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REVIEWS

Ab initio modeling of excitons: from perfect crystals to 
biomaterials
Gianluca Tirimbò a,b and Björn Baumeier a,b

aDepartment of Mathematics and Computer Science, Eindhoven University of Technology, The 
Netherlands; bInstitute for Complex Molecular Systems, Eindhoven University of Technology, 
Eindhoven, The Netherlands

ABSTRACT
Excitons, or coupled electron-hole excitations, are important 
both for fundamental optical properties of materials as well as 
and for the functionality of materials in opto-electronic devices. 
Depending on the material they are created in, excitons can 
come in many forms, from Wannier–Mott excitons in inorganic 
semiconductors, to molecular Frenkel or bi-molecular charge- 
transfer excitons in disordered organic or biological heterostruc-
tures. This multitude of materials and exciton types poses tre-
mendous challenges for ab initio modeling. Following a brief 
overview of typical ab initio techniques, we summarize our 
recent work based on Many-Body Green’s Functions Theory in 
the GW approximation and Bethe–Salpeter Equation (BSE) as 
a method applicable to a wide range of material classes from 
perfect crystals to disordered materials. In particular, we empha-
size the current challenges of embedding this GW-BSE method 
into multi-method, mixed quantum-classical (QM/MM) models 
for organic materials and illustrate them with examples from 
organic photovoltaics and fluorescence spectroscopy. Our per-
spectives on future studies are also presented.
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1. Introduction

When an incident photon is absorbed by a material, an electron is excited from 
the valence to the conduction band and leaves behind a positively charged 
vacancy, a hole. The attractive Coulomb interaction between the excited electron 
and the hole binds them together to form a bound neutral compound system of 
the two charge carriers, reminiscent of a hydrogen atom. This coupled excited 
electron-hole pair is called an exciton. An exciton can also be formed by different 
processes, e.g. from the injection of free electrons and holes into the material.

Excitons play a pivotal role in many different phenomena in materials. They 
determine their optical properties, such as absorption but also emission via 
fluorescence or phosphorescence [1]. Strongly or weakly coupled electron–hole 
pairs are not only static objects: they can diffuse through a material, thereby 
transporting energy with zero net charge [2–4]. Excitons can also play a role in 
chemical reactions [5], be intermediates to the generation of free charges in 
devices [6], and drive biological processes [7], such as photosynthesis. The initial 
step in these processes of providing chemical energy for plants, algae, and 
bacteria involves the capture of energy from sunlight. Specialized pigment– 
protein complexes, called light-harvesting antenna complexes, consist of light- 
absorbing chromophores, typically attached to a protein structure that holds 
them in place. Before the molecule can relax, the electronic excitation must be 
‘harvested’. That is, the excitation is transferred through space among the 
chromophores until it eventually reaches a reaction center where it initiates 
charge separation. Technological applications often exploit the static and 
dynamic properties of excitons in a similar fashion. Considerable effort is 
directed at designing either pure or composite materials with target properties 
to enhance device characteristics, such as optimizing the color of emitted light 
and increasing stability in organic light–emitting diodes (OLEDs) [8–10], or 
boosting the power conversion efficiency in solar cells, to name only a few.

A rational design of materials fulfilling these goals relies on the under-
standing of how the excitonic properties are related to material attributes, 
e.g. composition, chemical bonding, structural order, etc. On the nanoscale 
such an understanding is often sought with the help of ab initio modeling 
approaches, which can predict – if employed appropriately – the energetics 
of excitons, the binding characteristics of the electron-hole pair, and reveal 
how they emerge from the underlying material structure. There is a plethora 
of possible structures ranging form perfectly ordered, crystalline atomic 
lattice structures to complex disordered morphologies in biomaterials.

From the perspective of ab initio modeling, this multitude of material types 
constitutes a tremendous challenge, and no one-size-fits-all solutions can be 
expected. In this review, we will in the following briefly first revisit the relation 
between material properties and exciton characteristics using a rough distinc-
tion between inorganic and organic materials. We will give a few examples of the 
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role exciton processes play in organic light-emitting diodes and photovoltaic 
cells. We will also provide a concise overview of typical ab initio techniques 
employed in the literature for the study of excitons and their general applicability 
from a methodological and computational perspective to the various material 
types. Special attention is given to Many-Body Green’s Functions Theory in the 
GW approximation and Bethe–Salpeter Equation (BSE) as a method applicable 
to a wide range of material classes from perfect crystals to biomaterials. We 
showcase its use and the related challenges with examples from the literature for 
inorganic and organic crystals and summarize our recent work on complex, 
disordered molecular materials. In particular, we emphasize the current chal-
lenges of embedding this GW-BSE method into multi-method, mixed quantum- 
classical (QM/MM) models and illustrate them with examples from organic 
photovoltaics and fluorescence spectroscopy.

2. Relation between materials properties and exciton character

Details of the static and dynamic properties of excitons depend on the 
material in which they form. Materials are in broad terms classified as either 
inorganic or organic as they differ in their chemical bonding and electronic 
characteristics. We illustrate the different materials and types of excitons 
schematically in Figure 1.

Inorganic materials are usually well–ordered systems with atoms arranged in 
regular crystal structures, with either covalent or ionic bonds. As a result, they 
are structurally rigid and allow very little room for modifications. Traditional 
inorganic semiconductors such as silicon, germanium, and GaAs have low band 
gaps ([0.67] eV, [1.11] eV, and [1.43] eV respectively [11]). The dielectric 
constant in these materials is large (�r > 10) so that Coulomb effects between 
electrons and holes are small due to dielectric screening, with exciton binding 
energies of only several meV. The excitonic wave function typically extends over 
several lattice spacings, as indicated in Figure 1(a). This is known as a Wannier– 
Mott exciton [12]. For larger bandgap and/or lower dielectric constant, the 
screening effects become smaller, the exciton binding energy increases to the 
order of [0.1-1] eV as the excitonic wave function becomes more localized in 
space, e.g. in alkali halide crystals. Typically, such small-radius excitons are 
referred to as Frenkel excitons [13]. It should be noted, however, that in many 
situations, the distinction between Wannier–Mott and Frenkel excitons, or 
Frenkel excitons of different localization lengths, is not sharp, in particular in 
disordered materials without any clear lattice spacing.

Organic materials are formed from molecular building blocks and can host 
Frenkel excitons of vastly varying localization character [14]. While the intra- 
molecular bonding is determined by covalent and ionic interactions, weak 
cohesive electrostatic and van-der-Waals interactions are responsible for the 
inter-molecular structure formation. As a result, there is in general a plethora of 
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different material structures, ranging from well-ordered organic crystals (mostly 
at low temperature) to statically and/or thermally disordered structures with 
varying dimensionality. Often, there are even multiple phases present in the 
same organic material or material composite as technologically relevant materi-
als are often created from solution processing. Organic materials combine 
chemical and mechanical benefits of organic compounds, such as tailoring of 
electronic properties by a modification by chemical synthesis, their light-weight, 
and flexibility with peculiar properties of semiconductor materials, e.g. the 
absorption/emission of light in the visible spectral range and conductivity that 
is sufficient for the operation of devices such as light-emitting diodes (LEDs), 
solar cells, and field-effect-transistors. As a consequence of the intrinsically weak 
inter-molecular interactions and resulting disorder, electronic states are typically 

Figure 1. Illustration of different kind of excitons in different materials: (a) Small and large 
circles indicate the positions of atoms on a regular lattice as, e.g. in an MgO bulk crystal, and 
blue and red show the extension of a weakly bound Wannier–Mott exciton, typical for inorganic 
semiconductors. (b) Highly ordered molecular crystal structure where each oval represents 
a molecular unit. The exciton is delocalized over several molecules due to strong inter- 
molecular excitonic coupling. (c) Disordered (amorphous) molecular material, with Frenkel 
excitons strongly localized on single molecules. (d) Interface of a donor-acceptor heterostruc-
ture of two disordered molecular materials with bimolecular charge-transfer excitons.
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localized on one or several molecular building blocks, leading to low values of 
the dielectric constant usually in the region of �r ¼ 3-4. Absorption and emis-
sion take place mostly in the range of 2-3eV, hindering any significant charge- 
carrier concentration by thermal excitation at room temperature. As mentioned 
above, the low dielectric constant implies large exciton binding energies and 
small exciton radii. How small depends on the structural details of the material. 
Figure 1(b) schematically depicts a highly ordered molecular crystal. Tight and 
regular packing motifs can lead to high π -orbital overlap and strong excitonic 
coupling between the molecules and as a result, the exciton can extend over 
several units. With increasing disorder in the system as depicted in Figure 1(c), 
the inter-molecular coupling is weak, and typically single-molecule Frenkel 
excitons can be observed.

In multicomponent materials, as shown in Figure 1(d), one can often find 
another type of exciton that extends over two molecules. Unlike an extended 
Frenkel exciton in ordered organic morphologies as in Figure 1(b), where 
both electron and hole part delocalize similarly over the molecular building 
blocks, the so-called charge-transfer (CT) exciton [14] is characterized by 
separation of the two charges on donor and acceptor parts. Due to the 
increased distance between electron and hole, the exciton binding energy is 
reduced compared to the Frenkel excitons in the bulk phase. As we will 
discuss in Section 3, the details of the conversion process between localized 
Frenkel and these bi-molecular CT excitons is a significant step, e.g. in the 
generation of free charges in organic solar cells.

We emphasize that the above distinction between inorganic and organic 
materials, as well as between Wannier–Mott, Frenkel, and charge-transfer 
excitons is simplified for the sake of a compact presentation and therefore 
far from exhaustive. In fact, there are many examples of materials with 
mixed characteristics. These include perovskites or perovskite-like struc-
tures with embedded molecules, such as CH3NH3PbX3 with X = I, Br, Cl, in 
which a CH3NHþ3 is surrounded by PbX6 octahedra [15]. Other examples 
are organic-inorganic hybrids like metal or semiconductor nanoparticles 
functionalized by organic ligands, or dye-sensitized solar cell materials (e.g. 
TiO2 with perylene-based dyes [16]). Furthermore, in soft conjugated poly-
mers, electronic states and thereby also excitons can be subject to changes in 
localizaton due to dynamical or static variations in conformations of the π– 
conjugated backbone, such as torsion angles between repeat units [17–19].

3. Role of exciton processes in devices

The nature of the different excitons as determined from material proper-
ties also has immediate consequences for dynamical processes involving 
the electron-hole pairs, and their exploitation in device applications [20]. 
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While the binding energy of Wannier–Mott excitons in, e.g. silicon is 
comparable to the thermal energy and it is hence possible to generate free 
charge carriers after photon absorption in silicon solar cells, more com-
plex processes need to be considered in disordered, organic materials.

Figure 2 llustrates two examples for the vital role excitons and excitonic 
processes play in opto-electronic device applications based on organic 
heterostructures: organic light-emitting diodes (OLEDs, Figure 2(a)) and 
organic solar cells (Figure 2(b)).

An OLED device typically consists of several layers, each of which con-
tributes a specific task to the overall device functionality. The schematic in 
Figure 2(a) shows a simple case, in which an emission layer is sandwiched 
between hole and electron transporting layers, respectively, both contacted 
to electrodes. The electronic processes needed for actual light emission to 
occur comprise injection of charge carriers from the electrodes into the 
transport layers, their drift-diffusion through the transport into the emis-
sion layer. Careful tuning of electron and hole transport level, as well as the 
energies of singlet and triplet excitons, is required to ensure that the excitons 
are formed and they efficiently emit light via fluorescence or phosphores-
cence. Significant effort is currently directed at optimizing materials for 
thermally activated delayed fluorescence, a process in which a molecule is 
initially in a non-emitting excited state before thermal energy of the 

Figure 2. Examples for two applications driven by excitons in organic heterostructures: (a) Layer 
schematics of an organic light-emitting diode (OLED). Holes (electrons) are injected from the 
anode (cathode) in hole (electron) transport layers (HTL/ETL) 1, and drift-diffuse into the 
emission layer (EML) 2. There they form an exciton on one of the emitter molecules 3, which 
can emit light either by fluorescence of phosphorescence depending on the mechanism. (b) 
Illustration of the cascade of processes in charge generation at the donor–acceptor interface in 
an organic photovoltaic cell. Upon excitation by light, a strongly bound Frenkel exciton is 
formed in the donor phase, which then needs to diffuse toward the interface, where it converts 
into an intermediate bi-molecular charge transfer exciton. From here separated charges can 
drift-diffuse to the electrodes.
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surrounding allows it to change to an emissive state, or exciplex emission, 
i.e. emission from a bi-molecular charge-transfer exciton.

The active layer of an organic solar cell is usually a mix of donor and 
acceptor materials, and the interface between them, as depicted in Figure 2(b), 
plays a prominent role in the charge generation process. As mentioned before, 
the excitons created upon light absorption in either of the two layers are 
strongly bound with an exciton binding energy on the order of several tens 
ofeV. Thermal energy alone is therefore not sufficient to separate the excited 
electron and hole. Instead, the Frenkel excitons diffuse towards the interface at 
which they can, ideally, undergo a conversion process to a bi-molecular CT 
exciton with reduced binding energy. This conversion combined with elec-
trostatic energy profiles near the interface, eventually allow the charges to 
separate and to transfer through the bulk material to the electrodes.

In both application examples, the device functionality is directly linked to 
the static (absorption/emission, recombination) or dynamic (diffusion, con-
version, separation) processes involving excitons of various types. Also in 
more general cases, optimizing the device performance therefore targets to 
a significant extent the design of materials and material combinations with 
tailored and well-controlled exciton properties.

Ab initio modeling can be a very powerful tool in this rational design of 
materials. Instead of being descriptive, like hydrogenic models which omit 
explicit atomistic details of materials, it holds the potential of not just being 
predictive (energies and wave functions) but also allows to analyze and 
understand how the predicted properties emerge from atomistic detail. To 
fulfill this potential is, however, an extremely challenging task in general. 
Due to the two-particle nature of the excitation, popular one-electron 
methods such as Hartree–Fock or Density-Functional Theory (see Section 
4.1 and Section 4.2.1) are not sufficient to properly describe the excitation 
process. Advanced – and therefore usually more computationally demand-
ing – techniques are required instead. Each of these methods have their own 
advantages and disadvantages, arising either from the approximations 
made, their computational complexity, or the need to apply them to the 
vastly different material types as discussed above.

4. Overview of ab initio techniques

Ab initio, a Latin expression for ‘from the beginning’, refers to theories and 
computational methods that treat the many-electron problem using as inputs 
physical quantities only. The starting point is the (non-relativistic) many-body 
Hamiltonian of an atomic, molecular or solid system made out of M atoms 
and N electrons. If electronic and the nuclear degrees of freedom are 
decoupled and the nuclear motion is negligible (Born–Oppenheimer approx-
imation [21]), the exact many-electron Hamiltonian is (in atomic units) 
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bH ¼ �
1
2

XN

i¼1
Ñ2

i �
XN

i¼1

XM

α¼1

Zα

jri � Rαj
þ
XN

i< j

1
jri � rjj

þ
XM

β< α

ZαZβ

jRβ � Rαj
: (1) 

Here, the first term denotes the kinetic energy operator of the electrons, 
the second term refers to the attractive electron-nuclei interactions (Zα is the 
nuclear charge of atom α), the third term describes the electron-electron 
repulsion, and the final term describes the repulsion among the nuclei of the 
system. Unless explicitly stated, throughout this review, we refer to electro-
nic coordinates with lowercase (frig) while we use capital letters for nuclear 
coordinates (fRαg). We will interchangeably use the Dirac (bra-ket) and 
wavefunction notation for all the equations in the text.

Once the Hamiltonian is known, the solution of the stationary 
Schrödinger equation 

bHψ ¼ Eψ (2) 

yields the exact anti-symmetric wave function of the many-electron 
system. Analytic solutions are not available except for minimal cases. 
Seeking for a solution numerically is also impractical. A naive attempt 
is to discretize the wave function on a spatial grid. Even when choos-
ing a very coarse grid of 20 grid points in each direction, 203N values 
are needed. A water molecule has 10 electrons. Therefore, more than 
1039 values would be required. This is not feasible even on large 
computers. This opened the quest for methods that can lead to accu-
rate results within a reasonable computational cost. The goal of ab 
initio methods is finding ingenious ways to numerically determine an 
approximate wave function. In the following we give a brief overview 
of different methods, distinguishing between approaches that work 
with an N-electron wave function and those that are based on the 
electron density. For a more exhaustive perspective of these methods 
and numerical techniques, we refer the reader to Refs. [22,23].

4.1. Many-electron wave-function approaches

One of the first methods employed to tackle the many-body problem 
of Eq. (1) is the Hartree–Fock (HF) method. It assumes that the exact 
N-body wave function of the system can be approximated by a single 
Slater determinant of single particle wave functions to enforce the 
antisymmetry property of a fermionic system: 
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ΨðfrigÞ ¼
1
ffiffiffiffiffi
N!
p
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�

: (3) 

Invoking the variational principle, one can derive a set of N coupled equa-
tions for the N spin orbitals from a minimization of the expectation value of 
the energy Ψ bH

�
�
�

�
�
�Ψ

D E
under the constraint of normalization of the effective 

single-particle functions. The resulting Hartree–Fock equations for the 
orbitals fϕHF

i g read: 

bHHFjϕHF
i
�
¼ ½bH0 þ b�x�jϕHF

i
�
¼ εHF

i jϕ
HF
i
�
: (4) 

Here, bH0 ¼ bT0 þ bVext þ bVH, with bT0 being the kinetic energy, bVext an 

external potential, bVH ¼

ð

n0ðrÞvcðr; r0Þdr the Hartree potential with vc the 

bare Coulomb interaction. �xðr; r0Þ ¼ �
P

i
ϕHF

i ðrÞϕ
HF
i ðr

0Þ

jr� r0j is the exact 
exchange operator defining the electron exchange energy due to the anti-
symmetry of the total N-electron wave function. Using the ϕHF

i in Eq. (3) 
yields the ground-state Slater determinant ΨHF

0 . It has been observed that 
the HF method yields total energies (or derived properties) that can deviate 
significantly from experiments, as it includes no further quantum- 
mechanical effects apart from the exchange interaction from the antisym-
metry requirement. The missing ingredient going beyond exchange is also 
referred to as correlation. It should be noted that the above is a treatment of 
the ground state, whereas excited states need special consideration, e.g. in 
a time-dependent HF (see related discussion in Section 4.2.2).

A number of approaches, called post-Hartree–Fock methods, have been 
devised to include electron correlation to the multi-electron wave function 
and also allow for the construction of excited state wave functions, as we 
summarize in the following.

4.1.1. Coupled cluster theory
Coupled cluster (CC) theory exploits the basic Hartree–Fock molecular 
orbital method and constructs multi-electron wave functions using the 
exponential cluster operator to account for electron correlation: 

ψ ¼ expðTÞΨHF
0 ; (5) 

with T ¼
P

i¼1 Ti the cluster operator and Ti the i-th excitation operator 
(i ¼ 1 single excitation, i ¼ 2 double excitation and so on). This formula-
tion provides in principle the exact solution to the time-independent 
Schrödinger equation Eq. (2) but makes the problem non-Hermitian and 
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the obtained energy non–variational. Variationally optimized coupled clus-
ter [24] overcomes this problem but can only be applied to small systems 
[25–27]. Another drawback is the computational cost of most coupled– 
cluster implementations that makes these methods suitable only for small 
molecules, in general. CC methods scale at best as OðNpÞ, where p is 
a relatively high power (e.g. p ¼ 7 for coupled cluster including single and 
double excitations, with triples treated perturbatively) and development of a 
efficient techniques is an active field of research. CC has been successfully 
used for excited state calculations [28–30]. Wang and Berkelback [31] have 
recently shown that Equation-of-Motion Coupled-Cluster Theory can yield 
promising results for optical excitation energies, exciton binding energies, 
exciton dispersion relations, and exciton–phonon interaction energies of 
simple crystalline solids like Si, C, SiC, MgO, or LiF. Other attempts are 
made in this direction for ground-state and excited–state methods that 
combine CC and perturbation theory based on a partitioning of excitations 
that are internal or external to an active space [32–35].

4.1.2. Configuration interaction
Configuration interaction (CI) is another post-Hartree–Fock linear varia-
tional method for quantum chemical multi-electron systems. 
Mathematically, configuration describes the linear combination of Slater 
determinants used for the wave function. In order to account for electron 
correlation, CI uses a variational wave function that is a linear combination 
of configuration state functions (CSFs) built from spin orbital Slater deter-
minants of the kind of Eq. (3) 

ψ ¼
X

I¼0
cIΨI: (6) 

If the expansion includes all possible CSFs of the appropriate symmetry, 
then this is a full configuration interaction procedure which exactly solves 
the electronic Schrödinger equation within the space spanned by the one- 
particle basis set. If only one spin orbital differs, we describe this as a single 
excitation determinant. If two spin orbitals differ it is a double excitation 
determinant and so on. Due to the long CPU time and large memory 
required for CI calculations, the method is limited to relatively small 
systems.

4.1.3. Quantum Monte Carlo
Quantum Monte Carlo (QMC) has been very successful in performing 
large-scale calculations for extended systems in quantum chemistry. The 
method relies on the stochastic estimation of the energy of a trial wave 
function according to 
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Etrial ¼

ð

ψtrialðrÞbHðrÞψtrialðrÞd3Nr
ð

ψtrialðrÞψtrialðrÞd3Nr
: (7) 

For the calculation of excited-states, many refined QMC methods have been 
developed. Variational Monte Carlo (VMC) as presented by Zhao et al. [36] 
allows for the application of a rigorous variational principle to both ground 
and excited state wave functions. Diffusion Quantum Monte Carlo 
(DQMC) is very promising for applications to condensed-matter because 
it explicitly includes electron-electron correlation effects, and it scales rea-
sonably well with system size as shown in the case of a silicon crystal in [37]. 
These QMC methods offer an accurate means of probing both the ground- 
and excited-state properties of atoms, molecules, and solids from first 
principles and with system-size scaling as OðN3Þ, albeit with a large pre-
factor. The methods have been thoroughly reviewed by Hunt et al. [38] 
discussing isolated molecules (anthracene, tetracyanoethylene, benzothia-
zole and boron trifluoride) and three-dimensional systems (diamond, sili-
con, cubic boron nitride) and free-standing monolayer phosphorene.

While describing excited states, a major reason of failure is the intrinsic 
difficulty of maintaining orthogonality with the lower-lying states when the 
targeted many-body excited state is being represented stochastically in an 
imaginary-time projection method. Auxiliary-field Quantum Monte Carlo 
(AFQMC) as discussed in [39] offers a new framework for addressing this 
difficulty and for performing excited state calculations in solid. Ma et al. 
studied the fundamental gap of prototypical semiconductors, Si and dia-
mond, and of the more challenging wurtzite ZnO crystal being in good 
agreement with GW calculations (see Section 4.2.5) and experiment, offer-
ing a non-perturbative and free of empirical parameters methods for corre-
lated materials.

4.2. Mean-field theories

Completely different approaches for the study of excitons are the so-called 
mean-field theories. In a nutshell, an effective Hamiltonian capable of 
including many-body effects in response to an external excitation (such as 
incident light) can be used to describe charged (quasiparticles) and neutral 
excitations (excitons). Mean-field theories can come in different flavors 
depending on which quantity under perturbation is taken as a reference, 
either the time-dependent electron density nðr; tÞ (see Section 4.2.2) or the 
one-particle Green’s function Gðr; t; r0; t0Þ (see Section 4.2.5). The first 
choice leads to a time-dependent extension of Density Functional Theory 
(TD-DFT), while the second choice stems from the many-body 
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perturbation theory. This theory formally describes the physics of charged 
excitations (i.e. electron addition and removal energies), using, e.g. Hedin’s 
GW approximation for the electron self-energy and neutral excitations (e.g. 
optical and energy-loss spectra) via the solution of the Bethe–Salpeter 
equation (BSE). Both theories proved to be quite successful at the calcula-
tion of the absorption spectra of a large variety of systems: insulators, 
semiconductors, atoms, clusters, surfaces, or polymers. Despite being dif-
ferent theories, TD-DFT and GW-BSE share some common ingredients. In 
the following, a small summary of the main equations for both theories is 
presented. For the sake of simplicity and brevity, we also restrict the 
discussion to the non-periodic formulation of DFT, TD-DFT, and GW- 
BSE. For more details about these theories, also in the case of periodic 
potentials, we direct to the work of Onida et al. [40] and Rohlfing and 
Louie [41].

4.2.1. Density functional theory
Density Functional Theory (DFT) [42] is the base ingredient for both TD- 
DFT and GW-BSE approaches since it describes the electronic ground state. 
The ground-state energy of a system of interacting electrons in an external 
potential can be written as a functional of the ground-state electronic 
density E½n0ðrÞ�. Compared to the methods in [sec:wfmethods] Section 
sec:wfmethods this approach is particularly appealing since it does not 
rely on a complete knowledge of the explicit N -electron wave function 
but only on the electronic density. For a closed-shell system of N electrons, 
following the formulation of Kohn and Sham [43], ground-state properties 
are derived from the solutions of the Kohn–Sham (KS) equations 

bHKS ϕKS
i

�
�

�
¼ ½bH0 þ bVxc� ϕKS

i
�
�

�
¼ εKS

i
ϕKS

i
�
�

�
: (8) 

Here bVxc½n0� is the exchange-correlation (xc) potential, formally containing 
all many-body effects. Although the theory is exact, the xc contribution to 
the energy functional, and hence also the potential, is not known and has to 
be approximated in practical implementations, leading to a zoo of approx-
imate exchange-correlation functionals. A thorough discussion of specific 
functional choices is beyond the scope of this work and refer the reader to 
Refs. [44,45]. Instead, we briefly mention three main types of approxima-
tions commonly used among the DFT community. The simplest of these 
approximation is the local density approximation (LDA). The assumption 
behind this approximation is that the charge density of the system, not 
homogeneous overall, is locally similar to the one of the homogeneous 
electron gas, whose exchange-correlation energy is known [43]. An 
improvement upon the LDA can be obtained by semi-local Generalized 
Gradient Approximation (GGA) functionals [46,47]. These depend not just 

12 G. TIRIMBÒ AND B. BAUMEIER



on the value of the density at a point (as in the LDA case) but also on its 
gradient. The last popular approximation are called hybrid functionals 
[48,49]. Hybrid functionals are based on the ansatz that the exact exchange 
energy is situated between the GGA exchange energy functional and the 
Hartree–Fock exchange integral. In these, the Hartree–Fock exchange inte-
gral is mixed with GGA exchange functionals at a constant ratio.

DFT proved to be the game-changer in all those calculations that requires 
the knowledge of the ground-state density and total-energy (atomic struc-
ture, lattice parameters, total energy, phase stability, electronic density, 
elastic constants, and phonon frequencies). On the other hand, KS eigen-
values cannot be considered as true electronic energy levels, that is, as 
experimentally measurable electron-addition or electron-removal energies 
in direct or inverse photoemission experiments. The most noticeable draw-
back is that the HOMO–LUMO gaps in molecular systems, or the band gap 
in extended semiconductors or insulators, are dramatically underestimated 
[50,51] (see Figure 3). On top of that, DFT cannot take into account the 

Figure 3. Schematics of the theoretical steps for a description of exciton formation within 
MBGFT. When incident light of energy �hω is absorbed by the material, an electron is promoted 
to the unoccupied manifold (blue curve) leaving an hole behind in the occupied one (red curve). 
These two charged particles, under some circumstances depending on the dielectric properties 
of the material, can be independent, hence non-interacting. Despite its success in describing 
ground-state properties, KS-DFT (a) gives wrong quantitative results for charged excited states 
(e.g. underestimate of the band gap). A correct description can be obtained using 
a quasiparticle picture (b) in which real excitation is formally treated including many-body 
effects embodying the electron/hole states with the perturbation of its own surrounding. Band 
gaps are thus improved. These two oppositely charged quasiparticles can interact forming 
a bound state known as an exciton (c). They are attracted via a screened Coulomb potential 
W ¼ ��� 1vc, with vc the bare Coulomb interaction and �� the dielectric function of the material. 
This neutral excited state has a lower energy (the missing energy is the so-called exciton 
binding energy). Exciton formation is highly dependent on the material. In fact this can be 
hindered (thus leaving only free charged carriers) by different dielectric responses in different 
materials.
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coupling of electrons and holes being an independent particle theory. These 
intrinsically excited state quantities need special treatment.

4.2.2. Time-dependent density functional theory
Neutral excitations of the DFT ground-state can be described via time- 
dependent density functional theory (TD-DFT) [52]. In analogy to the 
traditional time-independent Kohn-Sham scheme, all exchange and corre-
lation effects in TD-DFT are collected in the time-dependent Vxcðr; tÞ
potential. In the linear response formulation of TD-DFT [53], the suscept-
ibility χðx; x0Þ (with x ¼ ðr; tÞ and x0 ¼ ðr0; t0Þ space-time variables) is 
defined as the linear response kernel between the variations of the electron 
density δnðxÞ ¼ nðxÞ � n0ðxÞ with respect to a local external perturba-
tion Uðx0Þ: 

δnðxÞ ¼
ð

χðx; x0ÞU ðx0Þdx0: (9) 

In its spectral representation (Laplace transform) this is usually connected 
to the independent-particle susceptibility χ0 (a response function whose 
poles are the KS energies) via a Dyson-like equation: 

χðr; r0;ωÞ� 1
¼ χ0ðr; r0; ωÞ� 1

þ KDFTðr; r0;ωÞ
¼ χ0ðr; r0; ωÞ� 1

þ fHxcðr; r0; ωÞ; (10) 

with KDFT the so-called TD-DFT Kernel. Here fHxc ¼ vcðr; r0Þ þ fxcðr; r0;ωÞ
with fxc the exchange-correlation kernel. Excitation energies, ΩS, are the 
poles of χðr; r0;ωÞ or equivalently the zeros of χðr; r0;ωÞ� 1. Projecting the 
space variables onto the molecular orbitals transition product basis fϕKS

c ðrÞ �
ϕKS

v ðr
0Þg with v (c) running over the occupied (unoccupied) manifold, the 

excitation energies become the solution of the eigenvalue equation (Casida 
formulation [54]): 

Hres K
� K � Hres

� �
AS

BS

� �

¼ ΩS
AS

BS

� �

: (11) 

with the excited-state wave function being 

ψSðr; r0Þ ¼
X

v;c
AS

vcϕ
KS
c ðrÞϕ

KS
v ðr

0Þ þ BS
vcϕ

KS
v ðrÞϕ

KS
c ðr

0Þ (12) 

AS
vc stand for the resonant (occupied to unoccupied) components whereas 

BS
vc the provide the anti-resonant (unoccupied to occupied) contributions. 

Then, the matrix elements of Hres and K are calculated as 

Hres
vc;v0c0 ¼ Dvc;v0c0 þ κKx

vc;v0c0 þ Kd
vc;v0c0 (13) 
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Kcv;v0c0 ¼ κKx
cv;v0c0 þ Kd

cv;v0c0 ; (14) 

where κ ¼ 2 ð0Þ for spin singlet (triplet) excitations, and 

Dvc;v0c0 ¼ ðεKS
c � εKS

v Þδvv0δcc0 ; (15) 

Kx
vc;v0c0 ¼

ð

d3rd3r0ϕ�c ðrÞϕvðrÞvcðr; r0Þϕc0 ðr
0Þϕ�v0 ðr

0Þ (16) 

Kd
vc;v0c0 ¼ �

ð

d3rd3r0ϕ�c ðrÞϕc0 ðrÞfxcðr; r0;ωÞϕvðr
0Þϕ�v0 ðr

0Þ : (17) 

The exact time-dependent exchange-correlation action functional (from 
which Vxc and fxc are derived) is not known, and approximations have to 
be introduced to perform numerical calculations on real systems. The most 
used approximation is the so-called Adiabatic Local Density 
Approximation. This approximation implies frequency-independent and 
real xc kernels in linear response calculations. The main advantage of TD- 
DFT is its efficiency (all interactions are local) and scales better than other 
computational methods. In fact OðN2Þ and OðNÞ implementations can be 
found [55]. Excited-state forces are available [56,57] and TD-DFT is easily 
combined with classical Molecular Mechanics models for mixed quantum- 
classical simulations (QM/MM) [58].

The major drawback of TD-DFT is its sensitivity on the choice of the 
exchange-correlation functional. Using the wrong functional may lead to 
wrong results. For instance, ALDA-TD-DFT can yield poor results because 
of the absence of an attractive electron-hole term in the present semilocal 
exchange-correlation functionals [59], prompting the research of 
a completely new class of functionals. Remedies for some aspects of these 
problems have been suggested, among them orbital-dependent density 
functionals, such as the exact-exchange optimized effective potential 
method. An approach that has recently attracted considerable interest is 
hybrid functionals mixing the nonlocal Hartree–Fock exchange term to the 
otherwise semilocal functional. In the letter by Sharma et al. [60] instead, 
a new parameter-free approximation for fxc is discussed. This kernel gives 
accurate results with the computational cost of ALDA. Another possibility is 
the nanoquanta kernel by Sottile et al. [61], derived from the four-point 
Bethe–Salpeter kernel (see Section 4.2.6). This is very accurate but has the 
drawback of being nearly as computationally demanding as solving the BSE 
itself. The long-range correction (LRC) kernel [62] instead has a particularly 
simple form in reciprocal space which limits its computational cost. This 
kernel produces the desired excitonic peak but depends on the choice of the 
parameter, which turns out to be strongly material-dependent, thereby 
limiting the predictiveness of this approximation. A well known problem 
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in TD-DFT is the correct detection of charge-transfer states. The reason for 
this failure is the wrong decay of the exchange-correlation potential with 
increasing electron-electron distance. Hybrid [63] and double hybrid 
Functional [64] have been proposed as a solution to this problem.

4.2.3. Many-body Green’s functions theory
As stated before, KS-DFT energies and wave functions are not suitable for 
describing excited electrons and holes. A formal description of electrons and 
holes resulting from an external excitation can be given within the frame-
work of Many-body Green’s Function Theory (MBGFT), specifically with 
the GW-Bethe–Salpeter (GW-BSE) scheme. We can anticipate that the GW 
spectrum provides accurate occupied/virtual energy levels, that can be 
directly compared to experimental electron addition or removal energies, 
while the BSE scheme adds the electron–hole interaction leading to 
a reduction of the optical gap as compared to the (photoemission) 
HOMO–LUMO gap. This is sketched in Figure 3.

4.2.4. Charged excitations: quasiparticle picture
Excitations that add ðN ! N þ 1Þ or remove ðN ! N � 1Þ an electron 
from the system, referred to as quasiparticles (QPs), are determined by the 
one-particle Green’s function [65] 

G1ðr1; t1; r2; t2Þ ¼ � ihN; 0j bT ðψ̂ðr1; t1Þψ̂ðr2; t2ÞÞ N; 0j i; (18) 

where bT is the time-ordering operator, and bψ and ψ̂ are the annihilation and 
the creation electron field operator, respectively. It describes the propaga-
tion of electrons and holes (lack of electrons) measuring the amplitude of 
probability of finding, on top of the ground-state, an electron in (r1; t1) that 
was previously introduced in (r2; t2), while for t1 < t2 the propagation of 
an hole. The frequency-dependent spectral representation of the Green’s 
function has poles at the charged excitation energies: 

G1ðr; r0; ωÞ ¼
X

n

fnðrÞfnðr0Þ
ω � εn þ iη � sgnðεn � μÞ

(19) 

where the index n runs over all the charged excitations. In other words its 
poles are proper addition/removal energies of the N-electron system.

This Green’s function obeys a Dyson-type equation of motion, which 
reads in spectral representation as 

½bH0 þ b�ðEÞ�G1ðEÞ ¼ EG1ðEÞ ; (20) 

where the electron self-energy operator b�ðEÞ contains the exchange- 
correlation effects. This equation is part of a closed set of coupled equations, 
known as Hedin’s equations [65,66].
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4.2.5. GW approximation
An approximate solution to this system is provided by the GW approxima-
tion, in which the self-energy takes the form 

�ðr; r0;ωÞ ¼
i

2π

ð

dω0G1 r; r0;ωþ ω0ð ÞW r; r0;ωð Þ; (21) 

i.e. it is a convolution of G1 with the screened Coulomb interaction 
W ¼ ��� 1vc, where vcðr; r0Þ ¼ jr � r0j� 1 is the bare Coulomb interaction 
and ��� 1ðr; r0;ωÞ is the inverse dielectric function calculated in the Random- 
Phase Approximation (RPA) [67].

Using this approximation, Eq. (20) is converted into a Dyson-type equa-
tion of motion for the quasiparticles (i.e. the QP electron and hole states) 
[68,69]: 

bH0 þ b�ðεi
QPÞ

h i
j ϕQP

i
�
¼ εQP

i jϕ
QP
i
�
; (22) 

where εi
QP are the one-particle excitation energies of the system, and jϕQP

i
�

are the QP wave functions. As the self-energy is energy-dependent, and thus 
depends on εQP

i , the solution of Eq. (22) must be found self-consistently. 
Constructing both G and W based on the KS eigenvalues and eigenfunctions 
is known as a ‘one-shot’ G0W0 calculation. Alternatively, it is possible to use 
updated QP energies in G and W until eigenvlaue self–consistency is 
reached (evGW) [70–72].

The frequency integration in Eq. (21) is one of the major difficulties for 
GW calculations since both functions that are integrated have poles infini-
tesimally above and below the real frequency axis. A numerical integration 
is not feasible because of the instability of the integrand to be evaluated in 
regions in which it is ill–behaved. Approximations and exact alternatives are 
available.

The simplest way to calculate the frequency integral is to approximate the 
frequency dependence of the dielectric function ��� 1 and thus the screened 
Coulomb interaction by a plasmon pole model (PPM) [67,73–75]. The PPM 
approximation takes advantage of the fact that ��� 1 is usually dominated by 
a pole at the plasma frequency ωp. This pole corresponds to a collective 
charge-neutral excitation (a plasmon) in the material. Assuming that only 
one plasmon branch is excited, the shape of ��� 1 can be modeled by a single- 
pole function. A comparison of different PPM methods has been done by 
Larson et al. [76] and Stankovski et al. [77].

A full–frequency integration technique for the calculation of �ðωÞ is the 
contour deformation (CD) approach [78–83]. In the CD approach, the real- 
frequency integration is carried out by using the contour integral extending 
the integrand to the complex plane, the numerically unstable integration 
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along the real-frequency axis, where the poles of G and W are located, is 
avoided. Another method that enables an integration over the full- 
frequency range is the Analytic Continuation (AC). The AC technique 
exploits the fact that the integral of the self-energy along the imaginary 
frequency axis is smooth and easy to evaluate, unlike the integral along the 
real-frequency axis. The self-energy is first calculated for a set of imaginary 
frequencies iω and then continued to the real-frequency axis by fitting the 
matrix elements �ðiωÞ to a multipole model (either the so-called 2-pole– 
model [84,85] or the Padé approximant [86–88]). A fully–analytical 
approach (FAA) [89–92] can be used to perform the integration in Eq. 
(21) . In fact the screened Coulomb interaction can be written as a Dyson- 
like equation WðωÞ ¼ vþ v � χðωÞ � v with χðωÞ is the frequency-dependent 
susceptibility. As in the TD-DFT case, poles of this function can be found 
solving a Casida-like eigenvalue problem similar to the one of Eq. (11) . In 
this case, the exchange-correlation kernel fxc is omitted (otherwise it would 
be TD-DFT). The self-energy integral can then be solved analytically and 
a closed expression for �ðωÞ is obtained. The FAA is the computationally 
most expensive method. Solving the eigenvalue problem to obtain the poles 
of χ is an OðN6Þ step. The scaling of the CD and AC approach is generally 
lower, but depends on the details of the implementation. The PPM is 
computationally the most efficient method, because the dielectric function 
��� 1 used to compute W has to be calculated only at a few frequency points to 

determine the parameters of the PPM. By design, the fully analytic approach 
is in principle the most exact one since it is parameter-free. The same 
accuracy can already be achieved with the CD using a moderately-sized 
numerical integration grid for the imaginary frequency term [83]. In the AC 
approach the self-energy is calculated on the imaginary frequency axis, 
which is fairly featureless. The accuracy of the AC approach depends on 
the features of the self-energy on the real axis and on the flexibility of the 
model function, which continues the self-energy to real frequencies. For this 
reason the AC is likely to fail for deeper states. In the PPM approximation 
the accuracy is determined by the chosen model function and generally 
difficult to estimate. Further information about the details of the GW 
approximation can be found in the work of Golze et al. [72].

4.2.6. Bethe–Salpeter equation
Neutral excitations with a conserved number of electrons and a change in 
their configuration S ( N; 0j i ! N; Sj i) can be described within MBGFT 
with some analogy to the TD-DFT case. Here, the approach relies on the 
four-point response function (also known as two-body Green’s function) 
[93], which is formally defined as the variation of G with respect to an 
external perturbation U 
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Lðx1; x2; x3; x4Þ ¼ � i
δGðx1; x2Þ

δUðx3; x4Þ
: (23) 

Similarly to TD-DFT this response-function can be written in a Dyson-like 
equation 

Lðx1; x2; x3; x4Þ
� 1
¼ L0ðx1; x2; x3; x4Þ

� 1
þ KBSEðx1; x2; x3; x4Þ (24) 

with KBSEðx1; x2; x3; x4Þ ¼ vcðx1; x4Þδðx1; x2Þδðx3; x4Þ þ
δ�ðx1;x2Þ

δGðx3;x4Þ
. This ker-

nel is different to the TD-DFT one and it is more cumbersome to compute. 
Again, this can be turned into an effective Hamiltonian problem in the same 
form as Eq. (11) . In this case however KS energies and wave functions are 
substituted with the QP ones. If the GW approximation is used for the self- 
energy we have in lieu of Eq. (15), Eq. (16) and Eq. (17) of TD-DFT the 
following diagonal, exchange, and direct term for BSE 

Dvc;v0c0 ¼ ðεQP
c � εQP

v Þδvv0δcc0 ; (25) 

Kx
vc;v0c0 ¼

ð

d3rd3r0ϕ�c ðrÞϕvðrÞvcðr; r0Þϕc0 ðr
0Þϕ�v0 ðr

0Þ (26) 

Kd
vc;v0c0 ¼ �

ð

d3rd3r0ϕ�c ðrÞϕc0 ðrÞWðr; r0;ωÞϕvðr
0Þϕ�v0 ðr

0Þ : (27) 

The direct interaction Kd contains the attractive, but screened, interaction 
W between electron and hole. This interaction is responsible for the binding 
of the electron-hole pair (compare to Eq. (15) in TD-DFT). In systems for 
which the elements of the off-diagonal blocks of Eq. (11) are negligible 
(K ’ 0), it is possible to use the Tamm–Dancoff Approximation (TDA) 
[94]. On the other hand, the coupling between resonant and anti-resonant 
parts is significant, and its neglect can cause deviations of several [0.1] eV 
from results obtained with the full approach [95,96]. More computational 
cost can be saved employing the so-called static approximation for Eq. (27) 
in which the static limit of the screened Coulomb interaction is taken 
(WðωÞ !Wð0Þ). This approach is sufficient most of the time to obtain 
meaningful results. If an improvement is needed a perturbative approach 
can be used [97,98].

GW-BSE is expensive (OðN4Þ) but less than QMC, CC, etc. A very 
remarkable success of the BSE formalism lies in the description of charge- 
transfer (CT) excitations, a notoriously difficult problem for TD-DFT 
adopting standard (semi)local functionals as discussed before. The screened 
Coulomb potential in the BSE kernel includes such long-range (nonlocal) 
electron–hole interactions, including in environments (solvents, molecular 
solid, etc.) where the screening reduces the long-range electron–hole 
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interactions [99]. Overall, GW-BSE has proven to be very successful at 
treating different types of excitons equally well [100–113].

A significant limitation of the BSE formalism, as compared to TD-DFT, 
lies in the lack of analytic nuclear gradients for both the ground and excited 
states, preventing efficient studies of many key excited-state processes. At 
the moment only one study introduced an approximate analytic form of the 
excited-state BSE gradients for small molecules (CO and NH3) has been 
published [114]. A more recent evaluation of the geometry optimization of 
small molecules with numerical gradients has shown that in principle 
reliable excited state geometries can be obtained with GW-BSE [115].

5. Perfect crystals

Initial applications of GW-BSE have been reported for perfect inorganic 
crystals, such as the elementary semiconductors silicon (Si) and germanium 
(Ge), or insulators such as magnesium oxide (MgO) or lithium fluoride 
(LiF). The atomic structure of these materials can be represented by small 
unit cells with only a few atoms, having made these early studies tractable. 
Current implementations [116–118] with periodic boundary conditions 
often employ a plane-wave basis, a natural choice since electrons experience 
a periodic potential and thus they can be described as Bloch states [119]. 
Hybrid schemes combining localized orbitals for the real space wave func-
tion representation and plane waves for the evaluation of Coulomb inter-
action in Fourier space also exist, as implemented in the CP2K code [120]. 
All-electron linearized augmented plane wave (LAPW) approaches [113] 
enable the computation of core excitations on the same footing as optical 
ones [121].

Figure 4 shows a typical result of a periodic GW-BSE calculation for small 
crystals. Rohlfing and Louie [41] calculated the optical absorption spectra of 
bulk (a) GaAs and (b) LiF with particular focus on the effect of the inclusion 
of electron-hole interaction via the BSE. Whereas the absorption spectra 
resulting from the free-quasiparticle transitions show systematic deviations 
from experiments in both systems, the inclusion of the electron-hole inter-
action leads to a good agreement with the measured data. In particular, for 
the more ionic LiF, a pronounced exciton peak can be observed in Figure 4 
(b) that is missing in the independent particle picture. Figure 4(c) shows 
visualizations of the electronic part of the two-particle wave function1 

jψSðre; rhÞj
2 with the hole coordinate rh fixed on top of the central fluorine 

atom. One can see the Wannier–Mott character of the exciton as its wave 
functions extend over several of the primitive unit cells.

Recent developments [122,123] and increased computing power have 
allowed to treat larger systems, such as reconstructed surfaces, defect 

20 G. TIRIMBÒ AND B. BAUMEIER



structures, or in general materials with more complex structures. Yet, 
studies of the exciton properties in some of the currently most intriguing 
systems are still extremely difficult to perform. An example of a such a class 
of materials are perovskites of the type OMX3 where O ¼ Organic, M ¼
Metal and X ¼ Halide [124]. They are attractive materials due to their 
simple production procedure and high efficiency of above 20% in photo-
voltaic cells. Optical gaps in the range of 1:6- 3:1eV have been reported. 
Actual details of the atomic structure of perovskites do however show 
a significant temperature dependence, which needs to be accounted for in 
ab initio modeling approaches. Of particular interest is the fact that high 
efficiencies have been reported, even though the exciton binding energy is 
much higher than the thermal energy at room temperature (as in organic 
materials). Naturally, using ab initio GW-BSE modeling to resolve this issue 
is appealing but theoretically challenging. Structure prediction can be com-
plicated and must be carefully performed due to temperature dependence. 
Relevant structures are then described in a large unit or supercells, translat-
ing into significant computational costs. Furthermore, the presence of heavy 
elements (e.g. Pb) requires the inclusion of spin-orbit coupling.

From the point of view of modeling, organic crystals share many 
complications arising from large unit cells, temperature-dependent 
structures, and the mixed character of the excitons with perovskites. 
Typical molecules forming these crystals are flat, aromatic molecules 
such as the polyacenes, in particular naphthalene, anthracene, tetra-
cene, and pentacene, as well as pyrene, perylene, and similar com-
pounds. As we mentioned before, the attractive force between the 
neutral and nonpolar molecules is provided by comparatively weak 
van-der-Waals interactions. The crystalline phases can be described in 

Figure 4. Absorption spectra of (a) GaAs and (b) LiF bulk crystals with (solid lines) and without 
(dashed lines) electron-hole interaction, compared to experimental data (dots), as calculated 
from periodic GW-BSE calculations [41]. (c) Visualization of the exciton wave function 
jψSðre; rhÞj

2 in the (010) plane of LiF (Li: small circles; F: triangles), with rh fixed at the central 
F atom. The Wannier–Mott exciton is delocalized over several primitive cells. Reprinted figure 
with permission from [M. Rohlfing and S.G. Louie, Phys. Rev. Lett. 81, 2312 (1998)]. Copyright 
(1998) by the American Physical Society.
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the same way as the inorganic crystals by well-defined lattice struc-
tures and periodic boundary conditions. However, the primitive cells 
typically contain a few molecules in distinct packing motifs and are 
therefore relatively large. While in principle the same types of periodic 
GW-BSE calculations as mentioned before for inorganics can be 
employed, they face the challenge of having to describe strongly 
localized (with respect to the primitive cell) excitations. High energy 
cutoffs are required in plane wave implementations and large calcula-
tion costs are the consequence.

For example, Cudazzo et al. [106] investigated the excitonic proper-
ties of picene and pentacene crystals, which show remarkable differ-
ences in their optical spectra despite otherwise similar structural and 
electronic properties. They employed a periodic, plane-wave imple-
mentation of GW-BSE in the TDA based on an LDA ground state. 
They could show that a difference in localization of the excitons gives 
rise to the different absorption spectra and related this to the compe-
tition between the direct and exchange interactions in the BSE. Figure 
5 shows visualizations of the wave functions of the lowest-energy 
singlet (a,b) and triplet (c,d) excitons in picene and pentacene, respec-
tively. For a fixed hole position, the isosurfaces represent the electro-
nic part of jψSðre; rhÞj

2 of the singlet in Figure 5(a,b) and of the triplet 
in Figure 5(c,d), respectively. The singlet exciton in picene is localized 
on a single molecule, while it extends over several molecules in 
pentacene. In contrast, the triplet exciton appears to be localized in 
both cases. Due to the structure of the BSE Hamiltonian, it is clear 
that the delocalization in pentacene is driven by the repulsive 
exchange interaction.

Figure 5. Visualization of the wave functions of the lowest-energy singlet (a,b) and triplet (c,d) 
excitons in molecular crystal structures of picene and pentacene, respectively, as obtained from 
periodic, plane-wave GW-BSE calculations [106]. Red isosurfaces show the electronic contribu-
tion of the electron-hole wave function jψSðre; rhÞj

2 with the hole coordinate rh fixed at the 
position indicated by the dark blue point. While in picene both singlet and triplet are localized 
on single molecules, the singlet in pentacene is delocalized over several molecular units. 
Reprinted figure with permission from [P. Cudazzo, M. Gatti, and A. Rubio, Phys. Rev. B 86, 
195307 (2012)]. Copyright (2012) by the American Physical Society.
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6. Disordered molecular materials

Disordered systems cannot be described efficiently by repeated small unit 
cells. Structure simulations of, e.g. amorphous materials are typically based 
on either ab initio or (more likely) classical Molecular Dynamics and can 
contain several hundred to a few thousand of molecules. The investigations 
of the exciton properties for systems of this kind cannot use the same 
techniques as those in Section 5. As a consequence, the study of electronic 
excitations in complex disordered systems remains a challenge for compu-
tational methods. Typical solution strategies on the other hand exploit that 
excitons strongly localize on single molecules due to the disorder of the 
large-scale morphology, and thus the interaction of this active exciton with 
the surrounding can be described with lower-level (i.e, less expensive) 
methods. This leads to various strategies to split the system into an ‘active’ 
portion of space, where the highest desired level of Quantum Mechanical 
(QM) treatment is performed, and an ‘environmental’ surrounding medium 
(a solvent, a metallic nanoparticle, a disordered (polymeric phase), etc.) that 
is considered at a lower level of theory. This lower level can be either 
a simplified QM model (QM/QM’) (Dvorak et al. [125] explored embedding 
of wave function theories with Green’s functions as Manby et al. [126] 
proposed a generalized and flexible QM-in–QM embedding scheme used 
to explore excited states [127,128]), a molecular mechanics (MM) approach 
(QM/MM) [97,129–131], or a continuum model [132] representing the 
environment as a structure-less material having realistic macroscopic 
dielectric properties. The effects of the embedding on the quasiparticle 
and electron-hole energies is schematically shown in Figure 6.

Specifically using GW-BSE as a high-level QM method, Duchemin et al. 
[132] have incorporated the polarizable continuum model (PCM) into the 
calculation of the screened Coulomb interaction W ¼ ��� 1vc. In this way 
W accounts for both the polarizability of the solute and that of the solvent 
when combined with the PCM. This has been coupled to the BSE [133] to 
analyze the contributions to the BSE dynamic shift originating from the 
solvent-induced renormalization of the ionization potential and electron 
affinity, namely the variation of the GW HOMO–LUMO gap in the water 
solvent, and the reduction of the electron–hole interaction for excitation in 
acrolein, the CT excitation in the benzene–TCNE complex, and the (planar) 
PNA mixed excitation.

A prominent class of atomistic multi-method embedding approaches 
renders the environment by classical multipole potentials, as in classical 
Molecular Dynamics. We illustrate how such a choice of the embedding 
method affects GW-BSE excitation energies using an example from our 
work on a bulk mixture of a rubrene guest donor in a host matrix of 
fullerene C60 acceptor [131]. Here, the QM region contains two molecules 
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forming a donor-acceptor charge-transfer exciplex. GW-BSE calculations 
on such isolated molecular structures are efficiently performed with an 
implementation based on atom-centered Gaussian-type orbitals, and is 
available in the VOTCA-XTP package [131,134], among others [91]. 
Figure 7 shows two selected configurations of the exciplex as found in the 
bulk MD morphology: one in which the fullerene is close to one of the 
rubrene’s phenyl rings (CTP, (a)) and one in which it is close to the 
anthracene core (CTA, (b)). Such differences of mutual position and orien-
tation can have a massive influence on the nature of the CT excitons in 
particular, as can be seen in the energy level diagrams in Figure 7(c,d), 
where we compare also the effect of different levels of theory for the 
embedding MM region. This region includes the atoms of molecules within 
a pre-defined spherical cutoff radius around the exciplex, as indicated by 
small spheres in the zoomed-in views in Figure 7. We consider the differ-
ence between the case when the MM atoms are reduced to static point 
charges (GW-BSE/MMs), and when they are additionally endowed with 
dipole polarizabilities according to Thole’s model [135] (GW-BSE/MMp). 
This atomistic polarizable embedding evaluates the self-consistent reaction 
field to the excitation and feeds that back into the Hamiltonian via an 

Figure 6. Schematic representation of the state-specific correction due to embdedding effects 
within the GW-BSE/MM formalism. The GW energy levels are first renormalized by an amount 
given by the polarization energy for electrons (occupied manifold) and holes (virtual manifold), 
respectively. Further, the strength of the screened electron–hole interaction, that here we label 
as We� h, is also reduced due to the additional screening provided by the environment.
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updated external potential. For a full account, see Refs. [17,131,134]. Figure 
7(c,d)shows that the static embedding has a nearly negligible effect on the 
two Frenkel excitons as well as the CT excitons. This is, however, specific to 
this particular material combination and morphology, as the C60 host 
material has practically no local electric fields in the point-charge represen-
tation. Upon the inclusion of polarization in the environment, the energy of 
the integer CT exciton (CTP) is significantly lowered. In the CTA config-
uration, which shows a strong interaction between the two molecules, 
energetic stabilization is less pronounced but one registers a noticeable 
increase in the amount of charge transfer upon excitation. The results 
clearly emphasize the importance of including polarization effects in some 
form into the embedding method. Using GW-BSE as the QM method is 

Figure 7. Examples for excitations in amorphous rubrene-C60 complexes, with structures 
obtained from a classical Molecular Dynamics simulation, and excitation energies evaluated 
with different GW-BSE/MM embedding methods. Panel (a) and (b) show the mutual orientation 
of donor and acceptor molecules, as used in the QM region of the GW-BSE/MM embedding 
calculations [131]. Small spheres indicate the positions of atomic sites with partial charges and 
induced dipoles in the cutout of the MM region. In (a), the C60 is adjacent to one of the phenyl 
ring of rubrene (CTP, while in (b), it is close to the anthracene core (CTA). Panels (c) and (d) show 
excitation energy diagrams (in eV) of the two complexes obtained from the GW-BSE calculations 
in vacuum and embedded in a static (GW-BSE/MMs) and polarizable (GW-BSE/MMp) environ-
ment, respectively. Colors distinguish the local Frenkel excitations on C60 and rubrene, and 
excitations with CT character. Insets show isosurfaces of the electron (blue) and hole (red) 
densities calculated from the BSE electron-hole wave function. Reprinted (adapted) from 
J. Chem. Phys. 152, 114103 (2020), with the permission of AIP Publishing.
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particularly attractive as it can predict in particular the CT excitons without 
special adjustments, thanks to the balance between direct and exchange 
interactions in the BSE Hamiltonian.

The bulk morphology with a dilute guest-host mixture of rubrene and C60 
lends itself to a cutoff-based inclusion of the environment due to the lack of 
local electric fields and the lack of partial structural order. We consider now 
a related example of another fullerene-based donor-acceptor morphology 
with interfacial order. An interface between C60 and DCV5T-Me(3,3), 
a thiophene derivative with internal acceptor-donor-acceptor architecture 
[136], is created in MD simulations from crystal structures of the two 
compounds and then relaxed at room temperature. Figure 8(a), we show 
for an example DCV5T-Me(3,3)/C60 exciplex at the interface and the 
dependence of the Frenkel (FE) and CT exciton energies and the amount 
of charge transfer on the choice of the cutoff radius in the GW-BSE/MMs 
setup. Clearly, the CT exciton energies are not even nearly converged for 
a large cutoff of 40 nm. In the calculation, this behavior can be traced back to 
an interplay between the partial 2D order of the system with the internal 
electrostatics of the DCV5T-Me(3,3) molecule, which are dominated by its 
quadrupole moment. As in the case of the rubrene and fullerene mixture in 
the previous example, the localized excitations are not significantly affected, 
due to the much smaller change in molecular dipole moment upon excita-
tion compared to the CT excitons. Although here, unlike in the dilute blend 
Figure 7, the Frenkel exciton energy exhibits some sensitivity up to a cutoff 
of 6 nm. When combined with polarization effects in the MM region, the 

Figure 8. Long-range embedding problem at (partially) ordered donor-acceptor heterojunc-
tions, illustrated for a DCV5T-Me(3,3)/C60 interface. (a) Excitation energies and amount of 
charge-transfer between a DCV5T-Me(3,3) and C60 molecule in a GW-BSE/MMs calculation 
with increasing MM cutoff (cluster size). While the Frenkel exciton energy is converged for 
a large 10 nm cutoff, no convergence is observed for the three (due to the LUMO degeneracy of 
fullerene) CT excitons even for a 40 nm cutoff. This lack of proper inclusion of long-range effects 
leads to predictions of CT energies above the Frenkel exciton energy as in another example in 
(b) for different positions of the acceptor with respect to the donor molecule, in contradiction to 
experimental data indicating efficient charge-generation at this material interface.
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GW-BSE/MMp setup yields an energy level alignment as indicated in Figure 
8(b), that is, the CT exciton energies are higher than the Frenkel exciton 
energy. Such an alignment would not appear very favorable for generation 
of free charges at such an interface – a process that is known to occur 
efficiently in photovoltaic devices. This mismatch of the ab initio model with 
the experimental observation is attributed to the ‘unconverged’ electrostatic 
contribution as in Figure 8(a) and highlights emphatically the need for an 
efficient inclusion of long-range electrostatic interactions in a QM/MM 
setup for systems with reduced dimensionality and/or partial molecular 
order. This can be achieved, for instance, with suitably adapted Ewald 
summation techniques [137].

7. Biomaterials

Soft biological matter comes in a multitude of forms, and excitonic effects 
play a variety of roles in them, posing unique challenges for ab initio 
modeling that stem from the structural complexity of the materials. In 
contrast to the disordered molecular materials discussed in Section 6, 
biomaterials often consist of polymeric molecules in liquid solvents envir-
onments that can have intricate conformational dynamics. We will consider 
two examples in the following: the stabilization of a CT exciton in aqueous 
DNA, and time-resolved emission from polarity sensitive dyes.

In Figure 9(a), we show the properties of charge-transfer excitons 
between two adenine bases in a double-strand of DNA in an environment 
of water and solvated ions [109,134], as obtained from GW-BSE with static 
and polarizable embedding as discussed before. Interest in these systems is 
related to the experimental observation in an adenine 20-mer [138] of broad 
low energy absorption in the region of 3:6-4:2teV, below the main adenine 
absorption peak at [4.8] eV. The low energy absorption is attributed to the 
formation of CT excitons, which can have significant implications for UV 
processes causing damage to DNA. A few points are noteworthy about 
the calculation results: first, upon inclusion of a static environment, the 
localization of the electron and hole contribution to the charge-transfer 
exciton switches between the two involved adenine bases. This is accom-
panied by an energetic stabilization of [0.44] eV. Additional inclusion of 
polarization not only reduces the excitation energy by a further [0.54] eV 
and also transforms the partial CT exciton into an integer CT exciton. 
The strong effect of polarization can be traced back to the aqueous 
environment, highlighting the nanoscale insights one can obtain from 
the combination of an accurate ab initio method like GW-BSE with 
environment models. At the same time, the CT exciton energy is still 
too high by several [0.1] eV compared to the experimental expectation.
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One possible reason for this discrepancy lies in the fact that the polariza-
tion included in the GW-BSE/MMp calculation is a purely electronic 
response, i.e. no structural relaxation of the aqueous environment is 
included in the model. The process of combined relaxation of the excited 
state and the solvent environment is exploited in polarity-sensitive dyes, 
which can be used, e.g. as spectroscopic probes for studies of biological 
systems. A prototypical dye of this kind is prodan, as seen in Figure 9. In 
such a molecule, the exciton created upon photo absorption has internal 
charge-transfer character [139], which manifests itself in a large change in 
the molecular dipole moment. Depending on their polarity, solvent mole-
cules then react to this enlarged dipole by structural rearrangement as part 

Figure 9. (a) Isosurfaces of differential electron densities of the lowest energy adenine dimer 
resulting from a gas-phase (vacuum) calculation, a QM/MM calculation with static environment, 
and a QM/MM calculation with polarizable environment. Red color corresponds to negative 
values (hole density), and blue color corresponds to positive values (electron density). (b) Time- 
resolved emission spectra of a polarity-sensitive dye molecule (prodan) in acetone (cyan), 
ethanol (magenta), and methanol (green) as calculated from iterative embedded GW-BSE 
/MM plus MD simulations compared with experiment. (c) Comparison of Stokes shift obtained 
in simulation with experimental measurements. (d) Visualization of two Laurdan molecules in 
a lipid bilayer, partially exposed to a polar water environment. (a) Reprinted (adapted) with 
permission from J. Chem. Theory Comput. 14, 6253 (2018). Copyright (2018) American Chemical 
Society. (b,c) Reprinted (adapted) with permission from J. Phys. Chem. B 124, 2643 (2020). 
Copyright (2020) American Chemical Society.

28 G. TIRIMBÒ AND B. BAUMEIER



of the polarization response. The exciton can, in turn, react to the changed 
external electric field, and the process repeats until an equilibrium is 
reached. From the point of view of an ab initio model, this situation is 
challenging because of the need for a technique capable of accurately 
capturing the details of the internal CT excitation, and the combined 
electronic and structural relaxation of the solvent-solute system. While the 
former is a strong point for GW-BSE, as discussed before, the latter is 
difficult for a lack of analytic force expressions. Motivated by the realization 
that the main effect of the relaxing CT exciton is its change in dipole 
moment (or the electrostatic potential felt by solvent molecules), Baral 
et al. [140] have developed an iterative scheme in which the structural 
relaxation of a prodan molecule in solution is modeled using classical MD 
with the dye’s partial charges being updated at certain time steps by those 
extracted from a GW-BSE/MMs calculation. With this simplified scheme, 
they have been able to simulate time-resolved emission spectra as shown in 
Figure 9(b) in very good agreement with experiments for a range of solvents 
of different polarity. Similarly, the Stokes shifts could be predicted at good 
accuracy as reported in Figure 9(c). Based on these promising findings, they 
proceeded in investigating the fluorescent emission properties of laurdan 
[141,142] (a modification or prodan) in lipid bilayer membranes. An exam-
ple of such a structure with highlighted embedded laurdan molecules is 
shown in Figure 9(d). It is known that the emission is sensitive to membrane 
properties like membrane order and packing. In particular, spectra are 
about 50 nm blue-shifted going from liquid disordered phase to gel phase 
or cholesterol-rich liquid-ordered phase, linked to the higher exposure to 
water solvent and the increased polarization response. This behavior could 
not be seen in the results of the same iterative GW-BSE/MMs plus MD 
procedure as employed for prodan, as the underlying MD simulations of the 
input structure before the exciton calculation does not accurately predict the 
location of the dye inside the membrane. When sampling of the chromo-
phore position is biased to select only configurations in which laurdan is 
exposed to water, the experimental situation is recovered. These observa-
tions emphasize that for an accurate ab initio modeling of excitons in 
materials, a reliable prediction of structural properties is essential and 
must not be neglected.

8. Summary and outlook

In summary, we have discussed in this review the usefulness of the GW and 
Bethe–Salpeter equation approach for the ab initio modeling of excitons in 
different material types, from perfect crystals to biomaterials, from hard to 
soft matter. Examples were chosen to highlight the capabilities of the 
method as well as its current limitations. Future directions of research and 
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method development should aim at overcoming these limitations, some of 
which have already been mentioned, including the need for efficient analytic 
force expressions or the QM/MM embedding including long-range 
interactions.

In particular concerning the hybrid QM/MM setups, several so far 
unnamed aspects deserve attention: for instance, the current implementa-
tion of the polarized MM relies on the Thole model of distributed atomic 
polarizabilities. This model is known to have problems for molecules with 
large anisotropies in their polarizability tensor, e.g. in extended π-systems 
[143], in which it is difficult to parametrize the atom polarizabilities to 
reproduce tensor components in- and out-of plane accurately at the same 
time. Similarly, it is not well-suited to describe polarization induced charge 
transfer or hydrogen bonding, which might both be important at the 
boundary between QM and MM regions. The Drude model or charge- 
equilibration approaches [144,145] could be superior in this regard.

Along similar lines, the use of a polarized MM model in the self- 
consistent reaction field approach renders the coupled GW-BSE/MMp 
Hamiltonian state-dependent. This implies the need to efficient state- 
tracking methods in the iterative solution of the coupled problem, as one 
has to reliably identify the state of interest in the spectrum of Eq. (27) . This 
can be achieved with characteristics of the exciton, such as its oscillator 
strength or the amount of charge transfer, or more detailed information 
from the overlap of wave functions from different iterations or a suitably 
defined measure of density matrix differences. All of these procedures have 
difficulties in tracking states near level crossings, which may happen fre-
quently in dense spectra as the ones shown, e.g. in Figure 7(c,d).

Note

1. From here on we identify for clarity r ¼ re and r0 ¼ rh the exciton wave function Eq. 
(12).
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