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Abstract. We prove short-time existence and uniqueness of solutions to the initial-

value problem associated with a class of time-dependent Kohn–Sham equations coupled

with Newtonian nuclear dynamics, combining Yajima’s theory for time-dependent

Hamiltonians with Duhamel’s principle, based on suitable Lipschitz estimates. We

consider a pure power exchange term within a generalisation of the so-called Local

Density Approximation (LDA), identifying a range of exponents for the existence and

uniqueness of H2 solutions to the Kohn–Sham equations.
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1. Introduction

1.1. Main result

In this paper we study the existence and uniqueness of solutions to the system

iψ̇k = −1
2
∆xψk −

Nnuc∑
K=1

ZK

| · −XK |
ψk+

(
1

| · |
∗ ρ

)
ψk + λρq−1ψk,

ẌK =
ZK

MK

[ ∫
x−XK

|x−XK |3
ρ(x)dx+

Nnuc∑
L=1,L̸=K

ZL
XK −XL

|XK −XL|3

]
,

(1.1a)

(1.1b)

where Nel, Nnuc ∈ N, ZK ∈ N, MK ≥ 0, λ ∈ R, q > 1 are given, and k = 1, . . . , Nel,

K = 1, . . . , Nnuc.

We will use the short-hand notation ψ = (ψ1, . . . , ψNel
) and X = (X1, . . . , XNnuc) ∈

R3Nnuc , with

ψk = ψk(x, t), XK = XK(t), x ∈ R3, t ≥ 0.

In the above equations, for all ψ(·) : [0, τmax) ! H2(R3;CNel) we set

ρ =

Nel∑
k=1

|ψk|2.

Moreover, for all X ∈ R3Nnuc and k = 1, . . . , Nel, we define

(H[X, ρ]ψ)k := −1
2
∆xψk −

Nnuc∑
K=1

ZK

| · −XK |
ψk+

(
1

| · |
∗ ρ

)
ψk + λρq−1ψk. (1.2)

The dynamics of the elements X(·) : [0, τmax) ! R3Nnuc is driven by the acceleration

function A = A1 + A2, whose components are defined as

A1
K [ρ](X) :=

ZK

MK

∫
x−XK

|x−XK |3
ρ(x)dx, A2

K(X) :=
ZK

MK

Nnuc∑
L=1,L̸=K

ZL
XK −XL

|XK −XL|3
.

(1.3)

The main result of this paper is the following.
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Theorem 1.1. Let q ≥ 7/2 and λ ∈ R. Further, let ψ0 ∈ H2(R3;CNel), V 0 ∈ R3Nnuc

and X0 ∈ R3Nnuc be given, with X0
K ̸= X0

L for K ̸= L.

Then, there exists τ > 0 such that the initial-value problem associated with the

system (1.1) with ψ(0) = ψ0, X(0) = X0 and Ẋ(0) = V 0 has a unique solution

(ψ,X) ∈ X (τ), where

X (τ) := C1([0, τ ];L2(R3;CNel)) ∩ C0([0, τ ];H2(R3;CNel))× C2([0, τ ];R3Nnuc).

1.2. Physical motivation

Problems such as (1.1) describe the nonadiabatic dynamics of molecular, spin-

unpolarised systems involving an even number Nel ∈ 2N of electrons and Nnuc ∈ N
nuclei with masses M1, . . . ,MNnuc and charges Z1, . . . , ZNnuc . See e.g. [2, 15, 18, 20–22,

27, 28, 31], which form a sample of the extensive body of literature on both physical

and mathematical aspects of the so-called Density-Functional Theory (DFT), which

comprises the framework of the Time-Dependent Kohn–Sham (TDKS) equations, given

in (1.1a). These equations, which using (1.2) can be written as

iψ̇ = H[X, ρ]ψ, (1.4)

describe the electronic evolution in terms of single-particle wave functions ψk, known in

the physical literature as the Kohn–Sham (KS) orbitals. The TDKS equations have been

extensively considered as an approximation to the time-dependent Schrödinger equation,

which reduces the electronic dynamics to a single-particle description based on the KS

density function ρ. For convenience, we briefly recall the physical interpretation of each

potential in the KS Hamiltonian H from (1.2), which can be written as

H[X, ρ] = −1
2
∆x + Vext[X] + VHxc[ρ], VHxc := VH + Vx + Vc. (1.5)

The different terms appearing in (1.5) are defined as follows. The electrostatic potential

Vext[X](x) := −
Nnuc∑
K=1

ZK

|x−XK |

is an external potential, generated by the nuclei, which represents the Coulombic

nucleus-electron interactions. The Hartree potential

VH[ρ] := | · |−1 ∗ ρ

corresponds to the Coulombic electron-electron interactions. The remaining term, the

exchange-correlation potential Vx + Vc, is not explicitly known: in the Local-Density

Approximation (LDA) introduced by Kohn & Sham in [20], for the exchange potential Vx
an approximation based on the homogeneous electron gas approximation is chosen [26].

In this paper, we study a generalisation of this exchange potential, of the form

Vx[ρ] := λρq−1,
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where λ ∈ R, q > 1. Hereafter, we set the so-called correlation potential to zero, namely

Vc ≡ 0,

and write accordingly VHxc = VHx. In most cases, there is no closed form for the

correlation potential, and one has to resort to numerical presentations, which are too

complex to investigate in the same manner we handle the other terms. See e.g. [2, 19]

and references therein, where the case Vc ̸≡ 0 is considered in time-independent, resp.

specific time-dependent settings.

In the coupling of (1.4) with the equations (1.1b) describing the nuclear dynamics,

which using (1.3) can be written as

Ẍ = A[ρ](X), (1.6)

we apply the so-called mean-field, or Ehrenfest dynamics approach, see e.g. [30], [24,

§2.3], [1, §V] and [16, §2.1], based on factorising the total wave function into a product

of fast (electronic) and slow (nuclear) particle parts. In this nonadiabatic mixed

quantum-classical dynamics method, we use a point-nuclei rather than the Born–

Oppenheimer approximation, which would assume some requirements for the system

under consideration. This way, we can neglect the quantum nature of the nuclei, since

these are much heavier than electrons, and consider them as classical point particles.

This mean-field description can be understood as a semi-classical limit of the time-

dependent self-consistent field (or Hartree) method, from which the Hamilton–Jacobi

equation (equivalent to Newton’s law of motion) for the nuclei can be derived. According

to this description the nuclei move subject to a single effective potential of Hellman–

Feynman type, corresponding to an average over quantum states:

MKAK [ρ](X) = −∇XK
W [ρ](X) for all K,

where

W [ρ](X) := (Vext[X], ρ)L2(R3) +Wnn(X),

Wnn(X) := 1
2

Nnuc∑
K,L=1,K ̸=L

ZKZL

|XK −XL|
, (1.7)

describe the interaction of the electrons with the external potential, and the Coulombic

internal nuclear interactions by Wnn. Note that the exchange term does not appear

in the coupling of (1.4) with (1.1b), as it does not describe electrostatic interaction,

but interactions between the electrons. Also, we note that our equations (1.1) can be

regarded as a Hamiltonian system. The total energy E associated with this system is

given by

E[X,ψ] := Ekin[X,ψ] +W
[
|ψ|2

]
(X) + EH

[
|ψ|2

]
+ Ex

[
|ψ|2

]
,
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where

Ekin[X,ψ] :=
1
2

Nnuc∑
K=1

MK

∣∣ẊK

∣∣2 + 1
2

Nel∑
k=1

∫
|∇xψk(x)|2dx

is the kinetic energy of the system. The other terms are potential energies:

EH

[
|ψ|2

]
:= 1

2

∫∫
|ψ(x)|2|ψ(x′)|2

|x− x′|
dx dx′

is the Hartree electrostatic self-repulsion of the KS electron density, and

Ex

[
|ψ|2

]
:=

λ

q

∫
|ψ(x)|2qdx

is the exchange energy, whose functional derivative coincides with the exchange

potential Vx. The total energy E as well as ∥ψ∥L2(R3;CNel ) are quantities which are

conserved under the dynamics, as is customary for Hamiltonian systems.

Cancès & Le Bris [8] have considered similar electronic evolution equations coupled

with classical nuclear dynamics consistent with the mean-field Ehrenfest approach. They

studied a system involving the Hartree–Fock equations:

iψ̇HF = HHF[X,ψHF]ψHF,

Ẍ = A[ρ](X),

(1.8a)

(1.8b)

where ρ =

Nel∑
k=1

|ψHF
k |2, the Hartree–Fock Hamiltonian is defined as

HHF[X,ψHF] := −1
2
∆x + Vext[X] + VH[ρ] + V HF

x [ψHF],

and

(V HF
x [ψHF]ψHF)k := −

Nel∑
ℓ=1

(ψHF
ℓ ψHF

k ∗ | · |−1)ψHF
ℓ ,

is known as the Hartree–Fock exchange potential. Here, ψHF
k are single-particle wave

functions. In [8], the result of global-in-time existence and uniqueness of solutions

to (1.8) in H2 is based on the celebrated result by Yajima [32] on the existence of

propagators associated with linear, time-dependent Hamiltonians. The proof in [8]

consists of two main steps: a fixed-point argument to show existence of short-time

solutions, based on Lipschitz estimates in H2(R3;CNel), and a Grönwall-type argument

which relies on energy conservation, conservation of the L2(R3;CNel) norm of ψHF, and

estimates of the solutions ψHF in the H2(R3;CNel) norm.

To the best of our knowledge, since the paper by Cancès & Le Bris [8], only a few

contributions deal with the coupling of a system describing electronic evolution with

nuclear dynamics; this is the case, for instance, of [3], where existence and regularity
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questions have been studied for a similar system, in the case λ = 0. Considerable

attention has also been devoted to Schrödinger–Poisson-type equations, which include

the Hartree–Fock and the TDKS equations: see for instance [2,5–7,10,11,14,19,23,33].

We also mention [29], where existence, uniqueness, and regularity questions are

investigated for TDKS equations set on bounded space domains, in relation to control

problems. None of the contributions listed above have considered the combined nuclear

and electronic dynamics as described in our system.

1.3. Paper outline

The paper is organised as follows.

In §2, we recall the relevant results from Yajima [32] on the construction and

properties of a family of propagators

U(t, s) : L2(R3;CNel) −! L2(R3;CNel),

with t, s ∈ [0,Θ], associated with the linear parts of the KS Hamiltonians H[X(t), ρ] for

t ∈ [0,Θ], with 0 < Θ <∞, and some results from Cancès & Le Bris [8] on the bounds

on the operator norms of these propagators.

In §3 and §4 we define bounded regions Bel(τ) and Bnuc(τ), designed to seek solutions

to (1.4, resp. 1.6) on a time interval [0, τ ], and the mappings

N : Bel(τ) −! Bnuc(τ) ∩ C2([0, τ ];R3Nnuc), E : Bnuc(τ) −! Bel(τ),

which connect these solutions.

In §5, in view of a Duhamel-type argument developed in later sections, we state

and prove some Lipschitz estimates on the nonlinear mapping

ψ 7−! VHx[|ψ|2]ψ.

The restriction q ≥ 7/2 arises from these estimates.

Next, we prove in §6 that for some τ > 0 and any fixed ψ ∈ Bel(τ), the Cauchy

problem (1.6) has a unique solution X ∈ Bnuc(τ) ∩ C2([0, τ ];Bδ(X
0)), with Bδ(X

0)

denoting a closed ball of radius δ centred around X0, and the mapping N [ψ] = X is

bounded is bounded with respect to the C1([0, τ ];R3Nnuc) topology, and continuous as a

map from C0
(
[0, τ ];L2(R3;CNel)

)
to C0

(
[0, τ ];R3Nnuc

)
. We construct these solutions as

fixed points of the mapping

T [X](t) = X0 + V 0t+

∫ t

0

(t− σ)A(σ,X(σ))dσ.

We stress that here A depends on ψ.

Further, we prove in §7 that for q ≥ 7/2, some τ > 0 and any fixed X ∈ Bnuc(τ),

the Cauchy problem (1.4) has a unique solution ψ ∈ Bel(τ), and the mapping E [X] = ψ
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is bounded and continuous as a map from C0
(
[0, τ ];R3Nnuc

)
to C0

(
[0, τ ];L2(R3;CNel)

)
..

Similarly, solutions are constructed as fixed points of the mapping

F [ψ](t) = U(t, 0)ψ0 − i

∫ t

0

U(t, σ)VHx[ρ]ψ(σ)dσ.

Using results from §2, §5 and Yajima [32], we show that fixed points of this mapping

are strong solutions to (1.4).

We then prove in §8 that for q ≥ 7/2 and some τ > 0, the initial-value problem asso-

ciated with the problem (1.1) has a solution (ψ,X) in X (τ). To this end, we construct

the mapping

K : Bnuc(τ) −! Bnuc(τ), K = I ◦ N ◦ E ,

where

I : Bnuc(τ) ∩ C2([0, τ ];R3Nnuc) ↪−→ Bnuc(τ)

is the inclusion into Bnuc(τ); we then apply a Schauder-type argument to K, in the

spirit of [8]. Unlike in [8], we equip Bnuc(τ) with a weaker C0-topology, which takes into

account nuclear repulsion. The remainder of this section is devoted to uniqueness.

Finally, the Appendix Appendix A is devoted to the notation we systematically

use, comprising that for the norms on different function spaces, such as H2(R3;CNel)

and Lorentz spaces.

1.4. Related questions

Theorem 1.1 can be generalised to LDA-type nonlinearities which are either sufficiently

smooth at the origin ρ = 0, or enjoy H2-Lipschitz estimates like those obtained in

this paper. This is the case, for instance, of λ1ρ
q1−1 − λ2ρ

q2−1 with q1, q2 ≥ 7/2 and

λ1, λ2 > 0, which share a similar structure with nonlinearities involved in various well-

known models in quantum mechanics, such as the Thomas–Fermi–Dirac–VonWeizsäcker

model [22]. For this particular example, working with the same functional setting, it

would be interesting to explore, for certain ranges of exponents, the occurrence of either

a blow-up at finite time in the norm of the solutions or the existence of maximal solutions

defined for all t ≥ 0: see [12, 13].

Also, it would be interesting to identify a functional setting (and a possibly different

proof) — the most natural one would certainly be H1 — in order to capture the

physically relevant exponent q = 4/3, which is not covered in the present work. We

wonder if a suitable regularisation ‘at the origin’ of the LDA term for q = 4/3 would

allow to cover this case as a result of a limit process.
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2. Preliminaries

The first observation in this section is that the Newton potential

G[ϕ1, ϕ2] := (ϕ1 ϕ2) ∗ | · |−1, (2.1)

solution to

−∆xG = 4πϕ1ϕ2, (2.2)

defines a mapping H2 ×H2 −! W 2,∞.

Lemma 2.1. For all i, j ∈ {1, 2, 3} and every x ∈ R3 it holds that

|G[ϕ1, ϕ2](x)| ≲ ∥ϕ1∥L2∥∇xϕ2∥L2 , (2.3)

|∂iG[ϕ1, ϕ2](x)| ≲ ∥∇xϕ1∥L2∥∇xϕ2∥L2 , (2.4)

|∂ijG[ϕ1, ϕ2](x)| ≲ ∥ϕ1∥H2∥ϕ2∥H2 . (2.5)

Proof. By Hardy’s inequality (A.2) and the properties

∂iG[ϕ1, ϕ2] = (ϕ1ϕ2) ∗ (xi|x|−3),

∂ijG[ϕ1, ϕ2] = [(∂iϕ1)ϕ2 + ϕ1(∂jϕ2)] ∗ (xi|x|−3),

for all i, j and x ∈ R3, it holds

|G[ϕ1, ϕ2](x)| = |(ϕ1, | · −x|−1ϕ2)L2 | ≲ ∥ϕ1∥L2∥∇xϕ2∥L2 ,

|∂iG[ϕ1, ϕ2](x)| ≤ (| · −x|−1|ϕ1|, | · −x|−1|ϕ2|)L2 ≲ ∥∇xϕ1∥L2∥∇xϕ2∥L2 ,

|∂ijG[ϕ1, ϕ2](x)| ≤ (| · −x|−1|∂iϕ1|, | · −x|−1|ϕ2|)L2 + (| · −x|−1|ϕ1|, | · −x|−1|∂jϕ2|)L2

≲ ∥∇x∂iϕ1∥L2∥∇xϕ2∥L2+∥∇xϕ1∥L2∥∇x∂jϕ2∥L2

≲ ∥ϕ1∥H2∥ϕ2∥H2 .

This concludes the proof.

The following lemma generalises [8, Lemma 3], and provides us with useful bounds

on the functions fkℓ
K : R3Nnuc −! C3 defined as

fkℓ
K := ∇XK

(ψk, Vext[X]ψℓ)L2 ,

namely,

fkℓ
K (X) = −ZK

(
ψk,

· −XK

| · −XK |3
ψℓ

)
L2
.

Note that fkℓ
K effectively only depends on the position XK of the K-th nucleus, and that

A1
K = − 1

MK

Nel∑
k=1

fkk
K .
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Lemma 2.2. For all ψk, ψℓ ∈ H2, it holds that∥∥fkℓ
K

∥∥
L∞(R3Nnuc ;C3)

≲ ∥∇xψk∥L2∥∇xψℓ∥L2 ,

and ∥∥Dfkℓ
K

∥∥
L∞(R3Nnuc ;C3×3)

≲ ∥ψk∥H2∥ψℓ∥H2 . (2.6)

Here, D is the gradient in R3Nnuc . In addition, we have that fkℓ
K ∈ W 1,∞ ∩C1 for all K.

Proof. By Lemma 2.1, G[ϕ1, ϕ2] ∈ W 2,∞ for all ϕ1, ϕ2 ∈ H2. Using

fkℓ
K (X) = −ZK∇xG[ψk, ψℓ](XK),

we get ∥∥fkℓ
K

∥∥
L∞(R3Nnuc ;C3)

≲ ∥∇xψk∥L2∥∇xψℓ∥L2 ,∥∥Dfkℓ
K

∥∥
L∞(R3Nnuc ;C3×3)

≲ max
XK∈R3

∥∥D2G[ψk, ψℓ](XK)
∥∥
C3×3 ≲ ∥ψk∥H2∥ψℓ∥H2 .

This shows that fkℓ
K ∈ W 1,∞. By Sobolev’s embedding in Hölder spaces, ψkψℓ ∈ C0,α

loc .

Using (2.1) from Lemma 2.1 and standard elliptic regularity, it holds thatG[ψk, ψℓ] ∈ C2,

by which fkℓ
K ∈ C1.

In what follows we recall some results on the existence of the propagator for

the linear parts of the Kohn–Sham-type Hamiltonian H[X(t), ρ] for t ∈ [0,Θ], with

0 < Θ <∞, for a given nuclear configuration X ∈ C1([0,Θ];R3Nnuc).

For some X ∈ C1([0,Θ];R3Nnuc) and 0 < Θ < ∞ fixed, we consider the family of linear

time-dependent Hamiltonians {H lin(t), t ∈ [0,Θ]} ⊂ L(H2(R3;CNel);L2(R3;CNel)) :

H lin(t) := −1
2
∆x + V (t), (2.7)

where

V (t, ·) := Vext[X(t)], (2.8)

Note that H lin(t) is the linear part of H[X(t), ρ], and that for any fixed t is a self-

adjoint operator on L2(R3;CNel). We emphasise that these expressions depend on the

time evolution of the nuclear configuration X. This family of Hamiltonians is naturally

associated with the Cauchy problem

iψ̇ = H lin(t)ψ, ψ(s) = ψ0,

on a time interval [0,Θ], for some s ∈ [0,Θ]. Equivalently, we can formulate the above

as an integral equation

ψ(t) = U0(t− s)ψ0 − i

∫ t

s

U0(t− σ)V (σ)ψ(σ)dσ, (2.9)
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where

U0(t) := exp(it∆x/2)

is the free propagator (i.e., the propagator for the free particle), which is an evolution

operator on H2(R3;CNel). The following lemma is in the spirit of [8, Lemma 4], which

in turn is based on [32, Cor. 1.2. (1)–(2)–(4), Thm. 1.1. (2) & Thm. 1.3. (5)–(6)].

Lemma 2.3. For the family of Hamiltonians {H lin(t), t ∈ [0,Θ]}, there exists a unique

family of linear evolution operators

U(t, s) : L2(R3;CNel) −! L2(R3;CNel), t, s ∈ [0,Θ],

such that

ψ(t) := U(t, s)ψ0

solves (2.9) on [0,Θ] for all ψ0 ∈ H2(R3;CNel), with

∥ψ(t)∥L2(R3;CNel ) = ∥ψ0∥L2(R3;CNel )

for all t ∈ [0,Θ]. Moreover, this family enjoys the following properties:

(i) U(t, s)U(s, r) = U(t, r) for all t, s, r ∈ [0,Θ].

(ii) U(t, t) = Id for all t ∈ [0,Θ].

(iii) U(t, s) is a unitary operator on L2(R3;CNel) for all t, s ∈ [0,Θ]:

∥U(t, s)ψ∥L2(R3;CNel ) = ∥ψ∥L2(R3;CNel ).

(iv) For all f ∈ L2(R3;CNel), ((t, s) 7−! U(t, s)f) : [0,Θ]2 −! L2(R3;CNel) is a

continuous mapping.

(v) U(t, s) ∈ L(H2(R3;CNel)) for all (t, s) ∈ [0,Θ]2.

(vi) For all f ∈ H2(R3;CNel), ((t, s) 7−! U(t, s)f) : [0,Θ]2 −! H2(R3;CNel) is a

continuous mapping.

(vii) For all f ∈ H2(R3;CNel), the mapping (t, s) 7−! U(t, s)f is an element in

C1([0,Θ]2;L2(R3;CNel)), and the following equations hold in L2(R3;CNel):

i
∂

∂t
(U(t, s)f) = H lin(t)U(t, s)f,

i
∂

∂s
(U(t, s)f) = −U(t, s)H lin(s)f.

(viii) For all γ > 0, there is a constant BΘ,γ of the form

BΘ,γ = A1+CγΘ
γ , Aγ, Cγ > 0,

such that if

∥Ẋ∥C0([0,Θ];R3Nnuc ) ≤ γ,

then for all t, s ∈ [0,Θ]

∥U(t, s)∥L(H2(R3;CNel )) ≤ BΘ,γ.
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Proof. The result in the case Nel = Nnuc = 1 has been proved in [8, Lemma 4]. We

observe that the argument in [8] is robust enough to be easily adapted to our more

general context of arbitrary Nel, Nnuc ∈ N. Indeed, since the linear Hamiltonians

H lin(t) do not depend on an electronic configuration ψ, and act on every element ψk

independently, the result for general Nel follows from the case Nel = 1. In particular,

properties (i)—(vii) can be justified with an obvious adaptation of the case Nel = 1

proved in [32, Cor. 1.2. (1)–(2)–(4), Thm. 1.1. (2) & Thm. 1.3. (5)–(6)]. We note

that property (viii) can be also justified arguing exactly as for the case Nel = Nnuc = 1

in [8, Lemma 4], observing that our additional terms in the expression of V can be

estimated in the same way.

3. Definition of the electronic feasible region Bel

Let τ > 0 be finite and define

γ := |V 0|+ 1, (3.1)

where the term “+1” allows us to cover the case V 0 = 0. Let us consider Bτ,γ as given

in Lemma 2.3 with Θ = τ, and where γ is as above. We can therefore define the radius

α(τ) := 2Bτ,γ∥ψ0∥H2(R3;CNel )

for the ball centred around the initial configuration ψ0 ∈ H2(R3;CNel):

Bα(ψ
0) = {ψ ∈ H2(R3;CNel)|∥ψ − ψ0∥H2(R3;CNel ) ≤ α}.

Finally, let us define the electronic feasible region for the time interval [0, τ ] as

Bel(τ) := {ψ ∈ C1([0, τ ];L2(R3;CNel)) ∩ C0([0, τ ];Bα(ψ
0)) | ψ(0) = ψ0},

equipped with the C0([0, τ ];L2(R3;CNel)) norm, which is designed to contain solutions

ψ to the Cauchy problem associated with (1.4) with ψ(0) = ψ0 on the time interval

[0, τ ], which we may call feasible electronic configurations.

4. Definition of the nuclear feasible region Bnuc

For all 0 < ε < minK ̸=L{|X0
K −X0

L|}, we set

δ(τ) :=
minK ̸=L{|X0

K −X0
L|} −min{δrep(τ), ε}
2

> 0,

where

δrep(τ) :=

[( Nnuc∑
K=1

MK

∣∣V 0
K

∣∣2 + Nnuc∑
K,L=1,
L̸=K

ZKZL∣∣X0
K −X0

L

∣∣
)
eτ

+ 16
Nnuc∑
K=1

Z2
K

MK

∥ψ∥2
C0([0,τ ];H1(R3;CNel ))

(
eτ − 1

)]−1
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arises from a repulsion argument, given in the lemma below. Note that ε > 0 ensures

the strict positivity of δ(τ), which defines the radius for the ball centred around the

initial configuration X0 ∈ R3Nnuc , with X0
K ̸= X0

L for K ̸= L:

Bδ(X
0) = {X ∈ R3Nnuc||X −X0| ≤ δ}.

Then, by the triangle inequality, for all X ∈ Bδ(X
0) and K ̸= L, it holds that

|XK −XL| ≥ min
K′ ̸=L′

∣∣X0
K′ −X0

L′

∣∣− 2
∣∣X −X0

∣∣
≥ min

K′ ̸=L′

∣∣X0
K′ −X0

L′

∣∣− 2δ(τ) = min{δrep(τ), ε} > 0.

We define the nuclear feasible region for the time interval [0, τ ] as

Bnuc(τ) := {X ∈ C1([0, τ ];Bδ(X
0)) |X(0) = X0, Ẋ(0) = V 0, ∥Ẋ∥C0([0,τ ];R3Nnuc ) ≤ γ}

with γ as in (3.1). This region is equipped with the C0([0, τ ];R3Nnuc) topology, and

is designed to contain short-time solutions X to the Cauchy problem associated with

(1.6) with X(0) = X0, Ẋ(0) = V 0 on the interval [0, τ ], which we call feasible nuclear

configurations.

This definition of δ(τ) is suggested by an a priori lower bound on the nuclear

distances |XK(t) − XL(t)|, K ̸= L, which is based on Grönwall’s lemma. In fact, we

have the following

Lemma 4.1. Fix ψ ∈ C0
(
[0, τ ];H1(R3;CNel)

)
, and X0 ∈ R3Nnuc such that X0

K ̸= X0
L

for K ̸= L. Let X solve (1.6), and X(0) = X0. Then, for all t ∈ [0, τ ] and K ̸= L

|XK(t)−XL(t)| ≥ δrep(τ).

Proof. Writing the momenta PK :=MKẊK , we define the classical reduced Hamiltonian

Hnn(X,P ) :=
1
2

Nnuc∑
K=1

|PK |2

MK

+Wnn(X)

with Wnn as in (1.7). Fix ψ ∈ C0
(
[0, τ ];H1(R3;CNel)

)
. Now,

d

dt
[Hnn(X,P )] =

Nnuc∑
K=1

[
∇XK

Hnn(X,P ) · ẊK +∇PK
Hnn(X,P ) · ṖK

]
=

Nnuc∑
K=1

PK

MK

· {∇XK
[Wnn(X)] +MKẌK}

(1.6)
= −

Nnuc∑
K=1

PK

MK

· (∇XK
Vext[X], ρ)L2

≤
Nnuc∑
K=1

1

2MK

[
|PK |2 + |(∇XK

Vext[X], ρ)L2|2
]

≤ Hnn(X,P ) + 8
Nnuc∑
K=1

Z2
K

MK

∥ψ∥2
C0([0,τ ];H1(R3;CNel ))

, (4.1)
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by which, using Grönwall’s inequality, on [0, τ ]

Hnn(X,P ) ≤

≤ 1
2
eτ
[ Nnuc∑

K=1

MK

∣∣V 0
K

∣∣2 + Nnuc∑
K,L=1,
L̸=K

ZKZL∣∣X0
K −X0

L

∣∣ + 16
Nnuc∑
K=1

Z2
K

MK

∥ψ∥2
C0([0,τ ];H1(R3;CNel ))

]

− 8
Nnuc∑
K=1

Z2
K

MK

∥ψ∥2
C0([0,τ ];H1(R3;CNel ))

. (4.2)

In (4.1), we use that, by Hardy’s inequality, for all K = 1, . . . , Nnuc

|(∇XK
Vext[X], ρ)L2| =

=
∣∣∣(− ZK

· −XK

| · −XK |3
, ρ
)
L2

∣∣∣ ≤ ZK

Nel∑
k=1

∥∥| · −XK |−1ψk

∥∥
L2

≤ 2ZK

Nel∑
k=1

∥∇xψk∥L2 ≤ 2
√
2ZK∥∇xψ∥L2(R3;CNel ) ≤ 2

√
2ZK∥ψ∥H1(R3;CNel ).

Estimate (4.2) is enough to conclude, as for all K ̸= L we have

1
2

1

|XK −XL|
≤ 1

ZKZL

Wnn(X) ≤ Wnn(X) ≤ Hnn(X,P ).

Remark 4.2. A similar argument yields an a priori estimate of the nuclear velocity Ẋ.

5. Lipschitz estimates

In this section, we obtain Lipschitz estimates on the mapping ψ 7−! VHx[ρ]ψ :=

(VH[ρ] + Vx[ρ])ψ.

Lemma 5.1 (Lipschitz estimates on the Hartree term). For all ψ, ψ′ ∈ H1(R3;CNel),

with ρ′ := |ψ′|2,

∥VH[ρ]ψ − VH[ρ
′]ψ′∥L2(R3;CNel ) ≲

√
Nel∥ψ − ψ′∥L2(R3;CNel )×

×
[ Nel∑

k=1

(∥∇xψk∥L2(R3;C3) + ∥∇xψ
′
k∥L2(R3;C3))∥ψ′∥L2(R3;CNel ) +

Nel∑
ℓ=1

∥ψℓ∥L2∥∇xψℓ∥L2(R3;C3)

]
.

(5.1)
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Moreover, for all ψ, ψ′ ∈ H2(R3;CNel)

∥VH[ρ]ψ∥H2(R3;CNel ) ≲
√
Nel

Nel∑
k=1

∥ψk∥2H1∥ψ∥H2(R3;CNel ), (5.2)

∥VH[ρ]ψ − VH[ρ
′]ψ′∥H2(R3;CNel ) ≲

√
Nel∥ψ − ψ′∥H2(R3;CNel )×
Nel∑
k=1

[(∥ψk∥H1 + ∥ψ′
k∥H1)∥ψ′∥H2(R3;CNel ) + ∥ψk∥2H1 ].

(5.3)

Proof. Proof of (5.1).

By adding and subtracting the term (|ψ′
ℓ|2 ∗ | · |−1)ψ′

k, we can write for all k = 1, . . . , Nel

∥(VH[ρ]ψ − VH[ρ
′]ψ′)k∥L2 ≤

Nel∑
ℓ=1

[∥(|ψℓ|2 ∗ | · |−1)(ψk − ψ′
k)∥L2︸ ︷︷ ︸

=: (I)

+ ∥((|ψℓ|2 − |ψ′
ℓ|2) ∗ | · |−1)ψ′

k∥L2︸ ︷︷ ︸
=: (II)

]. (5.4)

Using the Cauchy–Schwarz inequality in (5.5,5.7), Hardy’s inequality in (5.6,5.8), and

the triangle inequality in (5.8),

(I) ≤ ∥|ψℓ|2 ∗ | · |−1∥L∞∥ψk − ψ′
k∥L2 ≤ esssup

x∈R3

{|(|ψℓ|, | · −x|−1|ψℓ|)L2 |}∥ψ − ψ′∥L2(R3;CNel )

≤ esssup
x∈R3

{∥ψℓ∥L2∥| · −x|−1ψℓ∥L2}∥ψ − ψ′∥L2(R3;CNel ) (5.5)

≲ ∥ψℓ∥L2∥∇xψℓ∥L2(R3;C3)∥ψ − ψ′∥L2(R3;CNel ), (5.6)

and

(II) ≤ ∥(|ψℓ|2 − |ψ′
ℓ|2) ∗ | · |−1∥L∞∥ψ′

k∥L2

≤ esssup
x∈R3

{|(|ψℓ| − |ψ′
ℓ|, | · −x|−1(|ψℓ|+ |ψ′

ℓ|))L2|}∥ψ′∥L2(R3;CNel )

≤ esssup
x∈R3

{∥|ψℓ| − |ψ′
ℓ|∥L2(∥| · −x|−1ψℓ∥L2 + ∥| · −x|−1ψ′

ℓ∥L2)}∥ψ′∥L2(R3;CNel ) (5.7)

≲ (∥∇xψℓ∥L2(R3;C3) + ∥∇xψ
′
ℓ∥L2(R3;C3))∥ψ′∥L2(R3;CNel )∥ψℓ − ψ′

ℓ∥L2 (5.8)

≲ (∥∇xψℓ∥L2(R3;C3) + ∥∇xψ
′
ℓ∥L2(R3;C3))∥ψ′∥L2(R3;CNel )∥ψ − ψ′∥L2(R3;CNel ). (5.9)

Combining (5.6,5.9) with (5.4) we get (5.1).

Proof of (5.2).

With G as in (2.1), we can write

VH[ρ]ψ =

Nel∑
k=1

G[ψk, ψk]ψ.
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Note that for all ϕ1, ϕ2, ϕ3 ∈ H2

∆x(G[ϕ1, ϕ2]ϕ3)
(2.2)
= G[ϕ1, ϕ2]∆xϕ3 + 2∇x(G[ϕ1, ϕ2]) · ∇xϕ3 − 4πϕ1ϕ2ϕ3.

Using (2.3,2.4) from Lemma 2.1, we obtain

∥G[ϕ1, ϕ2]ϕ3∥L2 ≤ ∥G[ϕ1, ϕ2]∥L∞∥ϕ3∥L2 ≲ ∥ϕ1∥H1∥ϕ2∥H1∥ϕ3∥H1 ,

∥G[ϕ1, ϕ2]∆xϕ3∥L2 ≤ ∥G[ϕ1, ϕ2]∥L∞∥∆xϕ3∥L2 ≲ ∥ϕ1∥H1∥ϕ2∥H1∥ϕ3∥H2 ,

∥∇x(G[ϕ1, ϕ2]) · ∇xϕ3∥L2 ≤ ∥G[ϕ1, ϕ2]∥W 1,∞∥∇xϕ3∥L2(R3;C3) ≲ ∥ϕ1∥H1∥ϕ2∥H1∥ϕ3∥H1 .

On the other hand, by Hölder’s and Sobolev’s inequalities,

∥ϕ1ϕ2ϕ3∥L2 ≤ ∥ϕ1∥L6∥ϕ2∥L6∥ϕ3∥L6 ≲ ∥ϕ1∥H1∥ϕ2∥H1∥ϕ3∥H1 .

This gives for all k = 1, . . . , Nel

∥(VH[ρ]ψ)k∥H2 ≤
Nel∑
ℓ=1

∥G[ψℓ, ψℓ]ψk∥H2 ≲
Nel∑
ℓ=1

∥ψℓ∥2H1∥ψ∥H2(R3;CNel ).

Combining these estimates (5.2) follows.

Proof of (5.3).

As in the proof of (5.1), we bound for all k = 1, . . . , Nel

∥∆x(VH[ρ]ψ − VH[ρ
′]ψ′)k∥L2 ≤

Nel∑
ℓ=1

{∥∆x[G[ψℓ, ψℓ](ψk − ψ′
k)]∥L2︸ ︷︷ ︸

=: (I)

+ ∥∆x[G[|ψℓ|+ |ψ′
ℓ|, |ψℓ| − |ψ′

ℓ|]ψ′
k]∥L2︸ ︷︷ ︸

=: (II)

}.

As for (5.2), we can bound (I) and (II) using (ϕ1, ϕ2, ϕ3) = (ψℓ, ψℓ, ψk − ψ′
k) for (I) and

(ϕ1, ϕ2, ϕ3) = (|ψℓ|+ |ψ′
ℓ|, |ψℓ| − |ψ′

ℓ|, ψk) for (II). Hence, by the triangle inequality,

∥∆x(VH[ρ]ψ − VH[ρ
′]ψ′)∥L2(R3;CNel ) ≲ (B) :=

=
√
Nel

Nel∑
k=1

[
∥ψk∥2H1 + (∥ψk∥H1 + ∥ψ′

k∥H1)∥ψ′∥H2(R3;CNel )

]
∥ψ − ψ′∥H2(R3;CNel ).

(5.10)

On the other hand, by (5.1) we also have

∥VH[ρ]ψ − VH[ρ
′]ψ′∥L2(R3;CNel ) ≲ (B). (5.11)

Hence, by (5.10, 5.11), (5.3) immediately follows.

By Cauchy–Schwarz inequality, for all CNel-valued functions ψ, ψ′ we have

|ψ · ∇xψ
′| ≤ |ψ||∇xψ

′|. (5.12)
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Lemma 5.2 (Mean-value estimates for the density). For all a ≥ 1/2, we have

|ρa − ρ′a| ≲a (∥ρ∥a−1/2
L∞ + ∥ρ′∥a−1/2

L∞ )|ψ − ψ′|. (5.13)

Proof. By the fundamental theorem of calculus

|ρa − ρ′a| = ||ψ|2a − |ψ′|2a| =
∣∣∣∣ ∫ 1

0

d

dt
[|ψ′ + t(ψ − ψ′)|2a]dt

∣∣∣∣
≲a (|ψ|+ |ψ′|)2a−1|ψ − ψ′| ≲a (|ψ|2a−1 + |ψ′|2a−1)|ψ − ψ′|
= (ρa−1/2 + ρ′a−1/2)|ψ − ψ′|,

which yields (5.13).

Lemma 5.3 (Mean-value estimates for the density gradient). For all b ≥ 3/2, it holds

that

|∇x(ρ
b)−∇x(ρ

′b)| ≲b (Q1|∇xψ|+Q2|∇xψ
′|)|ψ − ψ′|+Q3|∇xψ −∇xψ

′|, (5.14)

where

Q1 = ρb−1, Q2 = (ρb−3/2 + ρ′b−3/2)ρ′1/2, Q3 = ρb−1ρ′1/2.

Proof. Using ∇xρ = ∇xψ · ψ + ψ · ∇x(ψ) and (5.12) for the pair (ψ, ψ),

|∇xρ| ≲ ρ1/2|∇xψ|. (5.15)

Since

|∇x(ρ
b)| ≲b ρ

b−1|∇xρ|,

adding and subtracting the term ρb−1∇xρ
′, we get for all b ≥ 1

|∇x(ρ
b)−∇x(ρ

′b)| ≲b ρ
b−1|∇xρ−∇xρ

′|+ |ρb−1 − ρ′b−1||∇xρ
′|.

By adding and subtracting ψ′ · ∇x(ψ) and ψ′ · ∇xψ, and using (5.12) for the pairs (ψ−
ψ′, ψ), (ψ′, ψ − ψ′), (ψ − ψ′, ψ) and (ψ′, ψ − ψ′), we get

|∇xρ−∇xρ
′| = |ψ · ∇x(ψ)− ψ′ · ∇x(ψ′) + ψ · ∇xψ − ψ′ · ∇x(ψ

′)|
≤ |(ψ − ψ′) · ∇x(ψ)|+ |ψ′ · ∇x(ψ − ψ′)|

+ |(ψ − ψ′) · ∇xψ|+ |ψ′ · ∇x(ψ − ψ′)|
≲ |∇xψ||ψ − ψ′|+ ρ′1/2|∇xψ −∇xψ

′|. (5.16)

By (5.13) with a = b− 1 ≥ 1/2 and (5.15) for ρ′, we get

|ρb−1 − ρ′b−1||∇xρ
′| ≲b (ρ

b−3/2 + ρ′b−3/2)ρ′1/2|∇xψ
′||ψ − ψ′|.

Putting these estimates together gives (5.14).
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Lemma 5.4 (Lipschitz estimates on the local nonlinearity). Let q ∈ [1,∞), and λ ∈ R.
For any fixed p ∈ [1,∞] and for all ψ, ψ′ ∈ H2(R3;CNel) ∩ Lp(R3;CNel), it holds that

∥Vx[ρ]ψ − Vx[ρ
′]ψ′∥Lp(R3;CNel ) ≲q,λ

Nel∑
k=1

[
∥ψk∥2(q−1)

H2 + ∥ψ′
k∥

2(q−1)

H2

]
∥ψ − ψ′∥Lp(R3;CNel ).

(5.17)

Moreover, for all q ≥ 7/2 and any λ ∈ R, we have that

∥Vx[ρ]ψ − Vx[ρ
′]ψ′∥H2(R3;CNel ) ≤

≤ Lq,λ(max{∥ψ∥H2(R3;CNel ), ∥ψ′∥H2(R3;CNel )})∥ψ − ψ′∥H2(R3;CNel ), (5.18)

where Lq,λ : R+
0 −! R+

0 is a polynomial function which vanishes at the origin.

Proof. Proof of (5.17).

By the fundamental theorem of calculus,

|Vx[ρ]ψ − Vx[ρ
′]ψ′| = |λ|||ψ|2(q−1)ψ − |ψ′|2(q−1)ψ′|

≲λ

∣∣∣ ∫ 1

0

d

dt

[
|ψ′ + t(ψ − ψ′)|2(q−1)(ψ′ + t(ψ − ψ′))

]
dt
∣∣∣

≲q |ψ − ψ′|
∫ 1

0

|ψ′ + t(ψ − ψ′)|2(q−1)dt

≤ (|ψ|+ |ψ′|)2(q−1)|ψ − ψ′| ≲q (ρ
q−1 + ρ′q−1)|ψ − ψ′|.

Since H2 is embedded into L∞,

∥ρ∥aL∞ ≲a

Nel∑
k=1

∥ψk∥2aH2 (5.19)

for all a > 0. Taking a = q − 1 > 0 (5.17) then follows.

Proof of (5.18).

Taking p = 2 in (5.17), we only need the L2(R3;CNel) norm of ∆x(Vx[ρ]ψ − Vx[ρ
′]ψ′) in

addition to get theH2(R3;CNel) norm estimate. Using the product rule for the Laplacian

in R3, we get

∆x(Vx[ρ]ψ − Vx[ρ
′]ψ′) = λ

{
ρq−1∆xψ − ρ′q−1∆xψ

′︸ ︷︷ ︸
=: (I)

+2[∇x(ρ
q−1) · ∇xψ −∇x(ρ

′q−1) · ∇xψ
′]︸ ︷︷ ︸

=: (II)

+∆x(ρ
q−1)ψ −∆x(ρ

′q−1)ψ′︸ ︷︷ ︸
=: (III)

}
, (5.20)

which is in CNel . We discuss the terms one by one.
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Term (I).

By adding and subtracting the term ρq−1∆xψ
′ and using (5.13) with a = q − 1 > 1,

|(I)| ≤ |ρq−1||∆xψ −∆xψ
′|+ |ρq−1 − ρ′q−1||∆xψ

′|
≲q A1|∆xψ

′||ψ − ψ′|+ A2|∆xψ −∆xψ
′|, (5.21)

where

A1 = ∥ρ∥q−3/2
L∞ + ∥ρ′∥q−3/2

L∞ , A2 = ∥ρ∥q−1
L∞ .

Term (II).

By adding and subtracting the term ∇x(ρ
q−1) · ∇xψ

′,

|∇x(ρ
q−1) · ∇xψ −∇x(ρ

′q−1) · ∇xψ
′| ≤

|∇x(ρ
q−1)||∇xψ −∇xψ

′|+ |∇xψ
′||∇x(ρ

q−1)−∇x(ρ
′q−1)|.

We get

|∇x(ρ
q−1)| = (q − 1)|ρq−2||∇xρ|

(5.15)

≲ (q − 1)∥ρ∥q−3/2
L∞ |∇xψ|.

Using this and (5.14) with b = q − 1 > 2,

|(II)| ≲q (B1|∇xψ||∇xψ
′|+B2|∇xψ

′|2)|ψ − ψ′|
+ (B3|∇xψ|+B4|∇xψ

′|)|∇xψ −∇xψ
′|, (5.22)

where

B1 = ∥ρ∥q−2
L∞ , B2 = ∥ρ′∥1/2L∞(∥ρ∥q−5/2

L∞ + ∥ρ′∥q−5/2
L∞ ),

B3 = ∥ρ∥q−3/2
L∞ , B4 = ∥ρ∥q−2

L∞ ∥ρ′∥1/2L∞ .

Term (III).

By adding and subtracting the term ∆x(ρ
q−1)ψ′,

|(III)| ≤ |∆x(ρ
q−1)|︸ ︷︷ ︸

=: (a)

|ψ − ψ′|+ |∆x(ρ
q−1)−∆x(ρ

′q−1)|︸ ︷︷ ︸
=: (b)

∥ρ′∥1/2L∞ .

Using ∆xρ = ψ ·∆xψ +∆xψ · ψ + 2|∇xψ|2 and the Cauchy–Schwarz inequality,

|∆xρ| ≲ ∥ρ∥1/2L∞|∆xψ|+ |∇xψ|2. (5.23)

Hence

(a) ≲q (q − 2)|ρ|q−3|∇xρ|2 + |ρ|q−2|∆xρ|
(5.15)

≲ ∥ρ∥q−2
L∞

[
(2q − 3)|∇xψ|2 + ∥ρ∥1/2L∞|∆xψ|

]
.
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By similar reasoning, we get, by adding and subtracting the terms ρq−3|∇xρ
′|2

and ρq−2∆xρ
′,

(b) ≲q (q − 2)
(
|ρ|q−3 ||∇xρ|2 − |∇xρ

′|2|︸ ︷︷ ︸
=: (i)

+ |ρq−3 − ρ′q−3||∇xρ
′|2
)︸ ︷︷ ︸

=: (ii)

+|ρ|q−2 |∆xρ−∆xρ
′|︸ ︷︷ ︸

=: (iii)

+ |ρq−2 − ρ′q−2||∆xρ
′|︸ ︷︷ ︸

=: (iv)

.

By (5.15) we get

(i) ≤ (|∇xρ|+ |∇xρ
′|)|∇xρ−∇xρ

′|
(5.16)

≲ (∥ρ∥1/2L∞|∇xψ|+ ∥ρ′∥1/2L∞|∇xψ
′|)
(
|ψ − ψ′||∇xψ|+ ∥ρ′∥1/2L∞|∇xψ −∇xψ

′|
)
.

Furthermore, using (5.13) with a = q − 3 ≥ 1/2‡ and (5.15) for ρ′,

(ii) ≲q (∥ρ∥q−7/2
L∞ + ∥ρ′∥q−7/2

L∞ )∥ρ′∥L∞ |∇xψ
′|2|ψ − ψ′|.

In addition, by adding and subtracting the terms ψ′ ·∆xψ and ∆xψ ·ψ′, using the triangle

and the Cauchy–Schwarz inequalities,

(iii) =
∣∣2(|∇xψ|2 − |∇xψ

′|2) + (ψ − ψ′) ·∆xψ + (∆xψ −∆xψ
′) · ψ′

+ (ψ − ψ′) ·∆xψ + (∆xψ −∆xψ′) · ψ′∣∣
≲ (|∇xψ|+ |∇xψ

′|)|∇xψ −∇xψ
′|+ |∆xψ||ψ − ψ′|+ ∥ρ′∥1/2L∞|∆xψ −∆xψ

′|.

Furthermore, using (5.13) with a = q − 2 > 1 and (5.23) for ρ′, we obtain

(iv) ≲q (∥ρ∥q−5/2
L∞ + ∥ρ′∥q−5/2

L∞ )(∥ρ′∥1/2L∞|∆xψ
′|+ |∇xψ

′|2)|ψ − ψ′|.

Altogether, we get

|(III)| ≲q

(
C1|∇xψ|2 + C2|∇xψ||∇xψ

′|+ C3|∇xψ
′|2 + C4|∆xψ|+ C5|∆xψ

′|
)
|ψ − ψ′|

+ (C6|∇xψ|+ C7|∇xψ
′|)|∇xψ −∇xψ

′|+ C8|∆xψ −∆xψ
′|, (5.24)

where

C1 = ∥ρ∥q−5/2
L∞ (∥ρ∥1/2L∞ + ∥ρ′∥1/2L∞), C2 = ∥ρ∥q−3

L∞ ∥ρ′∥L∞ ,

C3 = ∥ρ′∥L∞
[
∥ρ∥q−7/2

L∞ (1 + ∥ρ∥L∞) + ∥ρ′∥q−7/2
L∞ (1 + ∥ρ′∥L∞)

]
,

C4 = ∥ρ∥q−3/2
L∞

(
∥ρ∥1/2L∞∥ρ′∥1/2L∞ + 1

)
, C5 = ∥ρ′∥L∞

(
∥ρ∥q−5/2

L∞ + ∥ρ′∥q−5/2
L∞

)
,

C6 = ∥ρ∥q−5/2
L∞ ∥ρ′∥1/2L∞(∥ρ∥1/2L∞ + ∥ρ′∥1/2L∞), C7 = ∥ρ∥q−3

L∞ ∥ρ′∥1/2L∞(∥ρ∥L∞ + ∥ρ′∥L∞),

C8 = ∥ρ∥q−2
L∞ ∥ρ′∥L∞ .

Conclusion of the proof of (5.18).

The function L can be split into terms L = L0 + LI + LII + LIII. As discussed at the

‡ Here is where we use the restriction q ≥ 7/2.
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start of this proof, L0 is the contribution of estimate (5.17) for p = 2. The other terms

stem from (I), (II) and (III) in (5.20), and are obtained taking the L2 norm in (5.21,

5.22 resp. 5.24). For instance, in the expression of LIII all scalars Ci can be bounded

using (5.19). Likewise, the term |ψ − ψ′| as well as the remaining factors involving C1

and C3 can be bounded with their H2 norms. The other summands, and LI and LII,

can be estimated similarly, and this concludes the proof.

Lemma 5.5 (Lipschitz estimates for the nonlinearity). For q ≥ 7/2 and any λ ∈ R,
there exists a polynomial function which vanishes at the origin Lq,λ : R+

0 −! R+
0 , such

that for all ψ, ψ′ ∈ Bel(τ)

∥VHx[ρ]ψ − VHx[ρ
′]ψ′∥C0([0,τ ];H2(R3;CNel )) ≤

≤ Lq,λ(α(τ) + ∥ψ0∥H2(R3;CNel ))∥ψ − ψ′∥C0([0,τ ];H2(R3;CNel )), (5.25)

∥VHx[ρ]ψ∥C0([0,τ ];H2(R3;CNel )) ≤
≤ (α(τ) + ∥ψ0∥H2(R3;CNel ))Lq,λ(α(τ) + ∥ψ0∥H2(R3;CNel )). (5.26)

Proof. By (5.3) in Lemma 5.1 and (5.18) in Lemma 5.4, we have, for all ψ, ψ′ ∈
C0([0, τ ];H2(R3;CNel)), that

∥VHx[ρ]ψ − VHx[ρ
′]ψ′∥C0([0,τ ];H2(R3;CNel )) ≤

≤ Lq,λ(max{∥ψ∥C0([0,τ ];H2(R3;CNel )), ∥ψ′∥C0([0,τ ];H2(R3;CNel ))})∥ψ − ψ′∥C0([0,τ ];H2(R3;CNel )),

(5.27)

where Lq,λ is a polynomial by construction. Note that (5.25) follows from (5.27) by

definition of Bel(τ). In particular, (5.26) follows from (5.27) setting ψ′ ≡ 0.

6. Existence and uniqueness of nuclear configurations

In this section, we prove a local-in-time existence and uniqueness result for the Cauchy

problem associated with (1.6) for given ψ ∈ Bel(τ) and X(0) = X0, Ẋ(0) = V (0), with

X0, V 0 ∈ R3Nnuc such that X0
K ̸= X0

L for 1 ≤ K ̸= L ≤ Nnuc.

Lemma 6.1. Let V 0 ∈ R3Nnuc and X0 ∈ R3Nnuc be given, with X0
K ̸= X0

L for K ̸= L.

Then, there exists τ > 0 such that the following properties hold. For given ψ ∈ Bel(τ),

the Cauchy problem associated with the system (1.6) with X(0) = X0 and Ẋ(0) = V 0

has a unique short-time solution X ∈ Bnuc(τ) ∩ C2([0, τ ];Bδ(X
0)). The mapping

N : ψ ∈ Bel(τ) 7−! X ∈ Bnuc(τ) ∩ C2([0, τ ];R3Nnuc)

is bounded with respect to the C1([0, τ ];R3Nnuc) topology, and continuous as a map from

C0
(
[0, τ ];L2(R3;CNel)

)
to C0

(
[0, τ ];R3Nnuc

)
.

Proof. Part 1: Existence and uniqueness of X in C2([0, τ ];Bδ(X
0)).

Since ψ and so ρ are given, we write the acceleration function from (1.6) without
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parameters for now: A = A(t,X). Note that t is an explicit variable for the A1
K

terms, but not for the A2
K terms.

We define the compact set

κ(τ) := [0, τ ]×Bδ(X
0).

Note we drop the dependence of this set on τ . By the triangle inequality, for

all X ∈ Bδ(X
0) and K = 1, . . . , Nnuc

|XK | ≤ |X| ≤ |X0|+ |X −X0| ≤ |X0|+ δ(τ). (6.1)

First, we prove A is continuous in (t,X) on κ. To this end, we pick a sequence

{(tn, Xn)}n∈N ⊂ κ with (tn, Xn)
n−!∞
−−−−! (t∗, X) ∈ κ. The functions A1

K give for all

n, using the Cauchy–Schwarz and Hardy’s inequalities,

|A1
K(tn, Xn)− A1

K(t
∗, Xn)| ≲

≲
Nel∑
k=1

(|XnK − · |−2, |(ψk(tn, ·))2 − (ψk(t
∗, ·))2|)L2

≲
Nel∑
k=1

(
|XnK − · |−1 max

t∈[0,τ ]
|ψk(t, ·)|, |XnK − · |−1|ψk(tn, ·)− ψk(t

∗, ·)|
)
L2

≲
Nel∑
k=1

∥∇xψk∥L∞([0,τ ];L2(R3;C3))∥∇xψk(tn, ·)−∇xψk(t
∗, ·)∥L2(R3;C3)

n−!∞
−−−−! 0,

as ψ ∈ C0([0, τ ];H1(R3;CNel)). Using this and Lemma 2.2, by which A1
K(t

∗, ·) ∈
C0(R3Nnuc ;C3),

|A1
K(tn, Xn)− A1

K(t
∗, X)| ≤ |A1

K(tn, Xn)− A1
K(t

∗, Xn)|+ |A1
K(t

∗, Xn)− A1
K(t

∗, X)|
n−!∞
−−−−! 0

for all n. The functions A2
K are not explicitly time-dependent, and are continuous

on Bδ(X
0), hence on κ.

Since A is continuous on the compact set κ, it is also uniformly bounded on κ. By
Lemma 2.2,

∥A1
K∥C0([0,τ ];W 1,∞(Bδ(X0);C3)) ≲ ∥ψ∥2

C0([0,τ ];H2(R3;CNel ))
,

since ψ ∈ Bel(τ). The functions A2
K are bounded on Bδ(X

0) by

∥A2
K∥L∞(Bδ(X0);C3) ≲

Nnuc∑
L=1,L̸=K

∥∥∥ 1

|XK −XL|2
∥∥∥
L∞(Bδ(X0);C)

.

Furthermore, by Lemma 2.2, A1
K(t, ·) is uniformly Lipschitz continuous for all t ∈ [0, τ ]

and K, as

∥DA1
K(t, ·)∥L∞(R3;C3×3) ≲

Nel∑
k=1

∥Dfkk
K (t, ·)∥L∞(R3;C3×3) ≲ ∥ψ∥2

C0([0,τ ];H2(R3;CNel ))
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since ψ ∈ Bel(τ). For the A2
K terms, we note that the functions X 7−! (XK −

XL)|XK −XL|−3 are locally Lipschitz on Bδ(X
0). Therefore, A is Lipschitz continuous

in X ∈ Bδ(X
0) and uniformly in t ∈ [0, τ ]. We denote the corresponding Lipschitz

constant by CL, dropping its dependence on τ.

Now, we define T as the following mapping on the complete metric space

C0([0, τ ];Bδ(X
0)), equipped with the C0([0, τ ];R3Nnuc) norm:

T [X](t) := X0 + V 0t+

∫ t

0

(t− σ)A(σ,X(σ))dσ. (6.2)

By the boundedness of A,

∥T [X]−X0∥C0([0,τ ];R3Nnuc ) ≤ |V 0|τ + τ 2

2
∥A∥C0(κ;C3Nnuc )

for all X ∈ C0([0, τ ];Bδ(X
0)). Note that T maps C0([0, τ ];Bδ(X

0)) into itself, as for

τ > 0 small enough it holds that

|V 0|τ + τ 2

2
∥A∥C0(κ;C3Nnuc ) ≤ δ(τ).

Hence, for all X,X ′ ∈ C0([0, τ ];Bδ(X
0)),

∥T [X]− T [X ′]∥C0([0,τ ];R3Nnuc ) ≤ max
t∈[0,τ ]

∫ t

0

(t− σ)|A(σ,X(σ))− A(σ,X ′(σ))|dσ

≤ CLτ
2

2
∥X −X ′∥C0([0,τ ];R3Nnuc ),

Note also that T is a strict contraction on C0([0, τ ];Bδ(X
0)) in the C0([0, τ ];R3Nnuc)

norm, as we can always shrink τ > 0 so that

CLτ
2

2
< 1

holds. By the contraction mapping theorem, T has a unique fixed point in

C0([0, τ ];Bδ(X
0)). Because of this, (1.6) has a unique short-time solution in

C2([0, τ ];Bδ(X
0)).

Part 2: Localisation of X in Bnuc(τ).

Integrating the ODE in (1.6), we get

∥Ẋ∥C0([0,τ ];R3Nnuc ) ≤ |V 0|+ τ∥A∥C0(κ;C3Nnuc ).

Note that X ∈ Bnuc(τ), picking τ > 0 smaller if necessary, so that

τ∥A∥C0(κ;C3Nnuc ) ≤ 1,

holds. Therefore, X ∈ Bnuc(τ) ∩ C2([0, τ ];Bδ(X
0)).
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Part 3: Boundedness and continuity of N .

From (6.1) with (3.1), N is bounded in the C1([0, τ ];R3Nnuc) norm:

∥X∥C1([0,τ ];R3Nnuc ) ≤ |X0|+ δ(τ) + γ.

In order to prove continuity of N in the C0([0, τ ];R3Nnuc) norm, we consider a

sequence {ψn}n∈N ⊂ Bel(τ) such that ψn
n−!∞
−−−−! ψ ∈ Bel(τ) in the C0([0, τ ];L2(R3;CNel))

norm. Similarly to X = N [ψ], we define Xn := N [ψn] and ρn := |ψn|2. Note that X

and Xn are fixed points of the mapping T introduced in Part 1 of the proof. Using this,

for all t ∈ [0, τ ]

|(Xn −X)(t)| ≤
∫ t

0

(t− σ)|A[ρn](X(σ))− A[ρ](X(σ))|dσ, (6.3)

where

|A[ρn](Xn(σ))− A[ρ](X(σ))| ≤ (I) + (II),

(I) :=
Nnuc∑
K=1

|A1
K [ρn](Xn(σ))− A1

K [ρ](X(σ))|,

(II) :=
Nnuc∑
K=1

|A2
K(Xn(σ))− A2

K(X(σ))|.

We further bound

(I) ≲ (Ia) + (Ib),

(Ia) :=

Nel∑
k=1

∣∣∣(ψk(t, ·),Ξ(· −XK)(ψnk(t, ·)− ψk(t, ·)))L2

+ (ψnk(t, ·)− ψk(t, ·),Ξ(· −XnK)ψnk(t, ·))L2

∣∣∣,
(Ib) :=

Nel∑
k=1

|(ψk(t, ·),Ξ(· −XnK)ψnk(t, ·))L2 − (ψk(t, ·),Ξ(· −XK)ψnk(t, ·))L2|,

where we use for short-hand notation the function Ξ : R3 −! R3 (a.e.), x 7−! x|x|−3.

Arguing as in [8, p. 980], (Ia) is bounded by

βn :=

Nel∑
k=1

sup
(t,x)∈[0,τ ]×R3

(| · −x|−1|ψk(t, ·) + ψnk(t, ·)|, | · −x|−1|ψnk(t, ·)− ψk(t, ·)|)L2

n−!∞
−−−−! 0,

as ψn
n−!∞
−−−−! ψ in C0([0, τ ];L2(R3;CNel)). We also have

(Ib) ≲
Nel∑
k=1

∥∇xG[ψk, ψnk](XnK)−∇xG[ψk, ψnk](XK)∥C0([0,τ ];C3) ≤ CL
1,n|Xn −X|,
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where G is as in (2.1), and where we used that the functions ∇xG[ψk, ψnk] are uniformly

Lipschitz continuous in X for uniformly all t ∈ [0, τ ]. So is (II), with some Lipschitz

constant CL
2,n. For all n, CL

1,n and CL
2,n are uniformly bounded by CL, since all ψn and

ψ are taken from the bounded set Bel(τ). Altogether, from (6.3) we obtain

∥Xn −X∥C0([0,τ ];R3Nnuc ) ≲ τ 2∥Xn −X∥C0([0,τ ];R3Nnuc ) + τ 2βn.

It is then clear that for τ small enough the conclusion follows.

7. Existence and uniqueness of electronic configurations

In this section, we prove a local-in-time existence and uniqueness result for the Cauchy

problem associated with (1.4) for given X ∈ Bnuc(τ) and ψ(0) = ψ0 ∈ H2(R3;CNel).

Lemma 7.1. Let q ≥ 7/2, λ ∈ R. Let ψ0 ∈ H2(R3;CNel) be given. Then, there

exists τ > 0 such that the following holds. For given X ∈ Bnuc(τ), the Cauchy problem

associated with the system (1.4) with ψ(0) = ψ0 has a unique short-time solution ψ in

Bel(τ).

Proof. This proof is based on Lemma 2.3, which ensures the existence and the

L(H2(R3;CNel)) bounds of the propagator U(t, s) for the family of linear Hamiltonians

{H lin(t), t ∈ [0, τ ]} from (2.7), and on Lemma 5.5, which ensures that the nonlinear

mapping ψ 7−! VHx[ρ]ψ is locally Lipschitz in H2(R3;CNel).

We define F as the following mapping on the complete metric space C0([0, τ ];Bα(ψ
0)),

equipped with the C0([0, τ ];H2(R3;CNel)) norm:

F [ψ](t) := U(t, 0)ψ0 − i

∫ t

0

U(t, σ)VHx[ρ]ψ(σ)dσ.

Note that we obtain for all ψ ∈ C0([0, τ ];Bα(ψ
0)), using Lemma 2.3 (ii),

F [ψ](0) = U(0, 0)ψ0 = ψ0. (7.1)

Note also that, provided[
1 +Bτ,γ + τBτ,γ(2Bτ,γ + 1)Lq,λ(α + ∥ψ0∥H2(R3;CNel ))

]
≤ 2Bτ,γ, (7.2)

F maps the complete metric space C0([0, τ ];Bα(ψ
0)) into itself, as

∥F [ψ]− ψ0∥C0([0,τ ];H2(R3;CNel )) =

=
∥∥∥[U(·, 0)− Id]ψ0 − i

∫ ·

0

U(·, σ)VHx[ρ]ψ(σ)dσ
∥∥∥
C0([0,τ ];H2(R3;CNel ))

≤ Bτ,γ

(
∥ψ0∥H2(R3;CNel ) + τ∥VHx[ρ]ψ∥C0([0,τ ];H2(R3;CNel ))

)
+ ∥ψ0∥H2(R3;CNel ) (7.3)

(5.26)

≤
[
1 +Bτ,γ + τBτ,γ(2Bτ,γ + 1)Lq,λ(α + ∥ψ0∥H2(R3;CNel ))

]
∥ψ0∥H2(R3;CNel )

(7.2)

≤ 2Bτ,γ∥ψ0∥H2(R3;CNel ) = α,
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where we used Lemma 2.3 (viii) in (7.3). Moreover, note that, provided

τBτ,γLq,λ(α(τ) + ∥ψ0∥H2(R3;CNel )) < 1, (7.4)

F is a contraction on C0([0, τ ];Bα(ψ
0)) in the C0([0, τ ];H2(R3;CNel)) norm, as for all

ψ, ψ′ ∈ C0([0, τ ];Bα(ψ
0))

∥F [ψ]−F [ψ′]∥C0([0,τ ];H2(R3;CNel )) =

=

∥∥∥∥∫ ·

0

U(·, σ)(VHx[ρ]ψ(σ)− VHx[ρ
′]ψ′(σ))dσ

∥∥∥∥
C0([0,τ ];H2(R3;CNel ))

≤ τBτ,γ∥VHx[ρ]ψ − VHx[ρ
′]ψ′∥C0([0,τ ];H2(R3;CNel )) (7.5)

(5.25)

≤ τBτ,γLq,λ(α + ∥ψ0∥H2(R3;CNel ))∥ψ − ψ′∥C0([0,τ ];H2(R3;CNel )),

where we used Lemma 2.3 (viii) in (7.5). By the contraction mapping theorem, F has

a unique fixed point in C0([0, τ ];Bα(ψ
0)).

Note that we can always select τ > 0 small enough such that the inequalities

(7.2,7.4) are satisfied. Recall that Bτ,γ and α are of the form

Bτ,γ = A1+Cγτ
γ , α(τ) = 2A1+Cγτ

γ ∥ψ0∥H2(R3;CNel ),

with Aγ, Cγ > 0 as defined as in Lemma 2.3 (viii). In fact, picking Aγ, Cγ large, (7.2) is

true for τ = 0 and by continuity, for τ > 0 small enough.

It is now left to prove that this fixed point, simply denoted by ψ, is also of

class C1([0, τ ];L2(R3;CNel)); namely, it solves (1.4) strongly on [0, τ ]. To this end,

we consider the following identity, which holds for all 0 ≤ t < t′ ≤ τ :

i
ψ(t′)− ψ(t)

t′ − t
= (R) := i

U(t′, 0)− U(t, 0)

t′ − t
ψ0 +

∫ t

0

U(t′, σ)− U(t, σ)

t′ − t
VHx[ρ]ψ(σ)dσ

+

∫ t′

t

U(t′, σ)

t′ − t
VHx[ρ]ψ(σ)dσ,

and we show that

∥(R)−H[X(t), ρ]ψ(t)∥L2(R3;CNel )
t′−!t
−−−! 0.

This will imply that ψ(·) is differentiable as a mapping [0, τ ] 7−! L2(R3;CNel) such that

iψ̇(t) = H[X(t), ρ]ψ(t).

Note, in particular, that for a given X ∈ Bnuc(τ), H[X(·), ρ]ψ(·) is a continuous

mapping [0, τ ] 7−! L2(R3;CNel), which will imply that ψ ∈ C1([0, τ ];L2(R3;CNel)).

We bound

∥(R)−H[X(t), ρ]ψ(t)∥L2(R3;CNel ) ≤ (I) + (II),

(I) :=
∥∥∥iU(t′, 0)− U(t, 0)

t′ − t
ψ0 +

∫ t

0

U(t′, σ)− U(t, σ)

t′ − t
VHx[ρ]ψ(σ)dσ −H lin(t)ψ(t)

∥∥∥
L2(R3;CNel )

,

(II) :=
∥∥∥∫ t′

t

U(t′, σ)

t′ − t
VHx[ρ]ψ(σ)dσ − VHx[ρ]ψ(t)

∥∥∥
L2(R3;CNel )

.
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We get

lim
t′−!t

(I) =
∥∥∥i ∂
∂t

[U(t, 0)ψ0] +

∫ t

0

∂

∂t
[U(t, σ)VHx[ρ]ψ(σ)]dσ −H lin(t)ψ(t)

∥∥∥
L2(R3;CNel )

=
∥∥∥H lin(t)[U(t, 0)ψ0]

+

∫ t

0

−iH lin(t)[U(t, σ)VHx[ρ]ψ(σ)]dσ −H lin(t)ψ(t)

∥∥∥∥
L2(R3;CNel )

(7.6)

= ∥H lin(t)[F [ψ(t)]− ψ(t)]∥L2(R3;CNel ) = 0, (7.7)

where we used Lemma 2.3 (vii) (see also [32, Thm. 1.3. (6)]) in (7.6), the linearity of

the Hamiltonians H lin(t) and ψ being a fixed point of F in (7.7). On the other hand,

(II) ≤ (a) + (b),

(a) :=
∥∥∥ 1

t′ − t

∫ t′

t

U(t, σ)VHx[ρ]ψ(σ)dσ − VHx[ρ]ψ(t)
∥∥∥
L2(R3;CNel )

,

(b) :=
1

t′ − t

∥∥∥∫ t′

t

[U(t′, σ)− U(t, σ)]VHx[ρ]ψ(σ)dσ
∥∥∥
L2(R3;CNel )

.

In the limit, (a) goes to zero, because of the fundamental theorem of calculus for Bochner

integrals and Lemma 2.3 (ii). Moreover,

lim
t′−!t

(b) ≤ lim
t′−!t

1

t′ − t

∫ t′

t

∥[U(t′, σ)− U(t, σ)]VHx[ρ]ψ(σ)∥L2(R3;CNel )dσ

≤ lim
t′−!t

∥[U(t′, ·)− U(t, ·)]VHx[ρ]ψ∥C0([0,T ],L2(R3;CNel )) = 0, (7.8)

where we used the uniform continuity of U(t, s)VHx[ρ]ψ(s) on [0, T ]2 together with

Lemma 2.3 (iv) in (7.8). Since ψ also is a fixed point of F , by which ψ(0) = F [ψ](0) = ψ0

(see (7.1)), we know ψ is a strong solution to (1.4) on [0, τ ].

Now, we show uniqueness of the short-time solution ψ to (1.4) in the

class C1([0, τ ];L2(R3;CNel)) ∩ C0([0, τ ];Bα(ψ
0)): although the classical contraction

mapping theorem also provides uniqueness, this is only in the class C0([0, τ ];Bα(ψ
0)).

So, now we prove uniqueness in the different space C1([0, τ ];L2(R3;CNel)). To this end,

we let ψ and ψ′ be two short-time solutions to (1.4) in C1([0, τ ];L2(R3;CNel)). First,

(ψ − ψ′)(0) = ψ0 − ψ0 = 0. Moreover, for all k = 1, . . . , Nel, using the PDE in (1.4),

d

dt
(∥ψk − ψ′

k∥2L2) =
d

dt
((ψk − ψ′

k, ψk − ψ′
k)L2)

= (ψ̇k − ψ̇′
k, ψk − ψ′

k)L2 + (ψ̇k − ψ̇′
k, ψk − ψ′

k)L2 = (I) + (II),

where, using that the linear Hamiltonians H lin(t) are self-adjoint on L2(R3;CNel),

(I) = i
[
(ψk − ψ′

k, (H
lin(t)(ψ − ψ′))k)L2 − ((H lin(t)(ψ − ψ′))k, ψk − ψ′

k)L2

]
= 0,
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and

(II) = i
[
((VHx[ρ]ψ − VHx[ρ′]ψ′)k, ψk − ψ′

k)L2 − ((VHx[ρ]ψ − VHx[ρ
′]ψ′)k, ψk − ψ′

k)L2

]
= 2Im((VHx[ρ]ψ − VHx[ρ

′]ψ′)k, ψk − ψ′
k)L2 .

Using this, we get

d

dt

(
∥ψ − ψ′∥2

L2(R3;CNel )

)
=

Nel∑
k=1

d

dt
(∥ψk − ψ′

k∥2L2)

= 2Im(VHx[ρ]ψ − VHx[ρ
′]ψ′, ψ − ψ′)L2(R3;CNel )

≤ C∥ψ − ψ′∥2
L2(R3;CNel )

,

where C = C(∥ψ∥C0([0,τ ];H2(R3;CNel )), ∥ψ′∥C0([0,τ ];H2(R3;CNel )), τ, q, λ,Nel) > 0 stems from

the Cauchy–Schwarz inequality and combining (5.1) from Lemma 5.1 and (5.17) from

Lemma 5.4. Finally, by Grönwall’s lemma we get that ψ = ψ′ and this concludes the

proof.

Lemma 7.2. Let q ≥ 7/2 and λ ∈ R. Let τ > 0 be such that the following holds: for

given X ∈ Bnuc(τ), ψ ∈ Bel(τ) is the unique short-time solution to (1.4). Then, the

mapping

E : X ∈ Bnuc(τ) 7−! ψ ∈ Bel(τ),

is bounded and continuous as a map from C0
(
[0, τ ];R3Nnuc

)
to C0

(
[0, τ ];L2(R3;CNel)

)
.

Proof. Since Bel(τ) is a bounded subset of C0([0, τ ];L2(R3;CNel)), the mapping E
is bounded in the C0([0, τ ];L2(R3;CNel)) norm. In order to prove continuity of E
as a map from C0

(
[0, τ ];R3Nnuc

)
to C0

(
[0, τ ];L2(R3;CNel)

)
, we consider a sequence

{Xn}n∈N ⊂ Bnuc(τ) such that Xn
n−!∞
−−−−! X ∈ Bnuc(τ) in the C0([0, τ ];R3Nnuc) norm.

Similarly to ψ = E [X], we define ψn := E [Xn] with ρn := |ψn|2. Then,

i
∂

∂t
(ψn − ψ) = H[X, ρ](ψn − ψ) + ζn, (ψn − ψ)(0) = 0,

with

ζn := ζ1n + ζ2n + ζ3n,

ζ1n := Vext[Xn]ψn − Vext[X]ψ − Vext[X](ψn − ψ) = (Vext[Xn]− Vext[X])ψn,

ζ2n := VH[ρn]ψn − VH[ρ]ψ − VH[ρ](ψn − ψ)

=

Nel∑
k=1

{Re
[
(ψnk − ψk)(ψnk + ψk)

]
∗ | · |−1}ψn, (7.9)

ζ3n := Vx[ρn]ψn − Vx[ρ]ψ − Vx[ρ](ψn − ψ) = λ[ρq−1
n − ρq−1]ψn,

where we used |a|2 − |b|2 = Re[(a− b)(a + b)] in (7.9). We denote by {H[X(t), ρ], t ∈
[0, T ]} the family of KS Hamiltonians for the given X ∈ Bnuc(τ). Note that since ψ and
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thus ρ are fixed now, these Hamiltonians are acting linearly on ψn−ψ, and can thus be

written, similarly to (2.7), as

H(t) = −1
2
∆x + V (t) + VHx[ρ]

with V from (2.8). The linear potential V (t) + VHx[ρ] satisfies Assumption (A.1) of [32,

Theorem 1.1]; hence, there exists a family of evolution operators {U(t, s), (t, s) ∈ [0, T ]2},
associated with this family of Hamiltonians, satisfying properties (i)—(iv) of our

Lemma 2.3. By this, from which it follows that for fixed t ∈ [0, T ], U(t, ·)ζn ∈
C0([0, t], L2(R3;CNel)), and [32, Cor. 1.2. (4)], we can argue like [8, p. 982], and

the corresponding integral representation holds for all t ∈ [0, T ]:

(ψn − ψ)(t) = −i
∫ t

0

U(t, σ)ζn(σ)dσ.

Using Lemma 2.3 (iii), we bound for all n ∈ N and t ∈ [0, τ ]

∥(ψn − ψ)(t)∥L2(R3;CNel ) ≲
∑

j∈{1,2,3}

∫ t

0

∥ζjn(σ)∥L2(R3;CNel )dσ.

So, now we deduce L2(R3;CNel) estimates on ζjn(σ) for j ∈ {1, 2, 3} for all σ ∈ (0, t),

using that ψn and ψ are elements in Bel(τ), which makes them uniformly bounded with

respect to n in C0([0, τ ];H2(R3;CNel)). For j = 1, as noted in [8, p. 982], it holds for

all 0 < σ < t ≤ τ ≤ T that

∥ζ1n(σ)∥L2(R3;CNel ) ≤ C1,n
n−!∞
−−−−! 0

for some C1,n = C1,n(α, ψ
0) > 0. For j = 2, we use the mapping G from (2.1). This

gives for all σ ∈ (0, t)

∥ζ2n(σ)∥L2(R3;CNel ) ≤
Nel∑
k=1

∥G[ψnk(σ)− ψk(σ), ψnk(σ) + ψk(σ)]∥L∞∥ψn(σ)∥L2(R3;CNel )

≲
Nel∑
k=1

∥ψnk(σ)− ψk(σ)∥L2∥ψnk(σ) + ψk(σ)∥H2∥ψn∥L∞([0,τ ];L2(R3;CNel ))

≤ C2∥ψn(σ)− ψ(σ)∥L2(R3;CNel )

for some C2 = C2(α, ψ
0) > 0. For j = 3 and all σ ∈ (0, t)

∥ζ3n(σ)∥L2(R3;CNel )

(5.13)

≲ q,λ (∥ρn(σ)∥q−3/2
L∞ + ∥ρ(σ)∥q−3/2

L∞ )∥ρn(σ)∥1/2L∞∥ψn(σ)− ψ(σ)∥L2(R3;CNel )

(5.19)

≤ C3∥ψn(σ)− ψ(σ)∥L2(R3;CNel ),

for some C3 = C3(q, α, ψ
0) > 0. Combining these three estimates, for all t ∈ [0, τ ]

∥(ψn − ψ)(t)∥L2(R3;CNel ) ≤ C1,nτ + (C2 + C3)

∫ t

0

∥(ψn − ψ)(σ)∥L2(R3;CNel )dσ,

Now, by Grönwall’s lemma, we conclude that for all t ∈ [0, τ ]

∥(ψn − ψ)(t)∥L2(R3;CNel ) ≤ C1,nτe
(C2+C3)t,

and this concludes the proof.



CONTENTS 29

8. Proof of Theorem 1.1

In this section, we prove the main result, Theorem 1.1.

Lemma 8.1. Let q ≥ 7/2 and λ ∈ R. Further, let ψ0 ∈ H2(R3;CNel), V 0 ∈ R3Nnuc and

X0 ∈ R3Nnuc be given, with X0
K ̸= X0

L for K ̸= L.

Then, there exists τ > 0 such that the initial-value problem associated with the system

(1.1) with ψ(0) = ψ0, X(0) = X0 and Ẋ(0) = V 0 has a solution (ψ,X) ∈ X (τ).

Proof. Let τ > 0 be such that the following statements hold. For given ψ ∈ Bel(τ), (1.6)

has a unique solution X ∈ Bnuc(τ)∩C2([0, τ ];Bδ(X
0)), and for given X ∈ Bnuc(τ), (1.4)

has a unique solution ψ ∈ Bel(τ). Existence of such τ has been proven in Lemmas 6.1

and 7.1. We define the inclusion

I : Bnuc(τ) ∩ C2([0, τ ];R3Nnuc) ↪−→ Bnuc(τ),

which is a continuous and compact mapping. Also, we define the mapping

K : Bnuc(τ) −! Bnuc(τ), K := I ◦ N ◦ E .

Since by Lemma 6.1, N is bounded in the C1([0, τ ];R3Nnuc) topology, by the Arzelà–

Ascoli theorem it follows that K is a compact mapping, where Bnuc(τ) is equipped with

the C0([0, τ ];R3Nnuc) topology.

By the classical Schauder’s fixed point theorem, K has a fixed point X in Bnuc(τ).

Setting ψ := E [X], the corresponding pair (ψ,X) is the desired solution, and this

concludes the proof.

Lemma 8.2. Let q ≥ 7/2 and λ ∈ R. Let (X,ψ), (X ′, ψ′) ∈ X (τ) be two solutions to

(1.1) for some τ > 0. Then, for all t ∈ [0, τ ]

|(Ẍ − Ẍ ′)(t)| ≤ C[|(X −X ′)(t)|+ ∥(ψ − ψ′)(t)∥L3,∞(R3;CNel )], (8.1)

∥(ψ − ψ′)(t)∥L3,∞(R3;CNel ) ≤ C

∫ t

0

1√
t− σ

[|(X −X ′)(σ)|+ ∥(ψ − ψ′)(σ)∥L3,∞(R3;CNel )]dσ,

(8.2)

where C = C(∥ψ∥C0([0,τ ];H2(R3;CNel )), ∥ψ′∥C0([0,τ ];H2(R3;CNel ))).

Proof. We focus on justifying each estimate separately, as follows.

Proof of (8.1). In this proof, we use for short-hand notation the function Ξ : R3 −! R3

(a.e.), x 7−! x|x|−3 again.

For all t ∈ [0, τ ] and K = 1, . . . , Nnuc

|(ẌK − Ẍ ′
K)(t)| ≤ |A1

K [ρ(t)](X(t))− A1
K [ρ

′(t)](X ′(t))|+ |A2
K(X(t))− A2

K(X
′(t))|

≤ (I) + (II) + (III),

(I) := |A1
K [ρ(t)](X(t))− A1

K [ρ(t)](X
′(t))|,

(II) := |A1
K [ρ(t)](X

′(t))− A1
K [ρ

′(t)](X ′(t))|,
(III) := |A2

K(X(t))− A2
K(X

′(t))|.
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By Lemma 2.2 on the force functions, A1
K [ρ] are uniformly Lipschitz continuous in the

nuclear variable for all t ∈ [0, τ ] and K, by which

(I) ≲
Nel∑
k=1

|(ψk(t),Ξ(· −XK(t))ψk(t))L2 − (ψk(t),Ξ(· −X ′
K(t))ψk(t))L2|

(2.6)

≤ CI|(XK −X ′
K)(t)| ≤ CI|(X −X ′)(t)|

for some CI = CI(∥ψ∥C0([0,τ ];H2(R3;CNel ))) > 0. Also,

(II) ≤ CII∥(ψ − ψ′)(t)∥L3,∞(R3;CNel )

for some CII = CII(∥ψ∥C0([0,τ ];H2(R3;CNel )), ∥ψ′∥C0([0,τ ];H2(R3;CNel ))) > 0 by Hölder’s

inequality in Lorentz spaces (A.1) and the fact that ∥ · ∥−2
R3 ∈ L3/2,∞. Since X,X ′ ∈

Bnuc(τ), we bound (III) similarly to Part 1 of the proof of Lemma 6.1:

(III) ≲
Nnuc∑
L=1,
L̸=K

|Ξ((XK −XL)(t))− Ξ((X ′
K −X ′

L)(t))| ≲δ,X0 |(X −X ′)(t)|.

Since these results hold for all K, (8.1) follows.

Proof of (8.2).

Similarly to the proof of Lemma 7.1,

i
∂

∂t
(ψ − ψ′) = −1

2
∆x(ψ − ψ′) + Vext[X](ψ − ψ′) + VHx[ρ](ψ − ψ′) + ζ̃ ,

(ψ − ψ′)(0) = 0,

where ζ̃ := ζ̃
1
+ ζ̃

2
+ ζ̃

3
, with for j ∈ {1, 2, 3}, ζ̃

j
being ζjn with (Xn, ψn) 7−! (X ′, ψ′). As

the operator −∆x/2 generates the free propagator U0, we write the equivalent integral

equation for all t ∈ [0, τ ]

(ψ − ψ′)(t) = −i
∫ t

0

U0(t− σ){Vext[X(σ)](ψ − ψ′)(σ) + VHx[ρ](ψ − ψ′)(σ) + ζ̃(σ)}dσ.

We recall that by [8, Lemma 6], for all σ ∈ (0, τ ] and f ∈ L3/2,∞, it holds that

∥U0(σ)f∥L3,∞ ≲
1√
σ
∥f∥L3/2,∞ .

Using this estimate, we obtain for all t ∈ [0, τ ] and k = 1, . . . , Nel

∥(ψk − ψ′
k)(t)∥L3,∞ ≲

∫ t

0

1√
t− σ

[
∥(Vext[X(σ)](ψ − ψ′))k(σ)∥L3/2,∞

+ ∥(VH[ρ](ψ − ψ′))k(σ)∥L3/2,∞ + ∥(Vx[ρ](ψ − ψ′))k(σ)∥L3/2,∞

+
∑

j∈{1,2,3}

∥(ζ̃
j
(σ))k∥L3/2,∞

]
dσ.
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Since ∥ · ∥−1
R3 ∈ L3,∞, by Hölder’s inequality on L3/2,∞, we obtain for all σ ∈ (0, t) and

k = 1, . . . , Nel that

∥(Vext[X(σ)](ψ − ψ′))k(σ)∥L3/2,∞ ≲
Nnuc∑
K=1

∥| · −XK(σ)|−1∥L3,∞∥(ψk − ψ′
k)(σ)∥L3,∞

≲ ∥| · |−1∥L3,∞∥(ψk − ψ′
k)(σ)∥L3,∞

≲ ∥(ψk − ψ′
k)(σ)∥L3,∞ .

Note also that

∥(VH[ρ](ψ − ψ′))k(σ)∥L3/2,∞ ≲ ∥ρ(σ) ∗ | · |−1∥L3,∞∥(ψk − ψ′
k)(σ)∥L3,∞ (8.3)

≲ ∥ρ(σ)∥L1∥| · |−1∥L3,∞∥(ψk − ψ′
k)(σ)∥L3,∞ (8.4)

≤ CH∥(ψk − ψ′
k)(σ)∥L3,∞

for some CH = CH(∥ψ∥C0([0,τ ];H2(R3;CNel ))) > 0. Here, we have used Hölder’s inequality

on L3/2,∞ in (8.3) and Young’s convolution inequality on L3,∞ in (8.4). Moreover,

∥(Vx[ρ](ψ − ψ′))k(σ)∥L3/2,∞ ≲λ ∥[ρ(σ)]q−1∥L3,∞∥(ψk − ψ′
k)(σ)∥L3,∞ (8.5)

≲ ∥[ρ(σ)]q−1∥L3∥(ψk − ψ′
k)(σ)∥L3,∞ (8.6)

≤ Cx∥(ψk − ψ′
k)(σ)∥L3,∞ (8.7)

for some Cx = Cx(∥ψ∥C0([0,τ ];H2(R3;CNel )), q) > 0. Here, we used Hölder’s inequality

on L3/2,∞ in (8.5) and [4, Chapter 4, Prop. 4.2.] in (8.6). In (8.7), we used Sobolev’s

inequality with interpolation, and the embedding of H2 into L∞, by which, with

θ := 6(q − 1) > 6,

∥[ρ(σ)]q−1∥3L3 ≲q

Nel∑
k=1

∥[ψk(σ)]
(θ−6)+6∥L1

≲
Nel∑
k=1

∥ψk(σ)∥θ−6
L∞ ∥ψk(σ)∥6L6 ≲

Nel∑
k=1

∥ψk∥θC0([0,τ ];H2).
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On the other hand

∥(ζ̃
1
(σ))k∥L3/2,∞ ≲

Nnuc∑
K=1

∥(| · −XK(σ)|−1 − | · −X ′
K(σ)|−1)ψ′

k(σ, ·)∥L3/2,∞

=
Nnuc∑
K=1

∥(| · −(XK −X ′
K)(σ)|−1 − | · |−1)ψ′

k(σ, ·+X ′
K)∥L3/2,∞

≲ ∥ψ′
k(σ)∥L∞

Nnuc∑
K=1

∥| · |−1| · −(XK −X ′
K)(σ)|−1∥L3/2,∞×

× |(XK −X ′
K)(σ)| (8.8)

≲ ∥ψ′
k∥C0([0,τ ];H2)∥| · |−1∥L3,∞

Nnuc∑
K=1

∥| · −(XK −X ′
K)(σ)|−1∥L3,∞×

× |(XK −X ′
K)(σ)| (8.9)

≲Nnuc ∥ψ′
k∥C0([0,τ ];H2)∥| · |−1∥2L3,∞|(X −X ′)(σ)|

≲ ∥ψ′
k∥C0([0,τ ];H2)|(X −X ′)(σ)|.

where we used the triangle inequality written as || · | − | · −(XK − X ′
K)(σ)|| ≤

|(XK−X ′
K)(σ)| in (8.8), Hölder’s inequality in L3/2,∞ and the embedding of H2 into L∞

in (8.9). Moreover,

∥(ζ̃
2
(σ))k∥L3/2,∞ ≲

Nel∑
ℓ=1

∥{[(ψℓ − ψ′
ℓ)(σ)(ψℓ + ψ′

ℓ)(σ)] ∗ | · |−1}ψ′
k(σ)∥L3/2,∞

≲
Nel∑
ℓ=1

∥[(ψℓ − ψ′
ℓ)(σ)(ψℓ + ψ′

ℓ)(σ)] ∗ | · |−1∥L6,∞∥ψ′
k(σ)∥L2,∞ (8.10)

≲
Nel∑
ℓ=1

∥[(ψℓ − ψ′
ℓ)(σ)(ψℓ + ψ′

ℓ)(σ)] ∗ | · |−1∥L6,2∥ψ′
k(σ)∥L2 (8.11)

≲ ∥ψ′
k∥C0([0,τ ];H2)

Nel∑
ℓ=1

∥(ψℓ − ψ′
ℓ)(σ)(ψℓ + ψ′

ℓ)(σ)∥L6/5,2×

× ∥| · |−1∥L3,∞ (8.12)

≲ ∥ψ′
k∥C0([0,τ ];H2)×

×
Nel∑
ℓ=1

[∥ψℓ(σ)∥L2 + ∥ψ′
ℓ(σ)∥L2 ]∥(ψℓ − ψ′

ℓ)(σ)∥L3,∞ (8.13)

≤ C2∥(ψ − ψ′)(σ)∥L3,∞(R3;CNel )

for some C2 = C2(∥ψ∥C0([0,τ ];H2(R3;CNel )), ∥ψ′∥C0([0,τ ];H2(R3;CNel ))) > 0. Here, we used

Hölder’s inequality on L3/2,∞ in (8.10), [4, Chapter 4, Prop. 4.2.] in (8.11), Young’s

convolution inequality on L6,2 in (8.12), and Hölder’s inequality on L6/5,2 in (8.13).



CONTENTS 33

Finally,

∥(ζ̃
3
(σ))k∥L3/2,∞

(5.13)

≲ λ,q ∥[ρ(σ)]
q−3/2 + [ρ′(σ)]q−3/2∥L∞∥ψ′

k(σ)|ψ(σ)− ψ′(σ)|∥L3/2,∞

≲
[
∥ρ(σ)∥q−3/2

L∞ + ∥ρ′(σ)∥q−3/2
L∞

]
∥ψ′

k(σ)∥L3,∞×
× ∥|(ψ − ψ′)(σ)|∥L3,∞(R3;CNel ) (8.14)

≲q

[ Nel∑
ℓ′=1

∥ψℓ′(σ)∥2q−3
H2 +

Nel∑
k′=1

∥ψ′
k′(σ)∥

2q−3
H2

]
∥ψ′

k(σ)∥L3×

×
Nel∑
ℓ=1

∥(ψℓ − ψ′
ℓ)(σ)∥L3,∞ (8.15)

≤ C3∥(ψ − ψ′)(σ)∥L3,∞(R3;CNel ). (8.16)

for some C3 = C3(∥ψ∥C0([0,τ ];H2(R3;CNel )), ∥ψ′∥C0([0,τ ];H2(R3;CNel )), q) > 0. Here, we used

Hölder’s inequality on L3/2,∞ in (8.14); (5.19), [4, Chapter 4, Prop. 4.2.] in (8.15); and

Sobolev’s embedding theorem with interpolation in (8.16). Since all of these estimates

hold for all σ ∈ (0, t), and k = 1, . . . , Nel, (8.2) follows.

Proof of Theorem 1.1. Let τ > 0 be such that the following statements hold. For

given ψ ∈ Bel(τ), (1.6) has a unique solution X ∈ Bnuc(τ) ∩ C2([0, τ ];Bδ(X
0)), and

for given X ∈ Bnuc(τ), (1.4) has a unique solution ψ ∈ Bel(τ). Existence of such τ

has been proven in Lemmas 6.1 and 7.1. Existence of the solution (X,ψ) ∈ X (τ) to

(1.1) has been proven in Lemma 8.1. Uniqueness of this solution follows from Lemma

8.2. For two solutions (X,ψ), (X ′, ψ′) ∈ X (τ) and p > 2, let us define the function

h ∈ C0([0, τ ];R+
0 ) by

h(t) := [|(X −X ′)(t)|+ ∥(ψ − ψ′)(t)∥L3,∞(R3;CNel )]
p.

Since X and X ′ both solve (1.6) on [0, τ ] and thus are fixed points of the mapping T in

(6.2), for all t ∈ [0, τ ]

|(X −X ′)(t)| ≤
∫ t

0

(t− σ)|(Ẍ − Ẍ ′)(σ)|dσ.

Now, using this in combination with Lemma 8.2 in (8.17) and Hölder’s inequality, for

all t ∈ [0, τ ]

h(t) ≲p C

{∫ t

0

(
t− σ +

1√
t− σ

)
×

× [|(X −X ′)(σ)|+ ∥(ψ − ψ′)(σ)∥L3,∞(R3;CNel )]dσ

}p

(8.17)

≲ C
∥∥∥(t− ·+ 1√

t− ·

)
h1/p

∥∥∥p

L1([0,t];R)

≲ C
∥∥∥t− ·+ 1√

t− ·

∥∥∥p

Lp′ ([0,t];R)
∥h1/p∥pLp([0,t];R) ≲τ C

∫ t

0

h(σ)dσ,
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where C = C(∥ψ∥C0([0,τ ];H2(R3;CNel )), ∥ψ′∥C0([0,τ ];H2(R3;CNel ))) is from Lemma 8.2. Now,

using Grönwall’s inequality, we obtain h ≤ 0 on [0, τ ]. Since h ≥ 0 too by definition,

and h(0) = 0 since X(0) = X ′(0) = X0 and ψ(0) = ψ′(0) = ψ0, we get h ≡ 0, by

which (X,ψ) = (X ′, ψ′). This completes the proof.
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Appendix A. Notation

Throughout the paper, we make use of the following notation:

• We use A ≲ B to denote |A| ≤ CB, where 0 < C <∞.

• We use A ≲α,β B to denote dependence on parameters α, β: so, |A| ≤ Cα,βB with

0 < Cα,β <∞. In our notation, A ≲α B ≲β Γ means that A ≲α,β Γ.

Further, we make use of the following normed spaces:

• We use the notation Lp,r(R3) = Lp,r, p ∈ [1,∞), r ∈ [1,∞], for Lorentz spaces,

with

– the radial non-increasing rearrangement of measurable functions f on R3

f ∗(t) = inf{s > 0||{x ∈ R3||f(x)| > s}| ≤ t},

– the average of f ∗

f ∗∗(t) =
1

t

∫ t

0

f ∗(s)ds,

and
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– the norms

∥f∥rLp,r =

∫ ∞

0

|t1/pf ∗∗(t)|rdt
t

on Lp,r, r <∞, and

∥f∥Lp,∞ = sup
t∈R

|t1/pf ∗∗(t)|

on the weak Lebesgue spaces Lp,∞.

• We use the notation W k,p(R3) = W k,p and W k,2 = Hk, k ∈ N, p ∈ [1,∞], for

classical Sobolev spaces, setting in particular

∥f∥2H2 = ∥f∥2L2 + ∥∆f∥2L2 .

Further, we make use of the following inequalities:

• Hölder’s inequality on Lorentz spaces. [25] Let f ∈ Lp1,q1 , g ∈ Lp2,q2 , with

p1, p2 ∈ (0,∞), q1, q2 ∈ (0,∞]. Then

∥f · g∥Lr,s ≲p1,p2,q1,q2 ∥f∥Lp1,q1∥g∥Lp2,q2 (A.1)

with 1/r = 1/p1 + 1/p2, 1/s = 1/q1 + 1/q2.

• Young’s convolution inequality on Lorentz spaces. [34, Thm. 2.10.1] Let f ∈
Lp1,q1 , g ∈ Lp2,q2 , with 1/p1 + 1/p2 > 1. Then

∥f ∗ g∥Lr,s ≤ 3r∥f∥Lp1,q1∥g∥Lp2,q2

with 1/r = 1/p1 + 1/p2 − 1 and s ∈ [1,∞] such that 1/q1 + 1/q2 ≥ 1/s.

• Hardy’s inequality: [17]

∥|x− ·|−1f∥L2 ≤ 2∥∇f∥L2 (A.2)

for all f ∈ H1 and x ∈ R3.
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