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ABSTRACT: We investigate the determination of electronic coupling between localized excitations (LEs) and charge-transfer (CT)
excitations based on many-body Green’s functions theory in the GW approximation with the Bethe−Salpeter equation (GW-BSE).
Using a small molecule dimer system, we first study the influence of different diabatization methods, as well as different model
choices within GW-BSE, such as the self-energy models or different levels of self-consistency, and find that these choices affect the
LE-CT couplings only minimally. We then consider a large-scale low-donor morphology formed from rubrene and fullerene and
evaluate the LE-CT couplings based on coupled GW-BSE-molecular mechanics calculations. For these disordered systems of bulky
molecules, we observe differences in the couplings based on the Edmiston−Ruedenberg diabatization compared to the more
approximate Generalize Mulliken−Hush and fragment charge difference diabatization formalisms. In a kinetic model for the
conversion between LE and CT states, these differences affect the details of state populations in an intermediate time scale but not
the final populations.

1. INTRODUCTION
Many photochemical processes, such as catalytic processes or
the generation of charges in active layer heterostructures of
organic solar cells, involve the transfer of an electron triggered
by the absorption of a photon. Such photoinduced electron
transfer reactions are typically influenced by a variety of
properties, ranging from the intrinsic molecular electronic
structure of the molecular building blocks of the material, the
details of the local mutual arrangement of molecules, to larger
scale morphological ordering. In many situations, the inherent
disorder of the material systems in which the electron transfer
takes place suggests the use of localized diabatic states to
describe the reactions and to map the effects of the local and
global environment on them. This idea has given rise to
multiscale simulation approaches, in which the transport of
excitations across a material is modeled as a series of
bimolecular transfer events, each of them described by an
effective transfer rate.1−3 According to Marcus theory,4,5 in the

nonadiabatic high temperature or activated crossing limit, the
rate of electronic excitation transfer between two states X
(initial) and Y (final) is
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where ΔEXY is the free energy difference between the initial
and final states and λXY is the reorganization energy. The
expression also contains the electronic coupling element, JXY.
In principle, it should be possible to evaluate all three
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quantities that enter the Marcus rate from electronic structure
methods. To account for the local and global environment,
however, it is typically required to embed electronic structure
methods into a classical environment model,6−8 as the size of
the realistic disordered systems at least in the order of several
tens of nm exceeds the capabilities of explicit quantum
chemistry methods. Besides such quantum-classical embed-
ding, of the key challenges involved in the multiscale modeling
approaches of this kind, it is to use quantum-chemistry
methods that allow for an accurate prediction of various
excited states involved in the dynamical processes. Especially
for the conversion of charge-neutral excitations, e.g., after
photo absorption from localized exciton (LE) to charge-
transfer (CT) state as an example of a photoinduced electron
transfer reaction, the energetics of both LEs and CTs need to
be described on an equal footing. In this context, the use of
many-body Green’s functions Theory employing the GW
approximation and the Bethe−Salpeter equation (BSE)9 has
become attractive to model electronically excited states on top
of a ground-state reference calculation typically performed on
the level of density-functional theory (DFT).10,11 It was shown
that GW-BSE provides an effective single- and two-particle
picture with accurate energies of LE and CT states without the
need for any adaptations.12−14 Previous work has also shown
that the additional screening caused by the molecular
environment strongly affects the energies (and also densities)
of CT states,15,16 more so than those of LEs, and that this
energetic stabilization is important for finding CT-LE energy
differences ΔELE‑CT that are favorable for LE to CT conversion
in organic solar cell materials. To fully treat the dynamical
process of this conversion in the spirit of eq 1 requires also the
reliable determination of the respective coupling elements
JLE‑CT.

In this work, we present a comparative study of determining
electronic coupling elements between localized and CT
excitations in the framework GW-BSE based on three different
diabatization methods: Edmiston−Ruedenberg (ER) diabati-
zation17 employing explicit electronic densities and the more
approximate Generalize Mulliken−Hush (GMH)18 and frag-
ment charge difference (FCD)19 formalisms. We first validate
the predicted JLE‑CT in a small molecule dimer system
consisting of naphthalene and tetracyanoethylene (TCNE),
for which reference calculations from coupled-cluster and time-
dependent DFT are available,20 and allow scrutinizing the
individual and combined effects of energy and (effective) wave
function predictions in the Green’s functions method. Herein,
we also put particular emphasis on how much or little the
different model choices within GW-BSE, such as the choice of
self-energy models, different levels of self-consistency, or the
use of the Tamm−Dancoff approximation (TDA) in the BSE,
affect the LE-CT couplings.

To investigate how the findings for the ideal small-molecule
dimer translate to larger-scale systems with potential relevance
for materials applications, we proceed by applying different
GW-BSE-based diabatization techniques to a mixed donor−
acceptor blend of rubrene and fullerene.21 Such a blend with
low-donor content contains significantly larger molecules,
exhibits substantial positional and orientational disorder, and
allows therefore also a case study of the kinetics of the
conversion from a photoexcited LE on rubrene to rubrene-
fullerene CT states, typical intermediates for charge separation.

This paper is organized as follows: in Section 2, we provide a
brief summary of the essentials of the GW-BSE method

methodology, polarizable embedding approaches, as well as the
three different diabatization methods used in this work. Results
on the model naphthalene-TCNE dimer and the mixed
donor−acceptor system of rubrene and fullerene are presented
and discussed in Section 3. A short summary concludes the
paper.

2. METHODOLOGY
Here, we briefly summarize the essentials of many-body
Green’s functions Theory in the GW approximation with the
BSE for the calculations of electronic excitations, its polarizable
embedding, as well as the three diabatization methods we
consider in this work.
2.1. Electronic Excitations via GW-BSE. In the frame-

work of GW-BSE,9,22 excitations are constructed based on a
reference ground state calculation, here at the level of Kohn−
Sham (KS) DFT. One first obtains KS wave functions r( )n

KS

and energies εnKS from

m
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here, Vext is the external potential, VH is the Hartree potential,
and Vxc is the exchange−correlation potential. Hedin23,24

introduced the GW approximation of many-body Green’s
functions theory, in which quasi-particle (QP) states
representing independent electron and hole excitations are
found as solutions in the QP equations
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In place of the exchange−correlation potential in eq 2, the
energy-dependent self-energy operator Σ(r, r′, E) occurs in the
QP equations. This operator is evaluated using the one-body
Green’s function in QP approximation

G
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where W denotes the dynamically screened Coulomb
interaction. This is determined by first computing the
polarization P in the random-phase approximation
(RPA)25,26 and then with it the microscopic dielectric function
as a convolution of P with the bare Coulomb interaction v, i.e.,
ϵ = 1 − vP. Finally, W is obtained as W = ϵ−1v, i.e., after
inversion of ϵ and subsequent convolution with the bare
Coulomb interaction. The frequency integration in eq 5 can be
performed fully analytically based on contour deformation
techniques or with the use of a generalized plasmon-pole
model (PPM),27 which extends the RPA result for ω = 0
(static polarization) and the associated static dielectric
function to the dynamic one.

Assuming that |ϕnQP⟩ ≈ |ϕnKS⟩, the quasiparticle energies can
be evaluated perturbatively according to
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V( )n n n
GW

n n n n
QP KS KS KS QP

xc
KS= + = + | |

(6)

As the correction ΔεnGW itself depends on εnQP, eq 6 needs to
be solved self-consistently. In the G0W0 approximation, the
single-particle energies that enter the RPA calculation of ϵ−1

and G are εnKS. Updating these energies self-consistently with
the corrections from eq 6 leads to the so-called eigenvalue self-
consistent evGW variant.

Neutral excitations with a conserved number of electrons
can be obtained from the BSE.24,28 It determines the four-point
density response function of the interacting system from the
noninteracting system.7,9,29 Coupled electron−hole amplitudes
of excitation S can be expressed in a product basis of QP wave
functions, i.e.

A Br r r r r r( , ) ( ) ( ) ( ) ( )
v c

vc
S

c v vc
S

v cS e h

occ unocc

e h e h= * + *

(7)

where re (rh) is for the electron (hole) coordinate, and we drop
the label QP for clarity. Here, Avc and Bvc are the expansion
coefficients of the excited state wave function in terms of
resonant (antiresonant) transitions between QP occupied
(occ.) states v and unoccupied (unocc.) c, respectively. In this
basis, the BSE turns into an effective two-particle Hamiltonian
problem of the form
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Specifically for singlet excitations, the matrix elements of the
blocks Hres and K̲ are calculated as

H D K K2vc v c vc v c vc v c vc v c,
res

, ,
x

,
d= + + (9)

K K K2cv v c cv v c cv v c, ,
x

,
d= + (10)

with

D ( )vc v c c v vv cc, = (11)

K vr r r r r r r rd d ( ) ( ) ( , ) ( ) ( )vc v c c v c v,
x 3

e
3

h e e C e h h h= * *

(12)

K Wr r r r r r r rd d ( ) ( ) ( , , 0) ( ) ( )vc v c c c v v,
d 3

e
3

h e e e h h h= * = *

(13)

here, Kx is the repulsive exchange interaction originating from
the bare Coulomb term vC, while the direct interaction Kd

contains the attractive, but screened, interaction W between
the electron and hole, causing the binding of the electron−hole
pair. In 13 it is assumed that the dynamic properties of W(ω)
are negligible, and the computationally less demanding static
approximation ω = 0 is employed. If off-diagonal blocks K̲ in
eq 8 are small, the additional use of the TDA30 is convenient,
in which the electron−hole amplitude is expressed only as
resonant transitions from occupied v to unoccupied c states

Ar r r r( , ) ( ) ( )S
v c

vc c v
TDA

e h

occ unocc

TDA,
S

e h= *
(14)

thereby reducing the effective Hamiltonian Tothe upper
diagonal block in eq 8

H A Ares
TDA
S

S
TDA

TDA
S= (15)

For all practical GW-BSE calculations in this work, we use
the Gaussian-type orbitals implementations in the VOTCA-
XTP7,8 software.
2.2. Polarizable Embedding. To account for the effects

of electronic excitations in a complex molecular environment, a
quantum (QM) region with the excited state complex is
embedded in a classical, polarizable atomistic (MM) model for
the environment. The QM/MM scheme in VOTCA-XTP
makes use of a distributed atomic multipole representation for
molecules in the MM region, which allows treatment of both
the effects of static electric fields and the polarization response
as a self-consistent reaction field. Specifically, this classical MM
energy for the system is evaluated as

E Q Q T Q1
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(16)

where A and B indicate individual molecules in the system, a
and b atoms in the respective molecules, Qta is the static atomic
multipole moment of rank t associated with atom a, and Ttuab is
the tensor describing the interactions between the multipoles
moments Qta and Qub.

31 The induced moment ΔQta is generated
by the electric field created by moments t′ of atom a′ ≠ a in
molecule A and the one generated by the moment u of atom b
in molecule B

Q T Q Q( )t
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(17)

with tt
aa the isotropic atomic polarizability on each site. To

avoid the effects of spurious overpolarization, a damped
version of the interaction tensor (Thole damping31) is used.
Then, the static and induced multipoles in the MM region also
interact with the electron density in the QM region via an
additional external potential in eq 2. At the same time, the
explicit electrostatic field from the QM density is included in
polarizing the MM region. The total density of excited state S
is evaluated from the excited-state wave function χS as
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(19)

In order to obtain the polarization response of both the QM
and MM regions, a self-consistent procedure is employed. At
step p of this procedure, the total energy of the coupled QM/
MM system for the state S of interest (ground state S = 0, or
excited states S > 0) is determined as

E E EQM/MM
S,p

QM
S,p

MM
S,p= + (20)

with

E EQM
S,p

DFT
S,p

S
p= + (21)

and ΩS
p = 0 for the ground state case. The whole procedure is

repeated until the change of the total energy is less than the
preselected accuracy, typically 10−5 Ha. The excitation energy
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ΩS
QM/MM of a complex in the polarizable environment is then

obtained as the difference

E ES
QM/MM

QM/MM
S

QM/MM
0= (22)

2.3. Diabatization Methods. Electronic states obtained
from as eigenstates of some (approximate) Hamiltonian are
adiabatic states |Φi⟩, such as the excitations χS obtained from
the BSE, as introduced in Section 2.1. Corresponding diabatic
states |Φa

diabatic⟩, needed for the evaluation and understanding
of electron transfer processes, can be found via a unitary
transformation

Ua
j

N

aj j
diabatic

1

states

| = |
= (23)

The unitary transformation matrix U̲ is determined by
extremalizing some function f U( ), and various methods differ
by the definition of this function, with some choices being
discussed below. With this, the adiabatic form of the electronic
Hamiltonian Hel with adiabatic energies εi, i.e., ⟨Φi|Hel|Φj⟩ =
εjδij, is transformed into the diabatic form

H H U H Uab a b
ij

ia i j bj
diabatic diabatic

el
diabatic

el= | | = | |

(24)

For the two-state problem (Nstates = 2), the transformation can
be written explicitly as a rotation
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and the diabatic Hamiltonian as
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Its off-diagonal elements

J
1
2

sin(2 )( )ab
ER

2 1=
(27)

are then the couplings between the two diabatic states.
2.3.1. Edmiston-Ruedenberg Diabatization. In the ER-

localized diabatization formalism,32 the objective is the
maximization of the self-repulsion of the diabatics via

f U U U U U R( )
i j k l m

ji ki li mi jklmER
, , , ,

=
(28)

here, the tensor Rjklm is defined on the basis of molecular
orbitals as

R D vc v c D( )jklm
vcv c

vc
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v c
lm= |

(29)

with

vc v c
r r r r

r r
r r( )

( ) ( ) ( ) ( )
d dv c v c| =

| | (30)

where the indices v and v′ and c and c′ spanning the occupied
and unoccupied levels, respectively. In eq 29, D jk is the excited
state transition density matrix between the excited states j and
k. If the ϕn(r) is expressed in an atomic orbital basis {χα(r)}
according to dr r( ) ( )n

n= , with dα
n the basis-set

expansion coefficients of the molecular orbital n in the atomic
orbital α, eq 29 can be rewritten as

R D D( )jklm
jk lm= |

(31)

The tensor (αβ|γδ) is part of the standard implementation of
DFT-GW-BSE, in which the transition density matrix between
states j and k in the atomic orbital basis reads

D D d M d d M djk
jk

cc

c
cc
jk c

vv

v
vv
jk v0= +

(32)

where
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v c
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With these definitions, eq 31 can be computed and the ER
functional can be maximized. For the two-state case, there is a
closed form for this maximizing angle.17 It is computed with
the help of

A R R R R
1
4

( 2 )12 1212 1111 2222 1122= +
(35)

B R R12 1112 2212= (36)

as

A

A B
cos(4 ) 12

12
2

12
2

=
+ (37)

2.3.2. Generalized Mulliken−Hush Diabatization. In the
GMH approach to diabatization,18,33 the adabatic-to-diabatic
transformation is based on the definition of the diabatic states
as eigenstates of the dipole moment. Specifically in a two-state
model, the method requires the calculation of the dipole
moment of each adiabatic state μ1 and μ1 and the transition
dipole moment between the two, μ12. The nonadabatic
coupling element is then calculated as

J
( )

(( ) 4 )ab
GMH 12 2 1

1 2
2

12
2 1/2=

| |
+ (38)

where 12 is the projection of μ12 in the CT direction (μ1 −
μ2)/|μ1 − μ2|.

2.3.3. FCD Diabatization. Another alternative is to
determine the diabatic states as eigenstates of the so-called
FCD matrix,19 based on the definition of donor (D) and
acceptor (A) fragments, as ΔQij = Qij(D) − Qij(A). The
fragment charges are typically obtained from a population
analysis of the individual adiabatic densities and the transition
density between them. Again, for a two-state model, the
coupling is given by

J
Q

Q Q Q

( )

(( ) 4 )ab
FCD 12 2 1

11 22
2

12
2 1/2=

| |
+ (39)

3. RESULTS
3.1. Naphthalene-TCNE Complex. Stacked geometries of

naphthalene and TCNE, indicated as the inset of Figure 1a,
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with different intermolecular distances taken from ref 20. The
equilibrium distance is 3.9 Å. Ground state calculations on the
KS-DFT level are performed with the ORCA34 package using
both the PBE0 functional35 and the def2-tzvp basis36 together
with optimized auxiliary basis sets37 in resolution-of-identity
techniques to efficiently express terms involving four-center
Coulomb integrals. We compare in the following the results
based on G0W0 calculations and eigenvalue self-consistent
evGW calculations. The convergence limit for the self-
consistent GW-cycles in the evGW scheme was set to 10−5

hartree (0.27 meV). Quasiparticle corrections are determined
for the 197 lowest energy orbitals, and the product basis for the
electron−hole wave functions are formed from the 66

occupied and 131 lowest unoccupied orbitals. All 1380 orbitals
are included in the RPA step for calculating the dielectric
function. The choice of a large range of included orbitals for
small molecule systems ensures that the obtained excitation
energies are safely converged to below 0.01 eV.7,8 Both, the
fully analytic approach (FAA) and a generalized PPM, as
introduced in Section 2.1 are used for the frequency
integration of the self-energy. The obtained excitation energies
for all variants are summarized in Table 1.

In Figure 1a, we show the distance-dependent LE-CT
couplings resulting from evGW-BSE calculations with the FAA,
the def2-tzvp basis set, and PBE0 in the ground state
calculation. We first compare the influence of the choice of

Figure 1. Distance dependence of LE-CT coupling elements in the naphthalene-TCNE complex. (a) GW-BSE results with the ER, GHM, and
FCD diabatization methods based on full BSE solutions following evGW calculations with FAA frequency integration, employing the def-tzvp basis
and PBE0 functional in the ground state DFT run. Reference results on EOM-EE-CCSD and TDDFT levels are taken from Mao et al.20 The inset
shows a sketch of the dimer structure. (b) Pure GW-BSE and TDDFT results based on FCD as in (a) compared to mixed methods, in which the
fragment charge factor is taken from TDDFT and the energy difference from GW-BSE (TDDFT/GW-BSE) and vice versa, showing that the
difference between the pure GW-BSE and TDDFT results originate from the different predicted energies.

Table 1. Distance Dependence of the Low-Energy LE and CT Excitation Energies (in eV) in a Naphthalene-TCNE Complex,
Based on Different Variants of GW-BSE Using the def2-tzvp Basis Set and the PBE0 Functional in the DFT Ground State
Calculation

FAA PPM

evGW G0W0 evGW G0W0

Full TDA full TDA full TDA full TDA

LE Energy
3.5 Å 4.309 4.341 3.998 4.022 4.255 4.262 4.006 4.035
3.9 Å 4.306 4.340 4.000 4.024 4.266 4.306 4.007 4.037
4.0 Å 4.306 4.339 4.000 4.024 4.264 4.305 4.006 4.036
4.5 Å 4.305 4.339 3.997 4.022 4.262 4.303 4.003 4.033
5.0 Å 4.300 4.333 3.995 4.020 4.257 4.299 4.000 4.030

CT Energy
3.5 Å 2.214 2.220 1.875 1.880 2.255 2.261 1.976 1.982
3.9 Å 2.387 2.389 2.052 2.054 2.430 2.432 2.157 2.159
4.0 Å 2.424 2.426 2.090 2.092 2.467 2.469 2.195 2.197
4.5 Å 2.589 2.590 2.255 2.255 2.632 2.632 2.360 2.361
5.0 Å 2.727 2.727 2.396 2.396 2.770 2.770 2.501 2.501

LE-CT Difference
3.5 Å 2.095 2.121 2.123 2.141 2.000 2.001 2.030 2.053
3.9 Å 1.920 1.951 1.948 1.970 1.836 1.874 1.850 1.878
4.0 Å 1.881 1.913 1.909 1.932 1.797 1.836 1.811 1.839
4.5 Å 1.716 1.749 1.743 1.767 1.630 1.670 1.642 1.673
5.0 Å 1.572 1.606 1.599 1.623 1.488 1.529 1.499 1.529
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the diabatization method, with the couplings obtained from ER
shown as circles, from GMH as crosses, and FCD as diamonds.
While both GMH and FCD methods appear to yield very
similar couplings with a maximum deviation of 4 meV at a
separation of 3.5 Å (see also Table 2), the JLE‑CT

ER values result

slightly lower, e.g., by 9 meV at the closest distance. Note that
the respective slopes of the three GW-BSE based data are
identical, reflecting the same exponential decay of the LE-CT
coupling with distance. Comparing out the results with those
obtained by EOM-EE-CCSD/GMH and TDDFT/FCD with
the ωB97X-D38 functional20 shown in Figure 1a as solid and
dashed lines, respectively, we observe a combination of an
offset to lower energies and a slightly stronger slope in GW-
BSE. For instance, at the optimal intermolecular distance of 3.9
Å, EOM-EE-CSSD/GMH predicts a LE-CT coupling of 128
meV, TDDFT/FCD 126 meV, compared to 86 meV from ER,
95 meV from GMH, and 93 meV from FCD with GW-BSE. To
understand this difference, we take a closer look at the results
obtained with FCD diabatization in Figure 1b. The GW-BSE
and TDDFT results from Figure 1a are shown again, now
combined with “mixed” versions. In these versions, we first
distinguish in the expression for JLE‑CT

FCD between the fragment
charge contribution f FCD = JLE‑CT

FCD /(ε2 − ε1) and the energy
contribution fε = (ε2 − ε1). Then, we combine f FCD(TDDFT)
with fε(GW-BSE) (TDDFT/GW-BSE) and vice versa (GW-
BSE/TDDFT). For the former, we find that the resulting
couplings are essentially identical to the ones from pure GW-
BSE, while the latter results are in close agreement with the full
pure TDDFT data. This corroborates the notion that the
difference between the pure TDDFT and GW-BSE derived
couplings can to a large extend be attributed to differences in
the energies. From Table 1, the LE-CT energy difference at the
optimal naphthalene TCNE distance is 1.92 eV in GW-BSE

and 2.70 eV in TDDFT,20 and their ratio almost exactly
translates into the ratio of the respective coupling elements.
The observed difference of the LE-CT energy splitting from
GW-BSE and TDDFT can be attributed mostly to known
issues with obtaining accurate CT excitation energies in
TDDFT without tuned range-separated functionals.39 Notably,
in EOM-EE-CCSD, this energy split is reported as 1.47 eV,
which would indicate an even smaller LE-CT coupling than in
GW-BSE based on fε only. Here, there are more differences in
the factors related to the transitions in terms of dipole
moments or fragment charges.

Table 2 also contains LE-CT couplings as obtained from the
different variants of GW-BSE, in which we have changed the
exact frequency integration in eq 5 with a PPM, the level of
GW from evGW to G0W0, and/or the BSE from its full form to
the TDA. Overall, the JLE‑CT values are not very sensitive to the
specific choices in the GW and BSE steps. For the sake of
clarity, we will focus on the results from ER diabatization at the
optimal separation of 3.9 Å in the following. First, the use of
the TDA of the BSE impacts the couplings by only 1 meV, also
the use of the one-shot G0W0 method instead of evGW does
not show differences exceeding 3 meV. Even the use of the
PPM in place of the exact frequency integration (FAA) is of
the same order, so that all values are within 3% of the FAA/
evGW/full BSE result. Similar observations also hold for the
other intermolecular distances and diabatization techniques.
3.2. Rubrene-Fullerene Low-Donor Content System.

We now move from the well-ordered, small molecule
naphthalene-TCNE dimer to a disordered cluster of larger
molecules and investigate the sensitivity of LE-CT coupling
elements based on GW-BSE on the different diabatization
methods and if eventual differences propagate to different
answers in dynamic models of conversion between LE and CT
states. Specifically, we study an amorphous morphology with
low-donor content (<10 mol %), composed of fullerene (C60)
and 5,6,11,12-tetraphenyltetracene (rubrene).21 Because of the
low-donor content, a C60 cluster will surround the donor
molecule, making the interaction between the single donor
molecule with a close shell of neighboring C60 acceptors
representative of the properties of the system as a whole. These
complexes are therefore meaningful candidates for a computa-
tional analysis of the influence of donor−acceptor conforma-
tions and environment polarization effects in the GW-BSE/
MM framework introduced in Section 2.2 and its consequence
on the conversion dynamics between initially excited LE on
rubrene (LER) to CT excitations.

3.2.1. CT Density of States. To obtain representative
structures, mixed morphologies have been simulated with ab
initio MD based on density functional tight binding theory
using linear scaling self-consistent field calculations within the
CP2K code.40 Initial configurations have been prepared using
Packmol,41 targeting experimental values21 for densities and
mole percentages. This structure is first equilibrated at 700 K
in NpT (with velocity rescaling thermostat42 at atmospheric
pressure43) for 7 ps (time step 1 fs) and then annealed to 300
K within 10 ps. A final NpT equilibration is followed for 5 ps.

For calculating the LE and CT densities of states, C60
molecules are selected which are approximately in the first
neighbor shell around one rubrene molecule. Given the
conformation of this low-donor content materials, the behavior
of this shell of molecules should be representative of the overall
behavior of the material. After selection, polarizable GW-BSE/
MM embedding calculations, as described in Section 2.2 are

Table 2. LE-CT Coupling Elements (in meV) in the
Naphthalene-TCNE Complex at Several Intermolecular
Distances, as Obtained Using ER, GMH, and FCD
Diabatization with Different Variants of GW-BSE Using the
def2-tzvp Basis Set and the PBE0 Functional in the DFT
Ground State Calculation

FAA PPM

evGW G0W0 evGW G0W0

full TDA full TDA full TDA full TDA

ER Diabatization
3.5 Å 163 165 158 161 161 163 155 155
3.9 Å 86 87 84 85 88 89 86 86
4.0 Å 73 74 71 72 75 76 73 73
4.5 Å 34 34 33 33 35 35 34 34
5.0 Å 16 17 16 17 17 18 17 17

GMH Diabatization
3.5 Å 172 172 169 169 169 169 165 165
3.9 Å 95 95 93 94 93 93 92 92
4.0 Å 81 81 80 80 80 80 79 79
4.5 Å 38 38 38 38 38 38 37 37
5.0 Å 18 18 18 18 17 17 17 17

FCD Diabatization
3.5 Å 168 168 165 166 165 165 161 162
3.9 Å 93 93 92 92 92 92 90 90
4.0 Å 80 80 79 80 79 79 77 77
4.5 Å 38 38 37 37 37 37 37 37
5.0 Å 17 17 17 17 17 17 17 17
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performed for all dimers formed by rubrene and fullerene.
Specifically, for the GW-BSE calculations, we employ the def2-
tzvp basis set36 with an optimized auxiliary basis37 for the steps
including resolution-of-identity. The ground-state DFT calcu-
lation uses the PBE0 functional.35

To keep the computational costs tractable, we determine the
optimal number of states included in the GW and BSE steps by
starting, for one of the dimer systems, from a small range of
states around the highest occupied molecular orbital
(HOMO)−lowest unoccupied molecular orbital (LUMO)
gap and to systematically increasing the ranges until we obtain
LE and CT excitation energies converged to within 0.01 eV. As
a result, eigenvalue self-consistent GW (evGW) calculations are
performed to obtain the explicit quasiparticle-corrected
energies for the highest 100 occupied and lowest 100
unoccupied orbitals, respectively. All orbitals are included in
the RPA step and not explicitly GW-corrected levels are
scissors shifted according to the highest absolute quasiparticle
correction among the explicitly corrected occupied or
unoccupied orbitals. The frequency integration in eq 5 is
performed using the PPM. Coupled electron−hole wave
functions according to eq 7 are constructed using transitions
between the highest 220 occupied and 220 lowest unoccupied
states. In the MM part of the GW-BSE/MM, polarizable
electrostatic interactions are taken into account within a cutoff
of 4 nm. As the static moments, we consider CHELPG44

atomic partial charges obtained from reference DFT
calculations on rubrene and C60 monomers. Similarly, the
isotropic atomic polarizabilities are optimized such that the
volumes of the molecular polarizability tensors in the classical
representation and DFT reference match.

The resulting energies of CT and LE excitations are depicted
in Figure 2. In general, the effects of polarizable embedding on

the LE energies are small, as has been observed before, e.g., for
embedded push−pull polymers15 or small-molecule donor
molecules.8 Therefore, we only show the GW-BSE/MM results
for the respective LEs, indicated by the blue (rubrene at 2.01
eV) and orange (C60 at 1.97 eV) vertical lines as there is no
noticeable disorder. For the CT excitations, the GW-BSE
calculations in vacuum already reveal significant energetic
disorder, originating from the different rubrene-C60 conforma-
tions and the long-range electrostatic interaction between
electron and hole. Individual CT excitation energies are
marked by the short green vertical lines in Figure 2, where we

also show a density-of-states obtained by broadening with a
Gaussian function of width 0.1 eV. After polarizable
embedding in GW-BSE/MM, the CT energies (solid green
lines) are shifted to lower energies, with energetic stabilization
of up to 1 eV. Note that in vacuum, the CT excitation energies
result generally higher than both LEs, which would make the
conversion process of a LE on rubrene to a CT state
energetically unlikely. After embedding, we find that the
energetic stabilization brings several high-energy CTs close to
the LEs and some notably very much lower at 1.65 eV (CT1)
and 1.42 eV (CT0). The latter compares favorably with the
experimentally measured CT energy of 1.46 eV, as reported in
ref 21. However, given the disorder in the CT excitation
energies, it is unclear if the measurement truly probes simply
the lowest-energy CT state or one that is preferably
dynamically populated during the time scale of the conversion
process and the experiment.

3.2.2. Electronic LE-CT Couplings. To proceed beyond
considering only the energy difference for the conversion of LE
to CT excitons, we consider the LE-CT couplings and analyze
if the disorder in them could be indicative of some dimers not
participating in the process. We also investigate if for such large
bimolecular structures, the use of GHM, FCD, and ER
diabatization has any influence on the results.

A specific aspect of the rubrene-C60 systems that requires
extra is the (near) degeneracy of the 15 lowest LE on C60,
stemming from the 5-fold degeneracy of its HOMO and 3-fold
degeneracy of its LUMO. For the same reason, also the CT
states are 3-fold near degenerate. We take this into account by
calculating an effective diabatic coupling45,46 between NLE-fold
degenerate LEs and NCT-fold degenerate CT excitons as

J
J

N N
m
N

n
N

LE CT

1 1 LE CT
2

LE CT
x

x m m

LE CT

,=
·

= =

(40)

with JLE CTx m n,
the coupling element between the m-th

degenerate LE and the n-th degenerate CT. The results from
the different diabatization methods are shown in Figure 3a.
There, we plot the couplings obtained with GMH and FCD
diabatization against those from ER and distinguish between
LER-CT (filled symbols) and LECd60

-CT (open symbols)
couplings. Roughly speaking, the effective couplings from ER
cover a range from 0.02 to 17 meV, with many occurring close
to 1 meV. Compared to the small-molecule naphthalene-
TCNE dimer with ideal stacking, we find a stronger
dependence on the diabatization method, although the
differences between GMH and FCD seem minor in most
cases. Of particular interest are the couplings of the two low-
energy CT states, CT0 and CT1, as marked in Figure 3a.
Specifically, the LER-CT couplings are different using ER (0.6
vs 17 meV), while they are similar when using GMH at about 3
meV. As the ER method takes the full details of the electronic
(transition) densities into account, it stands to reason that the
extra details have a bigger contribution to the LE-CT couplings
for more disordered structures and larger molecular building
blocks than in ordered clusters with additional symmetry. This
notion is corroborated by the observation that for the rubrene-
C60 system similar differences between GHM and ER
couplings are found also for the respective dimers in vacuum,
which excludes the possibility that they are attributable to
environment effects, instead.

Figure 2. Energies of CT excitations (green vertical bars) from
vacuum GW-BSE (dashed) and GW-BSE/MM calculations with
polarizable embedding (solid). Solid and dashed curves indicate
respective density-of-states obtained by Gaussian broadening with 0.1
eV as a guide-to-the-eye. Blue and orange lines highlight the GW-
BSE/MM energies of LEs on rubrene and C60, respectively.
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In Figure 3b, we show the relation between the energy offset
of LE and CT states, calculated as ΔΩLE‑CT = ΩCT − ΩLE, and
the LE-CT couplings obtained with ER. From 27 one generally
expects some dependence of the couplings on the energy
difference. Some dependence is visible in Figure 3b, although it
is hard to ascribe a definite trend to the data. Noteworthy is
that the two dimers with the most negative energy offsets
correspond to the two low energy CT states, as discussed in
Section 3.2.1. In particular, CT1 at energy 1.65 eV is found to
have the highest coupling between the rubrene LE and the CT
state. In comparison, the coupling to the lowest CT state, CT0,
is smaller by a factor of 30. This raises the question what
impact the differences in couplings have for the LE-CT
conversion dynamics, particularly of which the CT states is
most likely to be probed over which time scale.

3.2.3. Kinetic Model. To scrutinize the effects of the
disorder in energies and LE-CT couplings obtained from the
GW-BSE/MM calculations in Sections 3.2.1 and 3.2.2 and the
influence of different diabatization methods, we now study the
conversion dynamics between LE and CT excitations with a
kinetic model based on Marcus rates as in eq 1. This model
requires in addition to the calculation of the LE-CT couplings
and the excitation energies Ω also the determination of the
respective reorganization energies λab. Within the Marcus
picture, E E(LE ) (CT)xLE CT CT CTx

= and λCT‑LEdx
=

ELEdx
(CT)-ELEdx

(LEx), where x = R,C60 and Ea(G) represent
the total energy of state a at geometry of state G. As such, this
would require the cumbersome optimization of the dimer
structures in the respective CT and LR states. Instead, we
approximate the energies from monomer calculations, such
that

E E R E(LE ) ( ) (C )CT R R C 60
0

60
= * ++

(41)

E E R E(LE ) ( ) (C )CT C R
0

C 6060 60
= + *+

(42)

E E R E(CT) ( ) (C )LE R C
0

60R 60
= * ++

(43)

E E R E(CT) ( ) (C )LE R
0

C 60C60 60
= + *+

(44)

E E R E(CT) ( ) (C )CT R C 6060
= ++ +

(45)

E E R E(LE ) ( ) (C )LE R R C
0

60
0

R 60
= * * + (46)

E E R E(LE ) ( ) (C )LE C R
0 0

C 60C60 60 60
= + * *

(47)

where the superscripts refer to the state of the monomers (0:
ground state, +: cation, −: anion, *: excited). The total energy
calculations and geometry optimizations in this step are
performed using (time-dependent) DFT with the same basis
set and functional as the GW-BSE calculations in Section 3.2.1,
and we obtain LE CTR

= 0.12 eV, CT LER
= 0.12 eV,

LE CTC60
= 0.18 eV, and CT LEC60

= 0.21 eV. In similar
spirit, we determine the vertical to adiabatic energy relaxations
of the excited states, Λa = Ea(0) − Ea(A), as ΛCT = 0.15 eV,
ΛLEdR

= 0.16 eV, and LEC60
= 0.23 eV, needed to convert the

vertical excitation energies Ω obtained from GW-BSE to
adiabatic energies E needed in the Marcus rate eq 1.

With all the energies and coupling elements at hand, we
determine all rates between LE and CT states according to eq
1 at T = 300 K for the kinetic model, which describes the time-
evolution of the state population probabilities P(t) via a system
of ordinary differential equations of the kind

t
t tP WP

d
d

( ) ( )=
(48)

In this specific case, PT(t) = [PLEdR
(t), t tP P( ), ( )T T

LE CTC60
] is of

dimension 21, and ∑iPi(t) = 1 for all t. The structure of the
off-diagonal entries of the matrix W̲ is shown in Figure 4,
which correspond to the respective Marcus rates according to
eq 1, emphasizing again that in this minimal model, we only
consider transitions between LE and CT states and not
between different LE and different CTs. The diagonals of W̲
contain the negative of the sum of all other column entries, i.e.,
Wii = −∑jWji.

We initially prepare the system in the LER state, i.e., PT(t =
0) = [1, 0, ... , 0], and numerically study the evolution of eq 48
for tmax = 1 μs using the backward Euler scheme47 with 105

steps. In Figure 5a, we show the resulting population
probabilities with the LE-CT couplings calculated using ER
diabatization. Initially, the population of the LER state decays
rapidly, and it is completely depopulated within 50 ps. This

Figure 3. (a) Effective LE-CT couplings (see eq 40) in the rubrene-C60 dimers resulting from polarizable GW − BSEmm calculations with the
GMH and FCD diabatization schemes against those from ER. (b) Relation between LE-CT energy difference ΔΩLE‑CT = ΩCT − ΩLE and the LE-
CT coupling from GW-BSE ER diabatization.
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initial decay occurs primarily into three CT states, with a clear
preference for the CT1 state. After 50 ps, the two additionally
populated CT states convert first into LECd60

as intermediates in
the time scale of 100 ps to 10 ns, until they also decay nearly
exclusively into CT1. Note that we do not observe over the
time scale of 1 μs, a noticeable population of the lowest energy
CT state, CT0. As can be seen from Figure 5b, there are some
qualitative similarities when the dynamics are modeled based
on GMH diabatization. In particular, the same rapid initial
decay of LER and the final near complete population of CT1
can be seen. Some quantitative difference can be noted in the
details of the intermediate dynamics. Initially, CT1 does not get
populated. Instead, the populations of the two other CT states
is much higher and, consequently, also the populations of the
two intermediate LECd60

they convert into.
We also report in Figure 5c the expectation value of the

adiabatic CT energy, calculated according to

E P t E(t) ( )
n

CT
1

10

CT CTn n
=

= (49)

for the three different diabatization methods considered in this
work. As could be expected from the individual populations
over time, the expected CT energy follows similar trends. At
about 50 ps, all methods exhibit a peak, whose height depends
slightly on the method. Its energy of more than 1 eV is,

however, a consequence of the low population of high energy
(∼2 eV) CT states and not indicative of the population of
either CT0 or CT1. The dip following the peak is a combined
effect of the depopulation of the high-energy CT states to both
CT1 (in case of ER) and some LECd60

. In the model based on
GMH/FCD, the cumulative population of all CT states is
minimal at t = 1 ns, leading to the pronounced reduction of the
expected CT state energy. On the other hand, in the ER
model, the CT1 state is already populated at this time, but the
combination of it being a low energy excitation and only
partially populated (around 0.6) still leads to a smaller but
noticeable minimum. Only on the time scale of 1 μs, when the
CT1 population is nearly 1, ⟨ECT(t)⟩ is indicative of a pure CT
state. Interestingly, the value of ⟨ECT(t = 1 μs)⟩ = 1.50 eV is
close to the CT energy reported in experiments (1.46 eV),21

although we do not want to overstress this apparent agreement
due to the limited nature of the model. Noteworthy in this
context is also that in both cases (ER and GMH/FCD), no
population of CT0 is observed in the considered time scale.
This is a combined effect of the significantly smaller coupling
to CT0 and the property of the Marcus rate, which shows
decreasing rates for large positive energetic driving forces ΔE >
λ (“inverted regime”). In thermal equilibrium (t → ∞), one
would expect the state occupation probabilities to be
Boltzmann distributed according to

P
E

E

exp( )

exp( )
i

i

i i

th

1
21=
= (50)

with β−1 = kBT, and as such, an almost complete population of
CT0. While out limited model appears to run into a different
equilibrium with complete CT1 occupation as in Figure 5, this
is misleading, as even in the model, a conversion to CT0 will
happen on a much longer time scale (roughly milliseconds).
Note, however, that adding additional conversion pathways to
the model is expected to reduce the time in which the system
reaches thermal equilibrium. Such additional pathways might
involve direct transfer among the different CTs or LEs or the
decay of excitations due to finite lifetimes. In principle, the
diabatization techniques based on GW-BSE/MM are expected

Figure 4. Schematic representation of the rate matrix of a kinetic
model, with full squares indicating the respective rates at which LE-
CT couplings occur.

Figure 5. (a) Population dynamics of the excited states for tmax = 1 μs as a solution to eq 48 for LE-CT couplings from ER diabatization. The blue
line indicates the population of the LER excited state, orange lines indicate the ones of the respective LECd60

, and green dashed lines indicate the
populations of CT states. (b) Same for GMH diabatization. (c) Time evolution of the expected CT energy ⟨ECT⟩ from population probabilities
based on models with different diabatization methods.
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to be applicable and also the LE−LE and CT−CT electronic
couplings. Alternatively, one could use dimer projection
techniques48 which start out from LEs in monomer
calculations as approximate diabatic states in the complex.
These have been used, for instance, with finite lifetime
estimates in large-scale simulations of singlet and triplet
exciton dynamics in molecular crystals.49 Accounting for these
processes in a kinetic model is essential for a full first-principles
study of the dynamics of excitonic processes in disordered,
complex molecular materials. However, including them in the
present study is beyond the scope of this work which focuses
on the analysis of different diabatization methods with respect
to the calculation of LE-CT couplings. Finally, we comment
that for the modeling of dynamical processes such as the ones
in this work, it appears that the choice of the diabatization
method in the calculation of LE-CT couplings is less critical for
qualitative and semiquantitative insights than the proper
inclusion of environment effects for the excitation energies.
It is obvious from Figure 2 and eq 50 that no conversion from
LE to CT would take place, if the respective excitation energies
in vacuum were used.

4. SUMMARY
In summary, we have developed the determination of LE-CT
coupling elements withing the framework of GW-BSE. We
have shown that in an ideal small-molecule dimer of
naphthalene and TCNE, the quantitative estimates of these
couplings are largely insensitive to methodological choices in
the GW and BSE steps of the calculation, and only small
differences are noted between the ER, Generalized Mulliken−
Hush, and FCD diabatization formalisms. Compared to
literature results for this model system on the TD-DFT level,
we could show that the difference found in the GW-BSE-based
calculations can be attributed to different predictions of the
adiabatic dimer energies entering the diabatization procedure
and not differences in the densities of the excitations.

In a larger scale, disordered molecular complexes, such as
the low-donor content rubrene-fullerene mixtures, the LE-CT
couplings are found to be more sensitive to the choice of the
diabatization formalism. While the two more approximate
Generalized Mulliken−Hush and FCD approaches yield
couplings that are largely in agreement with each other, they
differ from the respective results based on the ER approach,
which takes full details of the excited state densities into
account. To scrutinize the effect of the different predictions
both qualitatively and quantitatively, we have employed the
respective LE-CT couplings in a minimal kinetic model of the
conversion from LE to CT states based on Marcus rates. From
the obtained time evolution of state population probabilities, it
is apparent that the dynamics are affected on an intermediate
time scale but not the final steady state prediction.
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