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Abstract

Depending on the initial photoexcitation of the donor or acceptor phase, different

efficiencies of charge generation can be observed in organic solar cells. We investigate

the origin of this dichotomy by simulations based on quantum–quantum–classical em-

bedded GW–Bethe–Salpeter equation of conversion dynamics from localized to charge-

transfer (CT) excitations at the interface of a diketopyrrolopyrrole (DPP) polymer and

fullerene. Specifically, we determine the excitonic energy levels, their electronic cou-

plings, and the reorganization energies for the respective conversion processes within

Marcus theory. Our calculations yield a variety of CT-type excitations of different

characters with the lowest integer CT excitations of relevance for charge generation

separated by 0.30 eV. Further analysis reveals that the activation barrier for conver-

sion to the lowest CT state is significantly higher (0.25 eV) for the polymer LE than for

the fullerene LE (0.05 eV), leading to a preferred population of the higher, less strongly

bound CT state from the photoexcited donor. From a population dynamics model we

find that, indeed, on the time scale of one picosecond after the respective excitation, the

donor excitation leads to the formation of a CT excitation with on average 0.16-0.27 eV

lower electron-hole binding energy, providing a pathway to faster charge separation.
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Introduction

Organic photovoltaic devices convert solar energy into electricity through a series of funda-

mental processes: light absorption, exciton generation, charge separation at donor-acceptor

interfaces, and charge collection. In bulk heterojunction solar cells, both the polymer donor

and fullerene acceptor can absorb light and generate excitons, which then migrate to the

interface where they may form interfacial charge-transfer (CT) states as precursor state

for charge generation. The efficiency of charge generation thus depends critically on the

energetics and dynamics of exciton conversion across the heterojunction1,2.

Among the intensively studied donor-acceptor materials are oligomers based on dike-

topyrrolopyrroles (DPP) for donors and fullerene (C60) based compounds (PCBM) for ac-

ceptors3–5. They can be easily modified by adding various aromatic and π-conjugated sub-

stituents to the backbone and different side chains to DPP, affecting both the solubility and

crystallinity of the polymer and its electronic properties. With suitable substituents, a low

band-gap internal donor-acceptor architecture leads to efficient harvesting of the solar energy

spectrum and a power conversion efficiency (PCE) of around 8% in blends with fullerene

acceptors6–9.

While it is commonly assumed that charge generation via donor or acceptor excitation

proceeds with similar efficiency, recent experiments have shown that this assumption often

fails. In particular, Hendriks et al.10 demonstrated a dichotomous behavior in DPP polymer-

fullerene solar cells: efficient charge separation via acceptor excitation (hole transfer) requires

a driving force ∼0.3 eV larger than that required for donor excitation (electron transfer)10.

By comparing external quantum efficiency (EQE) spectra across 16 polymer-fullerene blends,

they revealed that the minimum energy needed to drive charge generation from fullerene

excitons is significantly higher than for polymer excitons. These results suggest the existence

of distinct energy barriers and possibly different kinetic mechanisms for donor- and acceptor-

initiated charge separation.

Understanding the microscopic origin of this asymmetry demands a theoretical frame-
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work that captures both the energetics of CT state formation and the kinetic barriers for

exciton conversion. Marcus theory provides a basis for describing such processes, account-

ing for the electronic coupling between initial and final states as well as the reorganization

energies of donor and acceptor11–13. However, a fully quantum mechanical treatment of ex-

citon conversion at complex donor-acceptor interfaces has remained challenging due to the

computational demands of accurate excited-state methods.

Recent progress in embedding techniques has begun to address this challenge. Subsys-

tem time-dependent density functional theory (TDDFT), including frozen-density embed-

ding and QM/MM-TDDFT, has been applied to simulate localized excitations in solvated

chromophores and biological complexes, providing a computationally efficient approach to

model environmental effects on excited states14,15. Yet, TDDFT-based methods can struggle

with long-range charge-transfer excitations and double excitation character, which are often

central to interfacial CT processes.

In contrast, embedding schemes based on many-body Green’s function theory employ-

ing the GW approximation and the Bethe–Salpeter equation (GW -BSE) offer an alterna-

tive to TDDFT with a more rigorous treatment of quasiparticle and excitonic effects16,17.

Embedding techniques such as projection-based quantum-quantum-classical embedding18,19,

local orbital truncation20, and polarizable continuum models21,22 have recently made GW -

BSE calculations tractable for systems of several hundred atoms. These methods preserve

the accuracy of many-body approaches while incorporating environmental effects at lower

computational cost, enabling simulations of realistic interfaces in molecular materials and

nanostructures23.

Here, we employ a quantum-quantum-classical (QM/QM/MM) projection-based embed-

ded GW -BSE (PbE-GW -BSE) approach18,19 to investigate exciton conversion dynamics at a

DPP2Py2T-PCBM interface, a high-performing system in the series studied by Hendriks et

al.10 which has experimentally shown the dichotomous role of donor or acceptor excitation in

the charge generation process. A representative bulk heterojunction structure is chosen from
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a previously simulated interface24. The morphology of this interface had been obtained from

classical molecular dynamics (MD) simulations mimicking explicit solvent evaporation. Not

only do we push the limits of accessible system sizes for GW -BSE calculations, but we also

compute all parameters (energies of localized and CT excitations, their electronic couplings,

and reorganization energies) required to set up a kinetic model. Focusing in particular

on the conversion from initially excited localized excitations in DPP2Py2T or PCBM[60]

to bimolecular charge transfer excitations, it is attractive to consider them by an effective

transfer rate25–27. In the non-adiabatic high temperature or activated crossing limit, Marcus

theory12,28 yields the rate of electronic excitation transfer between an initial LE and final

CT state as

ωLE-CT =
2π

ℏ
|JLE-CT|2√

4πλLE-CTkBT
exp

[
−(∆ELE-CT − λLE-CT)

2

4λLE-CTkBT

]
, (1)

where ∆ELE-CT is the adiabatic energy difference, and λLE-CT the reorganization energy. The

expression also contains the non-adiabatic coupling element, JLE-CT.

Using the such calculated rates in a kinetic model allows us to elucidate for the first time

the distinct pathways and energy barriers for exciton conversion depending on whether the

initial excitation occurs in the donor or acceptor phase. Our calculations reveal a dichoto-

mous behavior in the accessibility of CT states depending on the initially excited component

and provide a microscopic rationale for the observed asymmetry in charge generation. Cru-

cially, the technical developments in quantum-quantum-classical embedding are what make

such a study on this scale possible.

In the following, we will first briefly recapitulate the methodology of projection-based

embedded GW -BSE calculations. Then we focus on simulating and analyzing the excitonic

processes at the DPP2Py2T-PCBM interface, starting with the characterization and identi-

fication of relevant localized and CT excitations in vacuum and with polarizable embedding.

This is followed by estimates of reorganization energies as well as non-adiabatic excitonic

couplings. Finally, we employ these parameters in a kinetic model to simulate the population

dynamics and elucidate the dichotomous exciton conversion pathways.
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Projection-based embedded GW -BSE calculations

Within the framework of perturbation theory with many-body Green’s functions, one first

obtains wavefunctions ϕKS
i (r) and energies εKS

i from Kohn–Sham (KS) DFT29

{
−1

2
∆ + vext(r) + vH(r) + vxc(r)

}
ϕKS
i (r) = εKS

i ϕKS
i (r), (2)

where vext is the external potential, vH the Hartree potential, and vxc the exchange-correlation

potential. In the GW approximation30,31 and under the assumption that the ”true” quasi-

particle QP wave functions ϕQP
i (r) are well approximated by the KS wave functions, the QP

energies can be obtained perturbatively by evaluating

εQP
i = εKS

i +
〈
ϕKS
i

∣∣∣Σ(εQP
i )− vxc

∣∣∣ϕKS
i

〉
. (3)

The self-energy Σ = iGW is calculated in frequency space (with η → 0+ to ensure conver-

gence) as

Σ(r, r′, ω) =
i

2π

∫
G(r, r′, ω + ω′)W (r, r′, ω′)eiω

′η dω′, (4)

from the Green’s function based on the Kohn–Sham solution

G(r, r′, ω) =
∑
m

ϕKS
m (r)ϕKS∗

m (r′)

ω − εKS
m − iηsgn(EF − εKS

m )
(5)

and the screened Coulomb interaction W in the random phase approximation.

W (r, r′, ω) =

∫
ϵ−1(r, r′′, ω)vC(r

′′, r′) d3r′′. (6)

The evaluation of Eq. (6) in turn requires the microscopic frequency-dependent dielectric

function given by

ϵ(r, r′, ω) = δ(r, r′)−
∫

vC(r, r
′′)χ0(r

′′, r′, ω) d3r′′ (7)
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containing the irreducible polarizability χ0:

χ0(r, r
′, ω) =

occ∑
v

unocc∑
c

{
ϕKS∗
v (r)ϕKS

c (r)ϕKS∗
c (r′)ϕKS

v (r′)

ω − (εKS
c − εKS

v ) + iη

−ϕKS
v (r)ϕKS∗

c (r)ϕKS
c (r′)ϕKS∗

v (r′)

ω + (εKS
c − εKS

v )− iη

}
.

(8)

The structure of Eq. (7) allows to separate the full self energy into an explicitly frequency-

dependent correlation part

Σc(r, r′, ω) =
i

2π

∫
G(r, r′, ω + ω′) (W (r, r′, ω′)− vC(r, r

′)) dω′. (9)

and a bare exchange part

Σx(r, r′) =
i

2π

∫
G(r, r′, ω + ω′)vC(r, r

′)eiω
′η dω′

= −
occ∑
v

ϕKS
v (r)ϕKS∗

v (r′)vC(r, r
′).

(10)

Eq. (3) can be rewritten into the fixed-point problem

ω − ωi = Σc
i (ω), (11)

with ωi = εKS
i + ⟨ϕKS

i |Σx − vKS |ϕKS
i ⟩ and ⟨ϕKS

i |Σc(ω) |ϕKS
i ⟩ = Σc

i (ω).

The Bethe–Salpeter equation (BSE), HBSE |ζS⟩ = ΩS |ζS⟩, extends the quasiparticle pic-

ture to charge-neutral excitations that involve excitonic effects (electron-hole pair interac-

tion) in a two-particle excitation. Here, the electron-hole wave functions |ζS⟩ are typically

expressed in a basis of resonant and antiresonant products of single-particle functions

ζS(r, r
′) =

occ∑
v

virt∑
c

AS
vcϕc(r)ϕ

∗
v(r

′) +BS
vcϕv(r)ϕ

∗
c(r

′). (12)
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With that, the BSE explicitly reads in matrix form

 Hres K

−K −Hres


 AS

BS

 = ΩS

 AS

BS

 , (13)

with elements

Hres
vc,v′c′(ω) = Dvc,v′c′ +Kx

vc,v′c′ +Kd
vc,v′c′ (14)

Kcv,v′c′(ω) = Kx
cv,v′c′ +Kd

cv,v′c′ . (15)

and

Dvc,v′c′ = (εc − εv)δvv′δcc′ (16)

Kx
vc,v′c′ =

∫
ϕ∗
c(r)ϕv(r)vC(r, r

′)ϕc′(r
′)ϕ∗

v′(r
′)d3r d3r′ (17)

Kd
vc,v′c′ =

∫
ϕ∗
c(r)ϕc′(r)ϕv(r

′)ϕ∗
v′(r

′) (18)

×W (r, r′, ω = 0)d3r d3r′ . (19)

For a spin-singlet ground state and spin-orbit coupling that is small compared to the electron-

hole coupling, the BSE solutions can be classified as spin-singlet and spin-triplet excitations,

respectively. Exploiting this allows one to find solutions only for the spin type of interest,

e.g., for spin-singlet excitations by using

Hres
vc,v′c′ = Dvc,v′c′ +Kd

vc,v′c′ + 2Kx
vc,v′c′ (20)

Kcv,v′c′ = Kd
cv,v′c′ + 2Kx

cv,v′c′ . (21)
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Projection-based-embedding

Projection-based embedding (PbE) is a formally exact DFT-in-DFT embedding scheme32,

which starts from a standard DFT calculation on the whole system and its atomic orbital

(AO) basis. Using a unitary transformation, the N occupied molecular orbitals from this

calculation are then first transformed into localized orbitals, ϕLO
i (r). By specifying a set of

atoms in the active region A, those localized orbitals with a significant Mulliken population

qAi > qt on these atoms (qt = 0.4 is recommended in Ref. 32) are used to construct an initial

active density nA(r):

nA(r) = 2
N∑
i=1

qAi >qt

∣∣ϕLO
i (r)

∣∣2. (22)

With that, the density of the inactive region B is determined as nB(r) = n(r) − nA(r).

Following this initial partition of the total reference density,nA(r) is considered a variable here

indicated as ñA(r). A self-consistent calculation on the electrons in subsystem A embedded

in the density of region B (A-in-B) employs the Fock matrix

FA-in-B = hA-in-B
core [nA, nB] + J[ñA] +K[ñA] +Vxc[ñ

A], (23)

where J, K, and Vxc are Hartree, exchange, and exchange-correlation matrices depending

on the active density. In contrast, the embedded core Hamiltonian

hA-in-B
core [nA, nB] = hcore + J[nA + nB]− J[nA]

+K[nA + nB]−K[nA]

+Vxc[n
A + nB]−Vxc[n

A] + µPB

(24)

is based on the initially partitioned densities nA and nB and contains the core Hamiltonian

of the full system, the difference between the Hartree, exchange, and exchange-correlation

terms for the full system and the initially chosen active subsystem, respectively. It also
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contains a projection term µPB with the projection operator

PB = SDBS (25)

based on the density matrix DB of the environment and the atomic orbital overlap matrix

S to ensure orthogonality between the occupied states of the environment and the rest of

the active subsystem. Formally, this is exactly the case in the limit µ → ∞. For practical

calculations, using a value of µ = 105Hartree is sufficient32.

A GW -BSE calculation can be performed on an active region using a ground state based

on a PbE-DFT calculation. There are no changes in the procedure for the GW -BSE steps as

outlined above, except that all quantities involved use the embedded Kohn–Sham molecular

orbitals and their energies as a starting point. However, compared to a (fictional) full

GW -BSE calculation, the screening in Eq. (8) lacks contributions of transitions from the

’occupied’ inactive orbitals18. We have also shown previously that the effects of this on

relative excitation energies, as are relevant for, e.g., Marcus rates, are small19 for the kind

of systems studied in this work.

Excitonic processes at a DPP2Py2T-PCBM interface

In Ref. 24 we have reported final structures of a DPP2Py2T-PCBM[60] blend from the

simulated evaporation of chloroform solvent. Of these large-scale structures, we first select

the DPP2Py2T and PCBM[60] with the closest center of mass distance from each fragment

to C60 center-of-mass as they are expected to exhibit the strongest interactions between the

donor and acceptor molecule and potentially the energetically lowest lying CT excitation

energies. As this dimer structure still contains in total 650 atoms, we remove in a first post-

processing step the side chains of DPP2Py2T (excluding one methyl group) and replace

PCBM[60] with a plain C60 at the same position and orientation. This step reduces the

number of atoms to 262, and the corresponding structure is shown in Figure 1.
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(a) (b)

HOMO LUMO

Figure 1: Isosurfaces of the full KS HOMO and LUMO (isovalues ±0.005 a−3
B ) for the

DPP2Py2T-PCBM[60] structures taken from the final results of solvent evaporation ap-
proaches from Ref.24 after removing side chains.

To keep subsequent calculations on the electronic structure tractable, we then use Stuttgart-

Dresden effective core potentials33 with an uncontracted version of the associated optimized

basis set, augmented by polarization functions from the 6-311G** basis34. It was shown

in35 that this basis set offers a good balance between the computational cost of GW -BSE

calculations and the absolute precision. In all calculations, the hybrid functional PBE036

has been used in steps that involve KS-DFT.

With these choices, the number of electrons in the full system is 898, so 449 occupied

levels, with a total basis set size of 4692. Therefore, a full GW -BSE calculation would have

in the most extreme case NRPA = 1905107 transitions in the screening calculations, with the
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BSE product space NBSE = 996004, and the computational cost is enormous.

Inspecting the orbital distributions of HOMO and LUMO for the selected structure

in Figure 1 obtained from full KS-DFT calculations reveals that the HOMO is not delo-

calized throughout the DPP2Py2T chain but remains localized on the part close to the C60

molecule. It should be noted that the LUMO extends slightly from the fullerene to the

polymer chain. Based on these observations, we proceed with a PbE setup, in which the

active region comprises the end 2-mer of DPP2Py2T and the C60, in total 262 atoms.

Interface Excitons

In this chosen setting, there are 644 active electrons, so 322 occupied states in the PbE-

GW -BSE calculation, and the number of transitions in the RPA is 140714. We calculate

quasiparticle energies in one shotG0W0 for the lowest 964 states, using a generalized plasmon-

pole model for the frequency dependence of the dielectric function37,38. The electron-hole

wave function is expanded into product states of 322 occupied with 644 virtual states, leading

to a total dimension of the product space of 207368. The BSE is then solved for the 30

lowest-energy singlet excitations.

First, we notice a variety of different characters in the calculated excitations, not only

between localized excitations (LE) and charge-transfer (CT) excitations but also especially

regarding the finer details of the latter. In Figure 2(a) we show the five typical classes of

excitations we can identify with isosurfaces of electron difference densities (blue: electron

density; red: hole density): localized excitations on the polymer (LEP), localized excitations

on the fullerene (LEF), integer CT excitations with hole on the thiophenes of DPP2Py2T

(CThT
int), integer CT excitations with hole on the DPP unit (CThD

int ), and partial CT excitations

(CTpart). For each of these types, there are, in general, multiple excitations, as can be seen

from the energy level diagram in Figure 2(b), where we marked the energy levels according

to their dominant character. The energy spectrum is relatively dense as all 30 excitations are

found in an energy range from 1.5 eV to 2.4 eV. Focusing first on the lowest energies, as they
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(b) (c)

CTint
hT CTint

hD CTpart

polarizable embedding

Ex
ci

ta
tio

n 
En

er
gy

 (e
V

)

vacuum CTLEP LEF

(a)

LEP

LEF

CTint
hT

CTint
hD

CTpart

Figure 2: Excitons at the DPP2Py2T-PCBM[60] interface as resulting from PbE-G0W0-
BSE calculations. (a) Isosurfaces (±0.0008 ea−3

B ) of the electron difference densities for five
typical types of excitations: localized excitations on the polymer (LEP), localized excitations
on the fullerene (LEF), integer CT excitations with hole on the thiophenes of DPP2Py2T
(CThT

int), integer CT excitations with hole on the DPP unit (CThD
int ), and partial CT excitations

(CTpart). (b) Energy levels of the lowest 30 singlet excitation energies (in eV) in vacuum.
Solid red lines indicate LEP, solid blue lines LEF, green lines different CT type excitation
(solid: CThT

int , dashed: CThD
int , dotted: CTpart), respectively. (c) Final interface excitation

energy levels after polarizable lattice embedding, split for LE and CT type of excitations.
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are more relevant for the excitonic conversion processes, we find that the lowest excitation

with Ω = 1.53 eV is an integer CT excitation with the hole density found on the electron-

donating moieties of the DPP2Py2T polymer. Interestingly, the second-lowest excitation

(1.61 eV) is a partial CT excitation (with a charge transfer of 0.4 e). At Ω = 1.68 eV and

Ω = 1.71 eV we find the two lowest LE in the polymer and C60, respectively. The second

lowest excitation of CThT
int type is obtained at 1.76 eV, above both LE excitations. We note

that the integer CT excitations with the hole localized on a DPP unit of DPP2Py2T are

at much higher energy above 2.1 eV. From experiment10, the optical gaps of DPP2Py2T

and PCBM[60] are reported as 1.70 eV and 1.75 eV, respectively, and our PbE-G0W0-BSE

results are in good agreement with them. Ref. 10 does not state energies of the CT states

explicitly, but the indication from their spectroscopy data seems to suggest an energy offset

between the lowest CT excitation and the two LE of about > 0.4 eV and the existence of

a relevant second CT state roughly 0.3 eV higher than the first one. We assume that the

spectroscopically relevant CT states are the CThT
int type excitation and not the one with

partial charge transfer as they would not lead to charge separation, and for brevity we refer

to the two lowest excitations of that type as CT1 and CT2, respectively. Our calculations

yield a too small offset for CT1 and an energy for CT2 that is, most importantly, above those

of the two LE, very much in contrast to the experimental evidence.

Polarizable embedding

However, it is known from previous studies16,35,39 that charge transfer excitations are es-

pecially sensitive to polarizable molecular environments. To account for such effects, we

follow the idea of Ref.39 and embed the quantum-quantum embed PbE-G0W0-BSE embed-

ded calculation on the DPP2Py2T-PCBM[60] complex in a polarizable lattice model. First,

a regular n × n × n grid is created centered around the complex, with lattice spacing a.

Then, all lattice points within the van-der-Waals surface of the complex are removed. Each

lattice point m is assigned an isotropic dipole polarizability αm, which allows the formation
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of induced dipoles µm = αmFm as the response to the total electric field at the lattice site,

Fm, with contributions from the induced dipoles at the other lattice sites and from the field

of the explicit electronic density of the complex. The total lattice energy of this model is

then

E
(s)
lat =

∑
m

∑
m′ ̸=m

µm(s)(α−1)mm′
µm′(s), (26)

where the index s is used to differentiate between the different responses to different states of

the PbE-G0W0-BSE calculation. This energy follows a variational principle with respect to

the induced moments. A preconditioned conjugate gradient method is used to find the µm(s),

which give the minimum energy. Induced interactions are modified using Thole’s damping

functions40,41 to avoid overpolarization. For the calculation of the electronic density in the

PbE-G0W0-BSE region and the calculation of its electric field, we determine

n(s)(r) = ñA(r) + nB(r) + n(s)
e (r)− n

(s)
h (r). (27)

Here, the electron (hole) contribution of the exciton to the density is computed by integrating

the squared excited-state wavefunction ζS with respect to the hole (electron) coordinates,

i.e.

n(s)
e (r) = n(s)

e (re) =

∫
drh|ζS(re, rh)|2

n
(s)
h (r) = n

(s)
h (rh) =

∫
dre|ζS(re, rh)|2.

(28)

E
(s)
QM = E

(s)
DFT + δsx ΩS. (29)
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The associated total electron density is then evaluated on a grid. The minimized lattice

energy E
(s)
lat is used to update the total energy of the coupled QM/MM system

E
(s)
QM/MM = E

(s)
QM + E

(s)
lat . (30)

To obtain the excitation energy Ω(s) of a complex in the polarizable environment, total

energies of the combined QM/MM system are obtained for both the ground and the excited

state, and their difference defines

Ω(s) = E
(s)
QM/MM − E

(n)
QM/MM. (31)

The resulting quantum-quantum-classical (PbE-G0W0-BSE/lattice) embedded excitation

energies for the localized and charge-transfer excitations are shown in Fig. 2(c). Because the

localized excitations show only relatively small changes in the total dipole moments of the

complex, the lattice embedding effect on their excitation energies is small, especially for the

lowest LE excitations. In contrast, CT states show a significant reduction in their excitation

energy, most notably resulting in CT1 being found 0.28 eV lower in energy and CT2 0.20 eV

lower, respectively, both now below the energy of the two LEs in polymer and fullerene.

With the environment effects, this now holds even for the next CThT
int excitation (CT3).

It is tempting to infer from these alignments of the excitation energy levels something

regarding the respective driving forces of dynamical processes, such as the conversion from

the LE to CT states. However, vertical excitation energies such as those in Fig. 2 alone do

not provide an exhaustive description of such processes.

Reorganization energy estimates and adiabatic energies

Although these calculations will provide crucial information on the different vertical excita-

tion energies, the evaluation of the Marcus rates Eq. (1) further requires the determination of

the respective reorganization energies λLE-CT and in general the adiabatic excitation energies
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instead of the vertical ones. Within the Marcus picture, λLEx−CT = ECT(LEx) − ECT(CT),

where x = P,F (P: polymer, F: fullerene) and Ea(G) represent the total energy of state a in

the geometry of state G. As such, this would require the cumbersome optimization of the

dimer structures in the respective CT and LE states within PbE-G0W0-BSE. Instead, we

approximate the energies from monomer calculations in vacuum, such that

ECT(LEP) = E+
P (P

∗) + E−
F (F

0) (32)

ECT(LEF) = E+
P (P

0) + E−
F (F

∗) (33)

ECT(CT) = E+
P (P

+) + E−
F (F

−) (34)

where the superscripts refer to the state of the monomers (0: ground state, +: cation, −:

anion, ∗: excited). The total energy calculations and geometry optimizations in this step are

performed using (time-dependent) DFT with the def2-tzvp basis set and PBE0 functional.

For DPP2Py2T we perform these calculations on two repeat units because the hole part

of the excited states remains localized on such a smaller subpart of the full structure as in

Figure 1. With this, we obtain λLEP-CT = 0.10 eV, λLEF-CT = 0.24 eV, λCT-LEP
= 0.14 eV,

and λCT-LEF
= 0.21 eV, respectively. In similar spirit, we determine the vertical to adiabatic

energy relaxations of the excited states, Λa = Ea(0)−Ea(A), and find ΛLEP
= ΛLEF

= 0.18 eV

and ΛCT = 0.19 eV, respectively. As a consequence, adiabatic corrections to the vertical

excitation energy differences discussed above hardly influence the driving forces ∆ELE-CT in

Eq. (1).

Non-adiabatic LE-CT couplings

The other required quantities are the non-adiabatic coupling elements between LE and CT

excitons. As the excitations considered so far are solutions of the BSE and therefore adiabatic

states |Φi⟩ of some electronic Hamiltonian Hel, corresponding diabatic states can be obtained

via a unitary transformation. We employ specifically two-state diabatization within the
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Fragment Charge Difference approach, in which the diabatic states are eigenstates of the

so-called fragment charge difference (FCD) matrix42 based on the definition of donor (D)

and acceptor (A) fragments, as ∆Qij = Qij(D) − Qij(A). Fragment charges are typically

obtained from a population analysis of the individual adiabatic densities and the transition

density between them43. For a two-state model, the coupling is given explicitly by

JFCD
12 =

|∆Q12|(Ω2 − Ω1)

((∆Q11 −∆Q22)2 + 4∆Q2
12)

1/2
. (35)

Due to the near-degeneracy of the three lowest fullerene excitations, we consider the

coupling elements between each of these with the three lowest CT excitations. For the

polymer, a single LE is used. The resulting squared coupling elements for the DPP2Py2T-

PCBM[60] system are given in Table 1. For all twelve transitions, the values range from

1.1 · 10−3 (eV)2 (for the coupling between the lowest LE in fullerene and the lowest CT

excitation) to 1.3 · 10−6 (eV)2 (for the coupling between the lowest LE on fullerene and the

second lowest CT excitation). In particular, for the coupling between the lowest LE on

the polymer with the CT states, and the respective one of the lowest LE on fullerene, we

find a difference of less than one order of magnitude. Overall, the differences among the

squared coupling elements alone do not seem to indicate a clear underlying reason for the

experimentally observed differences in charge generation.

Rates and Activation Energies

Bringing excitation energies, reorganization energies, and coupling elements together then

produces quantitative predictions for the LE to CT transition rates (evaluated at room

temperature) as given in Table 1. It can be seen that most of the rates are in the range

> 1012 s−1, with the notable exception of the rate for the LEP-CT1 (1.1 · 109 s−1) and LEF1-

CT2 (3.2 · 1010 s−1) transitions, respectively. The latter can be traced back to the low value

of the associated coupling element. For the former, the situation is less clear, as the coupling
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Table 1: Transition specific parameters for the LE to CT transitions at the
DPP2Py2T-PCBM[60] interface.

∆E/eV J2/(eV)2 ω/s−1 Eact/eV
LEP-CT1 0.41 3.9 · 10−4 1.1 · 109 0.25
LEP-CT2 0.11 5.7 · 10−5 3.0 · 1012 0.00
LEP-CT3 0.03 4.2 · 10−5 1.4 · 1012 0.01

LEF1-CT1 0.45 1.1 · 10−3 6.1 · 1012 0.05
LEF1-CT2 0.15 1.3 · 10−6 3.2 · 1010 0.01
LEF1-CT3 0.07 5.5 · 10−5 5.8 · 1011 0.03

LEF2-CT1 0.46 6.4 · 10−4 3.0 · 1012 0.05
LEF2-CT2 0.16 3.4 · 10−4 9.1 · 1012 0.01
LEF2-CT3 0.07 2.2 · 10−5 2.5 · 1011 0.03

LEF3-CT1 0.49 1.2 · 10−3 3.4 · 1012 0.07
LEF3-CT2 0.18 2.2 · 10−3 6.7 · 1013 0.01
LEF3-CT3 0.10 1.6 · 10−4 2.6 · 1012 0.02

element is not significantly smaller and the driving force ∆E is large. To scrutinize the origin

of this low rate, we consider in addition the activation energy within with Marcus picture

Eact = (∆E − λ)2/(4λ) (36)

and also list the results in Table 1. While most of the transitions show small activation

energies of 0.05 eV or less, the LEP-CT1 is a notable exception showing an activation energy

of 0.25 eV. Such a high activation energy is likely the reason for the observed small rate for

transitions from the lowest polymer excitation to the lowest CT excitation.

Dynamical Model

To gain insight into conversion dynamics, we employ a kinetic model that describes the time

evolution of the probabilities of the state population P(t) via a system of ordinary differential

equations of the kind

d

dt
P(t) = WP(t), (37)
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where PT (t) = [PLEP
(t),PT

LEF
(t),PT

CT(t)] and
∑

i Pi(t) = 1 for all t. The entries on the

off-diagonals of the matrix W correspond to the respective Marcus rates for LE to CT and

CT to LE transitions, respectively, as we do not consider direct transitions between different

LE or different CTs. The diagonals of W contain the negative of the sum of all other column

entries, i.e., Wii = −
∑

j Wji.

We consider two different scenarios: a 5-state model in which we only take the lowest

LE on the fullerene into account, and a 7-state model in which we take the three lowest

into account due to their near-degeneracy. For each of these scenarios, we prepare the

initial populations to mimic the initial excitations of LEs on polymer and fullerene, re-

spectively, i.e., by setting PT
P(t = 0) = [1, 0, . . . , 0] for polymer excitation,PT

F(t = 0) =

[0, 1, 0, . . . , 0] for fullerene excitation in the model with a single fullerene level, and PT
F(t =

0) = [0, 0.47, 0.36, 0.13, 0, 0, 0] (Boltzmann populations) in the model with three fullerene

LEs. For each of these initial populations, we numerically study the evolution of Eq. (37)

for tmax = 1ns using the backward Euler scheme44 with 105 steps. We note that (i) as

we can only model the LE-to-CT transitions (and vice versa) and not the subsequent pro-

cesses of excitation transferring away from the interface and (ii) we only consider a fixed

molecular geometry, we limit ourselves to the ns timescale in total and expect the relevant

fast initial decay processes from LE to CT states to occur on the timescales of several ps.

Within this model, by construction in the long-time limit, the system will fully populate

CT1 as equilibrium state. Hence, the focus lies on the short-time behavior of the population

dynamics.

Figure 3 shows the time-dependent state probabilities obtained for the 5-state (top row)

and 7-state model (bottom row), respectively, for the two initial excitation scenarios. Con-

sidering first the dynamics in the 5-state model after polymer excitation in Figure 3(a) we

observe that the polymer LE depopulates within one ps. Initially, CT2 and to a lesser extent

CT3 become populated. On the ps timescale, there is hardly any population of the lowest

CT state. At longer times, the two higher energy CT states begin to depopulate towards
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Figure 3: Results of the state dynamics in the 5-state-model (top row) and 7-state model
(bottom row), respectively: Time-dependent state probabilities (a,d) after excitation of the
polymer; after excitation of the fullerene (b,e). Expected exciton binding energy difference
∆EB to the binding energy of pure CT1 (c,f).

CT1, approaching the equilibrium state at 1 ns. In contrast, while the dynamical behavior

after fullerene excitation exhibits a similar decay of the respective LE, it is almost exclu-

sively CT1 that becomes populated within the first ps. To scrutinize how these two different

dynamics translate into the experimentally observed different charge generation, we consider

the effective exciton binding energies in the CT states. For each state, the binding energy is

the difference between the CT excitation energy and the energy ECS or the charge separated

state, that is, Ei
B = ECS − ΩCTi

. As ECS is not easily calculable, we instead consider the

reduction in the effective exciton binding energy compared to the binding energy of CT1 in
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the time-dependent expectation value of the CT energy as

∆EB(t) =
3∑

i=1

PCTi
(t)ΩCTi

− ΩCT1 . (38)

We present in Figure 3(c) the relative binding energy reduction over time for the excita-

tion of polymer (red) and fullerene (blue), respectively. The gray shaded area indicates the

fast picosecond timescale we consider relevant for the initial decay of the LE to CT states

and subsequent generation of free charges. It is clearly visible that due to the different pop-

ulation dynamics the effective CT binding energy is 0.27 eV lower after polymer excitation

compared to fullerene excitation. In other words, relative to an initial excitation of the poly-

mer, an additional driving force of nearly 0.3 eV is needed to separate the electron-hole pair

after fullerene excitation. Ultimately, from our embedded PbE-G0W0-BSE calculations, we

can trace the dichotomous nature of exciton conversion at the DPP2Py2T-PCBM interface

back to the difference in which CT state becomes populated depending on the initial LE

formation, which again is a consequence of the large activation energy needed to populate

the more strongly bound CT1 state from the polymer.

Finally, we briefly comment on the results obtained from the 7-state model, showing the

time-dependent populations and effective binding energy reduction in Figure 3(d)-(f). The

main difference to the 5-state model concerns the populations after fullerene excitation in

panel (e). Here, one can see that on the relevant timescale of ps, the populations of CT1 and

CT2 evolve roughly similarly. From the contribution of the population of the less strongly

bound CT2, the effective binding energy reduction as defined by Eq. (38) after fullerene

excitation is stronger compared to the result in the 5-state model. As a consequence, the

additional driving force for charge separation compared to polymer excitation is reduced by

about 0.1 eV. Importantly, the details of the underlying processes and the conclusions re-

garding the origin of the dichotomous exciton conversion at the DPP2Py2T-PCBM interface

are the same in both models.
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Summary

We employed projection-based embedded GW -Bethe–Salpeter equation (PbE-GW -BSE)

calculations to elucidate the microscopic origins of dichotomous exciton conversion at a

DPP2Py2T-PCBM interface. Our analysis reveals that depending on whether the donor or

acceptor is initially photoexcited, distinct charge-transfer (CT) states are preferentially pop-

ulated. Specifically, donor excitation leads predominantly to higher-lying, less tightly bound

CT states, while acceptor excitation facilitates direct population of the lowest-energy CT

state. This behavior arises from a markedly larger activation energy barrier for exciton con-

version from the polymer to the most strongly bound CT state. Kinetic modeling confirms

that these differences manifest on sub-nanosecond timescales, resulting in a lower effective

exciton binding energy following donor excitation. These findings provide a mechanistic un-

derstanding of the experimentally observed dichotomous charge generation in organic solar

cells and underscore the importance of initial excitation conditions in determining device

performance. Crucially, these insights were made possible by recent technical advances in

quantum-quantum-classical embedding, which enable many-body Green’s function calcula-

tions on interfacial systems of realistic molecular complexity.
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Pfleger, J.; Vondráček, M.; Šimek, D. et al. Diketopyrrolopyrrole-Based Organic Solar

Cells Functionality: The Role of Orbital Energy and Crystallinity. J. Phys. Chem. C

2019, 123, 11447–11463.

(10) Hendriks, K. H.; Wijpkema, A. S. G.; van Franeker, J. J.; Wienk, M. M.; Janssen, R.

A. J. Dichotomous Role of Exciting the Donor or the Acceptor on Charge Generation

in Organic Solar Cells. J. Am. Chem. Soc. 2016, 138, 10026–10031.

(11) Marcus, R. A. On the Theory of Oxidation–Reduction Reactions Involving Electron

Transfer. I. J. Chem. Phys. 1956, 24, 966–978.

(12) Marcus, R. A. Electron Transfer Reactions in Chemistry. Theory and Experiment. Rev.

Mod. Phys. 1993, 65, 599–610.
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