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Abstract

We investigate the determination of non-adiabatic couplings between localized exci-

tations (LEs) and charge-transfer (CT) excitations based on many-body Green’s func-

tions theory in the GW approximation with the Bethe–Salpeter equation (GW -BSE).

Using a small molecule dimer system, we first study the influence of different diabatiza-

tion methods, as well as different model choices withinGW -BSE, such as the self-energy

models or different levels of self-consistency, and find that these choices affect the LE-

CT couplings only minimally. We then consider a large-scale low-donor morphology

formed from rubrene and fullerene and evaluate the LE-CT couplings based on cou-

pled GW -BSE-molecular mechanics calculations. For these disordered systems of bulky

molecules, we observe differences in the couplings based on the Edmiston–Ruedenberg

compared to the more approximate Generalize Mulliken–Hush and Fragment Charge

Difference diabatization formalisms. In a kinetic model for the conversion between LE
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and CT states, these differences affect the details of state populations in an interme-

diate timescale but not the final populations.

1 Introduction

Many photochemical processes, such as catalytic processes or the generation of charges in

active layer heterostructures of organic solar cells, involve the transfer of an electron triggered

by the absorption of a photon. Such photoinduced electron transfer reactions are typically

influenced by a variety of properties, ranging from the intrinsic molecular electronic structure

of the molecular building blocks of the material, the details of the local mutual arrangement of

molecules, to larger scale morphological ordering. In many situations, the inherent disorder of

the material systems in which the electron transfer takes place suggests the use of localized

diabatic states to describe the reactions and to map the effects of the local and global

environment onto them. This idea as given rise to multiscale simulation approaches, in

which the transport of excitations across a material is modeled as a series of bi-molecular

transfer events, each of them described by an effective transfer rate.1–3 According to Marcus

theory,4,5 in the non-adiabatic high temperature or activated crossing limit, the rate of

electronic excitation transfer between two states X (initial) and Y (final) is

ωXY =
2π

ℏ
|JXY |2√

4πλXY kBT
exp

[
−(∆EXY − λXY )

2

4λXY kBT

]
, (1)

where ∆EXY is the free energy difference between initial and final states, and λXY the

reorganization energy. The expression also contains the non-adiabatic coupling element, JXY .

In principle, it should be possible to evaluate all three quantities that enter the Marcus rate

from electronic structure methods. To account for the local and global environment, however,

it is typically required to embed electronic structure methods into a classical environment

model,6–8 as the size of realistic disordered systems at least on the order of several tens of

nm exceeds the capabilities of explicit quantum chemistry methods. Besides such quantum-
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classical embedding, of the key challenges involved in the multiscale modeling approaches

of this kind is to use quantum-chemistry methods that allow for an accurate prediction of

various excited states involved in the dynamical processes. Especially for the conversion

of charge-neutral excitations, e.g., after photo absorption from localized exciton (LE) to

charge-transfer (CT) state as an example of a photoinduced electron transfer reaction, the

energetics of both LEs and CTs need to be described on an equal footing. In this context,

the use of many-body Green’s functions Theory employing the GW approximation and the

Bethe–Salpeter equation (BSE)9 has become attractive to model electronically excited states

on top of a ground-state reference calculation typically performed on the level of density-

functional theory (DFT).10,11 It was shown that GW -BSE provides an effective single- and

two-particle picture with accurate energies of LE and CT states without the need for any

adaptations.12–14 Previous work has also shown that the additional screening caused by the

molecular environment strongly affects the energies (and also densities) of CT states,15,16

more so than those of LEs, and that this energetic stabilization is important for finding

CT-LE energy differences ∆ELE-CT that are favorable for LE to CT conversion in organic

solar cell materials. To fully treat the dynamical process of this conversion in the spirit

of Eq. (1) requires also the reliable determination of the respective non-adiabatic coupling

elements JLE-CT.

In this work, we present a comparative study of determining non-adiabatic coupling ele-

ments between localized and charge-transfer excitations in the framework GW -BSE, based

on three different diabatization methods: Edmiston–Ruedenberg (ER) diabatization17 em-

ploying explicit electronic densities and the more approximate Generalize Mulliken–Hush

(GMH)18 and Fragment Charge Difference (FCD)19 formalisms. We first validate the pre-

dicted JLE-CT in a small molecule dimer system consisting of naphthalene and tetracyanoethy-

lene (TCNE), for which reference calculations from coupled-cluster and time-dependent

density-functional theory are available20 and allow scrutinizing the individual and combined

effects of energy and (effective) wave-function predictions in the Green’s functions method.
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Herein, we also put particular emphasis on how much or little the different model choices

within GW -BSE, such as the choice of self-energy models, different levels of self-consistency

or the use of the Tamm–Dancoff approximation in the BSE, affect the LE-CT couplings.

To investigate how the findings for the ideal small-molecule dimer translate to larger-scale

systems with potential relevance for materials applications, we proceed by applying different

GW -BSE-based diabatization techniques to a mixed donor-acceptor blend of rubrene and

fullerene.21 Such a blend with low-donor content contains significantly larger molecules,

exhibits substantial positional and orientational disorder, and allows therefore also a case

study of the kinetics of the conversion from a photoexcited LE on rubrene to rubrene-fullerene

CT states, typical intermediates for charge separation.

This paper is organized as follows: In Section 2, we provide a brief summary of the essen-

tials of the GW -BSE method methodology, polarizable embedding approaches, as well as the

three different diabatization methods used in this work. Results on the model naphthalene-

TCNE dimer and the mixed donor-acceptor system of rubrene and fullerene are presented

and discussed in Section 3. A short summary concludes the paper.

2 Methodology

Here, we briefly summarize the essentials of Many-Body Green’s Functions Theory in the

GW approximation with the BSE for the calculations of electronic excitations, its polarizable

embedding, as well as the three diabatization methods we consider in this work.

2.1 Electronic Excitations via GW -BSE

In the framework of GW -BSE,9,22 excitations are constructed based on a reference ground

state calculation, here at the level of Kohn–Sham (KS) density-functional theory. One first
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obtains KS wavefunctions ϕKS
n (r) and energies εKS

n from

{
− ℏ2

2m
∇2 + Vext(r) + VH(r) + Vxc(r)

}
ϕKS
n (r) = εKS

n ϕKS
n (r). (2)

Here, Vext is the external potential, VH the Hartree potential, and Vxc the exchange-correlation

potential. Hedin23,24 introduced the GW approximation of many-body Green’s functions

theory, in which quasi-particle (QP) states representing independent electron and hole exci-

tations are found as solutions the quasi-particle equations:

{
− ℏ2

2m
∇2 + Vext(r) + VH(r)

}
ϕQP
n (r) +

∫
Σ(r, r′, εQP

n )ϕQP
n (r′)dr′ = εQP

n ϕQP
n (r). (3)

In place of the exchange-correlation potential in Eq. (2), the energy-dependent self-energy

operator Σ(r, r′, E) occurs in the QP equations. This operator is evaluated using the one-

body Green’s function in quasi-particle approximation

G(r, r′, ω) =
∑
n

ψn(r)ψ
∗
n(r

′)

ω − εn + i0+sgn(εn − µ)
(4)

as

Σ(r, r′, E) =
i

2π

∫
e−iω0+G(r, r′, E − ω)W (r, r′, ω) dω, (5)

whereW denotes the dynamically screened Coulomb interaction. This is determined by first

computing the polarization P in the random-phase approximation (RPA),25,26 then with it

the microscopic dielectric function as a convoluting of P with the bare Coulomb interaction v,

i.e., ϵ = 1−vP . Finally, W is obtained as W = ϵ−1v, i.e., after inversion of ϵ and subsequent

convolution with the bare Coulomb interaction. The frequency integration in Eq. (5) can

be performed fully analytically (FA) based on contour deformation techniques or with the

use of a generalized plasmon-pole model (PPM),27 which extends the RPA result for ω = 0

(static polarization) and the associated static dielectric function to the dynamic one.

Assuming that |ϕQP
n ⟩ ≈ |ϕKS

n ⟩, the quasiparticle energies can be evaluated perturbatively
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according to

εQP
n = εKS

n +∆εGW
n = εKS

n + ⟨ϕKS
n |Σ̂(εQP

n )− V̂xc|ϕKS
n ⟩. (6)

As the correction ∆εGW
n itself depends on εQP

n , Eq. (6) needs to be solved self-consistently.

In the G0W0 approximation, the single-particle energies that enter the RPA calculation of

ϵ−1 and G are the εKS
n . Updating these energies self-consistently with the corrections from

Eq. (6) leads to the so-called eigenvalue self-consistent evGW variant.

Neutral excitations with a conserved number of electrons can be obtained from the Bethe–

Salpeter Equation (BSE).24,28 It determines the four-point density response function of the

interacting system from the non-interacting system.7,9,29 Coupled electron-hole amplitudes

of excitation S can be expressed in a product basis of QP wave functions, i.e.,

χS(re, rh) =
occ∑
v

unocc∑
c

AS
vcϕc(re)ϕ

∗
v(rh) +BS

vcϕv(re)ϕ
∗
c(rh), (7)

where re (rh) is for the electron (hole) coordinate, and we drop the label QP for clarity. Here,

Avc (Bvc) are the expansion coefficients of the excited state wave function in terms of resonant

(anti-resonant) transitions between QP occupied (occ.) states v and unoccupied (unocc.) c,

respectively. In this basis, the BSE turns into an effective two-particle Hamiltonian problem

of the form Hres K

−K −Hres


AS

BS

 = ΩS

AS

BS

 . (8)

Specifically for singlet excitations, the matrix elements of the blocks Hres and K are calcu-

lated as

Hres
vc,v′c′ = Dvc,v′c′ + 2Kx

vc,v′c′ +Kd
vc,v′c′ (9)

Kcv,v′c′ = 2Kx
cv,v′c′ +Kd

cv,v′c′ , (10)
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with

Dvc,v′c′ = (εc − εv)δvv′δcc′ , (11)

Kx
vc,v′c′ =

∫
d3re d

3rh ϕ
∗
c(re)ϕv(re)vC(re, rh)ϕc′(rh)ϕ

∗
v′(rh) (12)

Kd
vc,v′c′ = −

∫
d3re d

3rh ϕ
∗
c(re)ϕc′(re)W (re, rh, ω = 0)ϕv(rh)ϕ

∗
v′(rh) . (13)

Here, Kx is the repulsive exchange interaction originating from the bare Coulomb term

vC, while the direct interaction Kd contains the attractive, but screened, interaction W

between electron and hole, causing the binding of the electron-hole pair. In Eq. (13) it is

assumed that the dynamic properties of W (ω) are negligible, and the computationally less

demanding static approximation ω = 0 is employed. If off-diagonal blocks K in Eq. (8) are

small, the additional use of the Tamm–Dancoff Approximation (TDA)30 is convenient, in

which the electron-hole amplitude is expressed only as resonant transitions from occupied v

to unoccupied c states:

χTDA
S (re, rh) =

occ∑
v

unocc∑
c

AS
TDA,vcϕc(re)ϕ

∗
v(rh), (14)

thereby reducing the effective Hamiltonian tothe upper diagonal block of Eq. (8):

HresAS
TDA = ΩTDA

S AS
TDA. (15)

For all practical GW -BSE calculations in this work, we use the Gaussian-type orbitals

implementations in the VOTCA-XTP7,8 software.

2.2 Polarizable Embedding

To account for effects of electronic excitations in complex molecular environment, a quantum

(QM) region with the excited state complex is embedded in a classical, polarizable atomistic
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(MM) model for the environment. The QM/MM scheme in VOTCA-XTP makes use of a

distributed atomic multipole representation for molecules in the MM region, which allows

treatment of both the effects of static electric fields and the polarization response as a self-

consistent reaction field. Specifically, this classical MM energy for the system is evaluated

as

EMM =
1

2

∑
A,B
A ̸=B

∑
a∈A

∑
b∈B

∑
tu

(Qa
t +∆Qa

t )T
ab
tuQ

b
u, (16)

where A and B indicate individual molecules in the system, a and b atoms in the respective

molecules, Qa
t are the static atomic multipole moments of rank t associated to atom a, and

T ab
tu is the tensor describing the interactions between the multipoles moments Qa

t and Qb
u.

31

The induced moments ∆Qa
t are generated by the electric field created by moments t′ of atom

a′ ̸= a in molecule A and the one generated by the moment u of atom b in molecule B:

∆Qa
t = −

∑
A,B∈S
A ̸=B

∑
b∈B

∑
a′∈A
a′ ̸=a

∑
tt′u

αaa′

tt′ T
a′b
t′u (Q

b
u +∆Qb

u), (17)

with αaa′

tt′ the atomic polarizability on each site. To avoid effects of spurious overpolarization,

a damped version of the interaction tensor (Thole damping31) is used. Then, the static and

induced multipoles in the MM region also interact with the electron density in QM region

via an additional external potential to Eq. (2). At the same time, the explicit electrostatic

field from the QM density is included in polarizing the MM region. The total density of

excited state S is evaluated from the excited-state wavefunction χS as

ρS(r) = ρDFT(r) + ρSe (r)− ρSh(r), (18)

8
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with

ρSe (r) = ρSe (re) =

∫
drh|χS(re, rh)|2

ρSh (r) = ρSh (rh) =

∫
dre|χS(re, rh)|2.

(19)

In order to obtain the polarization response of both the QM and MM regions, a self-

consistent procedure is employed. At step p of this procedure, the total energy of the

coupled QM/MM system for the state S of interest (ground state S = 0, or excited states

S > 0) is determined as

ES,p
QM/MM = ES,p

QM + ES,p
MM, (20)

with

ES,p
QM = ES,p

DFT + Ωp
S, (21)

and Ωp
S = 0 for the ground state case. The whole procedure is repeated until the change

of total energy is less than a preselected accuracy, typically 10−5Ha. The excitation energy

Ω
QM/MM
S of a complex in the polarizable environment is then obtained as the difference

Ω
QM/MM
S = ES

QM/MM − E0
QM/MM. (22)

2.3 Diabatization Methods

Electronic states obtained from as eigenstates of some (approximate) Hamiltonian are adi-

abatic states |Φi⟩, such as the excitations χS obtained from the BSE as introduced in Sec-

tion 2.1. Corresponding diabatic states |Φdiabatic
a ⟩, needed for the evaluation and understand-

ing of electron transfer processes, can be found via a unitary transformation

|Φdiabatic
a ⟩ =

Nstates∑
j=1

Uaj|Φj⟩. (23)

9
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The unitary transformation matrix U is determined by extremalizing some function f(U),

and various methods differ by the definition of this function, with some choices being dis-

cussed below. With this, the adiabatic form of the electronic Hamiltonian Hel with adiabatic

energies εi, i.e., ⟨Φi|Hel|Φj⟩ = εjδij is transformed into the diabatic form

Hdiabatic
ab = ⟨Φdiabatic

a |Hel|Φdiabatic
b ⟩ =

∑
ij

Uia⟨Φi|Hel|Φj⟩Ubj. (24)

For the two-state problem (Nstates = 2), the transformation can be written explicitly as a

rotation

U =

U11 U12

U21 U22

 =

cos θ − sin θ

sin θ cos θ

 . (25)

and the diabatic Hamiltonian as

Hdiabatic =

 cos θ sin θ

− sin θ cos θ


ε1 0

0 ε2


cos θ − sin θ

sin θ cos θ

 . (26)

Its off-diagonal elements

JER
ab =

1

2
sin (2θ)(ε2 − ε1) (27)

are then the non-adiabatic couplings between the two diabtic states.

2.3.1 Edmiston-Ruedenberg Diabatization

In the Edmiston-Ruedenberg (ER) localized diabatization formalism,32 the objective is the

maximization of the self-repulsion of the diabats via

fER(U) =
∑

i,j,k,l,m

UjiUkiUliUmiRjklm. (28)

10
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Here, the tensor Rjklm is defined in basis of molecular orbitals as

Rjklm =
∑
vcv′c′

Djk
vc(vc|v′c′)Dlm

v′c′ . (29)

with

(vc|v′c′) =
∫∫

ϕv(r)ϕc(r)ϕv′(r
′)ϕc′(r

′)

|r− r′|
dr dr′, (30)

where the indices v, v′ and c, c′ spanning the occupied and unoccupied levels, respectively.

In Eq. 29, Djk is the excited state transition density matrix between the excited states j

and k. If the ϕn(r) are expressed in an atomic orbital basis {χα(r)} according to ϕn(r) =∑
α d

n
αχα(r), Eq. (29) can be rewritten as

Rjklm =
∑
αβγδ

Djk
αβ(αβ|γ δ)D

lm
γδ . (31)

The tensor (αβ|γ δ) is part of the standard implementation of DFT-GW -BSE, in which the

transition density matrix between states j and k in the atomic orbital basis reads

Djk
αβ = D0

αβδjk +
∑
cc′

dcαM
jk
cc′d

c′

β −
∑
vv′

dvαM
jk
vv′ , d

v′

β (32)

where

M jk
cc′ =

∑
v

(
Aj

vcA
k
vc′ −Bj

vcB
k
vc′

)
(33)

and

M jk
vv′ =

∑
c

(
Aj

vcA
k
v′c −Bj

vcB
k
v′c

)
. (34)

With these definitions, Eq. (31) can be computed and the ER functional can be max-

imized. For the two-state case, there is a closed form for this maximizing angle.17 It is

11

https://doi.org/10.26434/chemrxiv-2023-19ggm-v2 ORCID: https://orcid.org/0000-0002-6077-0467 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-19ggm-v2
https://orcid.org/0000-0002-6077-0467
https://creativecommons.org/licenses/by/4.0/


computed with the help of

A12 = R1212 −
1

4

(
R1111 +R2222 − 2R1122

)
(35)

B12 = R1112 −R2212 (36)

as

cos(4θ) = − A12√
A2

12 +B2
12

. (37)

2.3.2 Generalized Mulliken–Hush Diabatization

In the Generalized Mulliken–Hush (GMH) approach to diabatization,18,33 the adabatic-to-

diabatic transformation is based on the definition of the diabatic states as eigenstates of the

dipole moment. Specifically in a two-state model, the method requires the calculation of the

dipole moment of each adiabatic state µ1 and µ1, and the transition dipole moment between

the two, µ12. The non-adabatic coupling element is then calculated as

JGMH
ab =

|µ̂12|(ε2 − ε1)

((µ1 − µ2)
2 + 4µ̂2

12)
1/2
, (38)

where µ̂12 is the projection of µ12 on the charge transfer direction (µ1 − µ2)/|µ1 − µ2|.

2.3.3 Fragment Charge Difference Diabatization

Another alternative is to determine the diabatic states as eigenstates of the so-called fragment

charge difference (FCD) matrix,19 based on the definition of donor (D) and acceptor (A)

fragments, as ∆Qij = Qij(D)−Qij(A). The fragment charges are typically obtained from a

population analysis of the individual adiabatic densities and the transition density between

them. Again, for a two-state model, the coupling is given by

JFCD
ab =

|∆Q12|(ε2 − ε1)

((∆Q11 −∆Q22)2 + 4∆Q2
12)

1/2
. (39)
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3 Results

3.1 Naphthalene-TCNE complex

Stacked geometries of naphthalene and TCNE with different intermolecular distances are

taken from Ref.20 Ground state calculations on KS-DFT level are performed with the

ORCA34 package using both the PBE0 functional35 and the def2-tzvp basis36 together

with optimized auxiliary basis sets37 in resolution-of-identity techniques to efficiently ex-

press terms involving four-center Coulomb integrals. We compare in the following the results

based on G0W0 calculations and eigenvalue selfconsistent evGW calculations. The conver-

gence limit for the self-consistent GW -cycles in the evGW scheme was set to 10−5 Hartree

(0.27meV). Quasiparticle corrections are determined for the 197 lowest energy orbitals, and

the product basis for the electron-hole wavefunctions are formed from the 66 occupied and

131 lowest unoccupied orbitals. All orbitals are included in the RPA step for calculating the

dielectric function, i.e., 320 orbitals for def2-svp, 668 for def2-tzvp, and 1380 for def2-qzvp,

respectively. Both, the fully analytic approach (FAA) and a generalized plasmon-pole model

as introduced in Section 2.1 as used for the frequency integration of the self-energy. The

obtained excitation energies for all variants are summarized in Tab. 1.

In Fig. 1(a), we show the distance-dependent LE-CT couplings as resulting from evGW -

BSE calculations with the FAA, the def2-tzvp basis set, and PBE0 in the ground state

calculation. We first compare the influence of the choice of diabatization method, with the

couplings obtained from ER shown as circles, from GMH as crosses, and FCD as diamonds,

respectively. While both GMH and FCD methods appear to yield very similar couplings with

a maximum deviation of 4meV at a separation of 3.5 Å (see also Tab. 2), the JER
LE-CT result

slightly lower, e.g., by 9meV at the closest distance. Note that the respective slopes of the

three GW -BSE based data are identical, reflecting the same exponential decay of the LE-CT

coupling with distance. Comparing out results to those obtained by EOM-EE-CCSD/GMH

and TDDFT/FCD with the ωB97X-D38 functional20 shown in Fig. 1(a) as solid and dashed
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Table 1: Distance-dependence of the low-energy LE and CT excitation energies (in eV) in
a naphthalene-TCNE complex, based on different variants of GW -BSE using the def2-tzvp
basis set and the PBE0 functional in the DFT ground state calculation.

FAA PPM
evGW G0W0 evGW G0W0

full TDA full TDA full TDA full TDA
LE energy

3.5 Å 4.309 4.341 3.998 4.022 4.255 4.262 4.006 4.035
3.9 Å 4.306 4.340 4.000 4.024 4.266 4.306 4.007 4.037
4.0 Å 4.306 4.339 4.000 4.024 4.264 4.305 4.006 4.036
4.5 Å 4.305 4.339 3.997 4.022 4.262 4.303 4.003 4.033
5.0 Å 4.300 4.333 3.995 4.020 4.257 4.299 4.000 4.030

CT energy
3.5 Å 2.214 2.220 1.875 1.880 2.255 2.261 1.976 1.982
3.9 Å 2.387 2.389 2.052 2.054 2.430 2.432 2.157 2.159
4.0 Å 2.424 2.426 2.090 2.092 2.467 2.469 2.195 2.197
4.5 Å 2.589 2.590 2.255 2.255 2.632 2.632 2.360 2.361
5.0 Å 2.727 2.727 2.396 2.396 2.770 2.770 2.501 2.501

LE-CT difference
3.5 Å 2.095 2.121 2.123 2.141 2.000 2.001 2.030 2.053
3.9 Å 1.920 1.951 1.948 1.970 1.836 1.874 1.850 1.878
4.0 Å 1.881 1.913 1.909 1.932 1.797 1.836 1.811 1.839
4.5 Å 1.716 1.749 1.743 1.767 1.630 1.670 1.642 1.673
5.0 Å 1.572 1.606 1.599 1.623 1.488 1.529 1.499 1.529
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(a) (b)

Figure 1: Distance dependence of LE-CT coupling elements in the naphthalene-TCNE com-
plex. (a) GW -BSE results with the ER, GHM, and FCD diabatization methods based on
full BSE solutions following evGW calculations with FAA frequency integration, employing
the def-tzvp basis and PBE0 functional in the ground state DFT run. Reference results on
EOM-EE-CCSD and TDDFT levels are taken from Ref.20 (b) Pure GW -BSE and TDDFT
results based on FCD as in (a) compared to mixed methods, in which the fragment charge
factor is taken from TDDFT and the energy difference from GW -BSE (TDDFT/GW -BSE)
and vice-versa, showing that the difference between the pure GW -BSE and TDDFT results
originate from the different predicted energies.

lines, respectively, we observe a combination of an offset to lower energies and a slightly

stronger slope in GW -BSE. For instance, at the optimal intermolecular distance of 3.9 Å,

EOM-EE-CSSD/GMH predicts a LE-CT coupling of 128meV, TDDFT/FCD 126meV, com-

pared to 86meV from ER, 95meV from GMH, and 93meV from FCD with GW -BSE. To

understand this difference, we take a closer look at the results obtained with FCD diabati-

zation in Fig. 1(b). The GW -BSE and TDDFT results are from Fig. 1(a) are shown again,

now combined with ”mixed” versions. In these versions, we first distinguish in the expres-

sion for JFCD
LE-CT between the fragment charge contribution fFCD = JFCD

LE-CT/(ε2 − ε1) and the

energy contribution fε = (ε2 − ε1). Then we combine fFCD(TDDFT) with fε(GW -BSE)

(TDDFT/GW -BSE) and vice versa (GW -BSE/TDDFT). For the former, we find that the

resulting couplings are essentially identical to the ones from pure GW -BSE, while the latter

results are in close agreement with the full pure TDDFT data. This corroborates the no-

tion that the difference between the pure TDDFT and GW -BSE derived couplings can to
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a large extend be attributed to differences in the energies. From Tab. 1, the LE-CT energy

difference at the optimal naphthalene TCNE distance is 1.92 eV in GW -BSE and 2.70 eV in

TDDFT,20 and their ratio almost exactly translates into the ratio of the respective coupling

elements.

Table 2: LE-CT coupling elements (in meV) in the naphthalene-TCNE complex at several
intermolecular distances, as obatined using ER, GMH, and FCD diabatization with different
variants of GW -BSE using the def2-tzvp basis set and the PBE0 functional in the DFT
ground state calculation.

FAA PPM
evGW G0W0 evGW G0W0

full TDA full TDA full TDA full TDA
ER diabatization

3.5 Å 163 165 158 161 161 163 155 155
3.9 Å 86 87 84 85 88 89 86 86
4.0 Å 73 74 71 72 75 76 73 73
4.5 Å 34 34 33 33 35 35 34 34
5.0 Å 16 17 16 17 17 18 17 17

GMH diabatization
3.5 Å 172 172 169 169 169 169 165 165
3.9 Å 95 95 93 94 93 93 92 92
4.0 Å 81 81 80 80 80 80 79 79
4.5 Å 38 38 38 38 38 38 37 37
5.0 Å 18 18 18 18 17 17 17 17

FCD diabatization
3.5 Å 168 168 165 166 165 165 161 162
3.9 Å 93 93 92 92 92 92 90 90
4.0 Å 80 80 79 80 79 79 77 77
4.5 Å 38 38 37 37 37 37 37 37
5.0 Å 17 17 17 17 17 17 17 17

Table 2 also contains LE-CT couplings as obtained from different variants of GW -BSE,

in which we have changed the exact frequency integration in Eq. (5) with a PPM, the level of

GW from evGW to G0W0, and/or the BSE from its full form to the TDA. Overall, the JLE-CT

are not very sensitive to the specific choices in the GW and BSE steps. For the sake of clarity,

we will focus on the results from ER diabatization at the optimal separation of 3.9 Å in the

following. First, the use of the TDA of the BSE impacts the couplings by only 1meV, also
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the use of the one-shot G0W0 method instead on evGW does not show differences exceeding

3meV. Even the use of the PPM in place of the exact frequency integration (FAA) is of the

same order, so that all values are within 3% of the FAA/evGW/full BSE result. Similar

observations also hold for the other intermolecular distances and diabatization techniques.

3.2 Rubrene-fullerene low-donor content system

We now move from the well-ordererd, small molecule naphthalene-TCNE dimer to a disor-

dered cluster of larger molecules and investigate the sensitivity of LE-CT coupling elements

based on GW -BSE on the different diabatization methods and if eventual differences propa-

gate to different answers in dynamic models of conversion between LE and CT states. Specif-

ically, we study an amorphous morphology with low-donor content (< 10mol%), composed

of fullerene (C60) and 5,6,11,12-tetraphenyltetracene (rubrene).21 Because of the low-donor

content, a C60 cluster will surround the donor molecule, making the interaction between the

single donor molecule with a close shell of neighboring C60 acceptors representative of the

properties of the system as a whole. These complexes are therefore meaningful candidates for

a computational analysis of the influence of donor-acceptor conformations and environment

polarization effects in the GW -BSE/MM framework introduced in Sec. 2.2 and its conse-

quence on the conversion dynamics between initially excited LE on rubrene (LER) to CT

excitations.

3.2.1 CT density of states

To obtain representative structures, mixed morphologies have been simulated with ab-initio

MD based on Density Functional Tight Binding theory using linear scaling self-consistent

field calculations within the CP2K code.39 Initial configurations have been prepared us-

ing Packmol,40 targeting experimental values21 for densities and mole percentages. This

structure is first equilibrated at 700K in NpT (with velocity rescaling thermostat41 at at-

mospheric pressure42) for 7 ps (time step 1 fs), then annealed to 300K within 10 ps. A final
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NpT equilibration followed for 5 ps.

For calculating the LE and CT densities of states, C60 molecules are selected which are ap-

proximately in the first neighbor shell around one rubrene molecule. Given the conformation

of this low-donor content materials, the behavior of this shell of molecules should be repre-

sentative of the overall behavior of the material. After selection, polarizable GW -BSE/MM

embedding calculations as described in Section 2.2 are performed for all dimers formed by

rubrene and fullerene. Specifically, we employ for the GW -BSE calculations the def2-tzvp

basis set36 with an optimized auxiliary basis37 for the steps including resolution-of-identity.

The ground-state DFT calculation uses the PBE0 functional.35 Eigenvalue self-consistent

GW (evGW ) calculations are performed to obtain the explicit quasiparticle-corrected en-

ergies for the highest 100 occupied and lowest 100 unoccupied orbitals, respectively. All

orbitals are included in the RPA step and not explicitly GW corrected levels are scissors

shifted according to the highest absolute quasiparticle correction among the explicitly cor-

rected occupied or unoccupied orbitals, respectively. The frequency integration in Eq. (5)

is performed using the PPM. Coupled electron-hole wavefunctions according to Eq. (7) are

constructed using transitions between the highest 220 occupied and 220 lowest unoccupied

states. In the MM part of the GW -BSE/MM, polarizable electrostatic interactions are taken

into account within a cutoff of 4 nm.

The resulting energies of CT and LE excitations are depicted in Fig. 2. In general, the

effects of polarizable embedding on the LE energies are small, as has been observed before,

e.g., for embedded push-pull polymers15 or small-molecule donor molecules.8 Therefore, we

only show the GW -BSE/MM results for the respective LEs, indicated by the blue (rubrene

at 2.01 eV) and orange (C60 at 1.97 eV) vertical lines as there is no noticeable disorder. For

the CT excitations, the GW -BSE calculations in vacuum already reveal significant ener-

getic disorder, originating from the different rubrene-C60 conformations and the long-range

electrostatic interaction between electron and hole. Individual CT excitation energies are

marked by the short green vertical lines in Fig. 2, where we also show a density-of-states
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Figure 2: Energies of CT excitations (green vertical bars) from vacuum GW -BSE (dashed)
and GW -BSE/MM calculations with polarizable embedding (solid). Solid and dashed curves
indicate respective density-of-states obtained by Gaussian broadening with 0.1 eV as a guide-
to-the-eye. Blue and orange lines highlight the GW -BSE/MM energies of LEs on rubrene
and C60, respectively.

obtained by broadening with a Gaussian function of width 0.1 eV. After polarizable em-

bedding in GW -BSE/MM the CT energies (solid green lines) are shifted to lower energies,

with energetic stabilization of up to 1 eV. Note that in vacuum, the CT excitation energies

result generally higher than both LEs, which would make a conversion process of a LE on

rubrene to a CT state energetically unlikely. After embedding, we find that the energetic

stabilization brings several high-energy CTs close to the LEs, and some notably very much

lower at 1.65 eV (CT1)and 1.42 eV (CT0), respectively. The latter compares favorably with

the experimentally measured CT energy of 1.46 eV reported in Ref.21 However, given the

disorder in the CT excitation energies, it is unclear if the measurement truly probes sim-

ply the lowest-energy CT state, or one that is preferably dynamically populated during the

timescale of the conversion process and the experiment.

3.2.2 Non-adiabatic LE-CT couplings

To proceed beyond considering only the energy difference for the conversion of LE to CT

excitons, we consider the LE-CT couplings and analyze if the disorder in them could be

indicative of some dimers not participating in the process. We also investigate if for such
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(a) (b)

CT0

CT1

CT0

CT1

Figure 3: (a) Effective LE-CT couplings (see Eq. (40)) in the rubrene-C60 dimers resulting
from polarizable GW -BSE/MM calculations with the GMH and FCD diabatization schemes
against those from ER. (b) Relation between LE-CT energy difference ∆ELE-CT = ΩCT−ΩLE

and the LE-CT coupling from GW -BSE ER diabatization.

large bi-molecular structures, the use of GHM, FCD, and ER diabatization has any influence

on the results.

A specific aspect of the rubrene-C60 systems that requires extra is the (near) degeneracy

of the 15 lowest LE on C60, stemming from the 5-fold degeneracy of its HOMO and 3-fold

degeneracy of its LUMO. For the same reason, also the CT states are 3-fold near degenerate.

We take this into account by calculating an effective diabatic coupling43,44 between NLE-fold

degenerate LEs and NCT-fold degenerate CT excitons as

J̄LEx−CT =

√∑NLE

m=1

∑NCT

n=1 J
2
LEx,m−CTm

NLE ·NCT

, (40)

with JLEx,m−CTn the coupling element between them-th degenerate LE and the n-th degener-

ate CT. The results from the different diabatization methods are shown in Fig. 3(a). There,

we plot the couplings obtained with GMH and FCD diabatization against those from ER,

and distinguish between LER-CT (filled symbols) and LEC60-CT (open symbols) couplings.

Roughly speaking, the effective couplings from ER cover a range from 0.02meV to 17meV,

with many occurring close to 1meV. Compared to the small-molecule naphthalene-TCNE

20

https://doi.org/10.26434/chemrxiv-2023-19ggm-v2 ORCID: https://orcid.org/0000-0002-6077-0467 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-19ggm-v2
https://orcid.org/0000-0002-6077-0467
https://creativecommons.org/licenses/by/4.0/


dimer with ideal stacking, we find a stronger dependence on the diabatization method, al-

though the differences between GMH and FCD seem minor in most cases. Of particular

interest are the couplings of the two low-energy CT states, CT0 and CT1, as marked in

Fig. 3(a). Specifically, the LER-CT couplings are different using ER (0.6meV vs. 17meV),

while similar when using GMH at about 3meV. As the ER method takes the full details of

the electronic (transition) densities into account, it stands to reason that the extra details

have a bigger contribution to the LE-CT couplings for more disordered structures and larger

molecular building blocks.

In Fig. 3(b) we show the relation between the energy offset of LE and CT states, calculated

as ∆ELE-CT = ΩCT − ΩLE, and the LE-CT couplings obtained with ER. From Eq. (27)

one generally expects some dependence of the couplings on the energy difference. Some

dependence is visible in Fig. 3(b), although it is hard to ascribe a definite trend to the data.

Noteworthy is that the two dimers with the most negative energy offsets corresponding to the

two low energy CT states discussed in Section 3.2.1. In particular, CT1 at energy 1.65 eV is

found to have the highest coupling between the rubrene LE and the CT state. In comparison,

the coupling to the lowest CT state, CT0, is smaller by a factor of 30. This raises the

question what impact the differences in couplings have for the LE-CT conversion dynamics,

particularly which of the CT states is most likely to be probed over which timescale.

3.2.3 Kinetic Model

To scrutinize the effects of the disorder in energies and LE-CT couplings obtained from

the GW -BSE/MM calculations in Sections 3.2.1 and 3.2.2 and the influence of different

diabatization methods, we now study the conversion dynamics between LE and CT exci-

tations with a kinetic model based on Marcus rates as in Eq. (1). This model requires

in addition to the calculation of the LE-CT couplings and the excitation energies Ω also

the determination of the respective reorganization energies λab. Within the Marcus picture,

λLEx−CT = ECT(LEx)− ECT(CT) and λCT−LEx = ELEx(CT)− ELEx(LEx), where x = R,C60
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and Ea(G) represents the total energy of state a at geometry of state G. As such, this would

require the cumbersome optimization of the dimer structures in the respective CT and LR

states. Instead, we approximate the energies from monomer calculations, such that

ECT(LER) = E+
R (R

∗) + E−
C60

(C0
60) (41)

ECT(LEC60) = E+
R (R

0) + E−
C60

(C∗
60) (42)

ELER
(CT) = E∗

R(R
+) + E0

C60
(C−

60) (43)

ELEC60
(CT) = E0

R(R
+) + E∗

C60
(C−

60) (44)

ECT(CT) = E+
R (R

+) + E−
C60

(C−
60) (45)

ELER
(LER) = E∗

R(R
∗) + E0

C60
(C0

60) (46)

ELEC60
(LEC60) = E0

R(R
0) + E∗

C60
(C∗

60), (47)

where the superscripts refer to the state of the monomers (0: ground state, +: cation, −:

anion, ∗: excited). The total energy calculations and geometry optimizations in this step are

performed using (time-dependent) DFT with the same basis set and functional as the GW -

BSE calculations in Section 3.2.1, and we obtain λLER−CT = 0.12 eV, λCT−LER
= 0.12 eV,

λLEC60
−CT = 0.18 eV, and λCT−LEC60

= 0.21 eV, respectively. In similar spirit, we determine

the vertical to adiabatic energy relaxations of the excited states, Λa = Ea(0) − Ea(A), as

ΛCT = 0.15 eV, ΛLER
= 0.16 eV, and ΛLEC60

= 0.23 eV.

With all energies and coupling elements at hand, we determine all rates between LE and

CT states according to Eq. (1) at T = 300K for the kinetic model, which describes the

time-evolution of the state population probabilities P(t) via a system of ordinary differential

equations of the kind

d

dt
P(t) = WP(t). (48)

In this specific case, PT (t) = [PLER
(t),PT

LEC60
(t),PT

CT(t)] is of dimension 21, and
∑

i Pi(t) = 1

for all t. The structure of the off-diagonal entries of the matrix W is shown in Fig. 4,
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( (
Figure 4: Schematic representation of the rate matrix of a kinetic model, with full squares
indicating where the respective rates with LE-CT couplings occur.

emphasizing again that in this minimal model, we only consider transitions between LE and

CT states, not between different LE, and different CTs. The diagonals of W contain the

negative of the sum of all other column entries, i.e., Wii = −
∑

j Wji.

We initially prepare the system in the LER state, i.e., PT (t = 0) = [1, 0, . . . , 0] and

numerically study the evolution of Eq. (48) for tmax = 1µs using the backward Euler scheme45

with 105 steps. In Fig. 5(a), we show the resulting population probabilities with the LE-CT

couplings calculated using ER diabatization. Initially, the population of the LER state decays

rapidly and it is completely depopulated within 50 ps. This initial decay occurs primarily into

three CT states, with a clear preference for the CT1 state. After 50 ps the two additionally

populated CT states convert first into LEC60 as intermediates in the timescale of 100 [ps] to

10 ns, until they also decay nearly exclusively into CT1. Note that we do not observe over

the timescale of 1µs a noticeable population of the lowest energy CT state, CT0. As can be

seen from Fig. 5(b), there are some qualitative similarities when the dynamics are modeled

based on GMH diabatization. In particular, the same rapid initial decay of LER and the

final near complete population of CT1 can be seen. Some quantitative difference can be

noted in the details of the intermediate dynamics. Initially, CT1 does not get populated.

Instead, the populations of the two other CT states is much higher and, consequently, also

the populations of the two intermediate LEC60 they convert into.

We also report in Fig. 5(c) the expectation value of the measured CT energy, calculated
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(a) (b) (c)
ER GMHCT1 CT1

Figure 5: (a) Population dynamics of the excited states for tmax = 1µs as a solution to
Eq. (48) for LE-CT couplings from ER diabatization. The blue line indicates the population
of the LER excited state, orange lines the ones of the respective LEC60 , and green dashed
lines populations of CT states, respectively. (b) Same for GMH diabatization. (c) Time
evolution of the expected CT energy ⟨ΩCT⟩ from population probabilities based on models
with different diabatization methods.

according to

⟨ΩCT(t)⟩ =
10∑
n=1

PCTn(t)ΩCTn , (49)

for the three different diabatization methods considered in this work. As could be expected

from the individual populations over time, the expected CT energy follows similar trends.

At about 50 ps, all methods exhibit a peak, whose height depends slightly on the method.

Its energy of more than 1 eV is, however, a consequence of the low population of high energy

(∼ 2 eV) CT states, and not indicative of the population of either CT0 or CT1. The dip

following the peak is a combined effect of the depopulation of the high-energy CT states to

both CT1 (in case of ER) and some LEC60 . In the model based on GMH/FCD, the cumulative

population of all CT states is minimal at t = 1ns, leading to the pronounced reduction of

the expected CT state energy. On the other hand, in the ER model, the CT1 state is already

populated at this time, but the combination of it being a low energy excitation and only

partially populated (around 0.6) still leads to a smaller but noticeable minimum. Only on the

timescale of 1µs, when the CT1 population is nearly 1, ⟨ΩCT(t)⟩ is indicative of a pure CT
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state. Interestingly, the value of ⟨ΩCT(t = 1µs)⟩ = 1.50 eV is close to the CT energy reported

in experiments (1.46 eV),21 although we do not want to overstress this apparent agreement

due to the limited nature of the model. Noteworthy in this context is also that in both

cases (ER and GMH/FCD), no population of CT0 is observed in the considered timescale.

In thermal equilibrium (t → ∞), one would expect the state occupation probabilities to be

Boltzmann distributed according to

P th
i =

exp(−βΩi)∑21
i=1 exp(−βΩi)

, (50)

and as such, an almost complete population of CT0. While out limited model appears to run

into a different equilibrium with complete CT1 occupation as in Fig. 5, this is misleading,

as even in the model a conversion to CT0 will happen on a much longer timescale. Note,

however, that adding additional conversion pathways to the model is expected to reduce the

time in which the system reaches thermal equilibrium, but doing so is beyond the scope of

this work which focuses on the analysis of different diabatization methods with respect to

the calculation of LE-CT couplings.

4 Summary

In summary, we have developed the determination of LE-CT coupling elements withing the

framework of GW -BSE. We have shown that in an ideal small-molecule dimer of naphthalene

and TCNE, the quantitative estimates of these couplings are largely insensitive to method-

ological choices in the GW and BSE steps of the calculation, and only small differences

are noted between the Edmiston–Ruedenberg, Generalized Mulliken–Hush, and Fragment

Charge Difference diabatization formalisms, respectively. Compared to literature results for

this model system on TD-DFT level, we could show that the difference found in the GW -

BSE-based calculations can be attributed to different predictions of the adiabatic dimer

energies entering the diabatization procedure, and not differences in the densities of the
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excitations.

In larger-scale, disordered molecular complexes, such as the low-donor content rubrene-

fullerene mixtures, the LE-CT couplings are found to be more sensitive to the choice of

the diabatization formalism. While the two more approximate Generalized Mulliken–Hush

and Fragment Charge Difference approaches yield couplings that are largely in agreement

with each other, they differ from respective results based on the Edmiston–Ruedenberg

approach, which takes full details of the excited state densities into account. To scrutinize

the effect of the different predictions both qualitatively and quantitatively, we have employed

the respective LE-CT couplings in a minimal kinetic model of the conversion from LE to

CT states based on Marcus rates. From the obtained time evolution of state population

probabilities, it is apparent that the dynamics are affected on an intermediate timescale, but

not the final steady state prediction.
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