polymers and study their morphologies. For this we begin with GW-BSE
calculations on a monomer unit, then increase the repeat units until the
optical excitation energy stabilizes.

Geometry optimizations for the n-DPP2PymT oligomers have been
carried out within DFT based on the cc-pVTZ basis set [148] with the
PBE0 hybrid functional [149] using the ORCA package [131]. Initial
structures for all oligomers have been prepared as suggested by exper-
iments with the thiophenes in trans orientation to each other and the
final obtained geometries are nearly planar. For the subsequent GW -
BSE calculations, we chose the evGW approach with the PPM. An
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optimized auxiliary basis set for cc-pVTZ [46] taken from the Basis
Set Exchange [150] has been used in the resolution-of-identity steps.
Aiming at a consistent benchmark, we use in each case the full spec-
trum of single-particle states in the RPA (NRPA), and determine QP
corrections to all occupied (Nocc) and Nunocc = 2Nocc unoccupied states.
The latter are also taken into account in the product basis for the BSE,
i.e., NBSE = Nocc · Nunocc. The explicit values as listed in Table 4.1
for all oligomers. Due to computational limitations, only systems with
n = 1, 2, 3 could be treated for n-DPP2Py3T. The HOMO and LUMO
energies as obtained in the KS and QP approaches, as well as the optical
excitation energies resulting from the TDA and the full BSE are also
given in Table 4.1.

In its ground state, the DPP core is highly electron-withdrawing.
Hence, electron-donating aromatic substituents are added to the DPP
core [21]. In the compounds studied, pyridine is used as an aromatic
substituent which lowers the highest occupied molecular orbital (HOMO)
and the lowest occupied molecular orbital (LUMO) levels due to the
presence of sp2-hybridized nitrogen [5]. Further addition of thiophene (a
stronger nelectron donor) increases the number of aromatic substituents
in conjugation with DPP. The donor strength increases consequently as
evident from the HOMO energy levels determined by cyclic voltammetry
measurements [27]. This addition of thiophene also minimally influences
the LUMO and the optical excitation energy is lowered from 2.22 eV for
m = 1 to 2.05 eV for m = 3 [27].

The quasi-particle energies for HOMO and LUMO follow the expected
trend with increasing number of thiophene units m, as discussed above.
We observe that for all oligomers increasing the number of repeat units
n initially, i.e., from monomer to dimer, affects the HOMO energies by
about 0.2 eV. Upon further additions of repeat units the values tend
to saturate, indicating that the electronic excitations remain localized.
Table 4.1 also includes experimental values for the HOMO and LUMO
levels of polymers of the three respective structures, as determined by
cyclic voltammetry measurements in thin films [27]. The GW calculated
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and experimentally observed εQP values are found to demonstrate the
same behavior as the experiment with increasing number of thiophenes.
Quantitative differences can be attributed to the lack environment effects
in the vacuum calculations [151].

A similar trend is apparent for the energy of the optically active
singlet excitations as shown in Figure 4.1 for calculations based on the
full BSE (solid lines) and using the TDA (dashed lines), respectively.
The values for Ωfull

opt obtained for the largest systems are close to those
obtained in solution [27] (1.81 eV for DPP2Py1T, 1.73 eV in DPP2Py2T,
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1.74 eV in DPP2Py3T). It is also noteworthy that even for the biggest
oligomers the difference between the TDA and the full BSE is about
0.2 eV. This is a further indication of the fact that the electronic states
and excitations do not delocalize completely over the whole oligomer but
remain localized on a few repeat units [152].

This notion is corroborated by the visualizations of the electron
density difference upon excitation shown as insets in Figure 4.1. Although
the DPP bicyclic core is electron withdrawing, upon exciton generation
the electron density is reduced there. In the case of 1-DPP2Py1T the
change in electronic density is visible over the entire small molecule. In
contrast, for 4-DPP2Py1T we notice that the termini of the oligomer
are nearly free of either hole or electron density, with the excitation
appearing to be localized on about three repeat units.

Turning now towards the computational effort required to obtain
these results, we first observe that, as also noted in Table 4.1, systems
with up to roughly Nb = 2500 basis functions (the same as NRPA)
can be treated on machines with less than 256 GB of memory. More
than 512 GB are needed for the biggest oligomer (4-DPP2Py2T). These
requirements can be considered typical for most organic compounds with
similar composition and arise from the aforementioned storage of the
three-center integrals, containing (Nocc +Nunocc) ·NRPA ·Naux doubles.
It should be emphasized that this apparent limitation of the system sizes
accessible on regular workstations can be overcome by choosing a lower
NRPA, fewer states in the QP and BSE steps, or a smaller basis set than
the large cc-pVTZ set used here for demonstration purposes [134]. We
also stress that the peak memory required is reached in the RPA of the
GW step, and obtaining the solution of the BSE does not increase it as
we are making use of the matrix-free Davidson (DPR-MF) method.

Given how the optical excitation delocalizes and the idea of staying
in the feasible memory regime, it was decided to proceed with four repeat
units for the DPP based polymer. For further in-depth analysis we only
consider the polymer DPP2Py2T (see Figure 4.2) in this work but it can
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inferred that these processes can be repeated likewise for other polymer
systems as well.
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Figure 4.3: A brief summary of the two simulation protocols followed in the
present study for obtaining the final structures. The first protocol
envisages solvent removal at 300 K using three different removal
rates 120 #/ns, 24 #/ns and 6 #/ns followed by a production run
as shown in the left half of the figure. The second protocol involves
first equilibrating the polymer-PCBM[60] mixture at 700 K and
then cooling it to 300 K at 20 K/ns and then a production run
at the end as seen in the right half of the figure. The four kinds
of structures obtained at the end of the protocol are used for
structural analysis.



92 Interface Properties of DPP2PymT-PCBM[60] blends

4.2 Methodology

Having determined the degree of polymerization for the DPP2Py2T
polymer the next challenge is to obtain morphologies that, as realistically
as possible, reflect specific structural factors important for the charge
separation and transport dynamics [118–120], such as the segmental
mobility (dihedral rotations between polymer backbone units which
make or break π-conjugation) and the relative orientation of the electron-
accepting fullerene with respect to the electron donating fragments of
the polymer. However, this is hardly obtainable on the same time (and
length) scales involved in the experimental structure processing, in which
typically a solvent is removed from a solution with donor and acceptor
molecules in minutes over a hot plate. Creating a solvent-vapor interface
and removing molecules that cross the interface at regular intervals [153–
155] closely emulates experimental procedures but it can result in very
long simulations, as the solvent molecules in the middle of the structure
may not diffuse to the interface easily. As an alternative, we follow
a procedure in which solvent is removed randomly from the solution
in steps, followed by equilibration runs after each removal.[153, 156]
Effective solvent removal solvent rates keff

r have to be small enough to
avoid the generation of artificial structures.

Starting from an initially solvated system in chloroform, we study the
structural relaxations and final morphologies upon solvent evaporation,
performed using several classical MD simulation protocols depicted in
Fig. 4.3: iterative, incremental solvent removal with different effective
rates at room temperature and a solvent-free annealing from a liquid
melt. The objective for this study is to scrutinize the influence of
the simulation protocol on intra- and inter-molecular microstructural
properties. We investigate, in particular, the glass-transition temperature
of the binary mixture when compared to the pure DPP2Py2T melt, the
torsional mobility of the conjugated segments within DPP2Py2T with
and without the presence of PCBM[60], as well as the inter-molecular
arrangements between DPP2Py2T and PCBM[60] via individual and
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combined radial and angular distribution functions, as well as 3D relative
density distributions.

Classical all-atom molecular dynamics simulations are performed
with the Gromacs 2020.1 simulation package [136]. The Gromos 54A7
force-field [157] is used for PCBM[60] and chloroform molecules while
a custom-made force-field, also built upon Gromos 54A7 is used to for
the DPP2Py2T polymer [158]. Gromos 54A7 parameters were obtained
from The Automated force field Topology Builder [127] where bonded
parameters are extracted from the Hessian of the optimised structure
and partial charges through the Kollmann-Singh scheme.[128] Starting
structures were intialized with 6 polymer chains of DPP2Py2T comprising
4 monomers and 24 molecules of randomly oriented PCBM[60] in a
simulation box of size 12 × 12 × 12 nm3. This ensured 1:1 w/w ratio of
polymer:PCBM[60] to emulate experimental concentrations [159, 160].
The idea behind choosing 4 monomer units in a single chain lies in the
delocalization of the electronic density saturating at 4 repeat units when
the polymer is pushed to the excited state.[135] Two processes were
subsequently followed to ensure a homogeneous blend of the polymer
and PCBM[60] mixture. The first involved the solvation of the system in
chloroform and then subsequent removal of chloroform at different rates.
The second method involved heating the polymer PCBM[60] mixture to
its melt temperature and then annealing it back to room temperature.
The two methods of preparation have been shown in Fig. 4.3. In the
NVT/NPT simulations, pressure was kept constant at 1 atm using the
Berendsen barostat[141] while the temperature was maintained using
the velocity-rescaling thermostat.[139] Electrostatic interactions were
calculated using particle mesh Ewald[88] with a real space cut-off of
1.2 nm. Neighbour lists were updated every 100 time steps using a list
cut-off radius of 1.0 nm. Leap frog algorithm as implemented in the
md-integrator in Gromacs was used.

In the first simulation protocol, the mixture was solvated with 12000
molecules of chloroform and equilibrated first in the NVT ensemble at
and then in the NPT ensemble for 200µs at 300 K. Due to the high
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Table 4.2: Parameters for the three different solvent evaporation simulations:
number of removed chloroform molecules per step Nr in stages (1)
and (2), the respective lengths of the time intervals Tr, total time
of the simulated evaporation T total

r , as well as effective evaporation
rate keff

r in molecules/ns.
N

(1)
r T

(1)
r N

(2)
r T

(2)
r T total

r keff
r

Ia 1200 10 ns 120 1 ns 100 ns 120 ns−1

Ib 1200 50 ns 120 5 ns 500 ns 24 ns−1

Ic 1200 200 ns 120 20 ns 2µs 6 ns−1

solvent concentration the density saturated to chloroform density of
1.517 g/cm3. The next step is solvent evaporation, which we model by
removing chloroform from the solution in batches containing Nr molecules
with a time interval Tr between removal steps. During the whole process,
the system is simulated in the NPT ensemble described above. As the
concentration of DPP2Py2T and PCBM[60] in the solution is very low
initially, the step-wise procedure is performed in two stages: In the first
stage, nine removal steps are executed with N

(1)
r = 1200, i.e., 10 % of

the initially present solvent molecules are removed at each step, until
at the end only 1200 chloroform molecules are left. This is followed
by stage two, comprising 10 steps with N

(2)
r = 120. As also listed in

Table 4.2, we perform simulations at 300 K with different lengths of the
time intervals Tr during the two stages. They are chosen to yield three
different total simulation times of the evaporation procedure of 100 ns,
500 ns, 2µs, corresponding to constant effective evaporation rates keff

r of
120 #/ns (Ia), 24 #/ns (Ib) and 6 #/ns (Ic), respectively. Three different
keff

r have been chosen to investigate the influence of the simulated speed
of evaporation on the structural features in the final room-temperature
morphologies.

As an alternative to the explicit solvent evaporation simulations
(Ia - Ic), we also perform a solvent-free simulation of the DPP2Py2T-
PCBM[60] blend. In this annealing approach, the initial mixture is first
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equilibrated at 700 K (which, as will be confirmed later, is about 250 K
above the glass transition temperature) and then cooled to 300 K with a
cooling rate of 20 K/ns (structure II).

For the structural analysis, NPT production runs of 20 ns are per-
formed for the systems obtained via protocols Ia,b,c and II. The density
of the final production runs stabilized at 1285 kg/m3 for Type Ia,b,c

structures and 1305 kg/m3 for Type II structures. Note that due to the
random selection in the removal of the chloroform molecules, results from
five independent simulations runs are averaged in the analysis of systems
Ia - Ic. Over the last 10 ns of the respective runs, the intermolecular
radial distribution function (RDF), angular distribution (ADF) function
and the combined distribution function (CDF) between each unit of
DPP2Py2T (DPP, Py, T) and C60 part of PCBM[60] are determined.
Also, the preferred side-chain orientation with respect to the DPP block
of DPP2Py2T is visualized. All analysis and post-processing was carried
out using the Trajectory Analyzer and Visualizer (TRAVIS) code. [161,
162]

4.3 Results

4.3.1 Glass Transition

Before we turn to the analysis of the inter- and intramolecular structural
features of the four DPP2Py2T-PCBM[60] blends from Ia,b,c and II,
we briefly discuss the dependence of the blend density on temperature
during the annealing process (II), as shown in Figure 4.4. Initially, at
700 K the DPP2Py2T melt has a density of 870 kg/m3 which increases
to 1150 kg/m3 at 200 K while the blend density goes from 1110 kg/m3

at 700 K to 1330 kg/m3 at 200 K which is considerably higher than the
melt density due to the high PCBM[60] density. One can clearly see the
glass transition, whose temperature Tg is estimated from linear fits in the
temperature intervals 200 K to 300 K and 550 K to 700 K as 440 ± 20 K.
This is significantly higher than the glass-transition temperature of
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395 ± 20 K for a pure DPP2Py2T polymer melt due to non-bonded
interactions between DPP2Py2T and PCBM[60]. Such an increase of
the glass-transition temperature by 40-50 K as a result of the addition
of PCBM[60] is consistent with previous studies of blends with similar
weight fraction of fullerene and a P3HT polymer [163, 164].

4.3.2 Segmental mobility

Torsional auto-correlation functions (TACFs) for the torsional angle
between pyridine-thiophene (Py-T) and thiophene-thiophene (T-T) units
in the backbone of DPP2Py2T provide insight into the intramolecular
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Table 4.3: Relaxation times Tr for the Py-T and T-T connections as obtained
from the variable solvent removal rates and annealing procedures
along with only DPP2Py2T structures at 300 K

Py-T (ns) T-T (ns)
Ia (120 ns−1) 100 50
Ib (24 ns−1) 60 40
Ic (6 ns−1) 60 40
II (Annealing) 110 60
DPP2Py2T 40 30

dynamics in the four final morphologies of the DPP2Py2T-PCBM[60]
mixture. Specifically, we study the conformational mobility using the
auto-correlation function for dihedrals.[165]

Rϕ(t) = ⟨cos(ϕ(τ)) cos(ϕ(τ + t)) + sin(ϕ(τ)) sin(ϕ(τ + t))⟩τ , (4.1)

where ϕ(t) is the angle between the normal vectors of the Py and T
molecular planes at time t. The TACF is computed for a time span of
5 ns, averaged over 40 different starting times (τ). To understand the
impact of the presence of PCBM[60] on the mobility of the different
segments of the polymer, a reference simulation was performed with
polymer only at 300 K. Figure 4.5 shows the TACF for the Py-T and T-T
units for both simulation protocols and DPP2Py2T polymer only. Firstly,
one notices that the relaxations can be classified into two distinct parts-
a rapid relaxation that occurs within the first 200 ps characterized by
torsional vibrations around the minimum and then later a second decay
with a longer timescale corresponding to cis-trans flipping between the
respective units. The time-scales for the slower relaxation times are
obtained from exponential fits to the TACF data and shown in Table
4.3.

The structures without the presence of PCBM[60] (dash-dotted lines)
relax to a greater extent within the first 200 ps and this phenomena
is more prominent for T-T link. The relaxation times for both Py-T
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and T-T units are much smaller in the absence of PCBM[60] as seen
from Table 4.3. We notice that the presence of PCBM[60] increases
the relaxation times from 50 ns to 60-110 ns for Py-T units and 30 ns
to 40-60 ns for the T-T units. In a nutshell, it can be concluded that
the non-bonded interactions between the PCBM[60] and DPP2Py2T in
the system acts as a binder to restrict the intra-molecular segmental
mobility. This, in turn can be beneficial for charge transport as it helps
maintain conjugation within the polymer backbone. Also, structure (II)
that was obtained from annealing (red dotted lines), the TACF attains
a saturation point faster than structures Ia-c thereby revealing a higher
relaxation time.

Py-T correlation decays, as seen in Fig. 4.5 at slower rate as compared
to T-T correlation which can be attributed to the lower torsional barrier
for T-T connection compared to Py-T connection.

4.3.3 Fullerene distribution around polymer

Having seen the intra-molecular structural correlation between pyridine
and a thiophene unit and two thiophene units in the polymer system we
intend to explore the inter-molecular orientation between the individual
units in the polymer and the C60 unit of PCBM[60]. As stated earlier
the relative orientation of the PCBM[60] with the individual units of
the polymer is, in principle important for charge transfer phenomena
as discussed in the ”Introduction” section earlier. To characterize the
orientation we use three distribution functions, radial g(r), angular g(θ)
and a combined distribution function g(r, θ). In these calculations we do
not consider the Hydrogen atoms in the system and also ignore the side
chain on the polymer and PCBM[60]. Also for point to point calculations
we will only consider the center of geometry for all units, so the distances
in g(r) are the distance between the center of geometry of the respective
units. The results for the radial distribution function can be seen in
Fig. 4.6. The first coordination for the C60 unit w.r.t each unit of the
polymer is roughly at about the 0.8 nm. The system obtained after
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Figure 4.6: Radial distribution function g(r) between the centers-of-geometry
of C60 and DPP (top panel), pyridine (middle panel) and thiophene
(bottom panel) obtained using three different effective solvent
evaporation rates (solid lines) and solvent-free annealing (dashed
line), respectively.
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annealing showed more aggregation of C60 around the DPP unit of the
polymer as visible from a higher peak height. For other simulation
pathways, Ia - Ic, the DPP unit shows dispersed peaks indicating no
preferred distance between the DPP-C60 pairs. For the Py-C60 pair two
peaks are visible at the first coordination distance of 0.8 nm and at the
second coordination distance of 1.2 nm. The first coordination distance
between the thiophene and C60 units are split into two peaks. The system
obtained from annealing shows a larger peak at 0.8 nm while the systems
obtained from solvent removal show a more prominent peak at 0.75 nm.
A general observation is that the C60 molecule showed a preferential
alignment to the thiophene, pyridine and the DPP units in decreasing
order as seen from the number of observable peaks and their respective
heights. However, in the case when the system was cooled from 700 K
the relative height of the all peaks (red curves) are similar indicating
that PCBM[60] in these structures does not have a clear preference
unlike the structures attained by solvent removal where PCBM[60] shows
aggregation around the electron donating units of the polymer. Hence,
we can conclude that different removal rates for solvent molecules do
not explicitly affect the distance distribution of fullerenes around the
polymer backbone. However, annealing from higher temperature has a
more prominent effect of C60 aggregation around the DPP fragment of
the polymer.

For the angular and cumulative distribution functions a vector was
defined normal to the plane of the polymer unit under study similar to
the one we defined in the "Segmental mobility" section. A second vector
is defined by connecting the centre of geometries of the polymer unit and
C60, which is the same as we have used to compute the radial distribution
function g(r). We calculate the angle between this normal vector and
the connecting vector. For instance, 0◦ represents a fullerene molecule
exactly above the plane of the unit of the polymer and 90◦ represents
the fullerene molecule lying within the fragment plane. Cone correction
is also applied to maintain consistency of the distribution. The angular
distribution in Fig. 4.7 shows an almost flat line with a little monotonic
decrease for Py-C60 and T-C60 pairs as the angle increases from 0◦ to
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Figure 4.7: Angular distribution function defined between normals of the
molecular plane for DPP (top panel), pyridine (middle panel)
and thiophene (bottom panel) and a vector connecting centers-
of-geometry of the polymer unit and C60 obtained from using
three different effective solvent evaporation rates (solid lines) and
solvent-free annealing (dashed line), respectively.
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90◦. Most fluctuations are noticed for the DPP-C60 pair. It is worthy
to note that having a C60 unit on either side of the polymer plane is
considered similar which is why the study was done only upto 90◦.

In Fig 4.8 we show the results for a combined distribution function
of different units within the polymer and C60 molecule. The radial
and angular distributions present an idea about the relative distance
and orientation of the polymer units and the C60 molecule separately,
however, a combined study of the two tells us which inter-molecular
positions are most favorable. As a guide to Fig. 4.8 we need to note that
each column of the figure contains plots for different simulation protocols
while each row contains the plots for arrangement of different units of the
DPP2Py2T polymer w.r.t C60 unit of PCBM[60]. It is also to be noted
that the color scale of the plot for the DPP-C60 pair obtained from the
annealing procedure has been scaled down by a factor of 1.2 to match
the color scheme of the plots for the four other simulation protocols. The
polymer units were taken as the reference while the C60 units around it
were observed.

Observing the first row of plots in Fig. 4.8 we immediately see a
distinct bright red spot between 0.6 nm and 0.9 nm at 0◦ for the system
cooled from 700 K. This clearly indicates an accumulation of C60 units
around the DPP units. In the same row the system cooled from 700 K
also shows patches of orange at the same spot which led us to conclude
that higher temperatures lead to C60 accumulation around the DPP unit
which is detrimental to the type of arrangement preferred for solar cell
functioning. Now looking at Py-C60 and T-C60 combinations we notice
a large band of white space between 0.8 nm to 1 nm. This shows the
absence of C60 units at those distances for any angular orientation. This
is consistent with the dip in the peaks for their respective g(r) as seen
in Fig. 4.6. The low density region (white spaces) is credited to the
excluded volume for PCBM[60]. That is why it can be seen that higher
the concentration of C60, more the excluded volume thereby indicating
more white spaces as seen in Fig 4.8.
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cases.
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4.3.4 Influence of side-chain alignment

(Ia) 120 #/ns
 (300 K)

(a) C60

(b) Side-chain

(III) - (700 K)

(III) - (700 K)

(Ia) 120 #/ns
(300 K)

Figure 4.9: The relative densities of (a) C60 and (b) side-chain around the
DPP unit of the polymer is shown when visualized from the
polymer plane. The filled bubbles (red and orange indicate density
around structure (II) that was cooled from 700 K while the wired
mesh (blue and grey) indicate density around structure (Ia) that
was maintained at 300 K and had a chloroform removal rate of
120 #/ns.

In this section we investigate the relative density of the C60 unit of
PCBM[60] and the side-chain (2-hexyldecyl) around the DPP unit of the
polymer. The centee of geometry of the DPP unit is positioned at the
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origin and the centee of geometries of C60 and individual branches of the
side-chain are observed in this scenario.

As we see in Fig. 4.9(a) the C60 molecules show a larger density
exactly above and below the plane of the DPP unit. However, one can
notice that for structure (Ia) (blue mesh) the density of C60 is limited to
only one side of the DPP plane while for structure (II) (solid red) there
is presence of C60 density on both sides of the DPP plane. As we do not
distinguish between 0◦ and 180◦ while calculating angle distribution it
can intuitively be understood why this leads to higher concentration of
C60 around DPP for structure (II), as observed in Fig. 4.8 as well. This
brings about the question as to how the side-chains present on the DPP
would be oriented to facilitate such an alignment.

The relative density of the side-chain around the DPP unit of the
polymer can be seen in Fig. Figure 4.9(b) as viewed from the molecular
plane. It is noteworthy to remember that the side-chains are attached
to the Nitrogen atom of the DPP unit as seen in Figure 4.2. Also, the
side-chain contains two branches containing 6 and 8 carbon atoms in each
branch respectively as shown in Fig. Figure 4.2. Hence, the two branches
are treated separately by considering the center of geometry of each
branch individually. In the end, the relative density of both branches
are added to reveal the total side chain density around the DPP unit.
We can see in Fig. figsidechain(b) that in case of structure (II) (orange
solid) the side-chains pack closer to the DPP unit within the plane and
very little density is observed above and below the DPP plane indicating
a constricted packing which facilitates the positioning of C60 molecule
above and below the DPP plane. However, for structure (Ia) (gray mesh)
the side chains are farther away from the DPP unit indicating a more
open structure and also the two branches of the side-chain pack distinctly
away from each other in perpendicular planes. This inherently blocks
a substantial region above the DPP unit which makes it inaccessible to
the C60 unit.

The solvent concentration and orientation around the DPP unit
influences the packing of side-chains. The purpose of side-chains in
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these polymers is enhancing solubility to facilitate ease of processing.
In simulations, the longer the polymer is exposed to a good solvent
(chloroform in this case) the greater is the extent of side-chain expansion
which in-turn reduces the available space around the DPP unit (see
Fig.S1 of the Supporting Information).

Finally, we note that a local arrangement of PCBM[60] near the
electron-donating substituents of the polymer is also commonly consid-
ered as the most favorable arrangement, inferred from the fact that
DPP2Py2T/PCBM[60] mixtures have been used in active layers of
polymer-based solar cells [20]. Here, (efficient) charge generation requires
the easy formation of charge transfer states after photon absorption, with
the hole on the internally electron-donating substituents of the polymer
and the electron on fullerene. The formation of such states can be con-
sidered energetically unlikely between the internally electron-accepting
DPP and PCBM[60]. While this observation provides merely a very
indirect qualitative link between the simulations and real systems, it
suggests that the simulation protocol (II) based on annealing of a melt
above the glass transition yields qualitatively wrong local arrangements
and that explicit solvent effects need to be accounted for in a reliable
simulation protocol. Such information is relevant for multiscale modeling
approaches that aim at gaining microscopic insight into the charge sepa-
ration/generation processes in the DPP (and possibly other push-pull
architecture) polymer heterojunctions with PCBM [5, 134, 135, 166–168]
which rely on an accurate atomistic model of its morphology.

4.4 Summary

In this chapter we analyse the relative orientation of C60 unit of PCBM[60]
around different units of DPP2Py2T polymer for two simulation protocols
involving a variation in solvent removal rate and annealing from melt.
The glass-transition temperature for the polymer-PCBM[60] mixture
was found to be 440 ± 20 K which was expectedly higher than Tg for
DPP2Py2T only. The intra-molecular segmental mobility was lowered



108 Interface Properties of DPP2PymT-PCBM[60] blends

upon addition of PCBM[60] as seen from the higher relaxation times owing
to the non-bonded interaction between the PCBM[60] and DPP2PymT.
As for local orientation of C60 around the polymer, solvent removal rate
did not influence as much as the temperature variation did. We see that
the C60 unit preferred closer vicinity to the DPP unit of the polymer
when cooled from 700 K. This was assisted by the closer packing of the
side-chains in the plane of the DPP unit thereby leaving available space
for C60 to come close to DPP.



Chapter 5

Quantum-quantum and
quantum-classical schemes with
projection-based-embedded
GW -BSE

In the previous chapter, we have established from classical MD sim-
ulations morphologies of DPP2Py2T-PCBM[60] blends with different
local intra/inter-molecular configurations [169]. To get insight into the
energetics, specifically the energy level alignment of local excitations
on donor and acceptor, respectively, and donor-acceptor charge-transfer
excitations, a quantum-mechanical theory is required. Treating even
a single dimer of DPP2Py2T and PCBM[60] (262 atoms) on the level
of the GW -BSE method, introduced in Section 2.2, poses a formidable
challenge to current state-of-the-art implementations. Such a treatment
needs to be embedded in a model for the environment such as the GW -
BSE/MM model outlined in Chapter 2.4. To reduce the computational
costs of the explicit GW -BSE calculation on a dimer, we consider in the
following an adaptation of projection-based-embedded (PbE) DFT, a
quantum-quantum embedding technique, to GW -BSE [170–175]. Such
an approach allows defining active and inactive subsystems, with only
the smaller active subsystem being explicitly treated by GW -BSE, while
interaction among the subsystems is on DFT level [176–178].

109
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In this chapter, we describe the theoretical background and the
implementation of projector-based-embedded GW -BSE in VOTCA-XTP,
as well as its coupling to a classical environment in a quantum-quantum-
classical embedding scheme. As prototypical systems, we consider a
DPP bicyclic ring including side-chains, a lipophilic dye in aqueous
environment, and a π-stacked dimer of benzene and tetracyanoethylene
(TCNE) in water, respectively. In particular, we scrutinize the individual
and combined effects of different choices of active regions, the influence of
screening from the inactive region, and strategies for basis set truncation
on energies of local and charge-transfer excitations, respectively.

5.1 Projection-based-embedded (PbE)
Density-Functional Theory

Projection-based embedding was introduced by Manby, Miller, and co-
workers [170] as a formally exact DFT-in-DFT embedding scheme. Its
idea is to partition the density of a full reference system n(r) into
the densities of two subsystems nA(r) and nB(r), such that n(r) =
nA(r) +nB(r), and where one of them (from now on nA(r)) is considered
active, and the other (from now on nB(r)) an inactive embedding density.
In this scenario, it is possible to derive a set of effective Kohn–Sham
equations for the (orbitals forming) active density embedded in the
inactive density, and which result in an exact reproduction of the total
energy of the full system. Here, we summarize briefly the main elements
of such a DFT-in-DFT embedding approach.

The scheme begins with a self-consistent DFT calculation on the
complete reference system in the full-molecule AO basis as described
in Chapter 2.1.4. The N occupied canonical molecular orbitals from
this calculation, ϕi(r) for i = 1, . . . N , are then first transformed into
localized orbitals, ϕLO

i (r), with a unitary transformation that leaves the
total density of the system unchanged. In VOTCA-XTP, we employ
the Pipek–Mezey (PM) localization scheme [179], which maximizes the
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(a) (b)

Figure 5.1: The localized state of HOMO on a benzene molecule is shown
here for illustrative purposes.

atomic Mulliken population subject to the constraint of keeping the total
density fixed. For the actual maximization step, we make use of the
unitary optimization algorithm as described by Lehtola et al. [180]. In
Figure 5.1 we show as an example the HOMO orbital of benzene in the
(a) canonical form and (b) after PM localization. It seems intuitive that
after the localization, it is more straightforward to specify a set of atoms
in the active regions A and to construct an initial active density from
those localized orbitals which have a significant Mulliken population
qA

i > qt on these atoms (qt is typically 0.4):

nA(r) = 2
N∑

i=1
qA

i >qt

∣∣∣ϕLO
i (r)

∣∣∣2. (5.1)

With nA(r) given, one can determine the density of the inactive region
as nB(r) = n(r) − nA(r). Up to this point, we have achieved merely
a partitioning of the total density in two subsystems. In the next
step, we consider the active density variable and seek a set of effective
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equations for the embedded calculation on subsystem A. This requires
an embedding potential that takes into account the electrostatic and
exchange-correlation interactions with the electrons in subsystem B,
while ensuring that the Pauli exclusion principle is followed between the
orbitaks forming the densities of both subsystems. In projector-based
embedding, both objectives can effectively be achieved by raising the
energies of orbitals associated to subsystem B to very high energies
during the calculation for subsystem A.

If we now consider nA(r) the initial density of the active region,
and denote the variable density as ñA(r), the Fock matrix in the full-
molecule AO basis for an embedded (A-in-B) calculation on the electrons
in subsystem A is given by

FA-in-B = hA-in-B
core [nA + nB] + J[ñA] + K[ñA] + Vxc[ñA], (5.2)

where hA-in-B
core is the embedded core Hamiltonian based on the partitioned

initial densities nA and nB. The density dependent terms J, K, and Vxc
are updated in each iterative steps and hence depend on the updated
active density ñA. The embedded core Hamiltonian reads

hA-in-B
core [nA + nB] = hcore + J[nA + nB] − J[nA] + K[nA + nB] − K[nA]

+ Vxc[nA + nB] − Vxc[nA] + µPB

(5.3)

and contains the core Hamiltonian of the full system, the difference
between the Hartree, exchange, and exchange-correlation terms for the
full system and the initially chosen active subsystem, respectively, as
well as a projection term µPB with the projection operator

PB = SDBS (5.4)

based on the density matrix DB of the environment and the atomic
orbital overlap matrix S to ensure orthogonality between the occupied
states of the environment and the rest of the active subsystem. The
level-shift parameter µ is typically of the order of 105 − 106 Hartree. In
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the limit µ → ∞, the two subsystems are exactly orthogonal. The total
KS-DFT energy of the embedded system is given by

EKS-emb[ñA;nA, nB] = EKS[ñA] + EKS[nA + nB] − EKS[nA]

+ tr((D̃A − DA)(hA-in-B
core [nA + nB] − hcore)),

(5.5)

where EKS[n] is the Kohn–Sham energy functional from Eq. (2.30),
and DA and D̃A the density matrices associated with nA(r) and ñA(r),
respectively.

Figure 5.2 shows as an example the molecular orbital energies for
a single ethanol molecule as resulting from the localization of a full
KS-DFT calculation and an embedded KS-DFT calculation, respectively.
As indicated in the figure inset, the active region for the embedded
calculation is chosen to be the blue shaded OH group, while the red
shaded rest is assumed to be inactive. In the energy level diagram, the
occupied molecule orbital energies are also colored accordingly. The
effect of the projection operator in the embedded calculation is indicated
as pushing the energies of the occupied molecular orbitals associated
with the inactive region (red) to high energies µ. Note that the occupied
orbitals of the active region do not necessarily have to be exactly identical
to the ones from the full calculation. Also note that in the projector-
based embedding calculation the virtual orbitals are not affected and
therefore identical to the ones obtained in the full KS-DFT reference,
i.e., they are not necessarily associated with one of the two regions.

5.2 Truncation of the full atomic orbital basis
(trPbE)

All matrices composing the Fock matrix FA-in-B of the embedded A-in-B
DFT calculation have been expressed so far in the full molecular atomic
orbital basis. As a consequence, the virtual orbitals remain identical to
the one of the full reference calculation and also the dimension of the
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Figure 5.2: Schematic representation of the localized KS orbital energies prior
to and after embedding. The blue highlighted region and is the
active subsystem while the red highlighted region is the environ-
ment. The red orbital levels corresponding to the environment
are projected to a very high energy level in order to ensure or-
thogonality. The black levels represent the virtual orbitals and
they remain untouched during this entire process.
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eigenvalue problem is the same. The most noteworthy computational
gain of the embedding lies in the fact that only a smaller number of
occupied states need to be explicitly determined in the self-consistent
procedure. It raises the question if it is not possible to reduce the atomic
orbital basis for the actual embedding step. Not only would that offer
computational savings by decreasing the dimension of the eigensystem,
but also by construction affect the virtual orbital space and, in an extreme
case, localize the orbitals intrinsically in the active region.

Miller et al. have shown that a reduced atomic orbital basis can be
constructed by truncating the full basis of the reference calculation via
manipulation of the projection term [174, 175]. The procedure begins
with an additional classification of atoms in the inactive region into
border atoms and distant atoms. This distinction is based on whether
any of the atomic basis functions centered at an atom of the inactive
region contributes beyond a threshold to the density of the active region.
In practice, this is determined based on the net Mulliken population of
an atomic orbital α in the active density matrix DA

qα = DA
ααSαα, (5.6)

where S is the overlap matrix. If any of the qα exceeds a threshold
value (typically 10−4), the atom associated with basis function α is
added to the list of border atoms. All remaining atoms are the distant
atoms. Subsequently, the originally assigned inactive molecular orbitals
are also split into border and distant MOs. Border MOs are those
inactive molecular orbitals which have a Mulliken population larger
than a threshold (again, typically 0.4) on any of the border atoms. All
remaining MOs are distant molecular orbitals.

This splitting into border and distant molecular orbitals also allows
a similar splitting of the projection operator via the respective density
matrices Dborder and Ddistant

PB = Pborder
B + Pdistant

B = SDborderS + SDdistantS. (5.7)
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The split projector is now used in Eq. (5.3), however, with different values
for the level-shift, µborder ∼ 100 Ha and µborder ∼ 105 Ha. These steps
now allow evaluating the Fock matrix in Eq. (5.2) in a reduced, truncated,
basis which only includes the basis functions centered at the active and
border atoms. Further reductions are possible by not including all basis
functions of the border atoms but only those shells for which a single
function α exceeds qt used with Eq. (5.6).

Besides setting up the truncated basis, there are several aspects about
the practical implementation of truncated-basis A-in-B calculations that
are noteworthy: First, setting up the variable parts of the Fock matrix
in Eq. (5.2) is straightforward using the truncated basis. However, the
embedded core Hamiltonian Eq. (5.3) including the split projection
requires special consideration, as it contains terms depending on the
initial active density nA and total density nA + nB of the full reference
calculation. As a consequence, the embedded core Hamiltonian hA-in-B

core is
first setup in the full basis, taken over from the preceding full reference
calculation. From this full matrix, only those matrix elements are kept
that correspond to elements involving the truncated basis functions.
A second crucial factor to consider is creating an initial guess for the
embedding SCF after truncation of the basis. One can start with the same
approach as for the embedded core Hamiltonian to transform the initial
active density matrix DA from the full to the truncated basis, denoted
as D̄A. However, this does not guarantee that the molecular orbitals in
the two subsystems are fully orthogonal to each other, leading initially
to a significant contribution of the projection operator(s) to the Fock
matrix. Additionally, the full subsystem density matrix’s idempotency is
not preserved using D̄A, which causes the orthonormality of the localized
molecular orbitals to break down when eliminating atomic orbitals with
small coefficients. This can be mitigated, for instance, by canonical
purification of the truncated initial active density matrix [181].
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5.3 Projection-based-embedded GW -BSE
calculations

On its own, performing a DFT-in-DFT projector-based embedding calcu-
lation offers no computational gain as it requires first the self-consistent
determination of a full system reference. Such a calculation allows, how-
ever, to limit a GW -BSE calculation for the electronic excitations on the
active region only. As the embedding potential is already included in the
preceding subsystem-DFT calculation, there are no changes to the proce-
dure of the GW -BSE steps, except that all quantities involved use the
embedded Kohn–Sham molecular orbitals (in the full or truncated basis)
and their energies as starting point. While the DFT-in-DFT calculation
can be shown to reproduce the full reference total energy exactly, we have
seen that there are by construction changes in the molecular orbitals,
and we therefore cannot in general expect a GW -BSE calculation after
subsystem-DFT (from now on referred to for short as subsystem-GW -
BSE) to yield the same excitation energies as a full GW -BSE calculation.
One can get an indication of what the general changes are by considering,
e.g., the expression for the self-energy Eq. (2.88) split into the exchange
part Σx and correlation part Σc. Expressing the former in terms of
molecular orbitals it reads

Σx(r, r′) = −2
Nocc∑
i=1

ϕi(r)ϕi(r′)vC(r, r′). (5.8)

The exchange part of the self-energy is therefore affected by (i) summing
over fewer occupied states in the subsytem-GW -BSE calculation and (ii)
the changes in the molecular orbitals themselves. Note that while Σx itself
only depends on the occupied orbitals, it enters the quasiparticle energies
of both occupied and unoccupied states as evaluated by Eq. (2.85).
Therefore, even though the virtual molecular orbitals are unchanged in the
subsystem-DFT calculation (using the full basis), their GW quasiparticle
energies may have different contributions arising from Σx.
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For the frequency-dependent correlation part, a similar analysis is
more complicated. Recall from Chapter 2.2 that it reads

Σc(r, r′, ω) = i
2π

∫
G1
(
r, r′, ω + ω′) W̃ (

r, r′, ω
)

dω′, (5.9)

where the single-electron Green’s function is

G1(r, r′, ω) =
∑
m

ϕm(r)ϕm(r′)
ω − εm − iηsign(EF − εm) (5.10)

and the determination of the screened Coulomb interaction depends on
the irreducible polarizability in the form

χ0(r, r′, ω) =
occ∑

i

virt∑
j

ϕi(r)ϕj(r)ϕj(r′)ϕi(r′)
ω − (εj − εi) + iη − ϕi(r)ϕj(r)ϕj(r′)ϕi(r′)

ω + (εj − εi) − iη .

(5.11)

Subsystem embedding changes both G1 (which also leads to the discussed
changes in Σx) and χ0 via the different orbitals and their energies. For
the polarizability, embedding implies several noteworthy modifications.
Even if the ϕ(r) and energies ε were unchanged, the sum over occupied
orbitals is limited to the active occupied orbitals (the ones from the
inactive one are found in the virtual space at high energy, and should be
excluded from the sum over virtual orbitals). As a result, the screening
only has contributions from transitions between occupied orbitals in the
active subsystem and virtual orbitals of the combined system (in the full
basis calculation), while contributions from transitions from occupied
orbitals in the inactive region to all virtual orbitals are removed. The
inactive region therefore can be considered static from the perspective
of the screened Coulomb interaction, similar to a QM/MM embedding
with only static moments in the MM region, as discussed in Chapter 2.4.
If additionally a truncated basis restricted ideally to the active region
is used, this will also affect the virtual orbitals and essentially limit the
transitions to those within the active region, removing charge-transfer
like transitions between the subsystems from the response. The effect on
the calculated contribution of these CT-like transitions to Σc is expected
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to be small, however. Both considerations regarding the modifications
type of transitions excluded in the screening in subsystem-GW are in
general then combined with additional effects of changed orbitals and
their energies in the active region. From the lack of screening from the
now inactive region, one can generally expect the contributions of Σc

to the quasiparticle energies to be smaller (in absolute values) in the
subsystem-GW calculation compared to the full GW case. In other
words, even when the orbitals themselves are only minimally affected
(for weakly interacting, non-bonded molecular structures, for instance),
one can expect to find the occupied (virtual) quasiparticle energies from
the embedded calculation to be below (above) the ones from the full
calculations. In particular, the HOMO-LUMO gap in subsystem-GW is
then larger than the respective gap in full-system GW .

One can make similar examinations on the level of the BSE. Natu-
rally, as the number of occupied orbitals is reduced, the electron-hole
transitions used to expand the two-particle wavefunctions are limited
to the transitions starting from the active subsystem. Any changes to
the quasiparticle energies as a result of the points discussed above will
directly impact the free transition term Dvc,v′c′ from Eq. (2.122) in the
BSE Hamiltonian. The effects on the exchange and direct (screened)
terms of the electron-hole interaction kernel Kx

vc,v′c′ and Kd
vc,v′c′ are simi-

lar to those discussed for Σx and Σc, respectively. Especially, the reduced
screening can be expected to result in stronger electron-hole attraction
compared to the full-system calculation and might in turn compensate
to some degree the larger quasiparticle gap in the free transition.

In Ref. [114, 182], the authors reported subsystem-GW -BSE calcula-
tions on a benzene-ammonia dimer, aqueous methylenecyclopropane, and
a water-solvated adenine-thymine dimer. The embedding scheme differs
from the projection-based-embedding in that they employ mainly another
subsystem-DFT approach (sDFT), which starts out from Kohn–Sham-
like calculations on fragments and determines the full-system density
from them. In such an approach the effective potential in the KS-like
equations for a fragment contain contributions from non-additive terms
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in the kinetic energy and exchange-correlation potential. We point the
reader to Ref. [183–187] for more details of this sDFT approach. Start-
ing out from fragment molecular orbitals and ignoring charge-transfer
like transitions between the fragments allows for a natural partitioning
of Eq. (5.11) into fragment contributions. Then the screening effects
can then, in short, be included when evaluating the screened Coulomb
interaction for Σc in the active region via a self-consistent reaction field
similar to alternative approaches to account for classical polarization
effects in GW -BSE/MM setting [188, 189] to the one used in this work.
For the weakly interacting molecular clusters in Ref. [114], it could be
shown that environment screening included like this can recover to a
large extent the full-system frontier orbital energies, and the transitions
between them. It is not immediately obvious how to adapt the same to an
approach starting from a supramolecular basis, what effects embedding
has on excitations beyond the fundamentan gap, and if changes in the
self-energy are restricted to the correlation part only in case of strongly
interacting subsystems.

5.3.1 Projection-based-embedded GW -BSE/MM

The PbE-DFT and by extension PbE-GW -BSE methods are quantum-
quantum embedding techniques. In Chapter 2.4, quantum-classical
embedding methods with explicit atomistic detail (both static and po-
larizable) have been introduced in a GW -BSE/MM scheme. As in this
the interactions between the quantum and classical regions are purely
represented by electrostatic potentials, it is straightforward to combine
both embedding approaches into one quantum-quantum-classical embed-
ding scheme. The static moments of the MM regions continue acting
as an additional background potential to the quantum-quantum region.
Similarly, the electric field acting on the polarizable sites in the MM
region is created by the total electron density (plus the nuclei) of the
subsystem QM region. It is worth highlighting that when a polarizable
model is used in the PbE-GW -BSE/MM, the outer SCF coupling the
quantum and classical regions implies that during such a calculation also



QM/QM and QM/QM/MM with PbE-GW -BSE 121

(a) (b) (c)

Figure 5.3: Molecular structures used as test systems for PbE-GW -BSE: (a)
DPP bicyclic ring with branched alkyl side chains, (b) prodan in
close (quantum) and distant (classical) water, (c) a water-solvated
benzene-TCNE dimer.

the density of the inactive region can respond to the polarization of the
MM region.

5.4 Frontier orbital and near-gap electron-hole
excitation energies

In this section, we present the results of PbE-GW -BSE calculations
without and with classical embedding for the three test systems shown
in Figure 5.3: (a) a single DPP bicyclic ring with branched alkyl side-
chains, (b) prodan, a polarity-sensitive dye, solvated in water, and (c) a
benenze-TCNE donor-acceptor pair in water. For all systems, we study
the effects of the PbE with (trPbE) or without basis truncation on the
frontier orbitals as well as the selected local or CT excitations. We pay
special attention to the differences in contributions of Σx and Σc to the
quasiparticle energies, and of Kx and Kd to the BSE energies between
full and embedded calculations. In addition to this, each of the three
test systems is here chosen with specific objectives:

(a) For the DPP molecule with branched side chains, we intend to
demonstrate a PbE-GW -BSE calculation for a system in which
the two regions are connected by a covalent bond. We investigate
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the sensitivity of the embedding results on choice the choice of the
active region.

(b) Prodan in water has been chosen to showcase the quantum-quantum-
classical PbE-GW -BSE/MM approach. Also here, we consider the
influence of the choice of the active regions on the predicted excita-
tion energies.

(c) The donor-acceptor benzene-TCNE dimer solvated in water is used
to evaluate the differences in embedding effects on localized and
charge-transfer type excitations.

All calculations have been done using the VOTCA-XTP package
which interface to the ORCA software [131] for the full system reference
DFT calculations. The def2-TZVP basis-set[148] with an optimized
auxiliary basis [133] along with the PBE0 hybrid functional [149] has
been used in all DFT and subsequent GW -BSE calculations. If not
stated otherwise, G0W0 variant has been chosen with the Plasmon-
Pole model (PPM) for self-energy calculation in the GW step. To
maintain consistency, we use in each case the full spectrum of single-
particle states in the RPA (NRPA), and consider all occupied (Nocc) and
the lowest Nvirt = 2Nocc − 1 unoccupied states for the calculation of
the QP corrections and the expansion of the BSE product basis, i.e.,
NBSE = 2Nocc(2Nocc − 1).

5.4.1 DPP bicyclic ring with branched alkyl side-chains

As a first test system, we consider a single DPP unit from the class of
DPP2PymT polymers studied in this work. Alkyl side chains with a
branched structure are attached to the respective nitrogen atoms. A short
C2H2 group contained the branching point, and each branch is formed
by C4H9, as can also be seen in Figure 5.3(a). The geometry of this
structure is optimized in vacuum (DFT with the PBE0 functional and
def2-TZVP basis). In (conjugated) polymer systems, it is often assumed
that the frontier orbitals relevant for charge transport are localized on the
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Table 5.1: Overview of the number of basis functions (Nbasis), number of
functions in the auxiliary basis (Naux), number of occupied states
included in the quasiparticle calculation and the BSE product basis
(Nocc), idem for virtual states (Nvirt), number of transitions in the
RPA (NRPA), and dimension of the BSE Hamiltonian (NBSE), for
the full-GW -BSE, PbE-GW -BSE, and trPbE-GW -BSE calcula-
tions on the three testsystems.

Nbasis Naux Nocc Nvirt NRPA NBSE

DPP+alkyl
full-GW -BSE 1194 2940 115 229 124085 52670
PbE-GW -BSE 1194 2940 51 101 55029 10302
trPbE-GW -BSE 1152 2835 51 101 52887 10302

aqueous prodan
full-GW -BSE 2994 7377 336 672 893088 451584
PbE-GW -BSE(dye) 2994 7377 61 121 162138 14762
PbE-GW -BSE 2994 7377 96 191 255168 36672
trPbE-GW -BSE(dye) 2453 6035 61 191 129137 14762

aqueous benzene-TCNE
full-GW -BSE 1650 4062 183 365 268461 133590
PbE-GW -BSE 1650 4062 53 105 77751 11130
trPbE-GW -BSE(10−4) 1384 3400 53 105 63653 11130
trPbE-GW -BSE(10−5) 1638 4032 53 105 77115 11130

actual functional backbone, and that the side-chains do not participate in
the electronic processes. For the testing of the PbE-GW -BSE approach,
such chemical intuition suggests to actually select only the DPP unit
including the nitrogen atoms as the active region and the complete two
branched alkyl side chains into the inactive one. However, as can be
seen from the isosurfaces of the HOMO from a full KS calculation in
Figure 5.4, the occupied frontier orbital extends further into the side
chains, even slightly beyond the branching atom.
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Figure 5.4: Isosurfaces of the KS HOMO (isovalues ±0.01 a−3
B ) of the single

DPP bicyclic ring with branch alkyl side chain as obtained from
regular KS-DFT.

The choice of only the DPP core as the active region is therefore
expected to yield considerable modifications to the occupied electronic
states. With the objective to first inspect the different effects in the
GW -BSE steps upon embedding without significant modification of the
respective orbitals, we extended the active region to include the C2H2

groups until the respective branching carbon atom for all following PbE
calculations. Figure 5.5 shows the results of G0W0 (left) and evGW
(right) calculations for the HOMO, LUMO and ΩS1 energies for full, PbE,
and trPbE calculations, respectively. The results are also collected in
Table 5.2, in which also the individual contributions to the quasiparticle
energies according to εQP = εKS −V xc +Σx +Σc, the HOMO-LUMO gap,
and contributions of the free transition energy (D), the exchange (Kx)
and direct (Kd) terms of the electron-hole interaction to the electron-hole
excitation energy ΩS1 are listed. The quantity ∆PbE

full is the difference of
the PbE calculation to the full one, and ∆trPbE

PbE measures the additional
change of the basis set truncation with respect to the PbE calculation.

We first start the discussion of the KS HOMO and LUMO energies
on DFT level only. They are shown in Figure 5.5 as dashed lines (blue:
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Figure 5.5: Energy level (in eV) diagram for a DPP bicyclic ring with branched
alkly side-chains showing HOMO (blue), LUMO (green), and
lowest electron-hole excitation (red) energies on KS level (dashed)
or GW -BSE level (solid), as resulting from full, PbE, and trPBE
calculations, respectively. Left panel shows results from G0W0
calculations, right panel from evGW calculations. Double-headed
arrows additionally indicate the respective HOMO-LUMO gaps.
See also Table 5.2 for details.

HOMO, green: LUMO) in the G0W0 panel (note that they are identical
in the evGW case). With the choice of the active region as discussed
above, the change in the energy of the HOMO level upon embedding
is small (-0.03 eV), and the LUMO is unaffected as expected from the
theoretical basis given in Section 5.1. Using a truncated atomic orbital
basis does not yield any changes of the KS electronic structure at the
shown accuracy. As one can see from the values Nbasis in Table 5.1, the
basis truncation procedure as described in Chapter 5.2 removes only 42
of the 1194 functions, or about 3.5 %.
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Table 5.2: Results of full-G0W0-BSE, PbE-G0W0-BSE and trPbE-G0W0-BSE
calculations for a DPP bicyclic ring with branched alkyl side-
chains: KS and QP HOMO and LUMO energies together with the
individual contributions from the exchange-correlation potential
V xc, and the self-energy split in Σx, and Σc, according to εQP =
εKS − V xc + Σx + Σc, as well as KS and QP HOMO-LUMO gaps.
The lowest electron-hole excitation energy from the respective BSE
calculation ΩS1 is also split into the free transition energy (D) and
contributions from the exchange (Kx) and direct (Kd) terms of
the electron-hole interaction. All energies in eV.

full PbE ∆PbE
full trPbE ∆trPbE

PbE

D
F

T

εKS
H -6.20 -6.23 -0.03 -6.23 0.00
εKS

L -2.35 -2.35 0.00 -2.35 0.00
EKS

gap 3.85 3.88 0.03 3.88 0.00

G
0W

0

Vxc
H -12.52 -12.47 0.05 -12.47 0.00

Σx
H -14.08 -14.02 0.06 -14.02 0.00

Σc
H 0.50 0.38 -0.12 0.38 0.00

V xc
L -11.25 -11.23 0.02 -11.23 0.00

Σx
L -7.52 -7.50 0.02 -7.50 0.00

Σc
L -2.04 -1.92 0.12 -1.92 0.00

εQP
H -7.26 -7.40 -0.14 -7.40 0.00
εQP

L -0.66 -0.55 0.11 -0.54 0.01
EQP

gap 6.60 6.85 0.25 6.86 0.01

B
SE

D 7.63 8.00 0.37 8.00 0.00
Kx 0.54 0.56 0.02 0.56 0.00
Kd -5.23 -5.49 -0.26 -5.50 -0.01
ΩS1 2.94 3.07 0.13 3.06 -0.01

Considering from now on the actual G0W0 results, one can first
identify the typical effects of quasiparticle corrections on the HOMO and
LUMO energies. In the full approach, the HOMO energy is lowered by
1.06 eV, and the LUMO energy raised by 1.69 eV, such that the HOMO-
LUMO gap increases by 2.75 eV. Upon PbE, however, the respective
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shifts are more pronounced, by 0.14 eV (0.11 eV) for the HOMO (LUMO),
cf. Table 5.2. The quasiparticle gap EQP

gap is hence increased by 0.25 eV.
Within the GW formalism, a larger gap can often be associated with
reduced screening. This notion is corroborated by the data provided for
the contributions from V xc, Σx, and Σc to εQP in Table 5.2. From the
respective ∆PbE

full for, e.g., the HOMO, one can see that the differences
from the KS exchange-correlation potential and the exchange part of the
self-energy almost compensate (note that V xc is used with a negative
sign in Eq. (2.85)), and that consequently the differences in quasiparticle
energies between full- and PbE-G0W0 are practically determined by
effects in the correlation part Σc alone. For the LUMO, very similar
observations can be made. Again, due to the minimal reduction of the
basis set, no significant changes are noted in trPbE-G0W0 compared to
PbE-G0W0.

Turning now towards the respective BSE results, we first note in
the full calculation that the excitation energy results as 2.94 eV, which
consists of the effective free-transition energy D = 7.63 eV, and the
exchange (Kx = 0.54 eV) and direct (Kd = −5.23 eV) parts of the
electron-hole interaction kernel. The fact that D exceeds EQP

gap by about
one eV indicates that the electron-hole excitation is not exclusively
given by a HOMO-LUMO transition. Qualitatively, the same holds also
in the PbE (and trPbE) calculations. The S1 energy in PbE-G0W0-
BSE results with 3.07 eV only 0.13 eV higher than in the full reference.
This is noteworthy because as discussed above EQP

gap is larger by almost
twice this value. Upon inspection of the individual contributions on the
BSE level given in Table 5.2, one first observes that the free interlevel
contribution D is larger by 0.37 eV and exceeds the relative increase
on EQP

gap, indicating that the lack of screening in Σc is larger for states
outside the fundamental gap. That ΩS1 as obtained in the PbE approach
is close compared to the full one despite these observations is due to
the effect of the direct electron-hole interaction in the BSE Hamiltonian.
This contribution, which is solely responsible for effective electron-hole
binding, is with Kd = −5.49 eV in the PbE case stronger by 0.26 eV.
As discussed in Chapter 2.2.3, the direct terms containes the screened
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Coulomb interaction W . Lack of screening from the inactive region
then implies that the electron-hole pair is subject to a stronger, more
bare-Coulomb like, electron-hole attraction. Such a stronger binding
compensates at least to some extent (by ∼ 50 %) the relatively larger
energy differences of the free transitions.

In the right panel of Figure 5.5, the energy level diagram is given
for results in which the evGW method is used in all three cases. Gen-
erally evGW leads here to a larger quasiparticle gap (by 0.42 eV) and
a larger ΩS1 (by 0.34 eV) than in G0W0 (full approach). Interestingly,
the difference in EQP

gap upon PbE is here with 0.13 eV somewhat smaller.
Compared with a larger reference value in the full evGW calculation, this
reduces its relative error from 3.8 % to 2.7 %. For the first electron-hole
excitation energy, the absolute deviation to the full calculation is with
0.12 eV almost identical to the G0W0 case. Due to the larger reference
value, we still find a slightly reduced relative deviation of 3.7 % compared
to 4.4 %. As before, basis truncation has no noticeable impact on the
energy level diagram.

5.4.2 Prodan in water

The study on the DPP bicyclic ring with branched alkyl side chains in
the previous section has indicated that the proper choice of the active
region is important, that differences in the energy levels between full and
PbE calculations are attributable to the lack of screening effects from
the inactive region, and that basis truncation had a minimal effect. We
will now turn to a different test system, to scrutinize if these findings are
specific to the DPP system in which the active and inactive region were
connected by a covalent bond. We will also present and analyze the use
of PbE in the GW -BSE/MM scenario for quantum-quantum-classical
embedding.

The system we have chosen for this study consists of prodan, a
polarity-sensitive dye, solvated in bulk water, as shown in Figure 5.3(b).
Up excitation of the S1 state absorption of a photon, the dipole moment
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of prodan in the excited state is significantly increased compared to
the ground state. In polar solvents, such as water, additional screening
effects originate from the structural relaxation of the solvent molecules,
which in turn affect the excited state properties of the solute, and lead to
a significant reduction of the emission energy. In Ref. [190], this process
was simulated by an iterative GW -BSE+MD procedure. We take a single
snapshot of one of those trajectories, and perform static and polarizable
G0W0-BSE/MM calculations on this structure.

To begin with, the system is partitioned in quantum and classical
regions. We assign the prodan molecule and any water molecule whose
center-of-mass is within 1 nm of the solute center-of-mass to the QM
region. As a result, the QM region contains 199 atoms (prodan and 55
water molecules), which can be considerably challenging for full GW -BSE
calculations. This QM region is then embedded in another 1 nm wide
shell, which contains 630 water molecules treated on MM level.

We begin with the results of full G0W0-BSE calculations in a static
MM environment, as shown in the left panel of the energy level diagram
in Figure 5.6 and data summarized in Table 5.3. From the computational
details in Table 5.1 it can be inferred that the computational cost for
such a calculation is significant. We will discuss this in more detail in
Section 5.5.1 below. In the G0W0 step, we observe the typical lowering
of the HOMO energy and increase of the LUMO energy with respect to
the KS reference, resulting in a HOMO-LUMO gap of EQP

gap = 3.90 eV as
compared to EKS

gap = 1.70 eV. For the PbE calculations, we now first split
the QM region into an active region containing only the dye molecule and
an inactive region containing the 55 water molecules (setup indicated as
”dye” in Table 5.1 and Table 5.3). One can see from the dashed lines in
Figure 5.6 that the PbE lowers the HOMO energy by 0.08 eV and yields
a correspondingly increased HOMO-LUMO gap as the LUMO energy
remains constant. From the isosurface plot as shown in Figure 5.7, one
can see that the full KS HOMO is not exclusively localized on the dye
alone but exhibits contributions from some close water molecules. With
the restriction of the active region to prodan only, the neglect of these
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Table 5.3: Results of full-G0W0-BSE/MM, PbE-G0W0-BSE/MM and trPbE-
G0W0-BSE/MM calculations (all static) for aqueous prodan: KS
and QP HOMO and LUMO energies together with the individual
contributions from the exchange-correlation potential V xc, and the
self-energy split in Σx, and Σc, according to εQP = εKS −V xc +Σx +
Σc, as well as KS and QP HOMO-LUMO gaps. The lowest electron-
hole excitation energy from the respective BSE calculation ΩS1

is also split into the free transition energy (D) and contributions
from the exchange (Kx) and direct (Kd) terms of the electron-hole
interaction. All energies in eV.

dye dye+water

full PbE ∆PbE
full trPbE ∆trPbE

PbE PbE ∆PbE
full

D
F

T

εKS
H -5.14 -5.22 -0.08 -5.45 -0.23 -5.15 -0.01
εKS

L -3.44 -3.44 0.00 -3.70 -0.26 -3.44 0.00
EKS

gap 1.70 1.78 0.08 1.75 -0.03 1.71 0.01

G
0W

0

Vxc
H -13.02 -12.79 0.23 -12.80 -0.01 -12.97 0.05

Σx
H -16.08 -15.86 0.22 -15.85 0.01 -16.04 0.04

Σc
H 2.13 1.98 -0.15 2.00 0.02 2.03 -0.10

V xc
L -11.31 -10.93 0.38 -10.96 -0.03 -11.08 0.23

Σx
L -7.61 -7.21 0.40 -7.27 -0.06 -7.37 0.24

Σc
L -2.44 -2.15 0.29 -2.12 0.03 -2.23 0.21

εQP
H -6.07 -6.32 -0.25 -6.50 -0.18 -6.19 -0.12
εQP

L -2.17 -1.86 -0.31 -2.13 -0.27 -1.96 0.21
EQP

gap 3.90 4.46 0.56 4.37 -0.09 4.23 0.33

B
SE

D 4.14 4.76 0.62 4.71 -0.05 4.52 0.38
Kx 0.11 0.18 0.07 0.18 0.00 0.15 0.04
Kd -3.30 -3.77 -0.47 -3.86 -0.09 -3.64 -0.34
ΩS1 0.96 1.17 0.21 1.03 -0.14 1.03 0.07
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Figure 5.6: Energy level (in eV) diagram for aqueous prodan showing HOMO
(blue), LUMO (green), and lowest electron-hole excitation (red)
energies on KS level (dashed) or GW -BSE level (solid), as resulting
from full, PbE, and trPBE calculations, respectively. Left panel
shows results from static G0W0-BSE/MM calculations, right panel
from polar G0W0-BSE/MM calculations. Double-headed arrows
additionally indicate the respective HOMO-LUMO gaps. See
also Table 5.3 for details.

contributions changes the electronic state noticeably. Even though there
is no covalent bond formed, this is very similar to the case of the DPP
structure in the previous section, in which the HOMO extended over
some carbon atoms of the side chain.

The quasiparticle gap in static PbE-G0W0-BSE/MM results with
4.46 eV considerably larger than in the full reference (3.90 eV), compati-
ble with the earlier observations about reduced screening effects for the
embedding. Indeed, the differences in the respective contributions from
V xc and Σx nearly compensate and the difference in quasiparticle cor-
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Figure 5.7: Isosurfaces of the KS HOMO (isovalues ±0.01 a−3
B ) of aqueous

prodan chain as obtained from regular KS-DFT.

rections from full- to PbE-G0W0 mostly arises from effects in Σc. Basis
set truncation removes 541 basis functions (see Table 5.1) in aqueous
prodan and has a more pronounced impact on the electronic levels. As
can be seen in Figure 5.6 and Table 5.3, both HOMO and LUMO levels
on KS level result lower in energy in trPbE as compared to the reference
system (by 0.31 eV and 0.26 ev, respectively) and also to the respective
PbE results. As a consequence of the almost constant shift, EKS

gap is
only 0.05 eV larger. On G0W0 level, we note that the differences in the
contributions in the quasiparticle corrections are relatively small and
lead to only a small reduction of the quasiparticle gap by 0.09 eV. On
BSE level, the calculated ΩS1 energy varies from 0.96 eV (full) via 1.17 eV
(PbE) to 1.03 eV (trPbE). Inspection of the respective contributions to
the BSE energy from the data in Table 5.3 reveals the same qualitative
behaviour as discussed in Chapter 5.4.1: the lack of screening from the
inactive region increases the contribution from free transitions D, which
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is compensated to some extent by the for the same reason also increased
electron-hole attraction in Kd (∼ 0.5 eV).

In the last two columns of Table 5.3, we additionally show results of
PbE-G0W0-BSE results in which the six water molecules with substantial
contribution to the full system HOMO orbital are moved from the inactive
to the active region. As can be seen, the change in the HOMO energy is
very small compared to the full system, indicating that the more extended
active region is a suitable choice. In this scenario, the differences in
the quasiparticle energies for the HOMO and LUMO are smaller, but
still amount to a EQP

gap increased by 0.33 eV. Different choices for the
active/inactive region splitting do not affect the qualitative observation
that this difference is effectively only given by Σc contributions. In the
BSE calculation, the lowest electron-hole excitation energy is obtained
as 1.03 eV, only 0.07 eV higher than in the full G0W0-BSE calculation.
Here, the stronger by -0.34 eV electron-hole interaction in the BSE kernel
compensates the larger by 0.38 eV free transition contribution.

When polarizable GW -BSE/MM is employed, the respective calcu-
lations of the coupled system in the self-consistent reaction field of the
MM environment become state dependent. What is shown as polar
G0W0-BSE/MM in the right panel of Figure 5.6 are the energy levels in
the final step of a self-consistent procedure to evaluate the total energy
of the S1 excited state according to Eqs. (2.148)-(2.150). Note also that
the PbE and trPbE results shown there are for the case in which only the
prodan molecule is in the active region, as in the left panel. We refrain
from analyzing the shown data in detail because even though the exact
numbers are different, there are no fundamental differences in what has
been observed for static G0W0-BSE. In other words, while the external
potential is different in both cases, the intrinsic effects going from full to
PbE or trPbE calculations are the same.
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5.4.3 Benzene-TCNE dimer in water

The final system under consideration is a dimer of benzene and TCNE,
as it is known to exhibit intermolecular charge-transfer type excitations
in which the hole is predominantly located on benzene and the electron
on TCNE molecule [191]. In a polar solvent, these CT excitations are
massively lowered in energy compared to the vacuum case, and a proper
treatment of the polarizable environment is essential. Not only is the type
of electron-hole excitation different to the ones studied in Section 5.4.1
and Section 5.4.2 but also the localization on the contributing frontier
orbitals. We scrutinize in the following if the observations regarding
PbE- or trPbE-GW -BSE calculations made for the previous two test
systems also hold in case of intermolecular excitations. To this end, we
prepared first a dimer of benzene and TCNE molecules stacked with a
separation of 3.7 Å. This initial structure was then solvated with water
using packmol[192, 193]. From this solvated system, the benzene-TCNE
dimer and the 26 closest water molecules have been selected for the
following calculations. Note that we are only interested in the trends of
effects from using PbE or trPbE here, so a more involved procedure to
obtain relaxed atomic positions is not required for this purpose.

In Figure 5.8 we show the resulting energy level diagram for the
different variants of G0W0-BSE calculations on this benzene-TCNE
dimer, including a reference calculation for the dimer in vacuum, see
also Table 5.4. In the vacuum reference, the HOMO-LUMO gap is
increased in G0W0 by 3.44 eV compared to the KS value, and the CT
excitation energy is obtained as 3.01 eV. When embedded in water, the
full G0W0-BSE calculation exhibits a reduced EKS

gap (by 0.54 eV), which
is predominantly caused by a shift in the HOMO level. The G0W0 gap
is even reduced compared to vacuum by 0.81 eV, but interestingly here
we also observe a downward shift of the LUMO energy albeit only by
0.19 eV compared to the upward shift by 0.62 eV of the HOMO. From
the isosurfaces of the HOMO and LUMO in the full-G0W0 calculation
as shown in Figure 5.9 one can clearly see the donor-acceptor character
of the dimer in the distribution of the frontier orbitals on the respective
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Figure 5.8: Energy level (in eV) diagram for benzene-TCNE dimer solvated in
water showing HOMO (blue), LUMO (green), and lowest electron-
hole excitation (red) energies on KS level (dashed) or G0W0-BSE
level (solid), as resulting from full, PbE, and trPBE calculations,
respectively. Double-headed arrows additionally indicate the re-
spective HOMO-LUMO gaps. See also Table 5.4 for details.

molecules, corroborating the notion that a transition from HOMO to
LUMO is of charge-transfer character. Its CT excitation energy is
obtained as 2.41 eV, lower by 0.69 eV than in the vacuum case. It is
noteworthy that this lowering of the CT energy is caused mainly by the
reduction of the contribution from the free transition term D (6.41 eV in
vacuum vs. 5.59 eV in water) while the direct part of the electron-hole
interaction is just reduced by 0.12 eV due to the additional screening
from the environment.

From Figure 5.9 it can also be seen that both frontier orbitals are
not completely localized on the respective molecules, as the HOMO has
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Table 5.4: Results of full-G0W0-BSE, PbE-G0W0-BSE and trPbE-G0W0-BSE
calculations for a benzene-TCNE dimer in water: KS and QP
HOMO and LUMO energies together with the individual contri-
butions from the exchange-correlation potential V xc, and the self-
energy split in Σx, and Σc, according to εQP = εKS −V xc +Σx +Σc,
as well as KS and QP HOMO-LUMO gaps. The lowest electron-
hole excitation energy from the respective BSE calculation ΩS1

is also split into the free transition energy (D) and contributions
from the exchange (Kx) and direct (Kd) terms of the electron-hole
interaction. All energies in eV.

vacuum full PbE ∆PbE
full trPbE ∆trPbE

PbE

D
F

T

εKS
H -7.79 -7.28 -7.29 -0.01 -7.20 0.09
εKS

L -4.85 -4.88 -4.88 0.00 -5.02 -0.14
EKS

gap 2.94 2.40 2.41 0.01 2.18 -0.23

G
0W

0

Vxc
H -10.40 -10.46 -10.40 0.06 -10.43 -0.03

Σx
H -11.97 -12.02 -11.95 0.07 -11.95 0.00

Σc
H 0.10 0.20 0.12 -0.08 0.11 -0.01

V xc
L -11.54 -11.56 -11.52 0.04 -11.53 -0.01

Σx
L -7.88 -7.93 -7.89 0.04 -7.92 -0.03

Σc
L -1.68 -1.82 -1.69 0.13 -1.70 -0.01

εQP
H -9.26 -8.64 -8.72 -0.08 -8.61 0.11
εQP

L -2.88 -3.07 -2.94 0.13 -3.10 -0.16
EQP

gap 6.38 5.57 5.78 0.21 5.51 -0.27

B
SE

D 6.40 5.59 5.80 0.21 5.52 -0.28
Kx 0.01 0.01 0.01 0.00 0.01 0.00
Kd -3.31 -3.18 -3.36 -0.18 -3.43 -0.07
ΩS1 3.10 2.42 2.45 0.03 2.10 -0.35

minimal contributions at the TCNE and some close water molecules. The
LUMO shows a similar pattern. For the PbE and trPbE calculations, we
choose only the dimer as the active region. As one can see in Figure 5.8
and Table 5.4, the associated neglect of the contributions of the water
molecules to the HOMO has very little effect on the KS HOMO energy in
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(a) (b)

HOMO LUMO

Figure 5.9: Isosurfaces of the (a) HOMO and (b) LUMO (isovalues ±0.01 a−3
B )

of the aqueous benzene-TCNE dimer as obtained from regular
KS-DFT.

PbE, and concomitantly, the KS HOMO-LUMO gap. The quasiparticle
energies in PbE-G0W0 are 0.08 eV lower for the HOMO and 0.13 eV higher
for the LUMO, compared to the full-G0W0 result, and as a consequence
the gap is larger by 0.21 eV. As observed for the DPP system and aqueous
prodan, the differences in the respective contributions to the quasiparticle
corrections from V xc and Σx mostly cancel out. The CT excitation energy
in PbE-G0W0-BSE is with 2.45 eV only 0.03 eV larger than in the full
calculation, as the comparatively stronger electron-hole interaction almost
completely compensates the larger free quasiparticle transition energies.
Upon truncation of the basis set, we find unexpectedly larger deviations
in trPbE-G0W0. Already on Kohn–Sham level, we find that the HOMO
energy is increased to -7.20 eV and the LUMO lowered to 5.02 eV, leading
to Egap being reduced by 0.23 eV. At quasiparticle level, the gap energy
is reduced by 0.27 eV as compared to the untruncated PbE case, so that
the quasiparticle gap is very close to the full-G0W0 result. This should
be considered coincidental. Indeed, the energy of the CT excitation is
also lower by 0.35 eV and is as a consequence 0.32 eV smaller than in
the full calculation reference, as the electron-hole interaction remains
under-screened.
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Figure 5.10: Density of states (DOS) for the three systems studied in this
work: (a) DPP with branched alkyl side chains, (b) aqueous
prodan, and (c) aqueous benzene-TCNE. Grey (red) shaded
areas show the DOS as obtained by full KS (G0W0) calculations,
while the black (red) lines indicate the respective PbE-KS (PbE-
G0W0) DOS. A Gaussian broadening with standard deviation
0.2 eV is used in all cases.

5.5 Discussion

We begin the discussion of the analysis of the PbE and trPbE techniques
in application to the GW -BSE methodology by taking a broader view
on the obtained quasiparticle energies than just the frontier orbital and
fundamental gap energies. To this end we show in Figure 5.10 a compari-
son between the density of states (DOS) for the three systems studied in
this work as obtained from full and PbE calculations on KS and G0W0

levels. On KS level (grey shaded area: full; black line: PbE) one can see
in all three cases the frontier orbital peaks are well reproduced, and by
construction also the full range derived from unoccupied orbitals. For the
energy region lower than the respective HOMO energy, one can generally
observe the presence of fewer states, as expected. Especially for the
two water-solvated systems a significant part of the full DOS is removed
by the embedding. When comparing the same data obtained on G0W0

level of theory, one can see the small deviations of the frontier orbital
energies in PbE-G0W0 with respect to the full calculation. For lower
energy occupied and higher energy unoccupied levels, the comparison
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Table 5.5: Results of full-G0W0-BSE/MM, PbE-G0W0-BSE/MM calcula-
tions (all polar) for aqueous prodan: KS and QP LUMO+1 and
LUMO+2 energies together with the individual contributions from
the exchange-correlation potential V xc, and the self-energy split in
Σx, and Σc, according to εQP = εKS − V xc + Σx + Σc. All energies
in eV.

LUMO+1 LUMO+2

full PbE ∆PbE
full full PbE ∆PbE

full

εKS -2.32 -2.32 0.00 -1.06 -1.06 0.00
V xc -10.72 -10.47 0.25 -8.19 -5.91 2.29
Σx -6.76 -6.52 0.24 -4.53 -3.11 1.43
Σc -2.66 -1.58 0.24 -2.23 -1.58 0.65
εQP -1.02 -0.79 0.23 0.37 0.16 -0.21

is not so straightforward. When one compares PbE-G0W0 to PbE-KS,
one can see similarities in the broad shape of the DOS, but also that not
all orbital energies experience the same quasiparticle corrections. This
seems to affect the virtual DOS above the LUMO more significantly. As
one can see in PbE-G0W0 results in Figure 5.10(a) and (c) in particu-
lar, there are peaks in the DOS below those the full calculation DOS.
This is an indication that the QP corrections for these levels, whose KS
reference energy is the same in full- and PbE-KS, are less pronounced
when an embedded calculation is performed. This is different to the
observation that quasiparticle corrections are generally stronger for the
frontier orbitals due to the lack of screening.

To elucidate we consider in more detail the differences between the
PbE and full calculation split among the different contributions to the QP
energies as done for HOMO and LUMO in Table 5.3, now for LUMO+1
and LUMO+2 from the final step in the polarizable G0W0-BSE/MM
calculations. The results are summarized in Table 5.5. For the LUMO+1,
we find qualitatively the same behavior as for the LUMO as discussed in
Section 5.4.2: the contributions from V xc and Σx nearly cancel out, and
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(a) (b)

LUMO+1 LUMO+2

Figure 5.11: Isosurfaces of the (a) LUMO+1 and (b) LUMO+2 (isovalues
±0.01 a−3

B ) of the aqueous prodan as obtained from regular KS-
DFT.

the too weak screening in PbE leads to a 0.23 eV higher quasiparticle
energy as compared to the full calculation. For LUMO+2, the same does
not hold: the difference in contributions from V xc and Σx is significant,
and contributes with -0.86 eV to the difference in quasiparticle energies.
The contribution from the difference Σx is with 0.65 eV positive, consistent
with the argument of too weak screening. Its magnitude is however much
bigger than for LUMO and LUMO+1. In total, we find a quasiparticle
energy that is lower by 0.21 eV in PbE as compared to the full calculation.

Inspecting the nature of the respective states might provide an indi-
cation of the origin of this different behavior. In Figure 5.11 we shows
isosurfaces of LUMO+1 and LUMO+2, respectively. LUMO+1 (like
LUMO) is predominantly localized on the dye molecule itself, with
only small contributions from some close water molecules. In contrast,
LUMO+2 is markedly different and extends to a large amount onto
water molecules, that is into the inactive region from the point of view of
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projection-based-embedding. It stands to reason that in such a situation
the removal of the occupied states of the inactive region from the ex-
pression for the exchange part of the self-energy in Eq. (5.8) introduces
additional deviations.

5.5.1 Embedding cost

(a) (b)

Figure 5.12: Computational costs of the different calculation steps in full-,
PbE-, and trPbE-G0W0-BSE calculations for the aqueous prodan
system from Section 5.4.2. (a) Runtime (in s) on 28 threads
of an Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz. (b) Peak
RAM consumption in GB.

In addition to the quality of the results of the different PbE-G0W0-
BSE calculations compared to the full calculations, we consider the
respective computational costs using the aqueous prodan system from
Section 5.4.2 as an example. As can be seen from Table 5.1, large
savings can be expected in the RPA steps (reduction of the number of
transitions to less than 20 %), and in the BSE solution (reduction of
the product basis size to about 3 %). Figure 5.12(a) shows the runtime
of the respective calculation steps. For all of the three variants, the
underlying DFT calculation on the full system is performed with ORCA
in about 1100 s. Localizing all 336 occupied orbitals with the unitary
optimization requires in VOTCA-XTP around 1300 s, and performing
the PbE-KS around 9600 s. Note that the internal DFT implementation
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in VOTCA-XTP is not optimized for performance and intended for
development purposes instead. As expected, the most significant saving
in computational time is the actual G0W0 and BSE steps of the procedure.
For the former, the reduced number of transitions in the RPA, combined
with a lower number of states for which quasiparticle corrections have to
be determined, reduced the time from 3900 s to around 800 s. Note that
the absolute cost of the G0W0 step is, in fact, reasonably small (only
a factor ∼ 3.5 in the full calculation) compared to the DFT step, due
to the use of the Plasmon-Pole Model for the frequency-dependence of
the self-energy, which requires the explicit evaluation of the microscopic
dielectric function only for two frequencies, see also Section 2.2.2. The
most dramatic compute time reduction is observed for the BSE step.
Here PbE leads to a reduction from 43000 s to just 270 s due to the
massively reduced dimension of the product basis. Basis set truncation
allows for another reduction of runtimes in G0W0 and BSE by a factor of
2, respectively. Apart from runtimes, the size of accessible systems for the
GW -BSE approach is often also limited by the peak memory consumption,
at least in the implementation in VOTCA-XTP. From the data shown
in Figure 5.12(b), it is clear that the full and PbE approaches differ
vastly in peak memory consumption. Embedding and the subsequent
reduction in the in-memory storage of three-center Coulomb integrals
after contraction with molecular orbitals requires only 3.8 GB of RAM
compared to 118.7 GB. The truncated basis has a smaller effect on top of
this (2.5 GB). This clearly shows that PbE techniques can remove some
of the computational bottlenecks of GW -BSE calculations, at the price
of some deviations in the obtained results due to the lack of screening
contributions from the inactive region.

5.6 Summary

In this chapter, we have introduced and scrutinized projection-based-
embedding techniques of GW -BSE calculations. Based on the analysis
of the three test systems DPP ring with branched alkyl side chains,
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aqueous prodan, and an aqueous benzene-TCNE dimer, we could see
that PbE can offer significant computational gains, making larger systems
accessible to the many-body Green’s functions based methodology. We
have demonstrated that it can also be directly incorporated in quantum-
classical embedding (GW -BSE/MM) schemes. We also found that the
agreement with full calculations depends on the choice of the active region
and is subject to effects from the neglect of screening contributions from
the inactive electrons in the GW steps, which leads generally to an
increased quasiparticle HOMO-LUMO gap. It was also noted that the
lack of screening is in part compensated in the BSE as it manifests
itself in an increased electron-hole attraction, so that deviations from
full results for the electron-hole excitation energy are on the order of
0.1 eV for the different types of excitations studied here. It should be
noted that all excitations are near-gap excitations, and it can not be
guaranteed that the same quantitative agreement will hold for higher-
energy excitations. Finally, we have seen that additional truncation of
the basis set can reduce the computational costs by a factor of two with
respect to full-basis PbE, but results appear to be sensitive to the chosen
threshold values for removing basis functions.



Chapter 6

Excitonics at a
DPP2Py2T-PCBM interface

With the embedding strategies as developed in Chapter 5, we now turn
towards the investigation of the excitonic properties at the interfaces
between donor and acceptor in the mixed DPP2Py2T-PCBM[60] mor-
phologies introduced in Chapter 4.

6.1 Introduction

For any organic solar-cell active layer, its ability to efficiently generate
free charges from an initial photoexcitation of the absorbing material is
one of the key effects to control and to optimize. As described earlier,
an important part of the process is the formation of an intermediate bi-
molecular charge-transfer excited state. While an important factor, the
conversion from an either DPP2Py2T or PCBM[60] localized excitation
(LE) to a CT excitation depends not only on the alignment of the energies
alone (which in turn can be very sensitive to structural details). Instead,
the conversion can be considered an activated tunneling process, and can
be described by an effective transition rate. In this chapter, we will work
towards the estimation of different conversion rates based on PbE-GW -
BSE calculations, for some representative structures. For this specific
system, this investigation is motivated by the experimental observation

144
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that the population of CT states at the interface is sensitive to whether
the donor or acceptor material is initially excited, and the energy of the
CT excitation.

Dynamics at the DPP2Py2T-PCBM[60] interface cannot only be
understood from an analysis of the vertical energy levels alone. Focusing
in particular on the conversion from initially excited localized excitations
on either DPP2Py2T or PCBM[60] to bi-molecular charge-transfer exci-
tations, it is attractive to consider them by an effective transfer rate [167,
168, 194]. In the non-adiabatic high temperature or activated crossing
limit, Marcus theory [195, 196] yields the rate of electronic excitation
transfer between an initial LE and final CT state as

ωLE-CT = 2π
ℏ

|JLE-CT|2√
4πλLE-CTkBT

exp
[
−(∆ELE-CT − λLE-CT)2

4λLE-CTkBT

]
, (6.1)

where ∆ELE-CT is the adiabatic energy difference, and λLE-CT the reorga-
nization energy. The expression also contains the non-adiabatic coupling
element, JLE-CT. In principle, it should be possible to evaluate all three
quantities that enter the Marcus rate from electronic structure methods,
including the (PbE-)GW -BSE methods developed in this work. In the
following, this is being considered for two representative DPP2Py2T-
PCBM[60] structures. In Chapter 4 we discussed how different processing
techniques could yield different morphologies and briefly stated that these
morphologies could have an impact on the excitation energies of the
DPP2Py2T-PCBM blend. We pick two of those structures: the structure
after solvent removal at a rate of 120 #/ns and after a solvent removal
rate of 24 #/ns, c.f. structures Ia and Ib in Figure 4.3.

6.2 Computational details

Out of these large-scale structures, we select first the DPP2Py2T and
PCBM[60] with closest center-of-mass distance from each fragment to C60

center-of-mass as they are expected to exhibit the strongest interactions
between donor and acceptor molecule and potentially the energetically
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(a) (b) (c) (d)

HOMO LUMO120#/ns HOMO LUMO24#/ns

Figure 6.1: Isosurfaces of the full KS HOMO and LUMO (isovalues
±0.005 a−3

B ) for two DPP2Py2T-PCBM[60] structures taken from
the final results of Ia and Ib solvent evaporation approaches in
Chapter 4 with removal rates of 120 #/ns and 24 #/ns, respec-
tively.

lowest lying CT excitation energies. As these dimer structures still
contain in total 650 atoms, we remove in a first postprocessing step the
side chains from the DPP2Py2T (barring one methyl group) and replace
the PCBM[60] with a plain C60 at the same position and orientation.This
step reduces the number of atoms to 262, and the corresponding structures
are shown in Figure 6.1. To keep the subsequent calculations on the
electronic structure tractable, we use then Stuttgart-Dresden effective
core potentials [197–199] with an uncontracted version of the associated
optimized basis set, augmented by polarization functions from the 6-
311G** basis [200, 201]. We have shown in [134] that this basis set offers
a good balance between computational cost of GW -BSE calculations
and accuracy. In all calculations, the PBE0 hybrid functiona [149] has
been used in steps involving KS-DFT. With these choices, the number
of electrons in the full system is 898, so 449 occupied levels, with a total
basis set size of 4692. A full GW -BSE calculation would therefore have
in the most extreme case NRPA = 1905107 transitions in the screening
calculations, with the BSE product space NBSE = 996004, and the
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computational cost is enormous. Inspecting the orbital distributions of
HOMO and LUMO for the two selected structures in Figure 6.1 obtained
from full KS-DFT caclulations reveals that in both cases the HOMO
is not delocalized over the whole DPP2Py2T chain. Particularly in
the 120 #/ns conformation, the HOMO remains localized on the part
close to the PCBM[60] molecule. In the 24 #/ns structure, the HOMO
extends somewhat further, but note that the isovalue chosen for the plot
is relatively low. Based on these observations, we proceed with a PbE
setup, in which the active region comprises the end 2-mer of DPP2Py2T
and the C60, in total 262 atoms. In this setting, there are 644 active
electrons, so 322 occupied states. Still, the number of transitions in the
RPA is 140714 and the BSE product space dimension is 207368. All PbE-
G0W0-BSE calculations were performed on the Snellius supercomputer
of the Dutch national e-infrastructure with the support of the SURF
Cooperative using grant no. EINF-4183.

6.2.1 Non-adiabatic LE-CT couplings

While these calculations will provide crucial information about the differ-
ent vertical excitation energies, more quantities need to be calculated for
the determination of the rates in Eq. (6.1). The first of these quantities
are the non-adiabatic coupling elements between LE and CT excitons.
Electronic states such as the excitations obtained from the solutions
of the BSE are adiabatic states |Φi⟩ of some eletronic Hamiltonian Hel.
Corresponding diabatic states |Φdiabatic

a ⟩ can be obtained via a unitary
transformation

|Φdiabatic
a ⟩ =

Nstates∑
j=1

Uaj |Φj⟩ . (6.2)

With this, the adiabatic form of the electronic Hamiltonian with adiabatic
energies εi, i.e., ⟨Φi| Hel |Φj⟩ = εjδij is transformed into the diabatic form

Hdiabatic
ab = ⟨Φdiabatic

a | Hel |Φdiabatic
b ⟩ =

∑
ij

Uia ⟨Φi| Hel |Φj⟩Ubj . (6.3)
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Considering specifically a two-state problem (Nstates = 2), the transfor-
mation can be written explicitly as a rotation

U =

U11 U12

U21 U22

 =

cos θ − sin θ

sin θ cos θ

 . (6.4)

and the diabatic Hamiltonian as

Hdiabatic =

 cos θ sin θ

− sin θ cos θ

ε1 0

0 ε2

cos θ − sin θ

sin θ cos θ

 . (6.5)

Its off-diagonal elements

Jab = 1
2 sin (2θ)(ε2 − ε1) (6.6)

are then the non-adiabatic couplings between the two diabatic states.
In practice, the optimal θ of this specific unitary transformation matrix
U is determined by extremalizing some function f(U). Here, we use
the Fragment Charge Difference diabatization, in which the diabatic
states are eigenstates of the so-called fragment charge difference (FCD)
matrix [202], based on the definition of donor (D) and acceptor (A)
fragments, as ∆Qij = Qij(D) − Qij(A). The fragment charges are
typically obtained from a population analysis of the individual adiabatic
densities and the transition density between them. Again, for a two-state
model, the coupling is given explicit by

JFCD
ab = |∆Q12|(ε2 − ε1)(

(∆Q11 − ∆Q22)2 + 4∆Q2
12
)1/2 . (6.7)

6.2.2 Reorganization energy estimates

Evaluation of the Marcus rates further requires calculation on the re-
spective reorganization energies λLE-CT. Within the Marcus picture,
λLEx−CT = ECT(LEx) − ECT(CT), where x = P,F (P: polymer, F:
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fullerene) and Ea(G) represents the total energy of state a at geometry
of state G.

As such, this would require the cumbersome optimization of the dimer
structures in the respective CT and LE states. Instead, we approximate
the energies from monomer calculations, such that

ECT(LEP) = E+
P (P∗) + E−

F (F0) (6.8)
ECT(LEF) = E+

P (P0) + E−
F (F∗) (6.9)

ECT(CT) = E+
P (P+) + E−

F (F−) (6.10)

where the superscripts refer to the state of the monomers (0: ground
state, +: cation, −: anion, ∗: excited). The total energy calculations and
geometry optimizations in this step are performed using (time-dependent)
DFT with the def2-tzvp basis set and PBE0 functional. For DPP2Py2T
we perform these calculations on both a single repeat unit and two repeat
units but not longer due to the large computational cost involved in
optimizations for larger structures and the fact that the hole part of the
excited states remains localized on a smaller subpart of the full structure
as in Figure 6.1. In similar spirit, we determine the vertical to adiabatic
energy relaxations of the excited states, Λa = Ea(0) − Ea(A).

6.3 Interface excitonics

The vertical excitation energies as resulting from PbE-G0W0-BSE calcu-
lations on the two chosen DPP2Py2T-PCBM[60] interface structures are
shown in Figure 6.2 and listed in Table 6.1. We focus specifically on the
two lowest excitations localized on DPP2Py2T (LEP) and PCBM[60]
(LEF), respectively, and the two lowest energy excitations with near inte-
ger CT character (CT1 and CT2). There are some noteworthy similarities
between both structures. The energies of the localized excitation on the
PCBM[60] as well as that of the second CT state CT2 are identical with
1.70 eV and 1.76 eV, respectively. Even the lowest-lying CT1 energy is
only different by 0.04 eV. It is possible that this is due to fact that both
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Figure 6.2: Energy levels for LEP, LEF along with CT type excitations CT1
and CT2 in the two DPP2Py2T-PCBM[60] interface structures
as obtained from PbE-G0W0-BSE calculations. Estimates for the
timescales of the transitions are indicated with the respective
arrows. For the 120 #/ns structure, isosurfaces (±0.0008 ea−3

B )
of the electron difference densities are shown as insets. Red
color indicates hole (lack of electron) density while blue indicates
electron density.

structures, as shown in Figure 6.1 exhibit very similar local arrangements
of the polymer and fullerene. The fullerene part itself is also not subject
to significant distortions of the internal molecular geometry, much in
contrast to the DPP2Py2T chain. For the LEP energy, we find therefore
slightly larger difference of 0.11 eV between the 120 #/ns and 24 #/ns
structures.



Excitonics at a DPP2Py2T-PCBM interface 151

Table 6.1: System specific parameters of the kinetic model for LE to CT
excitation conversion at the DPP2Py2T-PCBM[60] interfaces from
snapshots out of the two solvent evaporation simulations from
Chapter 4.

120#/ns 24#/ns
ΩP/eV 1.68 1.57
ΩF/eV 1.70 1.70
ΩCT1/eV 1.53 1.49
ΩCT2/eV 1.76 1.76
J2

LEP−CT1
/(eV)2 4.8 · 10−5 7.9 · 10−4

J2
LEP−CT2

/(eV)2 3.0 · 10−5 2.8 · 10−3

J2
LEF−CT1

/(eV)2 1.8 · 10−4 2.1 · 10−3

J2
LEF−CT2

/(eV)2 1.5 · 10−7 2.6 · 10−6

1-mer 2-mer 1-mer 2-mer
λLEP−CT/eV 0.13 0.10 0.13 0.10
λLEF−CT/eV 0.27 0.14 0.27 0.14
ΛLEP/eV 0.09 0.18 0.09 0.18
ΛLEF/eV 0.18 0.18 0.18 0.18
ΛLECT/eV 0.22 0.19 0.22 0.19
ωLEP−CT1/s−1 4.2 · 1011 2.0 · 1012 1.9 · 1013 4.2 · 1013

ωLEP−CT2/s−1 9.0 · 1011 7.4 · 1010 8.2 · 1012 3.2 · 1010

ωLEF−CT1/s−1 5.1 · 1012 5.3 · 1012 6.7 · 1013 7.1 · 1013

ωLEF−CT2/s−1 2.7 · 108 1.8 · 108 3.2 · 109 2.1 · 109

ωLEF−CT2
ωLEF−CT1

3.4 · 10−5 5.2 · 10−5 4.8 · 10−5 2.9 · 10−5

ωLEF−CT2
ωLEP−CT2

3.0 · 10−4 2.5 · 10−3 3.9 · 10−4 6.6 · 10−2

It is tempting to infer from these two alignments of the excitation en-
ergy levels something regarding the respective driving forces of dynamical
processes, such as the conversion from the LE to CT states. However, as
mentioned above, the vertical excitation energies alone do not provide an
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exhaustive description of such processes. In particular, while the energies
are the same or similar in the two structures, it does not necessarily
imply that the excited states themselves are. In Table 6.1, we also list
the squared excitonic LE-CT coupling elements J2 as determined from
the FCD method in Section 6.2.1. Here, some more differences between
the 120 #/ns and 24 #/ns structures are apparent. The squared LE-CT
couplings are systematically smaller in the former case, somewhere be-
tween one and two orders of magnitude. However, in both structures, the
squared coupling between the LE on the fullerene to the higher of the
two CT excited states is three orders of magnitude smaller than that to
CT1. As the Marcus rate in Eq. (6.1) is linear in J2, this is a remarkable
difference. Still, it is not clear if this also a significant difference, as the
effects of the exponential term can be dominant.

To model the missing data in the Marcus rate, we need to determine
the respective reorganization energies, as well as adiabatic excitation
energies for the energy difference ∆ELE-CT. As explained in Section 6.2,
this would require, in principle, the optimization of the DPP2Py2T-
PCBM[60] geometry in the environment for the four different excited
states based on PbE-G0W0-BSE. As this is practically impossible, we
resort to optimizations of isolated DPP2Py2T and PCBM[60], with a mix
of DFT and TD-DFT, and the resulting reorganization energies λ and
corrections to the vertical energies Λ are given in Table 6.1. Two approx-
imations are considered: one in which the respective optimization of the
polymer are performed on a single repeat unit (1-mer) and one for two
repeat units (2-mer). From a visual inspection of the HOMO distribution
in Figure 6.1(a) and (c), the latter seems to be the more appropriate one.
In this case, we find similar reorganization energies for the transition
from LEP to CT (0.10 eV) and from LEF to CT (0.14 eV). In comparison,
the 1-mer calculations predict about a factor of two difference. Similarly,
we find that in the 2-mer approximation the adiabatic corrections to
the vertical excitation energies are almost identical for all three types of
excitations amounting to 0.18 eV for the two LE, and 0.19 eV for the CT
excitations. As a consequence, the adiabatic corrections hardly influence
the driving forces ∆ELE-CT in Eq. (6.1).
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Bringing everything together yields then values for the rates (evalu-
ated at room temperature) as given in Table 6.1 and the corresponding
time scales as indicated in Figure 6.2 for the 2-mer models. We find that
the rates for transition from the two LE to the CT1 are somewhat higher
in the 24 #/ns structure. What both structures have in common is that
the rate for transfer from LEF to CT2, ωLEF−CT2 , is consistently smaller
than any other rates. We also show the ratio of the rates for transfer
from the LEF exciton to CT2 and CT1 in Table 6.1, finding that there is
a 4-5 orders of magnitude difference. Notably, there is also roughly three
orders of magnitude difference compared to the rate from LEP to CT2.
In terms of rough timescales, the results indicate that the transition to
CT1 occurs on a scale of tens (hundreds) of fs in the 24 #/ns (120 #/ns)
structure, and the transition from LEP to CT2 on a scale of tens of ps.
The transition to CT2 from LEF in comparison roughly takes place on
ns timescale., much slower than any other process. This difference is,
in the data we have obtained, mostly determined from the low value of
J2

LEF−CT2
.

6.4 Summary & Discussion

While the observation from our rate calculations based on PbE-G0W0-
BSE calculations appear to correspond qualitatively to what has been
observed experimentally for similar DPP2Py2T-PCBM[60] morphologies
(slow or suppressed population of higher CT states from fullerene as com-
pared to from the polymer excitation), our results should be considered as
somewhat preliminary. Related to the PbE-GW -BSE methodology it is
positive to note that its use allowed us in this chapter to tackle localized
and charge-transfer type excitations in large-scale complex molecular
systems with these many-body Green’s function based methods. This
allows not only the calculation of the vertical excitation energies but also
in a straightforward manner the determination of the non-adiabatic cou-
pling elements. In the evaluation of the Marcus rates, the comparatively
drastic approximations required for the computation of reorganization
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energies and adiabatic energy corrections should be considered with care,
as already discussed.

Besides these points, several additional aspects need to be addressed
for obtaining a fully reliable picture of the interface excitonics:

• Frontier orbitals of fullerene in vacuum are highly degenerate,
leading to a rather dense spectrum of LE in the low-energy range.
While the molecular environment in DPP2Py2T-PCBM[60] lifts
some of that degeneracy, it is possible that the assumption using a
single LEF in the above is not sufficient and instead at least some
near-degenerate expression for the non-adiabatic couplings might
have to be used.

• The PbE-GW -BSE calculations presented in this chapter were per-
formed on selected dimer structures in vacuum. Previous studies on
GW -BSE/MM level [134, 135, 203] have shown that in particular
the energy of CT excitations is very sensitive to polarization effects
in the molecular environment, with energy stabilizations reported in
the range of 0.5-1.0 eV. Performing polarizable PbE-GW -BSE/MM
calculations as discussed in Chapter 5 are computationally demand-
ing because of the required self-consistency procedures. Also, the
proper parametrization of the Thole model for the classical response
is far from trivial for polymeric materials, due to the strong con-
formational effects. Instead, we have performed some preliminary
classical embedding calculations, in which the materials around the
DPP2Py2T-PCBM[60] dimer was filled with a polarizable lattice
[152, 204], similar to a polarizable continuum model with dielectric
constant ϵr = 3.5. However, early findings do not point towards
energetic stabilizations of the CT states of the kind observed before,
but much smaller on the order of 0.1 eV. This small effect could be
a result of the details of the lattice calculation, or the fact that the
CT excited states in the DPP2Py2T-PCBM[60] morphology with
the local structures as shown in Figure 6.1 are significantly less
polarizable than mixed small molecule donor and fullerene mor-
phologies. It should also be noted that the energies of the localized
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excitons are close to the experimentally measured ones [27] and a
large polarization-induced downshift of the CT excitation energies
would result in very low CT energies at around 0.5 eV, which may
seem unreasonable. Smaller stabilization of 0.1-0.2 eV appear more
reasonable, instead, as they would also bring down the CT2 energy
below the two LE energies.

• In this chapter, we only considered the two DPP2Py2T and PCBM[60]
arrangements from the final structures obtained by the morphol-
ogy prediction presented in Chapter 4 with the closest distance
between the donor and acceptor. As especially the CT energies are
known to be sensitive to donor-acceptor distance and orientation,
other arrangements of DPP2Py2T and PCBM[60] should also be
investigated. Such a study would potentially reveal effects of struc-
tural disorder on the interface exciton energies, which may have
consequences on the calculated driving forces.

• While the above points can, at least in principle, be addressed by
performing more, computationally demanding, PbE-GW -BSE/MM
calculations, one aspect is more fundamentally difficult. The
timescales extracted from our calculations have revealed fast pro-
cesses occurring in tens or hundreds of fs, and slow processes on the
scale of ns. While it can be argued for the fast processes that they
are faster than most of the changes in the molecular geometries,
this is certainly not the case for the slow processes. To elucidate,
at least calculations for different frames along the MD trajectories
have to be analyzed, for instance with a view of time correlations in
the excitation energies and coupling elements, to deduce a proper
approximation.



Chapter 7

Summary & Conclusion

This thesis documents in general development and application of dif-
ferent molecular simulation methods to the study of excitons and their
conversion dynamics in bulk polymer-fullerene morphologies.

Specifically, several advancements on both classical and quantum lev-
els have been made to arrive at the results which are described through
Chapter 3 to Chapter 6. The overall objective was to scrutinize the
existing methodologies and develop them further to gain a nanoscale
understanding of dynamical processes involving excitons in such complex
composite systems. As an interesting prototypical system, we have cho-
sen a series of DPP-based polymers with variable number of thiophene
substituents as donor material combined with a fullerene-based acceptor,
as experimental evidence has shown that these combinations allow for
efficient formation of charge-transfer excitations across the interface. In-
vestigations of this kind typically require multiscale modeling approaches
which can not only describe but predict the structure of the material
at atomistic resolution on the one hand, and the quantum-mechanical
processes involving electrons on the other hand. In most cases, this
puts extremely high demands on the accuracy of the respective methods
as well as their applicability to realistic system sizes. It has become
evident that, even when enormous computational resources are available,
abstractions of the problem and approximations are inevitable.
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From the point of view of the simulation of the atomistically-resolved
morphology, the objective was to obtain a representative structure of
a DPP2PymT-PCBM[60] bulk heterojunction as it is prepared from
solution as in experiment. As generic force-fields do not cover the
intricate details of interactions in particular of the complex polymer
material with different molecular architectures, the first step was to
develop and refine the parametrization of custom-made fully-atomistic
force-field for the polymer DPP2PymT using a combination of quantum
and classical methods, as presented in Chapter 3. The quality of the
resulting force-field was validated by studying the behavior of polymers
with different side chains in good and poor solvents, as well as by an
analysis of intra-molecular dynamics such as the segmental mobility of
the units connected by softer dihedrals.

With the custom-made force-field for DPP2PymT at hand, we turned
to the actual simulation of a representative bulk heterojunction morphol-
ogy in Chapter 4. Here, choices had to be made regarding the details of
system already with an eye on the subsequently planned investigations
of the excitonics: To be close to the typical experiments, one should
consider roughly 50 repeat units, a size with is completely infeasible to
treat with electronic structure methods. An inspection of the dependence
of the calculated electron-hole excitation in vacuum optimized oligomers
of DPP2PymT with variable number of substituents has revealed that
the excitation in these extended structures is typically restricted to 2-3
repeat units and also energetically stabilized at ∼ 2 eV. With disorder
likely to lead to further localization, it was decided to use oligomers with
4 repeat units of DPP2PymT for a Molecular Dynamics simulation of a
mixture with PCBM[60] mixture. Here, we put particular emphasis on
investigating the effects of different simulation protocols on the interfacial
properties, such as local orientations of polymer and fullerene. To mimic
experimental procedures, an iterative procedure for solvent removal was
employed, and the final structures obtained for different evaporation
rates were shown to be different from one resulting from annealing. An-
nealing the system resulted in larger PCBM[60] concentrations around
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the DPP unit of the polymer backbone while solvent removal allowed
larger concentrations around the thiophene units of the polymer.

Even with the choice of the relatively small scale DPP2Py2T-PCBM[60]
mixtures, the typical system sizes needed to study charge-transfer type
excitations in a dimer of a single polymer and fullerene molecule exceed
what is being able to be treated at the level of excited state electronic
structure theory methods. In this thesis, we have investigated the use
of many-body Green’s functions theory in the GW approximation and
the Bethe–Salpeter equation (BSE) as method of choice, motivated by
the fact that it has provided capable of describing both localized and
charge-transfer type excitations well in smaller molecular dimers. To
avoid the computational bottlenecks involved in the full calculation of
complex dimer configurations of DPP2Py2T-PCBM[60] in the atomistic
environment, we have implemented and scrutinized quantum-quantum
and quantum-quantum-classical embedding methods as discussed in
Chapter 5. We paid special attention to the role the selection of active
atoms played in projection-based-embedded DFT-GW -BSE calculations,
and how missing (with respect to the full calculation) screening effects in
the electronic self-energy affect the frontier orbitals and lowest excitation
energies in different prototypical systems. It was found that for the
lowest (HOMO→LUMO) transitions, the increased HOMO-LUMO gap
due to the lack of screening contribution in the GW step is partially
compensated by a stronger electron-hole interaction in the BSE. With
a view on the application to DPP2Py2T-PCBM[60] systems, this error
seemed similar enough between localized and CT excitons to allow an
assessment of relative excitation energies, as the computational gain
achieved using the embedding technique was significant. This gain was
seen not only in the runtime but also the memory consumption of the
GW step of the calculation, which typically is the biggest bottleneck
in the VOTCA-XTP implementation of GW -BSE. Development of this
method allowed for the computation of large DPP2Py2T-PCBM[60]
systems on a level of desired theory which was seemingly impossible
otherwise.
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For the actual treatment of selected DPP2Py2T-PCBM[60] dimers
from the evaporation results in Chapter 4, first a suitable choice for the
active region for the embedding calculation was based on an inspection of
the respective frontier orbitals in a full DFT reference calculations. Then,
it was seen in Chapter 6 that the energies of the respective monomer
localized excitations in the dimers were hardly affected by the presence of
the other molecules. For the newly formed CT excitations, we observe the
lowest one (CT1) energetically below the localized excitons, while a second
one (CT2) is obtained at slightly higher energy. To gain an understanding
of the dynamical conversion processes at the interface beyond simplified
energy level arguments, we have also studied the calculation of the rates
for converting the localized excitations to the two CT type excitations
within the Marcus picture. This required estimates of reorganization
and adiabatic relaxation energies, as well as the determination of the
excitonic coupling between the two respective states. This exploratory
work indicates that while the conversion of the localized excitations to
the lowest CT exciton is fast (on the order of femtoseconds) and mostly
independent of initial excitation of donor or acceptor. The conversion to
CT2 however, is much slower in comparison, on the order of nanoseconds,
even slower than typical timescales for structural relaxations. Further
investigation of this with different MD snapshots will be required to get
an in-depth understanding. While the charge transfer dynamics for such
systems have been computed for the first time, there is a qualitative
agreement with experimental which reported similar slow dynamics to
from localized exciton on PCBM[60] to CT2. A look at the electron and
hole densities in the CT state it was evident that the electron density was
concentrated on the PCBM[60] while the hole density was concentrated
primarily on the thiophene units which validates our earlier assumption
in Chapter 4 where we stated that having PCBM[60] units closer to
thiophene units is desirable as they are the significant contributors to
the CT state.

At this point, we can revisit the questions asked in Chapter 1, an-
swering them based on the results obtained in this thesis.
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1. Can we model the different excited states, in particular
the charge transfer states, in bulk heterojunction solar
cells? Yes, it is possible to use a simple model(s) that incorporates
the effect of various morphologies on charge-transfer rates of a bulk
heterojunction solar cell. However, this requires careful consid-
eration and interpretation of multiscale structural and electronic
dynamics to couple the two simulation scales.

2. How do processing techniques have an influence on the
local morphology of the blend? The processing techniques
do influence the local morphology of the blend, in particular as
to how the electron rich thiophenes are oriented with respect to
the fullerene acceptors. This is seen in Chapter 4 where systems
generated from annealing have entirely different orientation and
morphology when compared to systems generated from solvent
removal. In Chapter 6, one can see that when CT states are formed
the area of electron deficiency is concentrated primarily on the
thiophenes indicating them as the hotspots for charge transfer.
Hence, a variation in morphology will have an impact on the charge
transfer states. An in-depth analysis of this is proposed as a future
study.

3. Are current methods to model electronically excited states
sufficiently scalable to systems of size which can accurately
represent realistic materials? This does not entail a straight-
forward answer as we do have methods in place that can accurately
represent morphologies, or electronic band gaps and excitation
energies. The challenge is that while these methods exist it is very
difficult to couple them to gain accurate representations given that
these methods operate on very different length and time scales.
However, as described in this thesis there are ways to couple exci-
tonic calculations with electronic density based theory embedded in
a classical envelope. There have been approximations made along
the way to be able to achieve this, nevertheless such a combination
of models yield results that qualitatively and to a great extent
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quantitatively match experimental outcomes and can securely be
used for further studies of large molecules.

While the work reported in this thesis provides crucial developments of
methods towards an in principle complete picture for studying dynamical
processes of excitons in large-scale molecular systems, such as bulk-
heterojunction solar cells, there is still plenty of room for future work.
This concerns both the application of the current state-of-the-art to the
particular (type of) material system at the focus of the present research
and further methodological developments.

Among the work on the excitonics at the DPP2Py2T-PCBM[60]
interface, the points mentioned at the end of Chapter 6 are worth some
attention. These include, among other, the extension of the present
approach to more frames from the MD trajectories and to other struc-
tural motifs (larger distances, different (not π-π stacked) orientations).
It would also be interesting to perform a larger set of hybrid quantum-
classical QM/QM/MM calculations, to assess in more depth the pre-
liminary findings that environment effects do not as significantly affect
the CT excitation energies in this system than in other small molecule
donor-acceptor type systems.

From the point of view of methodological developments and implemen-
tations in VOTCA-XTP, some attention should be paid to automatize
some of the steps in the setup of the embedding calculations, e.g., the
automated selection of the active region based on some analysis of the
frontier orbitals in a reference calculation. Further computational gains
can be expected from a more fine-grained truncation scheme, in which
the actual reduced basis is constructed only from individual shells of
contributing basis functions, not all functions of the atoms. Finally, the
most important aspect is the work on the inclusion of screening effects
of the inactive density region to the correlation part of the self-energy
in the embedded GW -BSE methods. Besides an adaptation of the work
in Ref. [114], the polarizable GW -BSE/MM framework as presented
in Chapters 2 and 5 might provide an effective means to account for
these screening effects in the classical polarizable force-field. This would
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require the atoms of the inactive region to be treated at hybrid resolution
with both quantum (the electron density) and classical (the polarization
response) degrees of freedom. Developing an approach like this would
also entail careful considerations of how the two not spatially separated
degrees of freedom interact, and how to consistently parametrize the
classical model for the specific chemistry. This is left as future work.
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