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ABSTRACT: We present quantum−quantum and quantum−quan-
tum-classical schemes based on many-body Green’s functions theory in
the GW approximation with the Bethe−Salpeter equation (GW-BSE)
employing projection-based-embedding (PbE). Such approaches allow
defining active and inactive subsystems of larger, complex molecular
systems, with only the smaller active subsystem being explicitly treated
by GW-BSE offering significant computational advantages. However, as
PbE can modify the single-particle states in the Kohn−Sham (KS)
ground state calculation and screening effects from the inactive region
are not automatically included in GW-BSE, results from such PbE-GW-
BSE calculations can deviate from a full-system reference. Here, we
scrutinize in detail, e.g., the individual and combined effects of different
choices of active regions, the influence of omitting the screening from the inactive region, and strategies for basis set truncation on
frontier orbital and near-gap electron−hole excitation energies. As prototypical systems, we consider a diketopyrrolopyrrole bicyclic
ring including side-chains, a polarity-sensitive dye (prodan) in aqueous environment, and a π-stacked dimer of benzene and
tetracyanoethylene in water, respectively, covering a variety of excitation characters in molecular systems with complex chemical
environments and photoinduced processes. Our results suggest that to obtain agreement of approximately 0.1 eV between near-gap
excitation energies from embedded and full calculations, the active region should be chosen based on the Mulliken population of the
full highest-occupied molecular orbital and that careful benchmarking should be done on the KS level before the actual GW-BSE
steps when basis set truncation is used. We find that PbE-GW-BSE offers significant reductions in computation times and, more
importantly, memory requirements, making calculations for considerably larger systems tractable.

1. INTRODUCTION
Many-body Green’s functions Theory employing the GW
approximation and the Bethe−Salpeter equation (BSE)1 has
been a widely established method for the determination of
electronic excitations in solid-state physics. Over the past
decade, it has gradually found more and more application in
traditionally molecular quantum chemistry settings.2−10 It was
shown that GW-BSE provides an effective single- and two-
particle picture with accurate energies for charged and neutral
excitations of different character, e.g., photoionization and
localized vs charge-transfer type excitations, without the need
for any adaptations.4,11,12 Even though its scaling (dependent
on details of the implementation) is favorable compared to
wave function based methods such as ADC(2)13 or CC2,14 the
direct application of GW-BSE to many complex molecular
systems remains computationally challenging. Examples of
such molecular systems are polymers with complex internal
architecture, either solvated15 or pure or mixed blends,16 more
general solvent−solute systems with nonequilibrium relaxation

dynamics,17 or molecular aggregates as in organic semi-
conductor films.18

To make systems like these accessible, hybrid methods
combining quantum and classical methods are often
used,4,17,19−27 sometimes combined with machine-learning
models.28 While effective, such approaches rely on, e.g., some
intuitive partitioning of the supramolecular system into
fragments that only interact via classical electrostatics and a
careful choice and parametrization of the environment model,
and may fail for covalently or hydrogen-bonded systems with
partial charge transfer. In these cases, a quantum−quantum
embedding approach might be advantageous, which allows
defining active and inactive partitions, with only the smaller
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active partition being explicitly treated by GW-BSE, while
interaction with the inactive one is on the level of density-
functional theory (DFT).29−31 Recently, Tölle et al.32,33 have
reported GW-BSE calculations based on subsystem-DFT
(sDFT)34−38 for a series of weakly interacting molecular
clusters. sDFT starts from Kohn−Sham-like calculations on
fragments and determines the full-system density from them, in
which the effective potential for a fragment contains
contributions from nonadditive terms in the kinetic energy
and exchange-correlation potential. This intrinsic partitioning
of the supramolecular system into small fragments allowed the
authors to also partition the screening contributions to the
correlation part of the self-energy in GW and to approximately
include environment polarization effects into the calculations,
and it could be shown to recover to a large extent the full-
system frontier orbital energies and the transitions between
them.

Projection-based-embedding39−44 (PbE) is an alternative to
sDFT, which partitions the full system based on a full-system
reference Kohn−Sham calculation into active and inactive
parts, and to subsequently restrict the GW-BSE calculation to
the active part. PbE has some advantages over sDFT, e.g., it is a
formally exact partitioning and also works for active/inactive
partitioning through covalent bonds, which is important for
studies of macromolecular assemblies with electronically active
vs inactive functional groups. However, for large inactive parts
involving many molecules or molecular fragments adopting the
environment screening correction proposed in32 becomes
cumbersome, as it would require either a screening calculation
for a still intractably large single inactive region or further
decomposition of the latter.

Arguably there are scenarios in which the exact agreement
between a (hypothetical) full supramolecular and a PbE-GW-
BSE calculation is not required. For dynamical processes such
as charge or exciton transfer or conversions between localized
and charge-transfer type excitations, for instance, only relative
energy gaps are relevant. Against this background, we
scrutinize in this work in detail different schemes of PbE-
GW-BSE calculations: plain calculations, calculations in which
a truncated atomic orbital basis is used, and calculations in
which the PbE-GW-BSE calculation is further embedded in a
classical, atomistic polarizable region. We aim to elucidate the
individual and combined effects of different choices of active
regions, the influence of screening (or lack thereof) from the
inactive region, and the impact of basis set truncation on
energies of local and charge-transfer excitations, respectively.
As prototypical systems covering different types of excitations
in a variety of chemical environments, we consider the three

test systems as shown in Figure 1: (a) a single diketopyrro-
lopyrrole (DPP) bicyclic ring with branched alkyl side-chains,
(b) prodan, a polarity-sensitive dye, solvated in water, and (c)
a benenze-TCNE donor−acceptor pair in water. For all
systems, we study the effects of the PbE with (trPbE) or
without basis truncation on the frontier orbitals as well as the
selected local or CT excitations. We pay special attention to
the differences in contributions of the exchange and correlation
parts of the self-energy to quasiparticle energies and of
exchange and direct terms in the electron−hole interaction to
the BSE energies between full and embedded calculations. In
addition to this, each of the three test systems is here chosen
with specific objectives: For the DPP molecule with branched
side chains, we intend to demonstrate a PbE-GW-BSE
calculation for a system in which the two regions are
connected by a covalent bond. We investigate the sensitivity
of the embedding results on the choice of the active region.
Prodan in water has been chosen to showcase the quantum−
quantum-classical PbE-GW-BSE/MM approach. Also here, we
consider the influence of the choice of the active regions on the
predicted excitation energies. The donor−acceptor benzene-
TCNE dimer solvated in water is used to evaluate the
differences in embedding effects on localized and charge-
transfer type excitations.

This paper is organized as follows: Section 2 summarizes the
essentials of many-body Green’s functions theory, projection-
based-embedding and basis set truncation methods, as well as
the coupling to classical polarizable environments. Computa-
tional details are given in Section 3 before the results for the
three test systems are presented in Section 4 and the overall
findings are discussed in Section 5. A brief summary concludes
the paper.

2. METHODOLOGY
This Section provides a concise overview of the essentials of
the different methodologies used in this work. For detailed
discussions, e.g., of recommended numerical parameters, we
refer to the appropriate original literature at the respective
places.

2.1. Many-Body Green’s Functions Methods for
Electronically Excited States. Kohn−Sham (KS) DFT45,46

provides the starting point for the effective single- or two-
particle formulations for electronic excitations and their
energies within the framework of perturbation theory with
many-body Green’s functions. One first obtains KS wave
functions ϕiKS(r) and energies εiKS from

Figure 1. Molecular structures used as test systems for PbE-GW-BSE: (a) DPP bicyclic ring with branched alkyl side chains, (b) prodan in close
(quantum) and distant (classical) water, (c) a water-solvated benzene-TCNE dimer.
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{ }+ + + [ ] =v v v nr r r r r
1
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( ) ( ) ( ) ( ) ( )i i iext H xc
KS KS KS

(1)

where vext is the external potential, vH the Hartree potential,
and vxc the exchange-correlation potential, and they define
together with the kinetic energy operator the effective KS
Hamiltonian ĤKS.

Hedin47,48 introduced the GW approximation of many-body
Green’s functions theory, in which electron self-energy is
written as Σ = iGW, and allows to derive a set of effective
single-particle eigenvalue problems known as the quasiparticle
(QP) equations

[ ] + =H v d rr r r r r r( ) ( ) ( , , ) ( ) ( )i i i i i
KS

xc
QP QP QP 3 QP QP

(2)

Typically, the QP wave functions ϕiQP(r) are approximated by
the KS wave functions, which allows to write the QP energies
as

= + | |v( )i i i i i
QP KS KS QP

xc
KS

(3)

The self-energy is calculated in frequency space (with η → 0+

to ensure convergence) as
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from the Green’s function based on the Kohn−Sham solution
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and the screened Coulomb interaction W in the random-phase
approximation
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Evaluating eq 6 in turn requires the microscopic, frequency-
dependent dielectric function given by
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As the self-energy is energy-dependent, and thus depends on
εiQP, the solution of eq 3 must be found self-consistently. From
eq 7 it is possible to split the self-energy Σ = iGW into its bare
exchange part

= +
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and the explicitly frequency-dependent correlation part

= +G W v dr r r r r r r r( , , ) i
2

( , , )( ( , , ) ( , ))c
C

(10)

With ωi = εiKS + ⟨ϕiKS|Σx − vxc|ϕiKS⟩ and ⟨ϕiKS| Σc(ω)|ϕiKS⟩ =
Σic(ω), we can rewrite eq 3 into the fixed-point problem

= ( )i i
c (11)

Due to the pole structure of the self-energy, there are in
general several solutions to eq 11. In this situation, the spectral
weight, defined as

i
k
jjjj

y
{
zzzz=Z( ) 1

d ( )
d

c 1

(12)

is used to identify the ”true” QP energy by Z(ω) ≈ 1, or
|d Σc(ω)/dω| ≈ 0.

In the above, when evaluating the self-energy, the KS
eigenvalues and eigenfunctions are used to construct G and W,
which is also known as a ”one-shot” G0W0 calculation.
Alternatively, it is possible to use updated QP energies until
eigenvalue self-consistency is reached (evGW).49−51

Charge-neutral excitations that involve excitonic effects
(electron−hole pair interaction) are not accounted for, and
can instead to obtained so solutions to the Bethe−Salpeter
equation (BSE)

| = |H S S S
BSE (13)

in which the electron−hole wave functions |ζS⟩ are typically
expressed in a basis of resonant and antiresonant products of
single-particle functions
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With that, the BSE explicitly reads in matrix form
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If the ground state is a spin-singlet state and spin−orbit
coupling is small compared to the electron−hole coupling, the
BSE solutions can be classified as spin-singlet and spin-triplet
excitations. This allows in turn, to solve the BSE separately for
the spin type of interest, specifically for singlet excitations with

= + +H D K K2vc v c vc v c vc v c vc v c,
res

, ,
d

,
x

(21)

= +K K K2cv v c cv v c cv v c, ,
d

,
x

(22)
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2.2. Projection-Based Embedding. Projection-based
embedding (PbE) is a formally exact DFT-in-DFT embedding
scheme, which we briefly summarize here and refer the reader
to the original work by Manby et al.39 for full technical details.
The scheme begins with a standard DFT calculation on the
complete reference system in the full-molecule AO basis. The
N occupied canonical molecular orbitals from this calculation,
ϕi(r) for i = 1, ... N, are then first transformed into localized
orbitals, ϕiLO(r), with a unitary transformation that leaves the
total density of the system unchanged. With the specification
of a set of atoms in the active region A, one constructs an
initial active density nA(r) from those localized orbitals that
have a significant Mulliken population qiA > qt on these atoms
(qt is typically 0.4 as recommended from in ref 39.):

= | |
=
>

n r r( ) 2 ( )
i

q q

N

i
A

1

LO 2

i t
A (23)

With nA(r) given, one can determine the density of the inactive
region as nB(r) = n(r) − nA(r). From this initial partitioning of
the total reference density, one considers nA(r) variable,
denoted here as ñA(r). The Fock matrix in the full-molecule
AO basis for an embedded (A-in-B) calculation on the
electrons in subsystem A is given by

= [ + ] + [ ] + [ ] + [ ]n n n n nF h J K VA in B
core
A in B A B A A

xc
A

(24)

where h core
A‑in‑B is the embedded core Hamiltonian based on the

partitioned initial densities nA and nB. The density-dependent
terms J, K, and Vxc are updated in each iterative step and hence
depend on the updated active density ñA. The embedded core
Hamiltonian reads

[ + ] = + [ + ] [ ]

+ [ + ] [ ]

+ [ + ] [ ] +

n n n n n

n n n

n n n

h h J J

K K

V V P

core
A in B A B

core
A B A

A B A

xc
A B

xc
A

B
(25)

and contains the core Hamiltonian of the full system, the
difference between the Hartree, exchange, and exchange-
correlation terms for the full system and the initially chosen
active subsystem, respectively, as well as a projection term μP B
with the projection operator

=P SD SB
B (26)

based on the density matrix DB of the environment and the
atomic orbital overlap matrix S to ensure orthogonality
between the occupied states of the environment and the rest
of the active subsystem. In the limit μ → ∞, the two
subsystems are exactly orthogonal. In practical calculations, we
adopt a value of μ = 105 Hartree, based on our own
convergence tests and those performed in ref 39.

Performing a PbE calculation allows us to limit a GW-BSE
calculation for the electronic excitations on the active region.
As the embedding potential is already included in the
preceding PbE-DFT calculation, there are no changes to the
procedure of the GW-BSE steps as outlined in Section 2.1,
except that all quantities involved use the embedded Kohn−
Sham molecular orbitals and their energies as starting point.
We will discuss the impact on the results of such calculations in
Section 4.

2.3. Truncation of the Full Atomic Orbital Basis. All
matrices composing the Fock matrix FA‑in‑B are so far expressed
in the full molecular atomic orbital basis. The most noteworthy
computational gain of the embedding lies in the fact that only a
smaller number of occupied states need to be explicitly
determined in the self-consistent procedure.

Reducing the atomic orbital basis for the actual embedding
step should not only offer computational savings by decreasing
the dimension of the eigensystem, but also affect the virtual
orbital space and, in an extreme case, localize the orbitals
intrinsically in the active region.

Miller et al. have shown that a reduced atomic orbital basis
can be constructed by truncating the full basis of the reference
calculation via manipulation of the projection term.43,44 The
procedure begins with an additional classification of atoms in
the inactive region into border atoms and distant atoms. This
distinction is based on whether any of the atomic basis
functions centered at an atom of the inactive region contribute
beyond a threshold to the density of the active region. In
practice, this is determined based on the net Mulliken
population of an atomic orbital α in the active density matrix
DA

=q D SA
(27)

where S is the overlap matrix. If any of the qα exceeds a
threshold value (typically 10−4 as taken from refs 43 and 44),
the atom associated with basis function α is added to the list of
border atoms. All remaining atoms are distant atoms.
Subsequently, the originally assigned inactive molecular
orbitals are also split into border and distant MOs. Border
MOs are inactive molecular orbitals that have a Mulliken
population larger than a threshold (a value of 0.4 is suggested
in refs 43 and 44) on any of the border atoms. All remaining
MOs are distant molecular orbitals.

This splitting into border and distant molecular orbitals also
allows a similar splitting of the projection operator via the
respective density matrices Dborder and Ddistant

= + = +P P P SD S SD SB B
border

B
distant border distant (28)

The split projector is now used in eq 25, however, with
different values for the level-shift, such that μPB ⇒μborder PB

border

+ μdistant PB
distant. However, it was shown by Barnes et al.43 that

enforcing orthogonality between the active subsystem in the
truncated basis and the inactive MOs outside of this basis can
lead to significant numerical errors. They authors showed that
this problem can be avoided by using μdistant = 0 and found this
way good accuracy between the total energies in trPBE and full
calculations with hardly any dependence on the value of μborder

in the range of 102 − 106 Hartree. These steps allow evaluating
the Fock matrix in eq 24 in a reduced, truncated, basis which
only includes the basis functions centered at the active and
border atoms. We refer to this as truncated projection-based-
embedding (trPbE), in the remainder.

2.4. Classical Polarizable Embedding. To account for
the effects of a complex molecular environment on electronic
excitations, a quantum (QM) region with the excited state
complex is embedded in a classical, polarizable atomistic
(MM) model for the environment. The QM/MM scheme in
VOTCA-XTP makes use of a distributed atomic multipole
representation for molecules in the MM region, which allows
treatment of both the effects of static electric fields and the
polarization response as a self-consistent reaction field.
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Specifically, this classical MM energy for the system is
evaluated as

= +E Q Q T Q
1
2

( )
I J

I J
i I j J tu

t
i

t
i

tu
ij

u
j

MM
,

(29)

where I and J indicate individual molecules in the system, i and
j atoms in the respective molecules, Qti are the static atomic
multipole moments of rank t associated with atom i, and Ttuij is
the tensor describing the interactions between the multipoles
moments Qti and Quj .

52 The induced moments ΔQti are
generated by the electric field created by moments t′ of atom i′
≠i in molecule I and the one generated by the moment u of
atom j in molecule J:

= +Q T Q Q( )t
i

I J
I J

j J i I
i i

tt u
tt
ii

t u
i bj

u
j

u
j

,
(30)

with αtt′ii′ the atomic polarizability on each site. To avoid the
effects of spurious overpolarization, a damped version of the
interaction tensor (Thole damping52) is used. Then, the static
and induced multipoles in the MM region also interact with
the electron density in the QM region via an additional
external potential to eq 1. At the same time, the explicit
electrostatic field from the QM density is included in
polarizing the MM region. The total density of excited state
S is evaluated from the excited-state wave function ζS as

= +r r r r( ) ( ) ( ) ( )S
e
S

h
S

DFT (31)

with

= = | |

= = | |

d

d

r r r r r

r r r r r

( ) ( ) ( , )

( ) ( ) ( , )

S S
S

S S
S

e e e h e h
2

h h h e e h
2

(32)

To obtain the polarization response of both the QM and
MM regions, a self-consistent procedure is employed. At step p
of this procedure, the total energy of the coupled QM/MM
system for the state S of interest (ground state S = 0, or excited
states S > 0) is determined as

= +E E ES p S p S p
QM/MM

,
QM

,
MM

,
(33)

with

= +E ES p S p
S
p

QM
,

DFT
,

(34)

and Ωp
S = 0 for the ground state case. The whole procedure is

repeated until the change of total energy is less than a
preselected accuracy, typically 10−5 Ha. The excitation energy
ΩS

QM/MM of a complex in the polarizable environment is then
obtained as the difference

= E ES
SQM/MM
QM/MM QM/MM

0
(35)

As in this the interactions between the quantum and classical
regions are purely represented by electrostatic potentials, it is
straightforward to combine (tr)PbE and classical polarizable
embedding approaches into one quantum−quantum-classical
embedding scheme. The static moments of the MM regions
continue acting as an additional background potential to the
quantum−quantum region. Similarly, the electric field acting
on the polarizable sites in the MM region is created by the
total electron density (plus the nuclei) of the subsystem QM
region. It is worth highlighting that when a polarizable model is
used in the PbE-GW-BSE/MM, the outer SCF coupling the
quantum and classical regions implies that during such a
calculation also the density of the inactive region can respond
to the polarization of the MM region.

3. COMPUTATIONAL DETAILS
All calculations have been done using the VOTCA-XTP
package22,23 which interface to the ORCA software53 for the
full system reference DFT calculations. The def2-TZVP basis-
set54 with an optimized auxiliary basis55 along with the PBE0
hybrid functional56 has been used in all DFT and subsequent
GW-BSE calculations. For the construction of localized orbitals
required in the projection-based-embedding calculations, we
employ the Pipek−Mezey (PM) localization scheme,57 which
maximizes the atomic Mulliken population subject to the
constraint of keeping the total density fixed. For the actual
maximization step, we make use of the unitary optimization
algorithm as described by Lehtola and Jonsson.58 If not stated
otherwise, the G0W0 variant has been chosen with the

Table 1. Overview of Number of Basis Functions (Nbasis), Number of Functions in Auxiliary Basis (Naux), Number of Occupied
States Included in Quasiparticle Calculation and BSE Product Basis (Nocc), Idem for Virtual States (Nvirt), Number of
Transitions in RPA (NRPA), and Dimension of BSE Hamiltonian (NBSE), for Full-GW-BSE, PbE-GW-BSE, and trPbE-GW-BSE
Calculations on the Three Test Systems

Nbasis Naux Nocc Nvirt NRPA NBSE

DPP+alkyl
full-GW-BSE 1194 2940 115 229 124085 52670
PbE-GW-BSE 1194 2940 51 101 55029 10302
trPbE-GW-BSE 1152 2835 51 101 52887 10302

aqueous prodan
full-GW-BSE 2994 7377 336 672 893088 451584
PbE-GW-BSE(dye) 2994 7377 61 121 162138 14762
PbE-GW-BSE 2994 7377 96 191 255168 36672
trPbE-GW-BSE(dye) 2453 6035 61 121 129137 14762

aqueous benzene-TCNE
full-GW-BSE 1650 4062 183 365 268461 133590
PbE-GW-BSE 1650 4062 53 105 77751 11130
trPbE-GW-BSE(10−4) 1384 3400 53 105 63653 11130
trPbE-GW-BSE(10−5) 1638 4032 53 105 77115 11130
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Plasmon-Pole model59 (PPM) for self-energy calculation in the
GW step. To maintain consistency, we use in each case the full
spectrum of single-particle states in the RPA (NRPA), and
consider all occupied (Nocc) and the lowest Nvirt = 2Nocc−1
unoccupied states for the calculation of the QP corrections and
the expansion of the BSE product basis, i.e., NBSE =
2Nocc(2Nocc−1) . The explicit numbers for all three test
systems are summarized in Table 1.

4. RESULTS
4.1. General Considerations for Projector-Based-

Embedded GW-BSE Calculations. While the DFT-in-DFT
calculation can be shown to reproduce the full reference total
energy exactly, we have seen that there are changes in the
molecular orbitals, and we therefore cannot in general expect a
GW-BSE calculation after PbE-DFT (from now on referred to
for short as PbE-GW-BSE) to yield the same excitation
energies as a full GW-BSE calculation. One can get an
indication of what the general changes are by considering, e.g.,
the expressions for the exchange part Σx (eq 9) and correlation
part Σc (eq 10) of the self-energy.

The exchange part is affected by (i) summing over fewer
occupied states in the subsystem-GW-BSE calculation and (ii)
the changes in the molecular orbitals themselves. Note that
while Σx itself only depends on the occupied orbitals, it enters
the quasiparticle energies of both occupied and unoccupied
states as evaluated by eq 3. Therefore, even though the virtual
molecular orbitals are unchanged in the subsystem-DFT
calculation (using the full basis), their GW quasiparticle
energies may have different contributions arising from Σx.

For the frequency-dependent correlation part, a similar
analysis is more complicated, as the expression in eq 10
involves the single-electron Green’s function (eq 5), and the
screened Coulomb interaction W determined with the help of
the irreducible polarizability χ0 as in eq 8. Subsystem
embedding changes both G1 (which also leads to the discussed
changes in Σx) and χ0 via the different orbitals and their
energies. For polarizability, embedding implies several note-
worthy modifications. Even if the ϕ(r) and energies ε were
unchanged, the sum over occupied orbitals is limited to the
active occupied orbitals (the ones from the inactive one are
found in the virtual space at high energy, and should be
excluded from the sum over virtual orbitals). As a result, the
screening only has contributions from transitions between
occupied orbitals in the active subsystem and virtual orbitals of
the combined system (in the full basis calculation), while
contributions from transitions from occupied orbitals in the
inactive region to all virtual orbitals are removed. The inactive
region therefore can be considered static from the perspective
of the screened Coulomb interaction, similar to a QM/MM
embedding with only static moments in the MM region, as
discussed in Section 2.4. If additionally a truncated basis
restricted ideally to the active region is used, this will also affect
the virtual orbitals and essentially limit the transitions to those
within the active region, removing charge-transfer-like
transitions between the subsystems from the response. The
effect on the calculated contribution of these CT-like
transitions to Σc is expected to be small, however. Both
considerations regarding the modifications type of transitions
excluded in the screening in subsystem-GW are in general then
combined with additional effects of changed orbitals and their
energies in the active region. From the lack of screening from
the now inactive region, one can generally expect the

contributions of Σc to the quasiparticle energies to be smaller
(in absolute values) in the subsystem-GW calculation
compared to the full GW case. In other words, even when
the orbitals themselves are only minimally affected (for weakly
interacting, nonbonded molecular structures, for instance), one
can expect to find the occupied (virtual) quasiparticle energies
from the embedded calculation to be below (above) the ones
from the full calculations. In particular, the HOMO−LUMO
gap in subsystem-GW is then larger than the respective gap in
full-system GW.

One can make similar examinations on the level of the BSE.
Naturally, as the number of occupied orbitals is reduced, the
electron−hole transitions used to expand the two-particle wave
functions are limited to the transitions starting from the active
subsystem. Any changes to the quasiparticle energies as a result
of the points discussed above will directly impact the free
transition term Dvc,v′c′ from eq 18 in the BSE Hamiltonian. The
effects on the exchange and direct (screened) terms of the
electron−hole interaction kernel Kvc,v′c′x and Kvc,v′c′d are similar to
those discussed for Σx and Σc, respectively. Especially, the
reduced screening can be expected to result in stronger
electron−hole attraction compared to the full-system calcu-
lation and might in turn compensate to some degree the larger
quasiparticle gap in the free transition.

4.2. DPP Bicyclic Ring with Branched Alkyl Side-
Chains. As a first test system, we consider a single DPP unit.
Alkyl side chains with a branched structure are attached to the
respective nitrogen atoms. A short C2H2 group contained the
branching point, and each branch is formed by C4H9, as can
also be seen in Figure 1(a). The geometry of this structure is
cut from a snapshot of a large-scale classical Molecular
Dynamics simulation of a DPP2PymT polymer16 and then
relaxed in vacuum (DFT with the PBE0 functional and def2-
TZVP basis) to a local minimum with nonsymmetric
arrangement of the side chains. In (conjugated) polymer
systems, it is often assumed that the frontier orbitals relevant
for charge transport are localized on the actual functional
backbone and that the side chains do not participate in the
electronic processes. For the testing of the PbE-GW-BSE
approach, such chemical intuition suggests actually selecting
only the DPP unit including the nitrogen atoms as the active
region and the complete two branched alkyl side chains into
the inactive one. However, as can be seen from the isosurfaces
of the HOMO from a full KS calculation in the inset of Figure
2, the occupied frontier orbital extends further into the side
chains, even slightly beyond the branching atom. The choice of
only the DPP core as the active region is therefore expected to
yield considerable modifications to the occupied electronic
states.

To understand how the addition of side-chain atoms
influence the results of PbE calculations on the near-gap
excitations, we vary their number based on the Mulliken
population of the atoms in the full KS HOMO depending on a
threshold value. If the population exceeds this threshold, we
add the atom to the active region. We chose the KS HOMO
population because (i) the LUMO is unaffected in PbE as
discussed above and (ii) we are interested in the near-gap
electronic structure. Figure 2 shows the difference Δ between
the results for the KS HOMO, the G0W0 HOMO and LUMO,
and the S1 G0W0-BSE energies obtained full and respective PbE
calculations with different threshold values. The largest
threshold value of 1% corresponds to having the DPP core
only in the active region of the PbE calculation. At 0.25% the
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carbon atoms up to and including the branching atom are
included. For lower values, more and more side chain atoms
are included. One can clearly see that the quantitative
agreement between full and PbE calculations is indeed
sensitive to the choice of the active region. No inclusion of
any side chain atoms yields a −0.15 eV deviation for the
HOMO energy on PbE-KS level already. The deviation is

larger in PbE-G0W0 (−0.40 eV) for the HOMO, and we
additionally find 0.24 eV for the LUMO, as well as −0.26 eV
for the S1 energy. The data in Figure 2 confirms that lowering
the threshold, and thereby adding more atoms to the active
region, systematically improves the agreement between the
results from full and PbE calculations. For instance, using a
threshold value of 0.1% (addition of the four next carbon
atoms) reduces the deviations to below 0.1 eV for all energies.

We will now inspect the different effects in the GW-BSE
steps upon embedding without significant modification of the
respective orbitals, using an active region to include the CH
groups until the respective branching carbon atom for all
following PbE calculations (corresponding to the threshold
value of 0.25% above). Figure 3 shows the results of G0W0-BSE
(panels (a) and (b)) and evGW-BSE (panels (c) and (d))
calculations for the HOMO, LUMO, and ΩS1 energies for full,
PbE, and trPbE calculations, respectively. The results are also
collected in Table 2, in which additionally the individual
contributions to the quasiparticle energies according to εQP =
εKS − Vxc + Σx+Σc, the HOMO−LUMO gap, and
contributions of the free transition energy (D), the exchange
(Kx) and direct (Kd) terms of the electron−hole interaction to
the electron−hole excitation energy ΩS1 are listed. The
contribution D, Kx and Kd are calculated by forming the
expectation value of the singlet BSE Hamiltonian with

Figure 2. Deviation Δ (in eV) of calculated KS HOMO, G0W0
HOMO, G0W0 LUMO, and G0W0-BSE S1 energies between full and
PbE calculations as a function of the Mulliken population threshold
for the full KS HOMO used for including atoms in the active region.
Inset shows isosurfaces of the KS HOMO (isovalues ±0.01 aB−3) of
the single DPP bicyclic ring with branch alkyl side chain as obtained
from regular KS-DFT.

Figure 3. Near-gap excitation energies (in eV) for a DPP bicyclic ring with branched alkyl side-chains showing HOMO (blue), LUMO (green),
and lowest electron−hole excitation (red) energies on KS level (dashed) or GW-BSE level (solid), as resulting from full, PbE, and trPBE
calculations, respectively. Panels (a) and (b) show results from G0W0 calculations, panels (c) and (d) from evGW calculations. Double-headed
arrows additionally indicate the respective HOMO−LUMO gaps. See also Table 2 for details.
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elements (eq 22) in the electron−hole wave function given by
eq 14, and summing all resonant and antiresonant contribu-
tions arising from free-transitions, and the exchange and direct
electron−hole interaction kernels, respectively. The quantity
Δfull

PbE is the difference of the PbE calculation to the full one, and
ΔPbE

trPbE measures the additional change of the basis set
truncation with respect to the PbE calculation.

We first start the discussion of the KS HOMO and LUMO
energies on DFT level only. They are shown in Figure 3(a) as
dashed lines (blue: HOMO, green: LUMO) in the G0W0 panel
(note that they are identical in the evGW case). With the
choice of the active region as discussed above, the change in
the energy of the HOMO level upon embedding is small
(−0.03 eV), and the LUMO is unaffected as expected from the
theoretical basis given in Section 2.2. Using a truncated atomic
orbital basis does not yield any changes of the KS electronic
structure at the shown accuracy. As one can see from the
values Nbasis in Table 1, the basis truncation procedure as
described in Section 2.3 removes only 42 of the 1194
functions, or about 3.5%.

Considering from now on the actual G0W0 results, one can
first identify the typical effects of quasiparticle corrections on
the HOMO and LUMO energies. In the full approach, the
HOMO energy is lowered by 1.06 eV, and the LUMO energy
is raised by 1.69 eV, such that the HOMO−LUMO gap
increases by 2.75 eV. Upon PbE, however, the respective shifts
are more pronounced, by 0.14 eV (0.11 eV) for the HOMO
(LUMO), cf. Table 2. The quasiparticle gap Egap

QP is hence
increased by 0.25 eV. Within the GW formalism, a larger gap
can often be associated with reduced screening.51,60,61 This
notion is corroborated by the data provided for the
contributions from Vxc, Σx, and Σc to εQP in Table 2). From
the respective Δfull

PbE for, e.g., the HOMO, one can see that the

differences from the KS exchange-correlation potential and the
exchange part of the self-energy almost compensate (note that
Vxc is used with a negative sign in eq 3), and that consequently
the differences in quasiparticle energies between full- and PbE-
G0W0 are practically determined by effects in the correlation
part Σc alone. For the LUMO, very similar observations can be
made. Again, due to the minimal reduction of the basis set, no
significant changes are noted in trPbE-G0W0 compared to PbE-
G0W0.

Turning now toward the respective BSE results, we first note
in the full calculation that the excitation energy results as 2.94
eV, which consists of the effective free-transition energy D =
7.63 eV, and the exchange (Kx = 0.54 eV) and direct (Kd =
−5.23 eV) parts of the electron−hole interaction kernel. The
fact that D exceeds Egap

QP by about one eV indicates that the
electron−hole excitation is not exclusively given by a HOMO−
LUMO transition. Qualitatively, the same holds also in the
PbE (and trPbE) calculations. The S1 energy in PbE-G0W0-
BSE results with 3.07 eV only 0.13 eV higher than in the full
reference. This is noteworthy because as discussed above Egap

QP

is larger by almost twice this value. Upon inspection of the
individual contributions to the BSE level given in Table 2, one
first observes that the free interlevel contribution D is larger by
0.37 eV and exceeds the relative increase on Egap

QP, indicating
that the lack of screening in Σc is larger for states outside the
fundamental gap. That ΩS1 as obtained in the PbE approach is
close compared to the full one despite these observations is
due to the effect of the direct electron−hole interaction in the
BSE Hamiltonian. This contribution, which is solely
responsible for effective electron−hole binding, is with Kd =
−5.49 eV in the PbE case stronger by 0.26 eV. As discussed in
Section 2.1, the direct term contains the screened Coulomb
interaction W. Lack of screening from the inactive region then
implies that the electron−hole pair is subject to a stronger,
more bare Coulomb like, electron−hole attraction. Such a
stronger binding compensates at least to some extent (by
∼50%) the relatively larger energy differences of the free
transitions.62,63

In Figure 3(c) and (d), the energy level diagram is given for
results in which the evGW method is used in all three cases.
Generally evGW leads here to a larger quasiparticle gap (by
0.42 eV) and a larger ΩS1 (by 0.34 eV) than in G0W0 (full
approach). Interestingly, the difference in Egap

QP upon PbE is
here with 0.13 eV somewhat smaller. Compared with a larger
reference value in the full evGW calculation, this reduces its
relative error from 3.8% to 2.7%. For the first electron−hole
excitation energy, the absolute deviation to the full calculation
is with 0.12 eV almost identical to the G0W0 case. Due to the
larger reference value, we still find a slightly reduced relative
deviation of 3.7% compared to 4.4%. As before, basis
truncation has no noticeable impact on the energy level
diagram.

4.3. Prodan in Water. The study on the DPP bicyclic ring
with branched alkyl side chains in the previous section has
indicated that the proper choice of the active region is
important, that differences in the energy levels between full
and PbE calculations are attributable to the lack of screening
effects from the inactive region, and that basis truncation had a
minimal effect. We will now turn to a different test system, to
scrutinize if these findings are specific to the DPP system in
which the active and inactive regions were connected by a
covalent bond. We will also present and analyze the use of PbE

Table 2. Results of full-G0W0-BSE, PbE-G0W0-BSE, and
trPbE-G0W0-BSE Calculations for a DPP Bicyclic Ring with
Branched Alkyl Side-Chainsa

full PbE Δfull
PbE trPbE ΔPbE

trPbE

DFT εH
KS −6.20 −6.23 −0.03 −6.23 0.00

εL
KS −2.35 −2.35 0.00 −2.35 0.00
Egap
KS 3.85 3.88 0.03 3.88 0.00

G0W0 VH
xc −12.52 −12.47 0.05 −12.47 0.00

ΣH
x −14.08 −14.02 0.06 −14.02 0.00

ΣH
c 0.50 0.38 −0.12 0.38 0.00
VL

xc −11.25 −11.23 0.02 −11.23 0.00
ΣL

x −7.52 −7.50 0.02 −7.50 0.00
ΣL

c −2.04 −1.92 0.12 −1.92 0.00
εH
QP −7.26 −7.40 −0.14 −7.40 0.00

εL
QP −0.66 −0.55 0.11 −0.54 0.01
Egap
QP 6.60 6.85 0.25 6.86 0.01

BSE D 7.63 8.00 0.37 8.00 0.00
Kx 0.54 0.56 0.02 0.56 0.00
Kd −5.23 −5.49 −0.26 −5.50 −0.01
ΩSd1

2.94 3.07 0.13 3.06 −0.01
aKS and QP HOMO and LUMO energies together with the
individual contributions from the exchange-correlation potential Vxc

and the self-energy split in Σx and Σc, according to εQP = εKS − Vxc +
Σx + Σc, as well as KS and QP HOMO−LUMO gaps. The lowest
electron−hole excitation energy from the respective BSE calculation
ΩS d1

is also split into the free transition energy (D) and contributions
from the exchange (Kx) and direct (Kd) terms of the electron−hole
interaction. All energies in eV.
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in the GW-BSE/MM scenario for quantum−quantum-classical
embedding.

The system we have chosen for this study consists of prodan,
a polarity-sensitive dye, solvated in bulk water, as shown in
Figure 1(b). Up excitation of the S1 state absorption of a
photon, the dipole moment of prodan in the excited state is

significantly increased compared to the ground state. In polar
solvents, such as water, additional screening effects originate
from the structural relaxation of the solvent molecules, which
in turn affect the excited state properties of the solute, and lead
to a significant reduction of the emission energy. In ref 64, this
process was simulated by an iterative GW-BSE+MD procedure.

Figure 4. Near-gap excitation energies (in eV) diagram for aqueous prodan showing HOMO (blue), LUMO (green), and lowest electron−hole
excitation (red) energies on KS level (dashed) or GW-BSE level (solid), as resulting from full, PbE, and trPBE calculations, respectively. Only the
dye is included in the active region. Panels (a) and (b) show results from static G0W0-BSE/MM calculations, panels (c) and (d) from polar G0W0-
BSE/MM calculations. Double-headed arrows additionally indicate the respective HOMO−LUMO gaps. See also Table 3 for details.

Table 3. Results of Full-G0W0-BSE/MM, PbE-G0W0-BSE/MM, and trPbE-G0W0-BSE/MM Calculations (All Static) for
Aqueous Prodana

dye dye + water

full PbE Δfull
PbE trPbE ΔPbE

trPbE PbE Δfull
PbE

DFT εH
KS −5.14 −5.22 −0.08 −5.45 −0.23 −5.15 −0.01

εL
KS −3.44 −3.44 0.00 −3.70 −0.26 −3.44 0.00
Egap
KS 1.70 1.78 0.08 1.75 −0.03 1.71 0.01

G0W0 VH
xc −13.02 −12.79 0.23 −12.80 −0.01 −12.97 0.05

ΣH
x −16.08 −15.86 0.22 −15.85 0.01 −16.04 0.04

ΣH
c 2.13 1.98 −0.15 2.00 0.02 2.03 −0.10
VL

xc −11.31 −10.93 0.38 −10.96 −0.03 −11.08 0.23
ΣL

x −7.61 −7.21 0.40 −7.27 −0.06 −7.37 0.24
ΣL

c −2.44 −2.15 0.29 −2.12 0.03 −2.23 0.21
εH
QP −6.07 −6.32 −0.25 −6.50 −0.18 −6.19 −0.12

εL
QP −2.17 −1.86 −0.31 −2.13 −0.27 −1.96 0.21
Egap
QP 3.90 4.46 0.56 4.37 −0.09 4.23 0.33

BSE D 4.14 4.76 0.62 4.71 −0.05 4.52 0.38
Kx 0.11 0.18 0.07 0.18 0.00 0.15 0.04
Kd −3.30 −3.77 −0.47 −3.86 −0.09 −3.64 −0.34
ΩSd1

0.96 1.17 0.21 1.03 −0.14 1.03 0.07
aKS and QP HOMO and LUMO energies together with the individual contributions from the exchange-correlation potential Vxc and the self-
energy split in Σx and Σc, according to εQP = εKS − Vxc + Σx + Σc, as well as KS and QP HOMO−LUMO gaps. The lowest electron−hole excitation
energy from the respective BSE calculation ΩS d1

is also split into the free transition energy (D) and contributions from the exchange (Kx) and direct
(Kd) terms of the electron−hole interaction. All energies in eV.
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We take a single snapshot of one of those trajectories and
perform static and polarizable G0W0-BSE/MM calculations on
this structure.

To begin with, the system is partitioned in quantum and
classical regions. We assign the prodan molecule and any water
molecule whose center-of-mass is within 1 nm of the solute
center-of-mass to the QM region. As a result, the QM region
contains 199 atoms (prodan and 55 water molecules), which
can be considerably challenging for full GW-BSE calculations.
This QM region is then embedded in another 1 nm wide shell,
which contains 630 water molecules treated on MM level.

We begin with the results of full G0W0-BSE calculations in a
static MM environment, as shown in Figure 4(a) and (b) and
data summarized in Table 3. From the computational details in
Table 1 it can be inferred that the computational cost for such
a calculation is significant. We will discuss this in more detail in
Section 5.1 below. In the G0W0 step, we observe the typical
lowering of the HOMO energy and increase of the LUMO
energy with respect to the KS reference, resulting in a
HOMO−LUMO gap of Egap

QP = 3.90 eV as compared to Egap
KS =

1.70 eV. For the PbE calculations, we now first split the QM
region into an active region containing only the dye molecule
and an inactive region containing the 55 water molecules
(setup indicated as ”dye” in Table 1 and Table 3). One can see
from the dashed lines in Figure 4(a) that the PbE lowers the
HOMO energy by 0.08 eV and yields a correspondingly
increased HOMO−LUMO gap as the LUMO energy remains
constant.

Inspection of the Mulliken populations of the HOMO in the
full KS calculation, as done in the previous section, reveals
strong contributions from several water molecules close to the
dye. With the restriction of the active region to prodan only,
the neglect of these contributions changes the electronic state
noticeably. Even though there is no covalent bond formed, this
is very similar to the case of the DPP structure in the previous
section, in which the HOMO extended over some carbon
atoms of the side chain.

The quasiparticle gap in static PbE-G0W0-BSE/MM results
with 4.46 eV considerably larger than in the full reference (3.90
eV), compatible with the earlier observations about reduced
screening effects for the embedding. Indeed, the differences in
the respective contributions from Vxc and Σx nearly
compensate and the difference in quasiparticle corrections
from full- to PbE-G0W0 mostly arises from effects in Σc. Basis
set truncation removes 541 basis functions (see Table 1) in
aqueous prodan and has a more pronounced impact on the
electronic levels. As can be seen in Figure 4 and Table 3, both
HOMO and LUMO levels on KS level result lower in energy
in trPbE as compared to the reference system (by 0.31 eV and
0.26 ev, respectively) and also to the respective PbE results. As
a consequence of the almost constant shift, Egap

KS is only 0.05 eV
larger. On G0W0 level, we note that the differences in the
contributions in the quasiparticle corrections are relatively
small and lead to only a small reduction of the quasiparticle
gap by 0.09 eV. On BSE level, the calculated ΩS1 energy varies
from 0.96 eV (full) via 1.17 eV (PbE) to 1.03 eV (trPbE).
Inspection of the respective contributions to the BSE energy
from the data in Table 3 reveals the same qualitative behavior
as discussed in Section 4.2: the lack of screening from the
inactive region increases the contribution from free transitions
D, which is compensated to some extent by the for the same
reason also increased electron−hole attraction in Kd (∼0.5
eV).

In the last two columns of Table 3, we additionally show
results of PbE-G0W0-BSE results in which the six water
molecules with Mulliken populations above 0.1% in the full
system HOMO orbital are moved from the inactive to the
active region. As can be seen, the change in the HOMO energy
is very small compared to the full system, indicating that the
more extended active region is a suitable choice. In this
scenario, the differences in the quasiparticle energies for the
HOMO and LUMO are smaller, but still amount to a Egap

QP

increased by 0.33 eV. Different choices for the active/inactive
region splitting do not affect the qualitative observation that

Table 4. Results of Full-G0W0-BSE, PbE-G0W0-BSE, and trPbE-G0W0-BSE Calculations for a Benzene-TCNE Dimer in Water
a

10−4 10−5

vacuum full PbE Δfull
PbE trPbE ΔPbE

trPbE trPbE ΔPbE
trPbE

DFT εH
KS −7.79 −7.28 −7.29 −0.01 −7.20 0.09 −7.28 0.01

εL
KS −4.85 −4.88 −4.88 0.00 −5.02 −0.14 −4.87 0.01
Egap
KS 2.94 2.40 2.41 0.01 2.18 −0.23 2.41 0.00

G0W0 VH
xc −10.40 −10.46 −10.40 0.06 −10.43 −0.03 −10.39 0.01

ΣH
x −11.97 −12.02 −11.95 0.07 −11.95 0.00 −11.95 0.00

ΣH
c 0.10 0.20 0.12 −0.08 0.11 −0.01 0.12 0.00
VL

xc −11.54 −11.56 −11.52 0.04 −11.53 −0.01 −11.52 0.00
ΣL

x −7.88 −7.93 −7.89 0.04 −7.92 −0.03 −7.89 0.00
ΣL

c −1.68 −1.82 −1.69 0.13 −1.70 −0.01 −1.69 0.00
εH
QP −9.26 −8.64 −8.72 −0.08 −8.61 0.11 −8.72 0.00

εL
QP −2.88 −3.07 −2.94 0.13 −3.10 −0.16 −2.93 0.01
Egap
QP 6.38 5.57 5.78 0.21 5.51 −0.27 5.79 0.01

BSE D 6.40 5.59 5.80 0.21 5.52 −0.28 5.80 0.00
Kx 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00
Kd −3.31 −3.18 −3.36 −0.18 −3.43 −0.07 −3.36 0.00
ΩSd1

3.10 2.42 2.45 0.03 2.10 −0.35 2.45 0.00
aKS and QP HOMO and LUMO energies together with the individual contributions from the exchange-correlation potential Vxc and the self-
energy split in Σx and Σc, according to εQP = εKS − Vxc + Σx + Σc, as well as KS and QP HOMO−LUMO gaps. The lowest electron−hole excitation
energy from the respective BSE calculation ΩS d1

is also split into the free transition energy (D) and contributions from the exchange (Kx) and direct
(Kd) terms of the electron−hole interaction. All energies in eV.
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this difference is effectively only given by Σc contributions. In
the BSE calculation, the lowest electron−hole excitation
energy is obtained as 1.03 eV, only 0.07 eV higher than in
the full G0W0-BSE calculation. Here, the stronger by −0.34 eV
electron−hole interaction in the BSE kernel compensates the
larger by 0.38 eV free transition contribution.

When polarizable GW-BSE/MM is employed, the respective
calculations of the coupled system in the self-consistent
reaction field of the MM environment become state-depend-
ent. What is shown as polar G0W0-BSE/MM in Figure 4(c)
and (d) are the energy levels in the final step of a self-
consistent procedure to evaluate the total energy of the S1
excited state according to eqs 34−35. Note also that the PbE
and trPbE results shown here are for the case in which only the
prodan molecule is in the active region, as in the left panel. We
refrain from analyzing the shown data in detail because even
though the exact numbers are different, there are no
fundamental differences in what has been observed for static
G0W0-BSE. In other words, while the external potential is
different in both cases, the intrinsic effects going from full to
PbE or trPbE calculations are the same.

4.4. Benzene-TCNE Dimer in Water. The final system
under consideration is a dimer of benzene and TCNE, as it is
known to exhibit intermolecular charge-transfer type excita-
tions in which the hole is predominantly located on benzene
and the electron on TCNE molecule.65 In a polar solvent,
these CT excitations are massively lowered in energy
compared to the vacuum case, and proper treatment of the
polarizable environment is essential. Not only is the type of
electron−hole excitation different from the ones studied in
Section 4.2 and Section 4.3 but also the localization on the
contributing frontier orbitals. We scrutinize in the following if
the observations regarding PbE- or trPbE-GW-BSE calcula-
tions made for the previous two test systems also hold in case
of intermolecular excitations. To this end, we prepared first a
dimer of benzene and TCNE molecules stacked with a
separation of 3.7 Å. This initial structure was then solvated
with water using packmol.66,67 From this solvated system,
the benzene-TCNE dimer and the 26 closest water molecules
have been selected for the following calculations. Note that we
are only interested in the trends of effects from using PbE or
trPbE here, so a more involved procedure to obtain relaxed
atomic positions is not required for this purpose.

In Table 4 we show the resulting energy levels and their
compositions for the different variants of G0W0-BSE
calculations on this benzene-TCNE dimer, including a
reference calculation for the dimer in vacuum. In the vacuum
reference, the HOMO−LUMO gap is increased in G0W0 by
3.44 eV compared to the KS value, and the CT excitation
energy is obtained as 3.10 eV. When embedded in water, the
KS gap is reduced by 0.54 eV compared to the vacuum
calculation, which is predominantly caused by a shift in the
HOMO level. The bjoernfull-G0W0 gap is even reduced
compared to vacuum by 0.81 eV, but interestingly here we also
observe a downward shift of the LUMO energy albeit only by
0.19 eV compared to the upward shift by 0.62 eV of the
HOMO. From the isosurfaces of the HOMO and LUMO in
the full-G0W0 calculation as shown in Figure 5 one can clearly
see the donor−acceptor character of the dimer in the
distribution of the frontier orbitals on the respective molecules,
corroborating the notion that a transition from HOMO to
LUMO is of charge-transfer character. Its CT excitation energy
is obtained as 2.41 eV, lower by 0.69 eV than in the vacuum

case. It is noteworthy that this lowering of the CT energy is
caused mainly by the reduction of the contribution from the
free transition term D (6.41 eV in vacuum vs 5.59 eV in water)
while the direct part of the electron−hole interaction is just
reduced by 0.12 eV due to the additional screening from the
environment.

From Figure 5 it can also be seen that both frontier orbitals
are not completely localized on the respective molecules, as the
HOMO has minimal contributions at the TCNE and some
close water molecules. The LUMO shows a similar pattern.
Neverthless, for demonstration purposes and to assess whether
the choice of an active region based on chemical intuition
recovers the strong solvatochromic shift of the excitation
energies, we choose only the dimer as the active region in the
PbE and trPbE calculations. As one can see in Table 4, the
associated neglect of the contributions of the water molecules
to the HOMO has very little effect on the KS HOMO energy
in PbE, and concomitantly, the KS HOMO−LUMO gap. The
quasiparticle energies in PbE-G0W0 are 0.08 eV lower for the
HOMO and 0.13 eV higher for the LUMO, compared to the
full-G0W0 result, and as a consequence, the gap is larger by 0.21
eV. As observed for the DPP system and aqueous prodan, the
differences in the respective contributions to the quasiparticle
corrections from Vxc and Σx mostly cancel out. The CT
excitation energy in PbE-G0W0-BSE is with 2.45 eV only 0.03
eV larger than in the full calculation, as the comparatively
stronger electron−hole interaction almost completely com-
pensates the larger free quasiparticle transition energies. Upon
truncation of the basis set with the standard threshold of 10−4,
we find unexpectedly larger deviations in trPbE-G0W0. Already
on Kohn−Sham level, we find that the HOMO energy is
increased to −7.20 eV and the LUMO lowered to 5.02 eV,
leading to Egap being reduced by 0.23 eV. At quasiparticle level,
the gap energy is reduced by 0.27 eV as compared to the
untruncated PbE case, so that the quasiparticle gap is very
close to the full-G0W0 result. This should be considered
coincidental. Indeed, the energy of the CT excitation is also
lower by 0.35 eV and is as a consequence 0.32 eV smaller than
in the full calculation reference, as the electron−hole
interaction remains under-screened. Reducing the threshold
value in the basis set truncation to 10−5 makes the trPbE-G0W0
results (see Table 4) agree with the not truncated case.
However, in this case one only removes 12 basis functions, cf.
Table 1. We therefore recommend to carefully scrutinize the
truncation parameter in practical calculations on the KS
reference frontier orbital energies before performing the actual
GW-BSE steps.

Figure 5. Isosurfaces of the (a) HOMO and (b) LUMO (isovalues
±0.01 aB−3) of the aqueous benzene-TCNE dimer as obtained from
regular KS-DFT.
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5. DISCUSSION
We begin the discussion of the analysis of the PbE and trPbE
techniques in application to the GW-BSE methodology by
taking a broader view on the obtained quasiparticle energies
than just the frontier orbital and fundamental gap energies. To
this end, we show in Figure 6 a comparison between the
density of states (DOS) for the three systems studied in this
work as obtained from full and PbE calculations on KS and
G0W0 levels. We also show by dashed lines a partial density of
states (PDOS) based on the full calculation, in which we
consider only those molecular orbitals whose Mulliken
populations on the active atoms exceed 0.4, corresponding to
the threshold value used in the PbE procedure for selecting the
active MOs, cf. Section 2.2. On KS level (gray shaded area:
full; dashed black: PDOS; black line: PbE) one can see in all
three molecular systems the frontier orbital peaks are well
reproduced, and by construction also the full range derived
from unoccupied orbitals in PbE. For the energy region lower
than the respective HOMO energy, one can generally observe
the presence of fewer states, as expected. Especially for the two
water-solvated systems a significant part of the full DOS is
removed by the embedding.In systems (a) and (b), there is a
good agreement between the PbE-DOS and the PDOS for the
next group of peaks with slightly more deviations at ebergies
below −10 eV. In aqueous benzene-TCNE, the agreement
extends nearly over the full energy range shown, indicating that
there overall little mixing of occupied electronic states of the
dimer and the solvent molecules.

When comparing the same data obtained on G0W0 level of
theory, one can see the small deviations of the frontier orbital
energies in PbE-G0W0 with respect to the full calculation. For
lower energy occupied and higher energy unoccupied levels,
the comparison is not so straightforward. When one compares
PbE-G0W0 to PbE-KS, one can see similarities in the broad
shape of the DOS, but also that not all orbital energies
experience the same quasiparticle corrections. This seems to
affect the virtual DOS above the LUMO more significantly. As
one can see in PbE-G0W0 results in Figure 6(a) and (c) in
particular, there are peaks in the DOS below those in the full

calculation DOS. This is an indication that the QP corrections
for these levels, whose KS reference energy is the same in full-
and PbE-KS, are less pronounced when an embedded
calculation is performed. This is different from the observation
that quasiparticle corrections are generally stronger for the
frontier orbitals due to the lack of screening.

To elucidate we consider in more detail the differences
between the PbE and full calculation split among the different
contributions to the QP energies as done for HOMO and
LUMO in Table 3, now for LUMO+1 and LUMO+2 from the
final step in the polarizable G0W0-BSE/MM calculations. The
results are summarized in Table 5. For the LUMO+1, we find

qualitatively the same behavior as for the LUMO as discussed
in Section 4.3: the contributions from Vxc and Σx nearly cancel
out, and the too weak screening in PbE leads to a 0.23 eV
higher quasiparticle energy as compared to the full calculation.
For LUMO+2, the same does not hold: the difference in
contributions from Vxc and Σx is significant and contributes
with −0.86 eV to the difference in quasiparticle energies. The
contribution from the difference Σx is with 0.65 eV positive,
consistent with the argument of too weak screening. Its
magnitude is however much bigger than for LUMO and
LUMO+1. In total, we find a quasiparticle energy that is lower
by 0.21 eV in PbE as compared to the full calculation.

Figure 6. Density of states (DOS) for the three systems studied in this work: (a) DPP with branched alkyl side chains, (b) aqueous prodan, and (c)
aqueous benzene-TCNE. Gray (red) shaded areas show the DOS as obtained by full KS (G0W0) calculations, while the black (red) lines indicate
the respective PbE-KS (PbE-G0W0) DOS. Dashed lines indicate a partial DOS (PDOS) associated to the active atoms in the respective full
calculations. A Gaussian broadening with standard deviation 0.2 eV is used in all cases.

Table 5. Results of Full-G0W0-BSE/MM and PbE-G0W0-
BSE/MM Calculations (All Polar) for Aqueous Prodana

LUMO+1 LUMO+2

full PbE Δfull
PbE full PbE Δfull

PbE

εKS −2.32 −2.32 0.00 −1.06 −1.06 0.00
Vxc −10.72 −10.47 0.25 −8.19 −5.91 2.29
Σx −6.76 −6.52 0.24 −4.53 −3.11 1.43
Σc −2.66 −1.58 0.24 −2.23 −1.58 0.65
εQP −1.02 −0.79 0.23 0.37 0.16 −0.21

aKS and QP LUMO+1 and LUMO+2 energies together with the
individual contributions from the exchange-correlation potential Vxc,
and the self-energy split in Σx and Σc, according to εQP = εKS − Vxc +
Σx + Σc. All energies in eV.
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Inspecting the nature of the respective states might provide
an indication of the origin of this different behavior. In Figure
7 we show isosurfaces of LUMO+1 and LUMO+2,

respectively. LUMO+1 (like LUMO) is predominantly
localized on the dye molecule itself, with only small
contributions from some close water molecules. In contrast,
LUMO+2 is markedly different and extends to a large amount
onto water molecules, that is into the inactive region from the
point of view of projection-based-embedding. It stands to
reason that in such a situation the removal of the occupied
states of the inactive region from the expression for the
exchange part of the self-energy introduces additional
deviations.

5.1. Embedding Cost. In addition to the quality of the
results of the different PbE-G0W0-BSE calculations compared
to the full calculations, we consider the respective computa-
tional costs using the aqueous prodan system from Section 4.3
as an example. As can be seen from Table 1, large savings can
be expected in the RPA steps (reduction of the number of
transitions to less than 20%), and in the BSE solution
(reduction of the product basis size to about 3%). Figure 8(a)

shows the runtime of the respective calculation steps. For all
three variants, the underlying DFT calculation on the full
system is performed with ORCA in about 1100 s. Localizing all
336 occupied orbitals with the unitary optimization requires in
VOTCA-XTP around 1300 s, and performing the PbE-KS
around 9600 s. Note that the internal DFT implementation in
VOTCA-XTP is intended only for development and testing

purposes without performance optimizations. Therefore, the
absolute timings for the PbE-KS step appear much larger
relative to the full-KS calculation performed with ORCA. In
principle, PbE-KS has the same scaling as regular KS. As
expected, the most significant saving in computational time is
the actual G0W0 and BSE steps of the procedure. For the
former, the reduced number of transitions in the RPA,
combined with a lower number of states for which
quasiparticle corrections have to be determined, reduced the
time from 3900 s to around 800 s. Note that the absolute cost
of the G0W0 step is, in fact, reasonably small (only a factor
∼3.5 in the full calculation) compared to the DFT step, due to
the use of the Plasmon-Pole Model for the frequency-
dependence of the self-energy, which requires the explicit
evaluation of the microscopic dielectric function only for two
frequencies, see also Section 2.1. The most dramatic compute
time reduction is observed for the BSE step. Here PbE leads to
a reduction from 43000 s to just 270 s due to the massively
reduced dimension of the product basis. Basis set truncation
allows for another reduction of runtimes in G0W0 and BSE by a
factor of 2, respectively.

While the timings are an important consideration in
performing GW-BSE calculations, the peak memory con-
sumption is in many case the more relevant bottleneck in
limiting the accessible system sizes. From the data shown in
Figure 8(b), it is clear that the full and PbE approaches differ
vastly in peak memory consumption. Embedding and the
subsequent reduction in the in-memory storage of three-center
Coulomb integrals after contraction with molecular orbitals
requires only 3.8 GB of RAM compared to 118.7 GB. The
truncated basis has a smaller effect on top of this (2.5 GB).
This clearly shows that PbE techniques can remove some
computational bottlenecks of GW-BSE calculations, at the
price of some deviations in the obtained results due to the lack
of screening contributions from the inactive region.

6. SUMMARY
In this paper, we have introduced and scrutinized projection-
based-embedding techniques of GW-BSE calculations. Based
on the analysis of the three test systems DPP ring with
branched alkyl side chains, aqueous prodan, and an aqueous
benzene-TCNE dimer, we could see that PbE can offer
significant computational gains, making larger systems
accessible to the many-body Green’s functions based method-
ology. We have demonstrated that it can also be directly
incorporated in quantum-classical embedding (GW-BSE/MM)
schemes. We also found that the agreement with full
calculations depends on the choice of the active region and
is subject to effects from the neglect of screening contributions
from the inactive electrons in the GW steps, which leads
generally to an increased quasiparticle HOMO−LUMO gap. It
was also noted that the lack of screening is in part
compensated in the BSE as it manifests itself in an increased
electron−hole attraction so that deviations from full results for
the electron−hole excitation energy are on the order of 0.1 eV
for the different types of excitations studied here. It should be
noted that all excitations are near-gap excitations, and it can
not be guaranteed that the same quantitative agreement will
hold for higher-energy excitations. Finally, we have seen that
additional truncation of the basis set can reduce the
computational costs by a factor of 2 with respect to full-basis
PbE, but results appear to be sensitive to the chosen threshold
values for removing basis functions.

Figure 7. Isosurfaces of the (a) LUMO+1 and (b) LUMO+2
(isovalues ± 0.01 aB−3) of the aqueous prodan as obtained from regular
KS-DFT.

Figure 8. Computational costs of the different calculation steps in
full-, PbE-, and trPbE-G0W0-BSE calculations for the aqueous prodan
system from Section 4.3. (a) Runtime (in s) on 28 threads of an
Intel(R) Xeon(R) Gold 5120 CPU @ 2.20 GHz. (b) Peak RAM
consumption in GB.
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