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Chapter 1
Introduction

The cell is the fundamental building block of life as we know it. All liv-
ing organisms are either single celled, such as bacteria (prokaryotes), or
multicellular, like plants and animal cells (eukaryotes). Some may argue
that the virus is also a unit of life. Now, a virus is not single cellular,
multicellular, or any other kind of cellular, but there is some debate about
whether viruses can be considered to be “alive” [1, 2]. We will leave them
out of our discussion for the sake of simplicity. All the functions of life as
we know it are completely reliant on the ability of cells to live their own
lives healthily. This requires that cells be able to: (a) consume energy,
(b) reproduce, and (c) regenerate themselves after injury. Since the cells
do not exist isolated from everything else, they can react to their envi-
ronment which may, in turn, affect cell functions. For example, cells may
compete for nutrients and that affects their energy consumption and/or
reproduction [3, 4], or some illness may change their ability to regen-
erate [5]. Therefore, it follows, that one should understand how these
building blocks, the cells, behave and react to various stimuli to be able to
understand life.

Ever since the discovery of cells in the seventeenth century by Robert
Hooke and Antoni van Leeuwenhoek [6], scientists have been studying
them tirelessly. Most biological functions can be traced to cells of differ-
ent types carrying out their roles. Different fields of research dedicated
to the different parts and functions of the cell have developed over time:
cell metabolism, genetics, the study of the different organelles in the cell
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and their function, cell communication, and cell growth and reproduc-
tive cycle. Systems biologists go a step further and study the connections
between these different fields.

In most of these branches of cell biology, the focus is on the biochemical
parts of cell behaviour. Here researchers have been asking questions such
as [7–9]

• What are the chemical reactions involved?

• What are the relationships between the reactions?

• How are all the above related to genetics [10]?

• Can one relate the behaviour of a group of cells to that of a single
cell?

• What is the genetic basis of diseases? Of cancer?

Cell biologists have learned a great deal regarding the operation of the
internal components of the cell by seeking answers to these questions. The
role of mitochondria in energy production and cellular metabolism, how
chlorophyl is essential for photosynthesis in plant cells, the conduction of
electrical impulses through axons in nerve cells [11, 12] are all examples
of knowledge gained through their efforts. The vital behaviour of groups
of cells, such as organs, is also a vibrant topic of inquiry [13–15]. Both for
scientific curiosity, and to more practical ends such as understanding the
mechanisms of disease [16] or decay due to aging [17].

In this thesis, we discuss questions regarding the behaviour of cells
as physical objects. After all, cells are objects in the universe: they have
mass, they have a friction, they exert forces on their environments. Am-
ple evidence has been found showing cells are also interacting with their
environments and each other mechanically, not just biochemically [18,
19]. This interplay between mechanical signals and the biology of cells
is called mechanotransduction [18, 20, 21]. The most intuitive examples
of mechanotransduction are in our very own senses. The sense of touch,
sound, pressure (baroreception), and the sense of motion (propriocep-
tion) all involve certain sensory cells reacting to mechanical stimulus and
converting it into biochemical signals. We are able to mechanically excite
our surroundings as well with muscle contraction. In muscle contraction
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Nucleus

Leading Edge Trailing Edge

Lamellopodium/Filopodium

Adhesion Site

Substrate

Figure 1.1: A filopodium, which is a bundle of cross-linked fibrous filaments that
induces the cell membrane to extend at leading edge and form new binding complexes
with the substrate. At the trailing edge, binding with the substrate is reduced. These
two effects will cause the cell to move to the left. Since this image shows a cross-
section, a lamellopodium is shown in the same manner. The binding sites are the
result of interaction between cell adhesion molecules, see Section 3.2.1.

a hormonal and/or electrical signal to the cell triggers a biochemical re-
action within muscle cells, which contracts or relaxes them, and in turn
results in a mechanical action on the environment.

There are also several less intuitive examples of mechanotransduction
including cell migration [22, 23], tissue patterning [24] and responding
to mechanical stimulus in general, such as shear stress [25]. To illustrate
further, consider amoeboid cell migration as shown in Figure 1.1. Signals
within the cell cause release of cell junctions at the trailing edge, the re-
arrangement of its body towards its target (on the left in the figure), the
generation of new cell junctions at the leading edge, and then the con-
traction of its body. The process involves multiple biochemical signals and
subsequent restructuring of the cell’s body to create filopodia [26], which
are bundles of cross linked fibres that cause the cell membrane to protrude
extensively in one direction, and lamellopodia [27] which are larger ex-
tensions of the cell along the whole cell. Both filopodia and lamellopodia
are depicted as the same structure as Figure 1.1 is a cross-section.

Mechanotransduction plays a profound role in cellular biology. It has
been shown that mechanics can affect stem cell differentiation [28–31]
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and morphogenesis in general [32–34], the behaviour of cancers [35,
36] and metastasis [37], and a whole host of biological functions such
as [21]. Mechanical properties such as texture, stiffness, pressure, shear
stress, tension, compression can all play a vital role in every aspect of cell
behaviour, and as a consequence, on biology and life.

Many experimental techniques have been devised [21, 38] to study
mechanotransduction. The basic goal with those techniques is to correlate
the biomechanical response of cells to some chemical or physical stimulus,
or vice versa. The many phenomena of mechanotransduction that were
listed above have been elucidated with experimental methods. Running
these experiments entails tracking the forces acting on the cell membrane,
the outer envelope of cells 1, and correlating to some biochemical process.
The forces themselves are very small, of the order of 1 to 100 nN [39–41].
However, experiments can only either measure macroscopic properties of
tissues, containing millions of cells, or individual cells. It is difficult to link
the behaviour of large tissues containing millions of cells to the mechani-
cal properties of individual cells. It is also impossible to control the level of
variability, such as e.g. variation in the level of nutrition provided to each
cell, in experiments. Theoretical models provide an alternative method
to study complex phenomena such as mechanotransduction with greater
control on the governing parameters of tissues. In a theoretical model one
attempts to mathematically connect fundamental physical facts regarding
the cells in question to macroscopic observables pertaining to them. Ana-
lytical or numerical solutions to these models combined with experimental
results give researchers a more complete understanding of the underlying
phenomena. However, it is often impossible to describe the interaction
of hundreds of cells mathematically. Therefore, these types of models are
forced to either consider a small number of cells, or to approximate the
whole tissue as a single object. Computational models allow researchers
run in silico experiments that connect the fundamental physical parame-
ters of the cells to the macroscopic observables. Additionally, they offer
the power to control all the variables involved giving researchers the abil-
ity to simulate experimentally inaccessible regimes.

This thesis is centred on one such computational method to study
mechanotransduction: CellSim3D [42], a 3D top-down coarse-grained

1Cell membranes are discussed in more detail in Chapter 3
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(CG) molecular dynamics (MD) model that aims to be a flexible general
purpose method to study cell growth and mechanotransduction in large
tissues. MD is a particle based method where the underlying system is
approximated by a collection of particles interacting through potentials.
Thus, MD allows researchers to track the forces acting on the particles
and link them to macroscopic observables by analyzing the trajectories of
the particles. Our aim with CellSim3D [42] is to give researchers a fast
open source cell simulator that can simulate tissue growth with tight con-
trol on the mechanical properties of the cells. The simulator source code
is available on github: https://github.com/SoftSimu/CellSim3D.

Thesis Structure

As was stated above, the CellSim3D model is a top-down CG model that is
based on MD. For context we give a brief introduction to MD in Chapter 2.
Therein we introduce the history of MD, the concept of a force field, and
the degrees of freedom in MD which inspire the degrees of freedom in
CellSim3D. We also explore some CG techniques, out of which we use the
Dissipative Particle Dynamics formalism for the CellSim3D model.

Next, in Chapter 3 we provide a concise introduction to cell structure
from a mechanical perspective. We discuss the notion of the mechanical
cell, which we use to drive the development of CellSim3D force field. We
also discuss some other computational and theoretical models for studying
cell behaviour and mechanotransduction.

In Chapter 4, we use one of the models described in Chapter 3 to study
the morphologies of cellular materials with the Cellular Discrete Element
Model (CeDEM) [43], a model that is similar in spirit to CellSim3D but in
2D. The 3D CellSim3D model is inspired by the CeDEM.

The details of the CellSim3D model and its implementation in software
is given in Chapter 5. Therein we discuss details regarding the structure of
CellSim3D cells, the force field, and details regarding the implementation
of the simulator.

In Chapter 6 we use CellSim3D to reproduce the growth behaviour of
both epithelia2 and 3D cellular systems with up to approximately 26000

2Epithelia are quasi 2D tissues that are ubiquitous in biological systems. The surface of

https://github.com/SoftSimu/CellSim3D
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cells. We then run further simulations to probe the interplay between
tissue growth, structure, and intercellular friction.

We summarize the thesis in Chapter 7 and propose some extensions to
CellSim3D. We describe how it can be extended with terms to simulate the
connection between heterogeneity of cell properties and their behaviour,
cell migration, and cell differentiation.

human skin is a type of epithelium. See Section 5.3.1 for details



Chapter 2
A Brief Overview of Molecular
Dynamics

Molecular dynamics (MD) is a set of algorithms, and tools, that are used
for the analysis and study of molecular systems. MD is based on the frame-
work of Newtonian mechanics where each atom is assumed to be a particle
that interacts with other atoms (other particles) through a potential that
aims to approximate the real interactions between the atoms. The historic
roots of MD go back to the late 1950s when it was first used to study phase
transitions of hard spheres by Alder and Wainright [44, 45]. It was then
shown by Rahman [46] in 1964 that with a careful choice of the potential
acting between the particles, the method of Alder and Wainright could be
used to study the properties of Argon at 94.4 K. Rahman, along with Still-
inger, showed that the method can be extended yet again to study liquid
water in 1971 [47]. Water would later prove to be incredibly difficult to
study correctly [48, 49], but the fundamental methods described by Rah-
man and Stillinger still remain applicable. In 1977, McCammon, Gelin,
and Karplus demonstrated the first application of MD to study the dynam-
ics of protein folding [50]. At the time the simulations were limited to less
than 1000 atoms simulated for a few ps. Thanks to the foundation that the
researchers above built, the rapid development of computational power,
the increasing variety of high performing software packages [51–55], and
the development more efficient algorithms to approximate molecular in-
teractions MD has evolved over the past 50 years to the point where it
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is possible to study large systems with 105 to 106 atoms for hundreds of
ns [52, 56–60] or smaller systems with of the order of 103 to 104 atoms
for up to ten µs [59, 61–64]. Even researchers with access to modest
computational facilities can simulate 10000 to 100000 atoms for 10 to 100
ns [65]. MD can be applied to a huge variety of systems such as lipids [66–
69], proteins [70–74], polymers [75, 76], supramolecular polymers [77,
78], DNA [65, 79, 80], crystals [81–83], and soft matter [76, 84, 85].

As we noted above, the rapid development of computational power has
played a huge role in the advancement of MD. However, it would not be
possible without the work of the many researchers who implemented and
refined the algorithms of MD to make use of the hardware available. Many
software packages exist with high performing and flexible MD implemen-
tations such as GROMACS [51], LAMMPS [53], NAMD [54], HOOMD-
blue [55].

This thesis is about using the algorithms that were developed for MD
to study cell behaviour and growth. This is done with the CellSim3D [42]
(Chapter 5), a 3D Graphics Processor Unit (GPU) accelerated model and
software package 1. The degrees of freedom in CellSim3D, and the force
field acting upon them, are based on the principles of MD outlined below.
This chapter provides a short introduction to the basics of MD theory. Al-
though no MD results are presented in this thesis, this discussion is to pro-
vide context for the CellSim3D force field (Section 5.2). Readers interested
in details about MD are referred to Refs. [65, 86–89]. Details regarding
efficient implementations of MD algorithms are available in Refs. [51–55].
A discussion regarding best practices in running MD simulations for soft
matter systems is given in Refs. [84], and Refs. [90, 91] discuss how MD
can be used to drive experimentation in the life sciences.

2.1 Methodology

The basic principles of MD arise from the definition of a conservative force
acting on particle i given by

Fi =−∇xi U (X) (2.1)

1Available on github: https://github.com/SoftSimu/CellSim3D

https://github.com/SoftSimu/CellSim3D
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where U (X) is a potential that describes the interactions between parti-
cle i and the rest of the particles in the system, and X ∈ R3N is a vector
describing the configuration of N particles in 3D space. The gradient is
taken with respect to the position of particle i . U (X) thus describes the
potential energy landscape that the atom i is in. Combining the definition
of conservative forces with Newton’s second law then produces a second
order ordinary differential equation (ODE) given by

mi ẍi =−∇xi U (X), (2.2)

where mi is the mass of atom i . The potential energy landscape U (X) con-
tains a classical description of the interactions between the atoms. These
arise from the Born-Oppenheimer approximation [92, 93], where we as-
sume that the electronic and nuclear degrees of freedom are separated.
Therefore, interactions between atoms can be defined by continuous po-
tentials that only depend on the distance between atoms. Furthermore,
the potential is assumed to be purely additive, meaning that the land-
scape can be described by a sum of terms, each individually describing
one type of interaction [72]. Thus, U (X) can be split into two types of
interactions

U (X) =U B(X)+U NB(X), (2.3)

where U (B) approximates bonded interactions, U NB approximates non-
bonded interactions. The former describes the interactions between atoms
of the same molecule that are bonded to each other via covalent bonds,
and the latter describes the interactions between all atoms that are not
bonded to each other covalently, but interact through dispersion (van der
Waals), repulsion, and/or electrostatic interactions. Force Fields describe
the precise definition of the potentials, and their parameters for various
atoms and molecules. There are multiple published force fields such as
CHARMM [94, 95] AMBER [96, 97], GROMOS [98], and OPLS[99, 100].

Bonded potentials are further decomposed into a sum of a potential
depending on changes in bond lengths between two atoms, potential de-
pending on the angle between three atoms, and a potential depending on
the angle between the two planes defined by four atoms. An example of
the decomposition is illustrated as follows. The bonding potential can be
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decomposed as

U B(X) =
∑

bonds
U S(X)+

∑
angles

Uθ(X)+
∑

dihedrals
Uϕ(X) (2.4)

in which U S(X) approximates the interactions occurring between bonded
atoms, Uθ(X) approximates the interactions due to changes in the angle,
and Uϕ(X) the potential due to changes in the dihedral.

Using Figure 2.1 to define the degrees of freedom, one can define the
potential of bonded atoms i , j , k, l , to approximate the various bonded
terms with

U S(ri j ) = 1

2
kS

i j

(
ri j − r 0

i j

)2
(2.5)

Uθ(θi j k ) = 1

2
kθi j k

(
θi j k −θo

i j k

)2
(2.6)

Uϕ(ϕimp
i j kl ) = 1

2
kϕ

imp

i j kl

(
ϕ

imp
i j kl −ϕ

imp,0
i j kl

)2
. (2.7)

Uϕ(ϕi j kl ) = kϕi j kl

[
1+cos

(
nϕi j kl −δ

)]
(2.8)

In the definitions above, kS
i j is the bond force constant for the bond be-

tween atoms i and j and ri j − r 0
i j is the distance the atoms have moved

from their equilibrium bond length r 0
i j . Similarly, for the angles and im-

proper dihedrals kθi j k and kϕ
imp

i j kl are the angle and improper dihedral (out

of plane angle) force constant respectively, and
(
θi j k −θo

i j k

)
,
(
ϕ

imp
i j kl −ϕ

imp,0
i j kl

)
are the change from equilibrium angle and improper dihedral. Finally, kϕ

is the proper dihedrals (torsion angle) force constant, and n is multiplicity
of the periodic function defining the proper dihedral potental and δ is its
phase-shift.

The non-bonded force field terms contains dispersion interactions due
to temporary dipole interactions that can arise between atoms [101]. The
repulsion term arises from the repulsive interactions between electron
densities when they are close to overlapping. Atoms can also interact with
each other electrostatically if they are charged. The repulsion and van der
Waals interactions are combined into a single approximation given by the
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Figure 2.1: Depiction of the different bonded degrees of freedom. Left: the covalent
bond potential acts between any two atoms i and j that are considered to be bonded
together with distance r = ri j between them, and the angle potential depends on the
angle between the three atoms i , j , k where θ = θi j k . Centre: The proper dihedral
between four atoms i , j , k, and l depending on the angle between the planes defined
by i , j , k and j , k, l where ϕ=ϕi j kl . Right: Improper dihedral between four bonded
atoms.

Lennard-Jones potential defined as

ULJ(X) =
∑

i , j>1
4εi j

[(
σi j

ri j

)12

−
(
σi j

ri j

)6]
(2.9)

where εi j is the depth of the potential between the two atoms i and j , σi j

is the first zero of the Lennard-Jones potential for i , j , and ri j = |xi −x j | is
the Euclidean distance between them. The two constants ε and σ are input
parameters to the MD simulation. They are normally fitted to the inter-
atomic interaction of atoms of the same element εi i and σ j j . Mixing rules
exist [102] that approximates the Lennard-Jones constants for different
elements such as the Lorentz-Berthelot [72] rule where σi j = 1

2 (σi i +σ j j )

and εi j = (εi i ε j j )
1
2 .

MD simulation is a computational tool that exists as an intermediary
between theoretical and experimental methods. In order to predict the re-
sults of experiments, one must be able to simulate bulk systems. However,
this is impossible with current computational resources. Even systems of
crystallites that contain on the order of 106 atoms, open boundary con-
ditions would result in approximately 6% of atoms being on the bound-
ary [87]. This leads to what are known as finite size effects [87, 103–
105]. The intuitive solution to this problem is to simulate systems of size
comparable to experimental scales. This entails simulating at least moles
(1023) of atoms which is impossible with current hardware limitations.
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The solution to the finite size problem is to simulate bulk phases with
Periodic Boundary Conditions (PBC). Figure 2.2 shows an example of a
system of atoms (in red) in 2D surrounded by its periodic images (green)
assuming a square box with side length L. The figure shows only a single
layer of the periodic images, there are infinite images along each direc-
tion. Each particle then interacts with all of the particles in the simulation
box, and all of the periodic images in all of the virtual boxes. This has
just further complicated the potential as it now contains an infinite sum
(recall that we assume potentials to be additive in MD), such that the total
potential Utot of the original system becomes [87]

Utot = 1

2

∑
i , j ,n

′
U (X+nL), (2.10)

where n ∈ N3 is a vector describing the coordinate of each box in units
of L, the prime over the sum indicates that terms when i = j are ignored
when n = 0. The issue of infinite sums is resolved in two ways:

1. Simple truncation and shift of the Lennard-Jones interaction. The
shifted and truncated Lennard-Jones potential acting on particle i
due to particle j is defined as

U∗
LJ(ri j ) =

{
ULJ(ri j )−ULJ(r c

i j ) if ri j ≤ r c
i j ,

0 if ri j > r c
i j ,

(2.11)

where ULJ was defined in Equation 2.9 and r c
i j is the threshold trun-

cation range. The truncation range is often set to r c
i j = 2.5σi j as

the Lennard-Jones potential at ri j = 2.5σi j would have decayed to
approximately 1/60th of the well depth εi j .

2. Minimum image convention. Atoms at the edge of the simulation
boxes would have to interact with virtual particles due to the PBCs,
even if the distance between them is greater than r c

i j . Some of these
interactions are shown in Figure 2.2.

The minimum image convention is enforced by the following correc-
tion to the distance calculation between particles i and j . Let r x

i j be
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Particle

PBC Image

Interaction

L

Figure 2.2: Depiction of periodic boundary conditions. The real atoms and
molecules are represented by red particles and their periodic images by green parti-
cles. L is the box size. The dashed lines shows an example interaction abiding by the
minimum image convention. Adapted from Figure 3.2 in [87].

the first component of the vector pointing between the two particles
ri j , it is then corrected such that

r x
i j = r x

i j −L

⌊(
r x

i j

L
+0.5

)⌋
(2.12)

in which bac returns the greatest integer smaller than a.

The remaining term in the force field is the evaluation of electro-
static interactions between charged atoms. This term is represented by
a Coulombic term between two charged particles. However, similar, to the
Lennard-Jones terms, the electrostatic potential would have to be evalu-
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ated over an infinite number of boxes [87]:

U Coul = 1

2

∑
i

qiφ(xi ), (2.13)

where we assume that the system is neutral (
∑

i qi = 0), and φ(xi ) is the
Coulombic potential∑

j ,n

′ q j

ri j +nL
, (2.14)

where the prime indicates the sum over all periodic images with coordi-
nate n ∈N3 with units of L (the box size), except the case when i = j and
n = 0. We cannot apply the methods outlined above for the Lennard-Jones
interactions here as the electrostatic interaction is a long-ranged one—it
does not decay at a rate high enough to be amenable to truncating. This
problem is resolved with Ewald sums [106–108]. Ewald sums are out of
the scope of this thesis and will not be discussed here. Detailed discussions
of Ewald sums are available in Refs. [87, 109–111].

2.1.1 Calculating MD Trajectories

Once a collection of potentials that describe the interactions between the
atoms are approximated with the methods described before, the ODE de-
scribed in Equation 2.2 is solved as an initial value problem for a set of
initial conditions given by positions xi and momenta pi = mi

dxi
d t . Solv-

ing the ODE would lead to a trajectory in phase space (a 6N dimensional
space spanned by all the positions and momenta) that describes the evolu-
tion of the system with the potentials described above. The complexity of
the inter-atomic potentials makes solving the ODE analytically impossible,
requiring the use of numerical methods to approximate the solution.

The formulation of MD above arose from the definition of the conser-
vative forces, where the system in question is isolated from the environ-
ment and without any external influences. This requires that the total
energy in the system is conserved [112]. Furthermore, the Newtonian
equations of motion in this case are time reversible which requires the use
of time reversible integrators. This means that the volume of the trajec-
tory in phase space produced by solving the differential equations must
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be incompressible (conserved volume). In other words the system is sym-
plectic.

The details of the theory of symplectic systems and their relationship
to MD are out of the scope of this thesis. We only summarize the Ver-
let integrator, which is a symplectic integrator [112–114], as an example
integrator suitable to these systems. The Verlet integrator is defined as

xi (t +∆t ) = 2xi (t )−xi (t −∆t )+ Fi (t )

mi
·∆t 2 +O(∆t 4) (2.15)

vi (t ) = ri (t +∆t )− ri (t −∆t )

2∆t
+O(∆t 2). (2.16)

Discussion of various integrators and their use for different situations
in MD are explained in greater detail in Refs. [112, 114, 115].

2.1.2 Simulations at Constant Temperature and/or Pressure

In the formulation above the system that we consider is completely iso-
lated from its environment; it contains a constant number of particles (N),
the volume of the box (V) is a constant, and the total energy is conserved.
Simulations set up with initial positions of the atoms that can be either
oriented randomly in the simulation box or on a regular lattice. A force
field is chosen that is appropriate for the underlying system and the sys-
tem is propagated forward in time with a symplectic integrator to produce
a trajectory.

The formulation of MD as a system with only conservative forces leads
to simulations of the microcanonical ensemble [87, 116], also known as
NVE simulations. One assumes that the underlying system is ergodic, so
time averages of any measurements are similar to ensemble averages. It
is extremely difficult to run real experiments that are completely isolated
from the environment. It is therefore necessary to develop methods that
can allow the control of temperature and pressure in the simulations. The
formulation of the dynamic equations of motion above can be augmented
to create constant temperature (NVT), or constant pressure and temper-
ature (NPT) [87, 117] simulations. The algorithms used to create such
simulations are named thermostats and barostats. Discussions of how they
are implemented and the derivation of the equations of motion in their
frameworks are described in [81, 82, 87, 118–121].
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2.2 Coarse-Grained Molecular Dynamics

The discussion so far has been regarding MD simulations of molecules
at the atomic level of description, i.e. each particle in a simulation rep-
resents a real atom. MD has been successfully used to make predictions
regarding a wide variety of systems of macromolecules, such as the confor-
mational properties of small intrinsically disordered proteins [74] and ex-
ploring unknown structures of two charged proteins interacting with each
other [122]. This is, however, an incomplete picture. Macromolecules
such as proteins can contain many millions of atoms within them, leading
to degrees of freedom that can span many orders of magnitude in time.
Atomic vibrations occur on the fs time scales [123], whereas changes in
the conformations of large macromolecules such as proteins [124] can re-
quire anywhere from 1 µs to 1000 s [123, 125]. Cell growth can occur
over minutes, hours, or days [126–128]. So how can one even attempt to
simulate cells with MD?

Studying the aforementioned slow dynamics within molecular (and
other larger systems) is possible with the coarse-graining (CG) [77, 85,
123, 129–132]. The recent review by Noid et al. [117] offers a detailed
description of CG methods and their successes in the field of MD for pro-
teins, nucleic acids, and water. We summarize a few details here to pro-
vide context for CellSim3D [42], a CG model for cell growth and mechan-
ics introduced in Chapter 5 of this thesis.

In the atomically detailed models described by, e.g. the CHARMM [94]
force field, each particle represents an atom in each of the molecules in
the system. In CG methods particles represent collections of one or more
atoms, effectively eliminating the faster degrees of freedom in the system.
This, in a way, is similar in spirit to the Born-Oppenheimer approxima-
tion [92, 93]. After assuming that electronic degrees of freedom relax fast
to create atomistic representations, we also assume small fast atoms in
the system relax quickly to create CG representations. The CG description
is thus based on the atomistic reference structure from all-atom positions
with a mapping M defined as

RI = MI (X) =∑
i

C I i xi (2.17)

where RI is the position of the I th CG particle, and xi is the position of
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Figure 2.3: Depiction showing the coarse-graining
(CG) map for dioleoylphosphatidylcholine (DOPC), a
common molecule used to simulate animal cell mem-
branes [134]. Martini CG particles are shown as cyan
transparent spheres overlaying the atomistic particles.
Taken from Figure 2 in Ref. [134], CC license.

the i th atom in the atomistic description. An example of the MARTINI
mapping for lipids [69, 133] is shown in Figure 2.3.

CG is then the process of defining this map. We describe two strategies
of defining, and then optimizing the mapping M [117, 129] shown in
Figure 2.4. In the bottom-up approach information from the underlying
atomistic system is used to optimize the precise properties of the CG map
M . The next step is to define the new force fields that act between the CG
particles. Once the new particles have been mapped and the force fields
between them defined, one can proceed to apply the MD algorithm onto
them. Thus, much larger simulations can be run with greater time steps.
There are three [85, 129] common ways, often combined with each other,
to optimize such bottom-up maps:

1. Energy based as in the MARTINI model for lipids [69], proteins [135],
carbohydrates [136], water [137], and supramolecular polymers [77].
Here, the CG particles and force fields are parametrized to reproduce
the free energies or energies of the underlying atomistic system.

2. Force matching such as in the model for transmembrane proteins
due to Ayton et al. [138]. In this method the CG map and force field
is optimized such that the sum acting on a CG bead is the sum of the
forces of all the atoms within it.
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3. Structure based, as in the CG models for complex fluids [139, 140]
Wherein the mapping and force field are optimized by ensuring
that the average structures (such as the radial distribution function)
of the CG representation of the macromolecules are similar to the
atomistic representation.

Bottom-up methods offer an attractive method to take known high
quality, validated atomistic models and push them to higher time and
length scales. Thus, bottom-up methods can be used to make predic-
tions of situations that have no known experimental observations. Nev-
ertheless, they do require that an atomistic description exists to begin
with. In contrast, top-down methods do not required the existence of
atomistic models to work. They instead use either already known ex-
perimentally observed phenomena to, or information from higher models
that are themselves more coarse, e.g. classical phase-field models [141].
Top-down models provide an elegant method for simulating non-trivial
emergent phenomena that result from physical principles included in the
CG model [117, 142]. Examples of top-down methods include the many
models for cell behaviour that are described in Section 3.4, and the Cell-
Sim3D [42] model.

One should note however that in most cases the distinction between
which model is a strictly top-down model and which is a strictly bottom-
up model becomes blurred as both methods are often used to refine CG
models [117, 123] and to gain new insights about the underlying system.
A detailed description of both approaches being applied to supramolecular
polymers is available in Ref. [78]. The MARTINI model [69, 143] that
we mentioned above uses both bottom-up and top-down parametrization
techniques.

2.2.1 Solvent Free Models

The solvent is a vital component of most biomolecular systems [117, 123].
While the main macromolecular component is important, the dynamics
that it undergoes is a function of its interactions with the solvent surround-
ing it. Solvent effects are vital in many processes such as the self-assembly
of colloidal systems [142, 144], lipid bilayers and vesicles [145], and the
stability of supramolecular polymers [78, 146]. Therefore, the choice and
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Figure 2.4: Schematic of top-down and bottom down coarse-graining. In the
bottom-up approach, information from fundamental first principles is used to create
atomistic models, which can then be used build coarse-grained (CG). In the top-down
approach, the CG description is optimized to reproduce data and/or structures from
experimental observations. Figure Adapted from Figure 2 in [117] with permission
from the American Institute of Physics Publishing.
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modelling of solvents is a vital aspect of designing high quality MD sim-
ulations. However, solvent molecules add significant computational costs
to running large scale MD simulations [129]. This cost is eliminated in
CG models that adjust the inter-particle potentials to account for interac-
tions with solvent. These models are called implicit solvent[147, 148], or
dry, models. Examples of such models include dry MARTINI [68, 143],
and the generalized Born model [149]. Implicit solvent simulations can
be considerably faster than regular CG models [143, 148] as there are
fewer degrees of freedom in the system. However, they can neglect some
important features of solvent interactions such as, in the case of polar sol-
vents, hydrogen bond fluctuations during conformational reorientations
of the solute. Implicit models are best used for solvents that are interact
isotropically with the solute [147, 148]

2.2.2 Dissipative Particle Dynamics

So far, the discussion has been of models that are used to study microscale
systems with millions of atoms (or CG particles) system sizes on the or-
der of 100 nm. We now discuss systems in which particles themselves
are much larger, on the order of 10nm to 1µm, such as in colloidal sys-
tems [150–152] or on the order of 10 to 100 µm as in the case of cells [11,
153]. The hydrodynamics of the solvent system and how it interacts with
the mesoscale objects cannot be ignored as the solvent may cause the
flow and/or Brownian motion of the system [87, 154] which is not neg-
ligible on mesoscale timescales. Mesoscale models can be used [123] to
study such systems. Mesoscale models include Dissipative Particle Dynam-
ics (DPD) [155, 156], and the Lattice Boltzmann (LB) [157, 158] model.
DPD is one of the most commonly used and simplest models to study
mesoscale systems [123]. In this thesis, we use the basic principle of DPD
and apply it to cellular systems, though we assume that the membranes
do not undergo Brownian motion (details in Chapter 5).

The basic DPD algorithm is similar to MD, the main difference being
the addition of a damping and a random noise term. In a DPD system, the
force acting on particle i due to interactions with particle j is given by

Fi =
∑
j 6=i

[
FC +FD (ri j ,vi j )+FR (ri j )

]
, (2.18)
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FC is the conservative force, exactly the same as the conservative forces
in atomistic MD and CG MD systems, FD is the dissipative component of
the interaction with the solvent, FR is random noise also associated with
thermal interaction with the solvent, ri j = xi−x j , and vi j = vi−v j (vi = dxi

d t ).
The dissipative and random terms are given by

FD (ri j ,vi j ) =−γωD (ri j )
(
vi j · r̂i j

)
r̂i j , (2.19)

and

FR (ri j ) =σωR (ri j )ξi j r̂i j , (2.20)

where γ is the friction coefficient, σ is the random force coefficient, ξi j is
a random variable distributed normally with unit variance, and ri j = ‖ri j‖.
The weight functions ωD (ri j ) and ωR (ri j ) describe the strength of the dis-
sipative and random forces respectively as a function of the interparticle
distance. The two are necessarily related by [159]

ωD (ri j ) = [
ωR (ri j )

]2
, (2.21)

while the random force and friction coefficients are related to the temper-
ature T and the Boltzmann constant as

σ2 = 2kB Tγ. (2.22)

Since the forces in DPD depend on both positions and velocities, us-
ing a Verlet type integrator would not be appropriate since they split the
position and velocty updates into two steps (the Verlet integrator was de-
scribed in Section 2.1.1). Many variations of the Verlet integration scheme
have been proposed; see Refs. [123, 160, 161] for a detailed discussion
and comparison of different integrators for this system. In this work we
use the DPD-VV integrator proposed by Besold et al. [160]. The DPD-VV
integrator is described in Section 5.2.3.
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Chapter 3
The Cell From a Mechanical
Perspective

The cell is an incredibly complex entity with many phenomena occurring
over multiple time and length scales from the quantum (such as with pho-
tosynthesis in some plant cells) up to the classical (such as in the growth
of a tree or animal). This is further complicated by the interdependence of
the processes between the different size scales (such as a tree’s growth into
a shaded region slowing down photosynthesis, and consequently slowing
down the tree’s growth). It would impossible to capture all of this com-
plexity in one’s lifetime, let alone a single thesis or project. We shall see
in the first section of this chapter, that there are many interesting facets
of cell behaviour that connect cell biology to cell mechanics. Our interest
is to understand this reciprocity between the mechanical and biological
aspects of cell behaviour. Due to the complexity of this topic, we must
see what assumptions we can make about the cell’s structure to be able
to continue. Therefore, in this chapter, we shall explore the properties of
cells that we can use to make some simplifying assumptions about the sys-
tem, which for us is a single or a collection of cells interacting with each
other and some medium.

To begin we first introduce some rudimentary cell biology in the first
section of this chapter Section 3.1. The depth and breadth of this topic
is far outside the scope of this thesis (or any single thesis for that mat-
ter). But it is important to give ourselves some background information
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that can shed some light on the validity of the assumptions made in our
studies that follow later in this thesis. Biological facts that are not cap-
tured by our models will also be a source to propose improvements that
can be made to our research as we go forward. Note that the biology de-
scribed Section 3.1 largely only pertains to the phenomena that involve
some sort of interaction between mechanics and cell behaviour. We shall
ignore many other details about cell biology. Readers interested in a well-
rounded review should seek it in standard textbooks such as Refs. [11,
162, 163].

The central assumption, or collection of assumptions, in this thesis is
the notion of a mechanical cell. This object approximates the entire cell
with only its mechanical parts. An explanation of this idea with some
justification is given in Section 3.2. Many of the existing computational
models of cells can be thought of as based on the mechanical cell. That is
certainly for the model described in this thesis later in Chapter 5.

We then explain how the mechanical cell can be used to study cell
growth and division in Section 3.3. This will be most applicable to the
CellSim3D [42] model, described in Chapter 5, but it may be useful to any
model developers who wish to approximate the process of a cell dividing
into two child cells, known as cytokinesis.

Finally, a non-comprehensive review of models for cell behaviour is
given in Section 3.4. There we discuss some cell models that can be used
to study the physical properties of cellular tissues.

3.1 A Short Introduction to Cell Structure

Cells can be categorized into two types: prokaryotes and eukaryotes. Most
prokaryotes are unicellular organisms. Figure 3.1 shows a schematic of a
prokaryotic cell, and Figure 3.2 shows one of a eukaryotic cell. Both types
of cells contain bodies that have specialized tasks such as the cytoskele-
ton (govern the mechanical structure of the cell), ribosomes (involved in
protein synthesis), or the cell membrane which acts as a selective barrier
that controls the inflow and outflow of material. However, the cells dif-
fer greatly from each other too. Prokaryotic cells tend to be much smaller
than eukaryotic cells with diameters of about 1 to 10 µm [11]. The genetic
information is stored in a somewhat jumbled aggregate of genetic mate-
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Figure 3.1: A prokaryotic cell. All bacteria are prokaryotes. This type of cell can be
enveloped by a capsid and does not contain any specialized components in contrast
to eukaryotes. Surprisingly, the human body may contain roughly the same num-
ber of cells, if not more, of these type of cells than human cells [164]. The image
here shows various other structures around the bacterium as well such as flagella or
villi [11], which are not necessarily universal, but give a general impression of what
a bacterium may look like. Image created by Mariana Ruiz Villarreal, Public Do-
main, available at https://commons.wikimedia.org/w/index.php?curid=3648821

rial, sometimes known as the nuclear region [11]—which is not a nucleus.
They also tend to grow much faster than eukaryotic cells. Prokaryotes
may also be equipped with flagella that can be used for motion. Com-
partmentalization of functionality into specialized bodies is also absent in
prokaryotic cells.

Eukaryotic cells on the other hand are much larger by comparison [11]
with diameters ranging from 10 to 100 µm, and they have a more complex
structure overall. While they too are also enveloped by a cell membrane,
and plant cells can also be surrounded by rigid cell walls as well, they
have other membrane enclosed objects within them named organelles.
Organelles are specialized mini-organs within the eukaryote that have spe-
cific functions, such as energy generation, intracellular transport, or stor-
age of biochemicals. Another thing that eukaryotes have that prokaryotes
do not is the nucleus, which organizes all of their DNA into very dense and
complex protein-DNA complexes named chromatin. Nuclei also manage
the transcription and replication of DNA.

Eukaryotes can be single celled organisms themselves, or they can self-

https://commons.wikimedia.org/w/index.php?curid=3648821
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Figure 3.2: A eukaryotic animal cell. Plant cells are, for our purposes, quite similar
with the addition of a cell wall. The human body contains on the order of 1013 [164]
cells. Groups of these cells, organs, can have specialized functionality but they all
stem from common ancestors. Image created by Mariana Ruiz Villarreal, Public
Domain, https://commons.wikimedia.org/w/index.php?curid=4266142.

assemble to create a whole host of living organism. The human body
contains about 30 trillion cells [164], which are organized into organs. In
this thesis, the models that are used to study cells can be used to study
either type of cells since we only focus only on the mechanical properties.
As we will see later, the distinctions between prokaryotes and eukaryotes
will not be of great significance. We will distill the physical, or mechanical,
properties of cells into a simpler structure (see Section 3.2) that can be
used for either type of cell. Perhaps one of the most interesting properties
of such models is that they are applicable to many types of cells.

3.2 The Mechanical Cell

The Mechanical Cell is a model that only approximates its mechanical
properties. We will ignore all biology and chemistry for now, and focus
only on the components of the cell that give it its mechanical properties,
such as stiffness, pressure, adhesion to other cells and environment. Fig-
ure 3.3 shows a cartoon of the major components of the cell that we focus
on. The major components shown Figure 3.3 are the cell boundary, in-
terior, and exterior (environment). Cell boundaries, an approximation of
the cell membrane and cell wall (if one exists in the species we are inter-
ested in), and the actomyosin cortex are discussed in Section 3.2.1. The

https://commons.wikimedia.org/w/index.php?curid=4266142
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The Mechanical Cell

Lipid Bilayer

CAMs

Microtubules

Intermediate Filaments

Actin (Microfilaments)

Figure 3.3: A simplified model of the cell [11]. This structure shows the basic parts
of the cell that we will focus on in this thesis. The CellSim3D [42] model was devel-
oped based on this idea. We see here the cell’s actomyosin cortex, microtubules, and
intermediate filaments. These three together give the cell its mechanical properties.
The white space in this figure outside the cell is the extracellular matrix (ECM). The
membrane contains Cell Adhesion Molecules (CAMs) that act as adhesion sites with
other cells and with the ECM.

interior of the cell, which is composed of the organelles and cytoplasm
are discussed in Section 3.2.2. The interactions between cell and environ-
ment (the cell being approximated by only its boundary) are discussed in
Section 3.2.3.

An important component missing from the mechanical cell is the nu-
cleus which can play important roles in the biomechanics, and therefore
mechanotransduction, of various types of cells. However, not all cells con-
tain nuclei [11, 162, 163]. We assume that the nucleus does not play an
important role for our model.
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3.2.1 The Cell Boundary

The outer surface of cells is made of two components: the cell mem-
brane, and the actomyosin cortex [165, 166]. There are whole fields of
study dedicated to understanding these two components alone. We ne-
glect many of the details of these objects for our model. However, as we
shall see below, we can borrow that information known about the me-
chanical properties of the cell boundary to develop models that can be
used to study cell and tissue growth. An approximation of the cell bound-
ary is shown in Figure 3.3. This image represents simplified image of the
cell membrane and cytoskeleton that can be used to simulate cell mechan-
ics. Readers are referred to Refs. [68, 167, 168] for recent reviews on the
modelling of cell membranes.

The cell membrane is a highly dynamic structure that envelopes the
whole cell. It is made up of a phospholipid1 bilayer dotted with different
kinds of proteins and oligosaccharides2[169–172]. In addition to these
complexities, it also acts as a gateway to the outside world with pores
opening and closing to allow the passage of materials from inside to out-
side the cells and vice versa [11, 166] (this is not depicted in Figure 3.3
for the sake of simplicity). Lombard et al. [165] gave them the elegant
name of “selective barriers” that control the crossing of various materi-
als into and out of the cells. These membranes themselves do not have
the strength required to support the cell’s shape. In bacterial, plant, and
fungal cells, cells are surrounded with rigid cell walls that give the cell a
well defined shape [173, 174]. In animal cells, the elastic properties of the
cells are based on the cytoskeleton composed of the actomyosin cortex [11,
175].

The actomyosin cortex is a network of protein fibres, named F-actin [19,
174, 176, 177]. The fibres are oriented around the cell to create a mesh
that envelopes the whole cell. F-actin is itself a supramolecular polymer,
made of G-actin. Thus, the fibre length is dependent upon the polymer-
ization of G-actin. The actin fibres interact with each other through non-
bonded interactions, but they can also be attached to each other by molec-
ular motors, myosin. The myosin motors consume energy (via the ADP-

1A phospholipid, to simplify greatly, is a fatty acid with phosphate groups in the hy-
drophilic head.

2An oligosaccharide is a short sugar chain. Sucrose, table sugar, is a disaccharide.
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Figure 3.4: Actin fibers are shown in red and myosin motors in green. The actin
fibers are interacting with each other in a non-bonded manner. But the myosin
also creates an active binding between the fibers. The concentration and activity of
myosin can alter the average stiffness and viscosity of the whole network [11, 175,
178, 179].

ATP reaction) and walk along the fibres [11, 175]. When the myosin mo-
tors are attached to two fibres, they drive them along each other. This is
yet another factor that contributes to cortex dynamics. Figure 3.4 shows a
facsimile of the actomyosin network near the surface of cells. Actin fibers
are shown in red, and myosin motors in green.

Cells can regulate the polymerization of actin, and the activity and con-
centration of myosin motors, to induce a whole host of fascinating move-
ments of the cell. These two small effects play a key role in every cellular
function that entails any sort of mechanical force generation, including
cell growth, migration, and interactions with other cells or Extracellular
Matrix.

In most mechanical models, the membrane and actomyosin cortex are
treated as a single object that has some mechanical properties such as stiff-
ness, and viscosity associated with its deformation. A non-comprehensive
review of such models for cells is given in Section 3.4. In those models,
the properties of the cell boundary are either constant, or not simulated.
CellSim3D [42] (Chapter 5) is such a model as well. There are some mod-
els in the literature that study the membrane and actomyosin cortex more
explicitly, such as the models in [180, 181]. From this point onward, we
will use the terms actomyosin cortex, cell membrane, or just membrane,
to refer to the combined structure of the cellular envelope.



30 The Cell From a Mechanical Perspective

Cell Adhesion Molecules and Focal Points

Apart from defining the cell shape, the cell membrane contains many
proteins, named Cell Adhesion Molecules (CAMs) that mediate interac-
tions with the cells environment, and with other cells. This family of pro-
teins are divided into many categories: integrins, selectins, cadherins, and
more [182]. CAMs bind to other cells through ligands. The ligands them-
selves can be other CAMs. The binding can is specific [182], but for the
purposes of mechanical modelling, they can be treated as simple adhesion
points. The type and quantity of these proteins in the membrane is regu-
lated by the cell, which is yet another way the cell can actively modify its
mechanical properties. When the cell is in need of stronger or more persis-
tent adhesion sites, focal points with larger than average concentration of
CAMs can be created to strengthen the binding with the substrate [183].
Cells can modify focal adhesion points in response to changes in the bio-
chemical signatures, and stresses in their environment [183].

While necessary for the adhesion of the cells with their neighbours,
CAMs are also known to play a role in various biological processes. For
example, selective adhesion directs the development of embryos during
early development [182].

Interested readers are advised to read Ref. [184] and Ref. [34] for
more detailed descriptions of the cell membrane and [182, 185, 186] for
information regarding cell adhesion.

3.2.2 The Cell Interior

We saw in Figure 3.1 and Figure 3.2 that the insides of cells are filled
with various other bodies that make developing models for cells difficult.
We shall assume that all the mechanical properties of the cell only derive
form certain internal components and that most of the organelles tend to
be small or soft, and do not contribute to mechanical properties of cells at
the surface of cells.

The mechanical properties of the cell interior are a result of the cy-
toskeleton network which are common to most eukaryotic cells [187]3,

3There are many authors that regard the cell membrane as part of the cytoskeleton. As
far as we are concerned, this is purely terminology. We assert that the membrane is not
part of the cytoskeleton here, but it does not ultimately matter whether it is or is not
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the most notable exception to this are red blood cells. These networks
are made of long protein self-assembled supramolecular polymers and the
cytoplasm. These polymers exist in a dynamic equilibrium within a bath
of monomers, much like the actin fibers in the cell membrane. Thus, the
cytoskeletal polymers are constantly polymerizing and depolymerizing at
their ends. The cytoplasm can be treated as a Newtonian viscous fluid
that is contained within the cell [20, 188]. It also contributes to the cell’s
structure and shape due to hydrostatic pressure [189–193] arising from
differences in osmolyte concentrations in the cytoplasm compared to the
outside of the cell. This effect is also dependent on the contractile strength
of the actomyosin cortex. The fibres of the cytoskeleton provide support
for the transmission of both intracellular and extracellular cues through-
out the cell.

Intermediate filaments and microtubules together give the cell body
its strength and stability in the outward radial directions [194]. These
components are absent in prokaryotic cells which have other strategies to
improve their elastic strength, such as stiff capsids. Intermediate filaments
are present in both the cell nucleus and cytoplasm. Microtubules only ex-
ist in the cytoplasm. Together, the microtubule and intermediate filament
network act as mechanical shock absorbers for the cell and are key com-
ponents in the transport of mechanical signals form the cell boundary to
the cell interior. The microtubule network is also an essential part of en-
docytosis [195–197]. Readers are referred to [187, 198, 199] for more
details.

3.2.3 The Cell Exterior

Cells do not always just exist freely in liquid. Especially in organs there
are a great deal of three dimensional scaffolds that the cells can be em-
bedded in, the extracellular matrix (ECM). These scaffolds can be made
of a variety of proteins. The most commonly known one is collagen, but
there are others as well such as elastin, fibronectin, and laminins [200].
The proteins bind to each other and the adhesion proteins of cells. It is
the mechanical properties of the ECM and cells combined that give organs
their final mechanical properties.

Highly dynamic feedback loops exist between the ECM and the cells [201–
203]. The ECM is not simply a mechanical scaffold. The cells can main-
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tain and alter the properties of the ECM surrounding them, and alter
their properties to better suit their needs. Diseased cells, for example,
can change the properties of ECM taken from healthy tissue. Even ECM
altered or produced by unhealthy cells can affect the health of normal
cells [204].

The ECM also has a major role in cell migration, cells are known to
favour certain types of ECM over others, and they will migrate to areas
that are more favourable. Both the biochemical and biomechanical signa-
tures of the ECM play important roles in migration. See [200, 204] for
more details on this topic.

3.3 Cell Growth and Division

The different parts of the cell’s life cycle are shown in Figure 3.5. The
cell’s cycle can be thought to contain four phases [11, 205]: two growth
phases (G1, G2), synthesis (S), and mitosis (M). Most of the growth occurs
during G1 and G2, with the addition of error checking of DNA replication
in G2. DNA replication occurs in the S phase, which is typically the longest
phase and can take about half the cell cycle time to finish. Mitosis is the
shortest phase and is typically a small part of the cell life cycle time. Cells
also enter a resting state, G0 which may persist for very long times (up to
years) [206].

The cell cycle can be summarized as follows:

1. Interphase:
This phase is between the moment a cell is born until it divides. Cells
spend most of their time in this phase carrying out their function,
however there are portions of this phase during which they grow.

(a) G0: Differentiation and growth control
This phase is actually outside the cycle and it is also known as
“senescence”. This is the time during which the cells are highly
active carrying out their functions (being a liver cell, or being
a pancreas cell), which can entail their movement. A stem cell
can differentiate into a different cell type during this phase.
This state is not necessarily permanent, the cell can pass into
the G1 phase and reenter the cycle to grow again.
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Figure 3.5: Depiction of the eukaryotic (animal and plant) cell cycle. Most time
is spent in the Interphase, when growth and function is taking place. Cell division
occurs during M-phase. All cells are either at some point along this cycle, or in G0
phase. Adapted from Figure 40-2 in [11].
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(b) G1: First gap phase
This phase of the cell cycle lasts the longest. When a new cell
completes G1, it will have roughly doubled in size. At the be-
ginning the cell checks for some sort of trigger for cell growth.
It is not clear what could trigger this [207]. A possible trig-
ger may be the presence, or sufficient concentration, of some
growth hormone. There are checks for sufficient nutrient level
for growth (increase in mass or volume) [11].

The growth of cells occurs by the transport of material from
outside the cells, into the cell. This increases the cell’s mass
and propels it forwards toward M phase [205, 208].

(c) Synthesis phase (S): DNA replication
Eukaryotic DNA can be highly complex and long (human DNA
is estimated to be two to three metres in length [11, 209]), so
its replication must be controlled. Replication occurs at mul-
tiple points of the DNA strand for efficiency. The duplicate
copies of DNA are linked together in a protein complex for error
checking

(d) G2: Second gap phase
The DNA duplicates are checked for damage or replication er-
rors. This phase is relatively short. Mitosis is triggered, when a
threshold of mitosis related enzymes concentration and activity
is reached.

2. Mitosis phase (M)

Once the business of growing the cell is completed, the cell moves
the copies of DNA (known as chromatids) to opposite ends of a cel-
lular scaffold named the mitotic spindle. The spindle is a stiff bundle
of proteins that define the orientation of cell division. Once DNA is
sent to the different ends of the spindle, cytokinesis (the cleaving of
the cell into two), the next phase of the cycle, can begin. Cytokinesis
proceeds in five steps. Some of these steps are shown in Figure 3.6.
There is also other forms of cell division, meiosis [210] and binary
fission [211], which we do not discuss here.
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(a) Prophase: Mitotic spindle formation
The protein fibers of the cytoskeleton self-assemble into a spin-
dle that will determine the placement of the two daughter cells.

(b) Prometaphase: Nuclear breakdown
Nucleus is broken down and the chromatids begin their journey
along the mitotic spindle to the two sides of the parent cell.

(c) Metaphase: Mid-point
Chromatids are about halfway across the mitotic spindle to the
other side.

(d) Anaphase: Chromatid Separation
Chromatids separate and being moving to the opposite sides of
the mitotic spindle. The cell starts to develop the furrow along
which division will occur.

(e) Telophase: Nuclear reformation
Nuclei form around the chromatids on either side of the parent
cell.

3. Cytokinesis: The separation of two daughter cells form the par-
ent cell
This process is not yet completely understood [212], but we can dis-
cuss the basics of what is going on. It is not completely accurate to
say that cytokinesis occurs strictly after the M phase, it is happening
more or less in parallel [11]. As M-phase is carrying on, an acto-
myosin band is formed perpendicular to the mitotic spindle, such
that it divides the parent cell into two halves. The band is shown
in light and dark blue in Figure 3.6. The band is actively consum-
ing energy, strengthening, and pinching the two halves of the parent
cell away from each other. Over time, the spindle dissolves away
and the cell membrane is deformed in its centre far enough to be
joined, and the two daughter cells are left. Ref. [212] provides a
detailed discussion of cytokinesis.

3.3.1 The role of division plane alignment

An important geometric property of cell division is the orientation of the
cell division plane[213–215]. This is the plane along which the mitotic
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Figure 3.6: This schematic shows the steps involved in cytokinesis. Once the cell
has reached sufficient size, the chromatid complex, the duplicated DNA, is placed
along the mitotic spindle (a self-assembled stiff band of microtubules that stretches
along the cell). As the chromatid separates and the DNA is moved to the opposite
sides of the cell, an actomyosin band is formed perpendicular to the mitotic spindle
and contracts to furrow the cell membrane. Over time the contraction strengthens
and increases the furrowing. Simultaneously, a nucleus begins to form around the
genetic material (chromatids) as the two cells start to separate.
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furrow is developed during cell fission. It is necessarily defined by the
actin contractile ring, shown in blue in Figure 3.6. The ring must be
formed consistently to generate complex multi-cellular organisms [216,
217]. A change in division plane orientation and location is also a hall-
mark of cells differentiating into different cells [216, 218]. This is thought
to be a consequence of the positioning and the structure of the mitotic
spindle.

The orientation of the division plane, and how it is selected can vary
between different species of cells. But instead on discussing the biochem-
ical nature of this process, we will only focus on the possible outcomes of
the process and explore the possible orientations of division plane. Most
commonly accepted alignments of division planes are discussed below.

There are two possibilities for the location of the cell division plane,
either the division plane can pass through the centre of mass of the cell
(since cells are more or less uniform in density, this is often the same as
their centroid) or through some other point inside the cell. The random
point could be different for each cell, and it generally results in asymmet-
ric division. Figure 3.7 depicts these two kinds of division. Child cells that
are the result of symmetric division are identical, and those that a result of
asymmetric division are different. This off-centre positioning of the divi-
sion plane, is one of the ways that cells can convert into cells of different
type. Consequently, the two child cells may also have different masses.
For example, a stem cell can start by dividing this way into another cell,
say a liver cell, then the liver cell continues to produce more liver cells 4.

When passing through the cell’s centre of mass, the orientation of the
division plane can also be chosen with variety of different rules (not quite
rules, but observed to be consistent most of the time in experiments).
Hertwig’s rule states that the division plane is oriented perpendicular to
the longest axis of an ellipsoidal cell, and passing through the centre of
mass [219]. Errera’s rule is possibly the same as Hertwig’s which states
that the division plane must contain the shortest path running through the
centre of mass of a cell [220]. These two rules would produce identical
child cells, such that the cells are produced in the same direction between
generations, so we refer to them as consistent division plane alignment.

4We do not claim that this is how whole livers are created in reality. It is only one of
the many possible steps involved.
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Figure 3.7: Cross-section of symmetric and asymmetric cell division. The parent
cell is shown on the left before with two possible division planes. Organelles are not
shown for simplicity. Symmetric division plane alignment produces identical child
cells, asymmetric division plane alignment produces different cells that may have
different organelles and biomechanical properties.

Consistent plane alignment can also be such that the alignment changes
slightly between generations and producing interesting spiral patterns.
However, the division plane can also be aligned randomly and produce
spherical (or disk shaped) tissue. Figure 3.8 show some examples of the
systems with these two types of division plane alignment types. In this
thesis, we only focus on symmetric and random cell division.

3.4 Current Models For Simulating Cell Behaviour

The topic of modelling behaviour is a deep and interesting one. As we dis-
cussed in Chapter 3, there many aspects of cell behaviour that can be stud-
ied computationally. This stems from the inherently multi-scalar nature of
cells, with vital processes spanning many orders of magnitude in time and
length scale. At the atomistic scale there are complex vast networks of
chemical reactions that govern the various elements of cell biology, and
may involve reactions between small and large molecules. A classic ex-
ample of this protein is synthesis which involves DNA, RNA, amino acids,
and other proteins [221, 222]. For all of the myriad processes there are
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Random Consistent

Figure 3.8: Results of random and consistent division. Arrows show each successive
generation. Left: A system of cells resulting from random division plane alignment
in all cell division events. Some interesting topological details of this system can be
seen, but the discussion of this phenomenon is left for later, see Chapter 6. Right:
The result of consistent division plane alignment. The spiral pattern is due to a
slight increase in division plane angle with respect to the horizontal form generation
to generation. The straight line is a result of no change.

myriad modelling methodologies and software, which include molecular
dynamics (see Chapter 2). A complete description of this topic is out to
of the scope of this thesis. We will instead focus on providing a summary
of some methods used to study the growth and mechanics (in which we
include migration) of cellular tissues, and the connection between them.

Many of the models discussed here, especially the agent based models,
can be applied to that approximation of cells. We shall consider two types
of models:

1. Mathematical models
In this branch of cell models differential equations are derived, or
stipulated, from other laws of physics that aim to link the properties
of the cells to their environment. These kinds of methods are dis-
cussed in Section 3.5. Mathematical models can be computationally
cheaper to solve that agent based models, but they also may require
a larger number of simplifying assumptions to be able to solve them

2. Discrete cell models
This branch contains models where cells are modelled as individual
bodies with certain interactions defined between them. A range of
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methodologies have been proposed in this field and are discussed
in Refs. [223, 224]. Some of discrete models are discussed in Sec-
tion 3.6. These kinds of models may simulate many thousands or
tens of thousands of cells in 2D and 3D, making them more compu-
tationally expensive. Nevertheless, they provide a far higher resolu-
tion compared to purely mathematical models.

This non-comprehensive summary of the models in the literature will
give readers context and motivate the need for a new model in this field.
More detailed reviews of cell models are available in Refs. [223, 224].

3.5 Mathematical Models

In general, mathematical models have been developed to study many cel-
lular phenomena such as: cell-cycle control, cell death, cell differentiation,
cell aging and renewal [225–227]. Sub-cellular phenomena have also
been studied with these methods, including DNA control (Transcription,
Replication, Repair), or endocytosis[228]. Readers interested to learn
more of this field are referred to Refs. [229, 230].

3.5.1 Models of Cell Population Dynamics

The measurement of cell population trends and comparing between dif-
ferent types of cells, or the same species of cells exposed to different envi-
ronments, has traditionally been a vibrant field of study in biology. Track-
ing the progression of cell population over time is a relatively straight-
forward experimental measurement, while still being a relevant marker
of cell health [11, 231, 232]. For example, the dose-effect curve, which
shows the number of cells surviving after a dose of some drug, is a clas-
sical measurement of toxicity, or effectiveness of treatments [233–235].
The trends in the number of cells in a culture over time can easily be ob-
served by monitoring colony size through a microscope [236–238]. The
population curve can also differ greatly within the same species depend-
ing on what stage of life that organism is in (development, reproduction,
death, etc.).
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In idealized systems where there is no hindrance to growth, some frac-
tion (up to 100%) of cells can divide, so the growth rate is given by

d N (t )

d t
= r N (t ) (3.1)

Where N is the population at some moment in time, and r is fraction of
cells that will divide. This has a simple solution given by

N (t ) = N0er t (3.2)

where N0 = N (t = 0) is the initial number of cells. This growth is named
intrinsic growth [239, 240]. It assumes no competition between cells for
growth, hence the constant growth rate r . However, this is never possible
in real systems since as there are multiple factors hindering growth such
as competition with other cells for nutrients, the limited lifetime of cells
with an associated death rate, the threat of disease and/or predators. Nor-
mally, one would observe sigmoidal growth in the system [232, 241, 242].
Typically, growth starts at a small population, increases to a maximum set
by the carrying capacity of the medium, and finally decays to zero once
all of the nutrients in the system have been consumed. One can define a
generalized logistic function that is fitted to population trends as

N (t ) = N0(
1+Qe−r t

) 1
ν

(3.3)

where ν> 0 is a constant (most of the time ν≈ 1), r is the growth rate and
Q =

(
Nmax

N0

)ν
is the carrying capacity of the system, and N0 = N (t = 0). Note

that the growth rate here accounts for both cell division and death. Some
other functions have also been suggested for understanding growth [232,
242–244] such as the simplified logistic function given by

N (t ) = Nmax

1+e−r (t−t0)
, (3.4)

where Nmax is the maximum number of cells that can be supported by
the system, r is the growth rate, and t0 is the time corresponding to N =
1
2 Nmax, or the Gompertz function [232, 244] defined as

N (t ) = Nmaxe−be−r t
(3.5)
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where b is just a shift on the time axis depending on where the t = 0
is placed. There have been considerable studies on these functions and
their use in the fields of modelling growth [230, 232, 242, 243], it will be
sufficient for our purposes to take them as given, without justification as
to why such functions are good ways to estimate growth. There has been
quite some effort in linking the different terms of these logistic functions,
to biological factors. Good examples are the work by Schnute et al. [232]
and Zwietering et al. [242].

3.5.2 Continuum Models of Cell Behaviour

While analyzing the population trends of cells is a viable method for un-
derstanding cell behaviour, the functions described in the previous section
do not account for spatial variations or quantify the mechanical forces
within cells. The methods mentioned here are able to study the mechan-
ical parts of cell behaviour, both as single cells or collections of cells, and
the interactions between them. These mathematical models that abstract
microscopic interactions between cells into functions which may describe
parameters such as density, growth rate, death rate, intercellular interac-
tion strength [245], or interaction strength with the medium [246].

For tissues of cells, functions that depend on both space and time are
derived that describe the dynamics of a continuum of cells [223, 230, 247,
248]. This method yields the dynamics of the total population as whole
and individual behaviour averaged out. Continuum models have been
used to study a variety of phenomena such as tissue deformability [249],
tumour growth [230, 250], viscosity of tissues [245], and anisotropic tis-
sue growth [251]. The dynamics of individual cells are studied as well
such as the work by Sens et al.[252, 253], where they define functions be-
tween cell membranes and other cells as well as objects in the cells’ envi-
ronment. The work of Banerjee et al. [254] is an example of mathematical
modelling to study cell migration. Recently Palmieri et al. [255] devised
a model which is the continuum limit of the Cellular Potts Model (dis-
cussed in Section 3.6.1). In their work, Palmieri et al. devised a method
which determines cell shape dynamics from changes in free energy that
depends on the elastic response of cells to deformation, preferred radius
of each cell, and penalty for cell overlap. Their model also accounts for
each cell’s velocity. Palmieri et al. were able to reproduce spontaneous mi-
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gration of anomalous cancer cells in a monolayer of healthy cells [255].
Unfortunately, cell repulsion is not taken into account which plays a vital
role in cellular phenomena [256–258], and the phase-field description of
cellular interaction and structure limit the granularity with which cellular
interfaces can be studied.

3.6 Discrete Cell Models

Discrete Cell Models (DCMs) implement cells as individual bodies that can
interact with their environments or other cells. These models aim to sim-
ulate the physical properties of different cells and to see how they affect
their behaviour. These models are generally more computationally expen-
sive [223], however they allow us to study of cell behaviour at a higher
resolution, and to tune the mechanical properties of cells with greater
granularity.

Most of the models discussed here approximate the structure of the
mechanical cell as either collection of lattice points, such as in the Cellu-
lar Potts Model (CPM) (Section 3.6.1), or a as polygonal structures with
edges and faces that interact with each other, such as Delaunay Object
Dynamics(Section 3.6.4). There are also a few methods that approximate
cells elastic surfaces (Section 3.6.5).

3.6.1 The Cellular Potts Model

The Cellular Potts Model (CPM) is a lattice based model that that can be
used to understand the factors at the cellular scale that affect tissue orga-
nization [259–262]. It is a generalization of the Ising model[263] where
instead of considering two possible states, such as for example atomic
spin states -1 and +1, the Potts model considers any number of states.
See the review by Wu[264] for a more detailed description of the Potts
model. Graner and Glazier first studied cell sorting by extending the Potts
model to study cells [261, 262], but it has since been used other different
phenomena such as cell migration [265], and morphogenesis [266]; the
differentiation of embryonic stem cells into different types of tissue and
ultimately organs.
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Figure 3.9: Figure showing a Cellu-
lar Potts Model (CPM) model set up.
The cells have indices 1,2,3 and the
medium is with index 0. Each cell
is defined by domains of the same
index. There are three interaction
terms: J AM which is for the inter-
action between cell type A and the
medium, J AB which is for the inter-
action between the A cells and B cells,
J A A between the cells of the A type,
and JB M for the interaction between B
and the medium. Taken from [260],
CC license.

Each cell is defined by a collection of lattice sites with different spins,
as shown in Figure 3.9. In CPM, there are as many spins as cells. Three
are shown in the figure, but there is no limit, spin 0 is reserved for the
medium. The energy of, say, the state shown in Figure 3.9 is given by

H = Eadh +Evol +Echem, (3.6)

where Eadh is the energy due to the interaction of different cells, Evol is an
energy associated with the area of each cell (representing the energy re-
quired to deform a cell from its equilibrium site), and Echem approximates
the response of the cells to an external chemical gradient.

Let (i , j ) be the index of each lattice site in 2D and c be the index
of each cell. Let θ(i , j ) return the type of the cell containing lattice site
(i , j ). In Figure 3.9 there are three cells, two of which are of type A. The
adhesion term, then, is defined as

Eadh = ∑
(i , j ),(i ′, j ′)neighbours

Jθ((i , j )),θ(i ′, j ′))
(
1−δθ(i , j ),θ(i ′, j ′)

)
(3.7)

in which the sum is taken over all lattice sites that neighbour each other,
Jθ(i , j ),θ(i ′, j ′) is an energy term (J AB , J AM , J A A in Figure 3.9) that simply
quantifies the strength of the interaction between cell A and B; δθ(i , j ),θ(i ′, j ′)
is the Kronecker delta that switches the interaction term on or off. Eadh
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simply determines if an intercellular or cell-medium interaction is favourable
or neutral.

The second term in Equation 3.6, Evol, represents the energy required
to deform a cell by changing its volume. It is defined as

Evol =
∑

c

1

2
κ(vc − vc,0)2 (3.8)

where κ−1 is the compressibility of cell c, and vc its the instantaneous
volume (number of sites with the same index of the cell) and vc,0 is its cell
volume at equilibrium with the medium.

The last term in Equation 3.6, accounts for the cells reaction to exter-
nal fields, such as chemical gradients. It is defined as

Echem =∑
c
−µc nc · rc , (3.9)

where µc is the strength with which the cell reacts to the external field, nc

is its polarization vector, and rc is its centre of mass.
The dynamics of the system is then calculated with Metropolis Monte

Carlo Steps (MMCS) scheme [267]. In each MMCS, the state of the sys-
tem is changed randomly by changing the spin of each lattice site ran-
domly and calculating the energy of the new state with Equation 3.6 and
accepting or rejecting a new state with a probability given by

P (∆E) =
{

1 if ∆E ≤ 0

e−
∆E
T if ∆E > 0

(3.10)

where T approximates the effective cytoskeletal fluctuation amplitude of
cells in units of energy [266] (not a temperature). This single quantity
describes how dynamic the cell is.

The CPM model can be used to study cell migration [265], and sort-
ing and tissue organization [260, 261]. It has also been extended to
study growth [259] by altering Equation 3.8 to induce increase in cell
volume. Additionally, CPM has been used successfully to study packing
topologies [268], cell sorting [269] and embryonic development [270],
collective migration [265, 271], and tumour growth [272].

While this method has been used to study a lot of different types of cell
behaviours [273, 274], it clearly lacks the ability to accurately describe
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intercellular interactions. The parameters of the CPM Hamiltonian do
include terms for the cell polarity, the degree of fluctuations in the cells,
however it is not clear how they can be linked directly to the mechanical
properties of cells and medium.

3.6.2 Topological Models

This class of models are based on the work of Matella and Fletterick from
the 1980s [275–277]. These kinds of models rely on a planar network of
trivalent vertices, edges, and faces [278–280]. They are therefore suited
to study the emergence of cell coordination in growing epithelial systems.
The dynamics of the cells are simulated by manipulating the map structure
to introduce cell division, but no growth, division, migration, or death is
simulated [277, 281]. Topological models were created to only study the
emergence of coordination between cells, i.e. the topology of epithelial
tissue. However, they ignore all other aspects of cell mechanics. There-
fore, topological models cannot be used to study mechanotransduction.
An example of the results of a topological simulation and the real tissue it
aims to study are shown in Figure 3.10. Figure 3.10(a) shows an exper-
imental measurement of the number of neighbours each cell has (Nn) in
an epithelium taken from a fruit fly’s wing. Each cell is coloured according
to how many neighbours it has. This measurement itself is interesting as
the distribution of the number of neighbours is a property of the under-
lying epithelial tissue. This is discussed in more detail in Section 6.3.2.
Now, compare to the results of a topological simulation, also done by Pa-
tel et al. [281], in Figure 3.10(b). The distribution of Nn is comparable to
the real system (see Ref. [281] for details), however all other information
about the shape of the cells is lost.

Topological models may be useful in the study of the number of neigh-
bours of tissues, however they are not adequate for studying mechan-
otransduction due to the lack of any cell dynamics in the models.

3.6.3 Vertex Models

In vertex models (VM) each cell is represented geometrically by a polygon,
where the perimeter of a polygon represents the cell membrane [282–



3.6 Discrete Cell Models 47

(a) (b)

Figure 3.10: Tissue topology measured with a topological model by Patel et
al. [281]. (a) Real epithelial tissue taken from a Drosophila (fruit fly) wing. (b)
Topological model showing the tissue after 9 generations of growth. Colours repre-
sent number of neighbours (Nn): darkblue=4, blue=5, green=6, orange=7, ma-
roon=8. Images taken from Ref. [281], CC license.

284]. Topological models were traditionally used to study inorganic sys-
tems such as soap bubbles [285], foams [286], and crystal grain bound-
aries [287]. Their use for deformations of epithelial systems was first
demonstrated in [288], and they have been used to study epithelial sys-
tems since. Detailed discussions of VM methodology and application are
given in Refs. [284, 289].

In VMs, each cell is represented as a polygon, with vertices and edges
shared between adjacent cells. Each polygon represents a 2D cross-section
of a real epithelial cell. This simplification makes VMs inexpensive to rep-
resent computationally. The motion of the vertices is governed rules based
on the location of each vertex, its connection to other vertices, and geo-
metrical features of the neighbouring cells, such as surface area or volume.
The rules themselves vary [284] and can be tuned according to the bio-
logical problem of interest. New cells are created in the same way as in
topological models, by adding a new pair of vertices, with positions drawn
from a uniform distribution [284], or along the shortest axis through the
centre of the cell [290]. An example of cell division simulated in this
manner is shown in Figure 3.11.
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Figure 3.11: Progressions showing the addition of new cells to simulate cell growth.
A viable candidate for division is chosen and divided to add a new cell to the system.
This scheme is used in both topological and vertex models, though the rules them-
selves can vary between the two methodologies. Image taken from Ref. [283] with
permission from Cell Press.

VMs have been used to show the impact of cell mechanics, growth
rate, and mechanics on epithelial packing[283, 291]. Since the formula-
tion of VMs is 2D, it cannot be used to study 3D tissues. There are some
variations of VMs [289] that are 3D, though they are still meant to study
epithelial systems as a surface in 3D with a thickness. It also lacks the
proper treatment of dynamic cell membranes. The structure of the cells
VMs inherently assumes closely packed cells, so it cannot be used to indi-
vidual cells, or the dynamics of how tissue packing changes. Lastly, VMs
also neglect any intermembrane dynamics as membranes are not simu-
lated explicitly and neighbouring cell membranes are assumed to be in
constant close contact.

3.6.4 Triangulation or Tessellation Based Models

Unlike CPM or vertex models, this class of modes represents cells by a
points in continues space and a Voronoi Tessellation around them defining
their border, or a Delaunay triangulation defining their interactions with
neighbouring cell. There are a few such models available in the literature,
such as Delaunay Object Dynamics (DOD) and other models developed by
Radszuweit et al.. [292] using the same methodology.

Delaunay Object Dynamics (DOD) is a three dimensional technique
where each cell is modelled as a three dimensional, elastic, and adhesive
Voronoi cells [247, 293–295]. Each cell is described as a three dimen-
sional polygon that is constructed with Delaunay triangulation. Readers
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interested in the details of Delaunay triangulation are referred to [293,
296, 297]. Each face and edge of each cell is then modelled with damped
Newtonian Mechanics [293]. The Delaunay triangulation used in this
method is slightly varied form regular Delaunay triangulation and is termed
weighted Delaunay triangulation [295, 298]. To put it simply, Delaunay
triangulation is a method of triangulating a set of such that it obeys the
Delaunay Condition [293] which states that the circle circumscribing any
triangulation must not contain any other points. DOD is constrained by
the triangulation algorithm that is used as it is difficult to triangulate ir-
regular polygons, which cells can. Another tessellation based method is
the one proposed by Radszuweit et al. in Ref. [292]. There, cells are
described based on the Voronoi tessellation of points that represent their
centres. This method is similar to DOD in that it uses the tessellation of
random points on a square grid to represent cells. Then, the dynamics of
cell growth are modelled by stochastic processes that add new points over
successive generations.

Tessellation based models assume, as in the VMs discussed in the previ-
ous section, that cells are always closely packed in 2D or 3D. Thus, they do
not include inter membrane dynamics or a method to analyze the forces
generated between cell membranes. Furthermore, there are no available
software implementations of DOD, or the model due to Radszueweit et al..

3.6.5 The Cellular Discrete Element Model (CeDEM)

This model aims to approximate cells with the techniques of molecular
dynamics (MD) in 2D. CeDEM is based on another model first designed
by Karttunen and Åström in Ref. [299], to study aggregation and jamming
of soft particles in confined spaces. Later, in 2014, Mkrtchyan, Åström,
and Karttunen expanded upon the model by adding modes of cell growth
and division[43, 300]. With it, they were able to accurately reproduce
the coordination of epithelial tissues. This 2D system is generalized to 3D
with CellSim3D. Details regarding the new force field and simulator are
given in Chapter 5. Readers are advised to see Ref. [43] for a detailed
description of CeDEM. What follows in this section is a summary.

Each cell is approximated by a closed loop of nodes, as shown in Fig-
ure 3.12, that interact with each other through a force field that contains
terms for intracellular interactions, intercellular interactions between neigh-
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bouring cells, and the growth of cells with a pressure force. Cells in that
are growing are known to regulate their pressure before division [189,
190].

The forces acting on node i in some cell are governed by

mr̈ = Fcell
i +∑

j
Frep

i j +∑
j

Fadh
i j +∑

j
Ffric

i j − cvi , (3.11)

where Fcel l
i contains terms for the cell’s contractility, structure, and growth

(the intracellular term), Fr ep
i j and

∑
j Fadh

i j contain terms that define in-
tercellular adhesion and repulsion respectively summed over all nodes j

belonging to other cells within range,
∑

j F f r i c
i j is the intercellular friction

term summed over all cells within range, and finally −cvi is friction due
to the medium, which is assumed to be a simple fluid.

The intracellular forces approximate the mechanical properties of cells
with a two dimensional coarse-grained structure, shown in Figure 3.12.
Each cell consists of 76 nodes, and each pair of bonded nodes interact
with spring force, which is balanced by an outward pressure force, (Pl ).
Each node is bonded to two neighbour nodes, and experiences a force
given by

Fcell =σ1η̂1 −σ2η̂2 + Pl

2
(ν̂1 + ν̂2) , (3.12)

where η̂ denotes the bond vector between two connected nodes, and ν̂ is
a vector normal to the bond (the ·̂ denotes a normalized vector), σ is the
magnitude of the bond force and (Pl ) is the magnitude of the pressure
force. The subscripts indicate which bond the value pertains to. Each
bond is assumed to be a spring with the magnitude of the bond force
being given by σ=−K spr(l − l0) where l and l0 are the instantaneous and
equilibrium bond lengths respectively.

The magnitude of the pressure force is an increasing value from (Pl )init

at a rate of ∆(Pl ) every time step; both are parameters in the input to the
simulations.

Neighbouring cells can interact through a variety of molecules named
Cell Adhesion Molecules (CAMs), discussed in Section 3.2.1. This interac-
tion is approximated by the adhesive and repulsive terms in the CeDEM
force field. Nodes of different cells experience repulsion (Equation 3.14),
adhesion (Equation 3.13), and intercellular friction (Equation 3.15).
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Pressure Increase
i

k1

k2

(Pl )η̂1

ν̂2

Figure 3.12: Schematic showing a summary of the two dimensional Cellular Dis-
crete Element Model (CeDEM) [43]. Each cell is a closed loop of interacting particles
as shown on the left hand side. The right hand side shows two cells just after di-
vision. Growth is induced by an increase in the pressure force. Image recreated
from [43] with permission from the Royal Society of Chemistry.

Each node acts as a site for adhesive interaction. All sites are assumed
to have the same adhesion strength K adh

i j = K adh. The adhesion force is
defined as

Fadh
i j =

{
K adh

(
Radh

c −Ri j
)

R̂i j if Ri j < Radh
c

0 otherwise,
(3.13)

and the repulsive term as

Frep
i j =

{
−K rep(Rrep

c −Ri j )R̂i j if Ri j < Rrep
c

0 otherwise.
(3.14)

where K adh and K rep are the adhesive and repulsive spring constants; Radh
c

and Rrep
c are the adhesive and repulsive cutoffs respectively. Radh

c is chosen
to be greater than Rrep

c .
Intercellular friction between nodes i and j belonging to different cells

is defined as

Ffric
i j =−γvτi j , (3.15)

where γ is the intermembrane friction coefficient and vτi j is the component
of their relative velocity tangential to the surface of the cell that node i
belongs to.



52 The Cell From a Mechanical Perspective

More details about the model, how the simulations are run, and what
studies can be carried out through them, are available in Ref. [43]. Since
CeDEM is a 2D model, it can only every simulate purely two dimensional
systems, such as epithelia (more details in Section 5.3.1) which are sheets
of cells interacting laterally. It can be altered to study one dimensional
(filamentous) tissues that are made of chains of cells, as is done in Chap-
ter 4, but studying cell behaviour in 3D would be impossible. The Cell-
Sim3D model, described later in this thesis in Chapter 5, arose from the
extension of CeDEM into 3D. Its features include all of CeDEM’s.



Chapter 4
Morphology of Proliferating
Cellular Matter in One and Two
Dimensions with CeDEM

Based on: Madhikar, P., Åström, J., Baumeier, B. & Karttunen, M. Morphol-
ogy of Proliferating Cellular Matter in One and Two Dimensions. Soft Matter,
(submitted)

Morphology and dynamics of proliferating cells are among the funda-
mental issues at different stages of cellular development [280, 301–305].
They are controlled by a number of factors, but from the physical point
of view, morphology is tightly coupled to intercellular forces, see e.g.,
Refs. [305–307]; mechanical forces have been shown to be important in
cancer development and it has been suggested that tumour growth may
even be arrested by intercellular mechanical forces [308, 309]. Among the
many complications in investigating force transmission are that at their
embryonic state, cells may not yet have developed junctions and may dis-
play more fluid-like behaviour, and that cell-cell adhesion depends on the
cell types [306, 310–312]. Junctions are crucial in cell-to-cell stress trans-
mission [306, 307, 313, 314] but it is, however, challenging to probe the
individual junctions experimentally.

From a coarse-grained point of view, that is, ignoring chemical de-
tails and treating cells as elastic objects, cellular systems can be seen
as disperse soft colloidal systems under evolving pressure applied non-
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uniformly throughout the system. Several studies have tried to capture as-
pects of growing soft colloidal systems (e.g. for modelling tissue growth)
at different levels [299, 315–317] but even in simple systems many fun-
damental questions remain open including the precise nature of colloidal
phase diagrams when colloids are soft with size dispersity [318], and
structure selection via self-assembly [319]. Cellular systems are more
complex since they exhibit additional behaviours such as cell growth and
division, they have varying mechanical properties (e.g. elasticity and cell-
cell adhesion) and their response to external stimulus may be sensitive to
the local environment.

Dimensionality has an important role in particular in regulation of
intra- and intercellular forces at different levels, see e.g. Refs. [320–324].
Some systems, such as epithelial tissues and Drosophila wing discs, are in-
herently two dimensional which gives them distinct morphological prop-
erties due to the nature of cellular packing, and the transmission of, or
response to, forces [280, 312, 325]. In addition, jamming can be very
strong in two dimensional systems, varying stiffness and intermembrane
friction are a step towards investigating jamming in cellular systems [326,
327]. Our main focus is on the above effects in systems consisting of hard
cells in a soft matrix and vice versa. Besides being important in under-
standing the mechanisms of cell movement under pressure [307], such
situations have been proposed to be important in tumour growth [308,
309] – cancer cells are often softer than healthy cells [255, 328] although
the opposite has also been reported [329, 330]. Cell stiffness, its measure-
ments and connection to cancer metastasis have been recently reviewed
by Luo et al. [331].

One of the intriguing questions in cell division is: Why do cells exhibit
diverse morphologies upon division and growth? In addition to uniform
structures, a plethora of structures with various mechanisms and division
modes have been suggested but the issue remains largely unresolved [278,
312, 332, 333]. To illustrate how different morphologies can arise, con-
sider cyanobacteria. Figures 4.1(a)-(c) show A. circinalis and Fig. 4.1(d)
A. flos-aquae. Both of them can be approximated as quasi one-dimensional
structures. In contrast to most other cells, however, cyanobacteria have
continuous outer membranes shared by the whole filament consisting of
multiple cells [333, 334]. The inner membranes, however, belong to in-
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(a) (b)

(c) (d)

Figure 4.1: (a) A. planctonica. Image with permission from the Laboratory of
Phytoplankton Ecology [335].(b) A. laxa. Image with permission from the A. Braun
Culture Collection of Autotrophic Organisms [336].(c) A. circinalis. Image with
permission from the Kudela Lab, University of California Santa Cruz [337].(d) A.
flos-aquae. Image with permission from Demarteau/Aquon [338].

dividual bacteria only. It has been suggested that this together with spe-
cialized junctions leads to filamentous structures (there are also subtleties
related to, e.g., size selection of the filaments) [333, 334].

Previously [43], the orientation of the division line was selected ran-
domly. The simplest way to model cyanobacteria morphologies is to choose
the orientation of the division plane in such a way that it is approximately
parallel between neighbouring cells. Although an approximation, this ap-
proach should be able to produce similar morphologies.

Two dimensional cellular systems can be studied with a number of
computational methods (summarized in Section 3.6) including off-lattice
vertex models [198, 278, 279, 281–284, 291, 339], and Voronoi Tes-
sellation or Delaunay triangulation based models [247, 292, 294, 340,
341]. Since these models approximate cell membranes as edges or planes,
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they are not able to describe intermembrane interactions with high accu-
racy and it is not possible to calculate intercellular forces. The immersed
boundary method of Rejniak et al. [188, 342] explicitly models intermem-
brane interactions and may be suited to such problems, however it is not
clear if this method can be used on large systems of cells. There are on
lattice methods as well such as the Cellular Potts Model (CPM) [259, 261,
262, 270, 272] where interactions between lattice sites represented differ-
ent cell types and are mediated through various energy functionals, which
can be linked [255, 343] to phase field models. CPM models cellular in-
teractions with scalar energy terms, making it impossible to study forces
between cells. In summary, these models for two dimensional systems,
while suited to the problems that they were designed for, are difficult to
use to study interactions between cells that are mechanically distinct.

One dimensional systems have gained lesser attention and the models
are typically of reaction-diffusion type with fixed geometry and size as
discussed extensively in the review by Herrero et al. [333].

The two dimensional Cellular Discrete Element Model (CeDEM), sum-
marized in Section 3.6.5, with more detail in Ref. [43], is able to address
the issues described above. It can be used for both one dimensional and
two dimensional systems, with tighter control on the mechanical proper-
ties of each individual cell. It is extended to three dimensions with the
CellSim3D model, discussed in Chapters 5 and 6, and in Ref. [42]

4.1 Model and methods

We employ the two-dimensional CeDEM to investigate tissue morpholo-
gies in one and two dimensions. Full details and derivation of the model
are provided in Ref. [43] but to summarize, in CeDEM the cell membrane
is discretized as beads connected by bonds of stiffness K spr

i .
Cellular growth is controlled by a growth pressure and division by a

threshold in cell area (above which cells divide) and the orientation of the
cell division line. Importantly, CeDEM allows the topology (the polygonal
distribution) to vary spontaneously [43].

Here, we extend CeDEM for simulations of different cell types using
three simple approaches:

1. changing the cell division line orientation,
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2. changing cell stiffness, and, finally,

3. changing the friction between cell membranes; in CeDEM cell mem-
brane and cytoskeleton are treated as a coarse-grained single object.

Until now, the orientation of the division line of each cell was chosen
randomly and it was constrained to pass through the centre of mass of the
cell undergoing division. This results in tissue growth such that it fills the
available space roughly uniformly [43]. Modification 1) above allows for
simulations of cyanobacteria-like structures shown in Fig. 4.1.

Modification 2) allows for simulations of different types of cells. As
mentioned above, cancer cells are typically considered to be softer than
the matrix cells. Softness, or higher malleability, is typically associated
with the invasiveness of cancer cells [331]. This has recently been chal-
lenged by Nguyen [330] et al. who measured Young’s modulus of pan-
creatic cancer cells using different cell lines and found the stiffer (than
the matrix cells) cells to be more invasive than the softer cancer cells.
Whether this is purely mechanical or due to simultaneously occurring bi-
ological processes remains unclear. What matters for our purposes is that
there are two, or more, types of cells of different stiffness. Here, we use
two types: 1) Type1, stiff cells with a low growth potential with stiffness
K spr

1 = 4 µN/µm. The low growth potential means that the cell membrane
is so stiff that the applied pressure is barely enough to grow the cell to
a size above the division threshold. Therefore, if the cell is even lightly
squeezed between other cells it will not divide before force equilibrium is
reached and growth stops. 2) Type2, soft cells with a high growth poten-
tial with stiffness K spr

2 = 1 µN/µm. These cells have a high growth potential
which means that cell membrane stiffness is so low that the cell area easily
grows beyond the division size. The cells are identical in all other ways
except their stiffness.

Finally, modification 3) allows for comparisons of systems of cells with
different intermembrane friction coefficients. Cell-cell friction and its im-
portance in mechanotransduction has recently been reviewed by Angelini
et al. [344]. Intermembrane friction is modelled as

Fext
i =−γvi j ,

where γ is the friction coefficient and vi j is the component of the relative
velocity between two membranes tangential to the cell that bead i belongs
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Parameter Notation Sim. Units SI Units
Nodes per cell N 76 -
Node Mass M 0.1 0.1 pg
Medium viscosity c 1 1000 Pas
bond length l0 0.1 1 µm
Bond Stiffness K spr 100, 400 1, 4 µN/µm
Adhesion stiffness K adh 56 0.56 µN/µm
Intercellular friction γ 0, 20 0, 200 µg/s
Division Area Adiv 1 100 µm2

Starting Pressure (Pl )init 15 1.5 nN/µ/m2

Pressure increase ∆(Pl ) 5×10−5 5×10−6 nN/µ/m2

Repulsion cutoff Rrep
c 0.1 1 µm

Adhesion cutoff Radh
c 0.2 2 µm

Time step ∆t 1×10−4 ∗

Division checkpoints T div 0.2 ∗
∗ Scaled to produce tissue comparable to Drosophila (fruit fly) wing disc; such that simu-
lation time of 5 corresponds to approximately 10 hours.

Table 4.1: Values of the parameters used in the simulations for this chapter. These
values determine the mechanical properties of the cells and their environment. No-
tation and units taken from Ref. [43].

to. We compare systems where γ = 0.0 µg/s, that is, cells do not interact
very much with their neighbours, and strongly interacting cells with γ =
200.0 µg/s.

The parameters used in the CeDEM simulations for this chapter are
shown in Table 4.1

4.2 Results

4.2.1 Quasi-one-dimensional morphology

We start from (quasi-) one-dimensional systems and compare the struc-
tures from experimental systems (Figure 4.1) and simulations (Figure 4.2).
First, instead of just dividing all cells that are above some threshold area,
we allow a single cell to divide only once. Thus, only the youngest cells are
allowed to divide similar to budding growth in bacteria [345]. Addition-
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(a) (b)

(c) (d)

Figure 4.2: The type of cell can be changed by changing the division plane choosing
rules.(a) Division planes parallel at each generation,(b) division plane turning left
at an increasing rate,(c) small clusters of original cells dividing at perpendicular and
constant orientation angles, and(d) division plane turning left at constant rate.

ally, we make the division plane non-random. Different scenarios lead to
morphologies as shown in Figure 4.2: Keeping the division plane parallel
for each generation leads to morphologies similar to A. planctonica (com-
pare Figures 4.1(a) and 4.2(b). Letting the division line rotate slightly
more by every generation produces Figure 4.2(b). Allowing all cells to
divide and letting them divide along two perpendicular lines produces
Figure 4.2(c), approximating the morphology of A. laxa in Figure 4.1(b).
Finally, constant rotation every generation leads to Figure 4.2(d), which
is structurally similar to Figures 4.1(b) and 4.1(d).

Although the morphologies in Figure 4.2 are created by the simple
rules as discussed above, and there may well be other rules that lead to
similar morphologies, it is important to keep in mind that to arrive to such
structures real systems have molecular mechanisms that lead to the emer-
gence of such structures. The microscopic molecular level mechanisms are
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effectively manifested as rules at the macroscopic level. The exact mecha-
nisms as why filamentous shapes form remain to be resolved, but current
evidence shows that septal junctions have an important role [333, 346].

4.2.2 Soft and stiff cells in 2D

We now focus on two-dimensional larger and denser samples of cells with
two cell types, stiff (Type1) and soft (Type2), in the same system. We as-
sume that softer cells are tumour cells. This assumption is based on the
fact that cancer cells tend to be softer [255, 328]. The initial setups for
simulations of such systems were created with equal proportions of Type1
(red) and Type2 (blue) cells, see Figure 4.3(a). Growth is simulated with
identical parameters for all cells, except membrane stiffness, until conflu-
ence. Figure 4.3(b) shows the tissue structure at the end of the simulation
with the system mostly filled with soft cells (blue) while the stiff cells (red)
are compressed into dendrite-like structures. Another distinct feature is
that the cells interpenetrate in the regions marked with light purple in
Figure 4.3(b). This type of behaviour occurs in diverse systems as shown
by Eisenhoffer et al. for canine, human and zebrafish epithelial cells [347]
and discussed at length in the review by Guillot and Lecuit [312] (see in
particular Figure 2 in Ref. [312]). The forces can become so high that
the cell membranes practically intersect each other. These cells would be
good candidates for cell death. Experiments have also suggested that for
live cells, such conditions may lead to pathologies [347]. CeDEM does
not currently support cell death in terms of cells disintegrating and disap-
pearing from the system. Cells do, however, get squeezed into very small
space and division ceases in the purple regions of Figure 4.3(b).

Figure 4.3(c) shows a smoothed histogram of the average intermem-
brane (or contact) forces between cells. The white dots show the centres
of masses of the stiff cells. The peaks in the contact force distribution
correlate highly with the locations of the stiff cells indicating that Type2
cells overwhelm Type1 cells as the tissue grows and also that the system
imposes higher stresses on the stiff collapsed cells.

At this point, we ask the question if this collapse of stiff cells can be
mitigated by making their interactions stronger. This can be examined by
changing the magnitude of intermembrane friction γ. Since cells need to
find space to grow, they need to slide past each other into empty regions.
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Figure 4.3: X and Y axis represent spatial coordinates in 2D in unites of 10 µm.(a)
Initial configuration. Stiff cells are depicted in red, and soft in blue. Growth is
simulated from this state until confluence. (b) A confluent tissue soft and stiff cells.
Stiff cells form dendrite or vein-like structures in a matrix of soft cells. The regions
marked with light purple are areas where cells interpenetrate and cell death could
occur — though death is not simulated by CeDEM.(c) Contact force distribution in
the same tissue (color bar ranges from 0 to 150 nN). Large contact forces are located
at stiff cells and at boundaries between soft and stiff cells. White markers are the
centres of masses of the stiff cells.

In other words, higher friction induces jamming between the cells which
means that they easily get squeezed between each other and therefore
reaching the division threshold area takes a much longer time. The softer
cells will also need to counteract this effect to grow. Figure 4.4 shows a
similar simulation setup as before, except with different values of γ. Fig-
ure 4.4(a) shows the initial conditions, and Figures 4.4(b) and (c) show
the final state at γ= 0.0 µg/s and γ= 200.0 µg/s, respectively.

At low intermembrane friction (γ = 0.0 µg/s), there are more cells at
the end of the simulation indicating that growth is faster. The high in-
termembrane friction system (γ= 200.0 µg/s) is more porous with slower
growth. The friction-less system (Figure 4.4(a)) corresponds to very early
stages of development when junctions have not yet developed. The latter
system (Figure 4.4(b)) corresponds to when cell adhesion molecules have
developed. In both cases, the simulations were run for an interval of time
corresponding to 10 division cycles.

To investigate further, we study the sizes of the cells in each case and
the forces that are acting on the cells. Figure 4.5 shows the number distri-
butions of cell area (Figure 4.5(a)) and the total force (attractive, repul-
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Figure 4.4: X and Y axis represent spatial coordinates in 2D in units of 10 µm.
Morphologies of simulated cells with different intercellular friction.(a) Initial con-
ditions stiff cells are in red and soft cells in blue. The two are in equal propor-
tions.(b) Morphology of zero intercellular friction cells.(c) Tissue with high-friction
cells (γ = 200.0 µg/s). Both cases were simulated for a time corresponding to 10
division cycles.

sive, and friction) that each cell feels due to its neighbours (Figure 4.5(a)).
Both distributions display lower total number of cells in the high friction
tissue. The peak in area distributions is just below 100 µm2, which is due
to the threshold division area (Adiv = 100 µm2). Some of the cell areas have
grown past this limit as cell division occur only at discrete time intervals in
CeDEM so some cells are larger. The γ= 0 distribution shows a small peak
at A ≈ 20 µm2, which is due to the higher number of collapsed cells in the
low friction system. The large-area peak represents the soft-cell majority,
and its shape is approximately Gaussian, consistent with the observation
from simulations of non-dividing soft colloids [299]. For γ = 200.0 µg/s
the distribution has not yet developed two peaks and there are some cells
that can grow rapidly in the sparse areas of the packing.

Finally, we study the case of a cluster of soft cells surrounded stiff cells
in Figure 4.6. We first investigate the case when γ= 0.0 µg/s. In this case,
Type2 cells with the larger growth potential continue to proliferate even
when the tissue approaches the state of being space-filling, while Type1
proliferation almost stops. This leads to a tumour-like growth of Type2
cells and compression of Type1 cells at the tumour boundary.

Figure 4.6(a) and (d) show the morphologies for for γ = 0.0 µg/s and
γ = 200.0 µg/s at confluence 1. The faster growth of the tumour at γ =

1Confluence means that the cells fill the simulation box fully.
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Figure 4.5: a) Number distributions of cell areas. There is a peak at low areas cor-
responding to collapsed stiff cells.(b) Number distribution of intercell forces (denoted
by F ) at low intermembrane friction (γ= 0.0 µg/s), corresponding to Figure 4.4(a),
and high intermembrane friction (γ = 200.0 µg/s), corresponding to Figure 4.4(b).
The green dashed line is an exponential fit to the γ = 200.0 µg/s case, ignoring the
second peak.

0.0 µg/s is clearly visible. Initial conditions for both cases were identical;
stiff cells were placed in the centre and stiff cells were placed randomly
surrounding them. Figure 4.6(b) and (e) show spatial size distributions
in the two cases. The dark regions in the histograms correspond to pores
in the system. Cell sizes are roughly equal within the tumour and inside
the matrix. Along the tumour boundary, however, the matrix cells are
compressed and the tumour cells are enlarged. This effect is seen in both
cases but is much more pronounced when γ= 0.0 µg/s. Lastly, Figures 4.6
(c) and (f) show the distribution of the mean contact forces. Inside the
tumour the contact forces are low, and the largest forces are seen scattered
on the tumour boundary. Again this effect is more pronounced in the
γ= 0.0 µg/s case.

However, even though there are fewer stressed cells at higher γ, the
few cells that are stressed feel higher stresses. This is quantified in Fig-
ure 4.7(a) and (b) which show the population distribution over contact
force. In both of the current cases we see an exponential tail representing
the small population of stressed cells at the tumour boundary. There are
more cells that feel higher stress in Figure 4.7(a) with γ = 0.0 µg/s, than
in Fig. 4.7(b) with γ= 20. However, these cells feel more stress at higher
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Figure 4.6: X and Y axes represent spatial coordinates in 2D in units of 10 µm.(a)
Inclusion of Type2 (blue) cells in a matrix of Type1 (red) cells, γ = 0.0 µgs−1; con-
fluent configuration.(d) γ = 200.0 µgs−1. Configurations for the two cases are at
confluence. Purple regions show areas were cells interpenetrate and death could oc-
cur.(b) Spatial cell size distribution, γ = 0.0 µgs−1,(e) γ = 200.0 µgs−1 (color bars
range from 0 to 150 µm2).(c) Spatial contact forces distribution γ = 0.0 µgs−1,(f)
γ = 200.0 µgs−1 (color bars range from 0 to 150 nN). Black squares: voids
in(b),(c),(e), (f)).
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intermembrane friction.

There is only very limited amount of data available for force distri-
butions in proliferating systems. However, they have been measured for
soft colloidal systems under compression. It is well established that the
distribution has an exponential tail in the vicinity of the jamming transi-
tion [299, 348, 349]. It has also been recently shown experimentally by
Jose et al. by using 3-dimensional packings of soft colloids that the dis-
tribution well above the jamming distribution becomes Gaussian [349].
As Figure 4.7 shows, the exponential tail is present in our two-component
2-dimensional cell systems both at zero and high friction. The fact that
the cells grow also means that their volumes are not conserved (in con-
trast to experiments with typical colloids). This is also the case for the
cells that are being pushed and compressed by their neighbours as is evi-
dent from the snapshots in Figures 4.4 and 4.6. What is clearly different
here is the distribution at low forces: the exponential is preceded by a
Gaussian distribution. Gaussian peak has been observed in simulations
of soft colloids in two dimensions with zero friction [299]. In contrast,
in the three dimensional experiments of Jose et al. the low force part of
the distribution remained almost flat except well above jamming transi-
tion. This may have to do with the hardness of the particles: Erikson et
al. studied materials of different hardness and the force distribution at
lower forces depends strongly on hardness [348]. In addition, van Eerd et
al. have reported faster than exponential decay from their high accuracy
Monte Carlo simulations [350] although the deviations can be very hard
to detect without high accuracy sampling methods.

Here, peaks in the distribution develop at relatively large forces within
the bodies of stiff cells. This becomes particularly evident when a tissue
of soft and stiff cells becomes so dense that it approaches space-filling. In
this case, almost all stiff cells collapse and form narrow veins or dendrites.
With a suitable initial mixture of stiff and soft cells, the soft cells form a
matrix with a percolating fractal network of stiff cells which covers only
a small fraction of the total area but penetrates almost everywhere(Fig-
ure 4.3(b)). This shows a possible pathway for the formation of signalling
and transport networks in a simple multi-cellular system.

The results in Figure 4.6 show that the softer cells introduced into
matrices of stiffer cells grow faster when intermembrane friction is low;
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Figure 4.7: Distributions of intercellular forces (denoted by F ) when a soft Type2
cell is introduced into a tissue consisting of stiff Type1 cells.(a) γ = 0.0 µg/s, in the
configuration shown in Figure 4.6(a) and(b) γ = 200.0 µg/s in the configuration
shown in Figure 4.6(d). The distribution of both is similar except the γ= 200.0 µg/s
case is slightly wider at forces between 0-100 nN and there is a smaller number of
cells in (b) that experience high forces. See the text for a detailed discussion and
relation to jamming.

weaker cell-cell interactions provide conditions for easier growth. This
also suggests that intercellular interactions can be an indicator of how
well epithelial tissue can diminish the growth of rogue cells that have a
higher growth potential.

4.3 Conclusions

In this work we use the CeDEM model to study how filamentous grow-
ing bacteria can create varied quasi-one-dimensional morphologies. We
show that modulating the cell division line orientation can be one of the
ways such morphologies can arise. What determines the division line ori-
entation is, however, an open question but cell-cell junctions have been
indicated having an important role [333]. We propose considering simple
division line placement rules as a possible effective manifestation of yet
unknown microscopic mechanisms.

We then studied larger, denser systems of cells of two different types in
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two dimensions. Cell populations are differentiated by their membrane/-
cortex stiffness. We showed that this simple difference is enough, provided
internal pressure is identical for both, to favour soft cell growth. Even if a
few soft cells are surrounded by stiff cells, it is enough for the softer cell to
grow rapidly. This effect can be mitigated by a higher interaction strength
between cells. Both of the effects above required some modifications of
the CeDEM model presented before in Refs. [43, 299]. We also studied
the force distributions which show similarities to non-proliferating soft
colloidal systems. Although not studied here in detail, the model allows
for tuning the cell-cell friction, an issue raised recently by Vinutha and
Sastry for shear jamming [351].

The existing paradigm for the softness of cancer cells has been chal-
lenged by Rowat and coworkers who have shown that stiff cancer cells can
be more invasive than soft ones [330]. They have also shown that cells ex-
perience significant strain hardening. The precise role of it remains to be
resolved [352]. Models such as the current one may be helpful in isolating
and identifying the purely mechanical processes and their importance for
a collection of cells and related them to other soft matter systems.
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Chapter 5
The CellSim3D Model and
Simulator

Based on: Madhikar, P., Åström, J., Westerholm, J. & Karttunen, M. Cell-
Sim3D: GPU accelerated software for simulations of cellular growth and di-
vision in three dimensions. Computer Physics Communications 232, 206213
(2018).

We explored multiple different models, and their associated software
packages, in Section 3.4. As we noted there, those models can be well
suited for studying various different cellular phenomena (e.g. cell mi-
gration packing topologies). Continuum models (Section 3.5) lack the
resolution required to study intra- and intercellular interactions. Discrete
cell models (Section 3.6) tend to approximate cell membranes by either
straight edges, such as in vertex models [282–284, 339, 353], flat planes
such as in Delaunay object dynamics [294, 340, 341, 354], or as a lat-
tice boundaries as in the cellular Potts model [259, 261, 262, 270, 272].
These cannot accurately approximate intermembrane interactions as there
are no actual membranes being simulated. Recently, Van Liedekerke et
al. [355, 356] published a model that is able to simulate cells in 3D with
proper terms for intermembrane interactions, but no freely available soft-
ware that implements the model is available. The immersed boundary
method of Rejniak et al. [188, 342] explicitly models intermembrane in-
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teractions may be suited to such problems, however it is not clear if this
method can be used on large systems of cells.

Apart form the problems described above, it is also surprising that de-
spite the fundamental importance of cell division, and the influence of
mechanics on it, there are very few software packages available to study
it. This is drastically different from fields such as materials and bioma-
terials research. To the best of our knowledge, there are no freely or
commercially available packages comparable to the one presented in the-
sis. Current free software packages are mostly based on the cellular Potts
model, such as CompuCell3D [357] and CompuCell [358]. There is also
the two dimensional Cellular Potts Model Library called Tissue Simula-
tion Toolkit based on the work of Graner and Glazier [261] (available
at https://sourceforge.net/projects/tst/), and cellGPU by Sussman [353].
Other methods are also available, for example LBICell that uses elastic
polygons and the immersed boundary method [181], and the agent-based
package CellSys by Hoehme and Drasdo [359] that is available as a free
binary executable for non-commercial use. Commercial software includes
the so-called Cell Division Program based on the work of Pyshnov [360].

There is not only a need in the field for models that can describe inter-
membrane interactions appropriately, with the flexibility required to sim-
ulate forces at the subcellular level, but also an efficient implementation
into high performing software that can be used by researchers to complete
their worker faster. We shall discuss a new model, and associated software
package, in this chapter, named CellSim3D [42], created with the goals of
being

• flexible enough to eliminate the issues outlined above

• open source, encouraging improvements and additions, if there are
missing features

• amenable to simulating large systems, with up to tens of thousands
of cells, on a single workstation

The CellSim3D package meets all of the goals above by taking advan-
tage of the maturity the methods and algorithms taken from the discipline
of Molecular Dynamics (MD). MD is has advanced significantly since its
inception over 60 years ago [44, 45] (see full discussion Chapter 2) both
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in terms of algorithmic flexibility and technical knowledge regarding effi-
cient implementation in software. The algorithms and tools of MD are a
good candidate for creating a model and software package that meets the
above goals. MD has been demonstrated to be useful tool study all kinds
of systems from simple systems such as inert gases [44, 361, 362], small
molecules [48, 363], and even complex systems of interacting macro-
molecules [79, 84, 364–367]. The algorithms used for MD are relatively
well documented and there is a whole host of software, with accompany-
ing detailed documentation, that is available as a reference for implement-
ing the models [51, 53, 55, 368]. It can also be used to study systems of
up to millions of particles if care is taken during model development and
implementation. It would allow us to study very large systems of cells.
Details of MD were discussed in Chapter 2.

Cells are not molecules, but there is nothing in MD, per se, that limits
its use to only molecular systems. The basic idea is based on Newtonian
Mechanics, which is suitable to studying everything from molecules to
planets — under the right circumstances. We can use the same to study
cells, as long as we confine our studies to certain domains of length and
time scales, and we approximate the interactions between them appro-
priately. The cell is the perfect example of a complex, multi-scale object.
All of the processes that occur at the cellular level, have their roots in
the molecular state transitions which occur at much smaller length and
time scales. Atomic bonds vibrate in the femtosecond range, molecular
conformational changes occur on the nanosecond to microsecond range,
and macromolecular conformational changes may occur on very large
timescales, up to seconds or minutes. Changes at the cellular level oc-
cur over minutes, hours, or even days. It is not possible to simulate all of
these levels of scale atomistically — the computational cost is prohibitive.
But there is a solution to this, and that is coarse graining.

Coarse-graining1 is the process of taking known information of the
underlying system, and using it to create new force fields that hide the
interactions of the smaller time and length scales. We can define MD
force fields by coarse-graining in a bottom up manner or in an top down
manner. Bottom up would entail starting from the fundamental building
blocks of our system (such as the atomic state changes), and taking in-

1Coarse-graining is discussed in more detail in Section 2.2
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formation from it up in time and length scale. One can alternatively take
information from higher scales and bring it down to the desired scale. For
example, the overall elasticity of the cell membrane can be deduced from
the biochemical interactions between the actin filaments, and the myosin
motors, that are part of the actomyosin cortex [19, 43] (bottom up); or
from the mechanical measurements of the stiffness of cells carried out in
the lab [369, 370] (top down).

The CellSim3D model is such a coarse-grained MD model for cell be-
haviour. We will first consider what the assumptions are in this model in
Section 5.1, Section 5.2 will discuss the CellSim3D force field in detail,
along with some details such as how to carry out cell division. Together
these two sections lay out the basis for the coarse-graining process. In
Section 5.5 we will see details of the CellSim3D software package, with
how the different algorithms of the model are implemented, and explore
some of the analysis tools available with the package. In addition to all
of the algorithmic features of CellSim3D that we discuss in this chapter,
it is implemented to run on Graphics Processing Units (GPUs). These
are highly parallelized hardware devices that are known to accelerate MD
simulations [55, 368, 371, 372].

5.1 CellSim3D Assumptions

In Section 3.2 the idea of the mechanical cell was laid out. It is not that the
biological aspects which were ignored in this picture, for example the nu-
merous organelles, are unimportant, but considering them in detail would
make the whole endeavour intractable. The mechanical cell does make the
system simpler, but we need some more assumptions to move on.

Let us first outline the goals that this new model should meet. We
want to study cell behaviour, growth, and ultimately how tissues behave.
What this means is that the model should contain terms that approximate
the interactions pertaining to the needs below:

1. The model should be three-dimensional. Cells are three dimensional
objects, so we should give them the full 3D treatment.

2. The model should contain terms which approximate the strength
and the manner in which cells interact with each other or their en-
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vironments (the extracellular matrix, liquid medium, or other cells).
The physical origins of this are explained in Section 3.2.1.

3. A cell’s growth and division, and its effect on the (new) cell’s sur-
roundings, should be approximated, with allowances for extensions
or refinements for the interaction terms.

4. The mechanical response of the cell to external stimuli should be
simulated, even if the stimulus itself is not mechanical.

5. It should be able to study cell migration

6. If possible, the interplay between the terms above.2

Even when ignoring the biological aspects of cell behaviour and only
focusing on the mechanical (set aside for the moment the interplay be-
tween the two [18, 38]), there is a lot of complicated interactions one
has to take into account if one wants to simulate the mechanical cell. To
do this, we have to be clear about what assumptions we make, and what
constraints apply to the CellSim3D model.

Cell surfaces can be treated as a viscous material.
The mechanical cell (Figure 3.3) is constructed of a cell membrane3

which contains two major components, the actomyosin cortex, and
the lipid bilayer. These will be modelled as a flexible material. Since
the membrane can also be viscous (the acin filaments can flow past
each other), we should treat the material to be viscoelastic to capture
this behaviour. However, we neglect the viscoelasticity for now and
assume the membrane is a viscous fluid.

The extracellular matrix is a liquid.
Most tissues are not just a collection of cells. The extracellular ma-
trix (ECM) plays an important role in the behaviour of cells, and it is
constructed of many different types of proteins [11]. However, we
do not explicitly model the ECM, but only approximate it as a fluid.

2We will see later that this in particular may not require explicit modelling, it will arise
naturally from the system, see Section 6.2.

3In this thesis we use the term “cell membrane” to refer to the plasma membrane (lipid
bilyar) plus the actomyosin cortex under it.
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There are no long-range interactions between cells.
We assume that all cells in our simulations interact only through
mechanical contact. Hormones, or synapses, are examples of long-
range communication between cells. We ignore this long term inter-
action.

Cell death can be ignored.
There will be no terms in this model to include cell death. Cells can
die in reality due to unfavourable environmental conditions, lack of
nutrient, or some signal from the organism that they are a part of,
such as programmed cell death [3, 373, 374].

All cells are spherical at mechanical equilibrium with themselves.
A cell, without a cell wall, will be more or less spherical when in
liquid, due to the balance of forces between the cell membrane’s
contractility, and the incompressiblity of the cell’s contents [189,
375]. It has also been suggested that a high sphericity of parent
cells is a necessary condition for cell division [193, 376, 377].

Cell-cell interactions are isotropic.
The mechanical properties of the cell are not necessarily uniform in
all directions. The density of Cell Adhesion Molecules (CAMs) can
vary from location to location in the cell membrane. We assume that
they are isotropic for our model.

The cell type is determined by its mechanical properties.
We assume that each cell type is defined uniquely by its set of pa-
rameters.

Only symmetric cell division occurs.
Section 3.3.1 shows a variety of ways that cell division can occur.
We assume that cells will only divide through their centre of mass
and symmetrically.

The mechanical properties of all cells are uniform over their surface
The mechanical properties of the cells such as stiffness [179], and
adhesion strength [378] can vary in real cells. However, we assume
that they are uniform in this model.
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5.2 The Force Field and Cell Structure

In Molecular Dynamics simulations the force field approximates the phys-
ical interactions of the particles in the system. These expressions of poten-
tial, or force as will be the case below, contain information about how the
underlying system behaves physically — with the caveat that it is only ap-
plicable to certain time and length scales. Namely, the size of an average
cell and the time required for one division cycle. Keeping this in mind, we
will proceed to discuss the force field used in this thesis, the CellSim3D
force field. All of the terms in the force field are related to the properties
of the mechanical cell 3.2.

5.2.1 Cell Shape and Topology

As a starting point, we will use the CeDEM model introduced in Sec-
tion 3.6.5 and in Refs. [43, 299], which describe a 2D for cells, that we will
extend into 3D. Since CeDEM is a 2D model it can naturally not describe
three dimensional tissues. Even the 2D systems that we do study with Ce-
DEM only approximates the quasi-3D structure of their real counterparts,
epithelia. It is therefore desirable to make a 3D package available.

Since cells can come in various shapes and sizes, we would need to
accept the shape of the cell as input and triangulate its structure. This an
unnecessary complication, and it involves the use of meshing algorithms
that are out of the scope of this thesis. For simplicity we will make use of a
simple, known geometry that can be easily coded into the simulator pack-
age. If needed there are libraries, such as the Computational Geometry Al-
gorithms Library [379] (known commonly as CGAL), that can be used to
create meshes of arbitrary shapes in the future. We have already assumed
that the cells are spherical at mechanical equilibrium (Section 5.1), so we
begin with a spherical shape of the cell surface, just as the one shown in
Figure 5.1 (a). The intracellular portions of the force field will act be-
tween nodes on the surface of the cell, as shown in the zoomed in cutout
of Figure 5.1 (a).

The locations of the nodes on the cell surface and the connectivity
between them should be chosen such that:
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The nodes are distributed uniformly
The distance between nearest neighbour nodes should be approxi-
mately the same, to simulate cells with an actomyosin cortex that
is relatively uniform over the whole cell. Later, these same nodes
will be used to stimulate the interaction between the cell adhesion
molecules, and that interaction should be uniform over the surface
of the cell as well.

Surface resolution is sufficiently high, but not too high
While it would be helpful for the number of nodes to be low, as the
lower this number, the faster the simulation can be, it also needs
to be high enough to allow for the spherical shape to be resolved
sufficiently.

The number of nodes should close to a multiple of 16 or 32
This is a detail related to implementation on GPUs. Memory op-
erations (read/write) on GPUs are more efficient if the number of
particles is a multiple of 16 or 32 (depending on the GPU in ques-
tion). If it is not close to this number, memory transfer can be ham-
pered. This requirement arises from need to accelerate the software
on GPUs.

These requirements for the cell geometry and topology can be difficult
to comply with, so we look to the field of organic chemistry as inspiration.
The C180 fullerene, shown in Figure 5.1(b), meets the criteria above. It
is a carbon fullerene made of 180 carbon atoms, three times more than
its more famous sibling the, C60 fullerene. Its geometry is readily avail-
able from various sources such as Ref. [380, 381]. The carbon atoms
are the nodes in our cells, and the interactions between them will be ap-
proximated by the force field. This is where the commonality ends, this
force field is not to be used when studying actual fullerenes, and the phys-
ical properties of the fullerene have no bearing on the CellSim3D force
field. The mesh on the surface of the cell will contain 180 nodes, which is
of sufficient resolution while still being manageable from a performance
perspective. These nodes are also distributed uniformly over the surface
of the fullerene, most being arranged in hexagons and a few in pentago-
nal shapes. The equilibrium bond length is also relatively similar for all
of the bonded nodes. Lastly, the system is quite spherical at mechanical
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(a) (b)

Figure 5.1: Cell structure in CellSim3D. As a starting point for our model, we
assume that the cell is (a) a spherical object and that its mechanical properties
are approximated by a viscoelastic sheet described by network of balls and spring
between them. We use the geometry and topology of the C180 molecule (b) with
the positions of the carbon atoms at equilibrium for the model. This image is in
perspective, the closer nodes are drawn larger than further nodes.

equilibrium (with a sphericity of approximately 95%). There are multiple
other fullerene geometries [380, 381] that can be used as replacements,
but that is out of the scope of this thesis.

5.2.2 The Force Field

Intracellular forces are modelled with simple damped Hookean springs
which themselves are a proxy for the cell membrane, and an internal pres-
sure which drives cell growth. Inside the tissue, each node experiences
forces that arise from intercellular interactions: adhesion and repulsion
between cells, friction between cells, and friction between cells and the ex-
tracellular medium. The shapes of the simulated cells, beginning with the
shape shown in Figure 5.1 (as explained in the previous section), evolve
according to the competition between internal pressure, contractile forces
along cell boundaries, and intercellular interactions. This allows for study-
ing the dynamics of cell membranes, and their interactions, with higher
spatial and temporal resolution. Figure 5.2 summarizes the terms in the
force field.

Before describing the details of the force field, we describe the notation
used in this chapter below:

• Indices of particles or cells are denoted by lower case subscripts gen-
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FB
FF,m

θ
Fθ

Bonded Interactions Growth Force

n̂FP

Non-Bonded Interactions

Cell n

Cell m

FA +FR +FF,e

Figure 5.2: TheCellSim3D force field is divided into three terms: bonded interac-
tions (intracellular) between the nodes of the same cell i , j , the growth force within
each cell acting on each node, and non-bonded (intercellular) interactions between
two cells m and n. There are two intracellular forces, FB and Fθ are due to defor-
mation in bond length and angle respectively. Intercellular forces are divided into
attractive (FA), repulsive (FR), and intermembrane friction (FF,e). The growth force
(FP) acts isotropically on each node of the surface. Finally, the medium exerts a
friction on each node (FF,m).

erally, such as i , j , k. Superscripts are never used for indices.

• Vectors in R3 are denoted with boldface and their magnitude in reg-
ular font. For example, ‖v‖ = v , where ‖·‖ is the Euclidean norm.

• Constants or parameters of the force field are denoted with regular
fonts.

• Position of particle i is denoted by xi

• Velocity of particle i is denoted by vi = d
dx i t = ẋi .

• Force on particle i is denoted by Fi = mi v̇i = mi ai .

• The difference between two scalars, or vectors, with indices j and
i is denoted with subscript i j . E.g. vi j = v j − vi . If the to scalars
or vectors are positions (x j , xi ), then their difference is additionally
denoted with the letter “r”: ri j = x j −xi .

The force acting on node i , is given by

F = mr̈ = FB +Fθ+FP +FR +FA +FF, (5.1)
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Figure 5.3: Schematic of the intracellular
forces that will act on node i . This node has
two first neighbours ( j) which will contribute
bond forces and each first neighbour has two
other neighbours (k). Only one of the first and
second neighbours are labelled for simplicity.

where FB is the force between two nodes that are bonded in a cell, Fθ is
the force due to the angles between the bonded nodes (together these two
terms approximate the mechanical properties of cell membranes), FP is the
force on each node i of each cell that is due to the osmotic pressure [189,
375] and growth of the cell, FA and FR are the attractive and repulsive
terms between nodes of two different cells, and finally F is composed
of intercellular friction FF,e and FF,m the friction arising from the ECM.
The three terms FA, FR, and FF,e combined approximate intermembrane
interactions.

Intracellular Forces

For intracellular forces, we denote the node that we are considering with
i , bonded nodes with j , which we also name “first” neighbours, and the
bonded neighbours of bonded neighbours (“second” neighbours) with k
(with the condition that i and k refer to different nodes). Figure 5.3
shows one first neighbour and two second neighbour nodes, the rest are
not labelled for simplicity, refer to this figure when considering the force
definitions below. The nodes are laid out in hexagonal topologies, with the
occasional pentagon that cap the corners of the C180 fullerene. Figure 5.3
shows a small portion of the cell surface, flattened for simplicity; the nodes
within the same hexagon are in the same plane, but the different hexagons
are not.

Wherever possible, harmonic forces are used to approximate internode
forces. This simplifies the definition of the forces in Equation 5.1 and
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makes them easier to implement. If needed these expressions may be
replaced or extended to simulate more complicated situations. The force
between the node i , and its bonded neighbours j , of the same cell is
defined as

FB
i =

3∑
j=1

[
kB

i j b̂i j

(
Ri j −R0

ij

)
−γintvi j

]
, (5.2)

where kB
i j is the bonding spring constant assumed to be the same for all

bonds kB, R0
i j is the equilibrium bond length between nodes i and j (taken

form the data known about C180 fullerenes), Ri j = ||xi −xj|| is the instan-
taneous bond length, and γint is the friction coefficient that dampens the
oscillations of the bonds, and vi j = vi − v j is the relative velocity of the
nodes. kB and γint are related to the elastic and viscous properties of cell
membranes.

A three body angle term is also defined to resist the deformation of
the angle θi j k between the three nodes i , j , and k with another harmonic
force which is defined as

Fθi = 1

2

∑
j

∑
k 6=i

−kθi j k∇xi

(
θi j k −θo

i j k

)2
, (5.3)

where the force is summed over all first neighbours j (two for the C180
topology) and all second neighbours k (six in our case), θo

i j k is the equilib-
rium angle between the three nodes calculated from the C180 geometry,
and lastly kθi j k is the angle spring constant which may vary over the cell

surface, but for simplicity it is set to one value, kθ, for all angles. Note
that the gradient is taken with respect to the position of node i , xi .

Each node j in Figure 5.3 bonded to two nodes i and k will have an
angle θi j k in between them. The nodes i and k will have forces Fθi and
Fθk respectively acting on them (assuming θi j k is not at equilibrium). This
would finally result in net force acting on j given by F∗ = Fθi +Fθj causing
unwanted acceleration through the middle of the angle. This counteracted
by simply adding the force −F∗ onto node j .
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The Cell Growth Force

As we will be simulating cell growth and division, we have included a
cell growth force in the force field. The simplest ways to simulate growth
would be to increase volume, increase mass, or both. For simplicity, let us
not worry about increasing mass for the moment. We induce the increase
in volume with a simple pressure force. This pressure stems from the phys-
ical and chemical properties of the cytoplasm (the internal component of
the cell cortex); its incompressibility and its tonicity. The effect of these
two properties is the pressure that is exerted on the cell membrane, either
due to the addition of matter in the cytoplasm, or due to its osmotic pres-
sure. This internal hydrostatic pressure balances the compressive forces
FB and Fθ.

This pressure force is defined as

FP
i = (PS)n̂i , (5.4)

where PS is the force due to pressure P times a unit area element on the
surface S, and n̂ is the normalized vector defining a family of planes that
are parallel to the tangent to the surface of the sphere at the location of
i (xi ). How n̂ is calculated is shown in Figure 5.4. The plane shown in
green can also be used to calculate n̂, and it is also the plane in which
the three neighbour nodes of i , labelled 1, 2, 3 lie. The nodes’ positions
are exaggerated for clarity, they would be much smaller relative to the cell
that what is depicted in the figure.

Let b̂1, b̂2, b̂3 be the normalized vectors from i to the three bonded
neighbours of i , and then the normal to surface at i , n̂i can be approxi-
mated as

n̂ ≈ (b̂2 − b̂1)× (b̂2 − b̂3),

where n̂ defines the direction of the pressure force. The magnitude of the
pressure force is set by specifying a value for (PS)o as initial pressure of
the cell. Growth is then induced by increasing the pressure force by ∆(PS),
the growth rate of the pressure force up to and including (PS)∞. Thus, the
cells gain volume to simulate growth. The increase in pressure will induce
an increase in volume V = Vo +∆V , Vo is the initial cell volume, and cells
are divided upon reaching a threshold volume V div, when cells are divided
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n̂

12

3

i
b̂i 1

Figure 5.4: The direction of the
growth force is determined by calcu-
lating the normal to the surface at
node i , n̂, which is a function of the
intracellular bond vectors to the first
neighbours of i . b̂i 1 is the normal-
ized bond vector between i and its
first first neighbour. Normalized bond
vectors for the other two vectors are
not shown. The green triangle depicts
the plane used to calculate the normal
n̂. The nodes are drawn in perspec-
tive, larger nodes are closer. The posi-
tioning of the nodes is exaggerated for
clarity.

and mass is added via the creation of a new cell. The volume is calculated
by dividing the cell into a number of tetrahedrons, using the centre of
mass of each cell and the centres of each hexagonal or pentagonal facet
of the C180 fullerene. The cell division algorithm is described in detail in
Section 5.3.

This formulation of the pressure force is designed such that the re-
sulting pressure force is approximately normal to the surface of the cells.
Unfortunately, this approximation of the normal can fail if the cells are
deformed to a concave shape, resulting in a normal to the surface of the
cell pointing inwards. If the cells deform into irregular shapes, the growth
force will be directed inwards, making their shapes even more irregular.
To remedy this problem, a simpler formulation is also implemented de-
fined as

FP
i = (PS)r̂CoM, (5.5)

where r̂CoM is the normalized vector pointing from cell m’s centre of mass
to xi . This is recommended to be used with cells that have low intracellu-
lar stiffness values (kB or kθ).
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XCoM

Figure 5.5: Tetrahedral subdivisions
to calculate cell volume.

Intercellular (Non-Bonded) Forces

Cell-cell interaction is highly complex and varied. Mechanical cell-cell
interactions are mediated through the cell membrane, and are therefore
difficult to simulate as they involve many types of interactions between
the molecules that constitute cell membrane. The type, strength, and even
the directionality of these interactions can vary quite a bit from cell type
to cell type, and between two cells of the same type with different pasts.
These interactions should also be short-ranged as there is no direct long-
range mechanical communication between cells. Long-range, that is, on
the length scale of a typical cell, which is macroscopic (10-1000 µm [11]).

Short-range interactions need to be explicitly modelled as these inter-
actions will govern the formation and strength of cellular tissues [306,
307, 313, 314]. These properties stem naturally from the formation and
strength of intercellular junctions. The strength, density, and locations of
the junctions are controlled by a number of biochemical factors, but from
our point of view, we assume them to be uniform and constant. The mor-
phology of tissues at different stages of development depend fundamen-
tally on these junctions, which can vary in quantity and strength [305–
307], between cell types and over time for the same cell. Using the me-
chanical cell approximation as a starting point, we will further assume
that we can average the individual interactions of the various CAMs, in-
cluding terms such as interprotein electrostatics interactions, chemical in-
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Figure 5.6: Figure showing the locations of
two cells (m and n) that are close enough to
trigger the intercellular forces. The attractive
and repulsive forces will be between the two
nodes i , i ′′ and parallel to r̂i i ′ , which is xi ′−xi

normalized. They will also experience a fric-
tion force tangential to the relative velocity
vi i ′ = vi ′ −vi .

teractions, and van der Waals’ interactions, into a uniform interaction over
the cell surface, and this uniform interaction will be broken down further
into three parts: adhesion, repulsion, and (intermembrane) friction.

Figure 5.6 shows two cells m and n, the surfaces of which are within
interaction range. The three short-range forces act between the nodes i ,
i ′ of the two cells m, n respectively.

The attractive, FA
i , and repulsive, FR

i forces on node i of cell m are
defined as

FA
i ,m =

∑
n

∑
i ′

{
k A(ri i ′,n −R A

o )r̂i i ′,n if ri i ′,n < R A
o ,

0 if ri i ′,n ≥ R A
o ,

(5.6)

and

FR
i ,m =

∑
n

∑
i ′

{
−kR (ri i ′,n −RR

o )r̂i i ′,n if ri i ′,n < RR
o ,

0 if ri i ′,n ≥ RR
o ,

(5.7)

where k A and kR are the attractive and repulsive spring constants respec-
tively, ri i ′,m is the vector pointing from the node i to node i ′ in cell m,
and R A

o , RR
o are the equilibrium bond lengths and cutoffs. kR À k A and

RR
o < R A

o , which results in forces which are the gradient of a potential
U

(
ri i ′,m

)
that looks similar to the Lennard-Jones potential with an equi-

librium length slightly smaller than RR
o . The adhesive part represents ad-

hesion between adjacent cell membranes, and the repulsive part prevents
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Figure 5.7: Intercellular potential.
This is the integral of the forces
defined in Equation 5.6 and Equa-
tion 5.7.

overlap of two membranes upon each other. The shape of the intercellular
potential, shown in Figure 5.7, can be changed by modifying kR

k A .
The last intercellular force is intermembrane friction, this term is de-

fined as

FF,e
i ,m =

∑
n

∑
i ′

{
−γextvτm

i i ′ if ri i ′,n < R A
o

0 if ri i ′,n > R A
o ,

(5.8)

where γext is the intermembrane friction coefficient. The magnitude of
γext can be different depending on the cells that are interacting, however
we assume that it is the same between all cells, and vτm

i i ′ is the component
of the relative velocity vi ′ −vi tangential to the surface of m at xi .

The final term in the CellSim3D force field accounts for the interac-
tions between cells and the medium, which is just viscous drag due to the
medium, FF,m , given by

FF,m
i =−γmvi (5.9)

where γm is the drag coefficient due to the medium. The medium is
assumed to be a simple fluid here. The extracellular medium is made
of multiple proteins in addition to just liquid, known collectively as the
ECM—see [200] for a discussion on ECM structure.

The term FF in Equation 5.1 is the sum of the two frictions FF,e and
FF,m .
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5.2.3 The Integrator

Normally, in MD algorithms the velocity-Verlet integrator [382], that are
appropriate for simulations of atomistic simulations are used. These in-
tegrators are not suitable for CellSim3D, however, as there are friction
forces in the force field: intracellular force damping, intermembrane and
medium friction. The first two depend on the relative velocities of par-
ticles, and the last one acts on all particles in the medium. These terms
require the use of different methods. We take the approach used in the
field of Dissipative Particle Dynamics (DPD) [154]. A review of DPD is
out of the scope of this work. Suffice it to say the DPD velocity (DPD-
VV) Verlet integrator [160] is known to be suitable for these systems, see
Table 5.1. DPD-VV has been described and tested in detail in Refs. [160,
161]. The algorithm is listed in Table 5.1.

DPD-type systems have three kinds of forces:

• FC , the conservative forces.
These encompass the part of the force field that is not frictional,
they approximate the attraction or repulsion between the different
cell nodes. In our cases, these are the bonding forces FB from Equa-
tion 5.2 without the bond damping term, the angle forces Fθ defined
in Equation 5.3, the attractive and repulsive forces FA & FR (Equa-
tion 5.6 & Equation 5.7), and the pressure force FP , Equation 5.4 or
Equation 5.5.

• FD , the dissipative forces.
These encompass all the frictional terms: the bond damping part
of the bonded force in Equation 5.2, intermembrane friction FF,e

defined in Equation 5.8, and medium friction FF,m defined in Equa-
tion 5.9.

• FR , the random forces.
This term arises from the stochastic processes that originate from
the thermal motion that of the particles in the medium, which are
not explicitly simulated. When this term is non-zero, the system
becomes a DPD type system. This force is not used in the current
version of CellSim3D, as we assume that there are no fluctuations in
the system.
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(1) vi ← vi + 1
2mi

(
FC

i ∆t +FD
i ∆t +FR

i

p
∆t

)
(2) xi ← xi +vi∆t
(3) Calculate FC

i {x}, FD
i {x,v}, FR

i {x}
(4a) vo

i ← vi + 1
2mi

(
FC

i ∆t +FR
i

p
∆t

)
(4b) vi ← vo

i + 1
2m FD

i ∆t
(5) Calculate FD

i {x,v}

Table 5.1: DPD-VV integration algorithm [160]. FC are the conservative contribu-
tions to the force field, namely the intracellular and intercellular interactions, FD is
the dissipative part — the friction part, and FR is the random component of the force
field, which is zero in the current CellSim3D force field (Eq. 5.1). The positions and
velocities of particle i , are given by xi and vi , respectively, mi is the particle mass
and ∆t the time step. When the stochastic part is enabled, the steps (4a) and (4b)
have to looped until the velocity converges.

Another advantage of this integrator is that it reverts back to regu-
lar Verlet when the friction coefficients and the random noise terms are
reduced to zero. One may study a range of different regimes without
altering the integrator.

5.3 Simulating Cell Division

We set out with the goal to simulate cell growth, and study tissue growth.
A vital part of cell tissue growth is the division of cells into new cells. Faith-
fully simulating the actual cell division process, called cytokinesis [217,
383] is impossible. Cell division is a complex multi-step process as we
saw in Section 3.3. It involves process that operate on everywhere from
atomic scales all the way to the cellular scale as a whole. To simplify, we
start with some simple observations of the cell cycle loop

Cell Cycle Loop:

1. The cell grows until it is big enough to divide

2. The cell divides into two cells somehow

3. Each of the two cells continue on from 1.
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Symmetric Division

CoM

Figure 5.8: In symmetric cell division the cell division plane (or line) runs through
the centre of mass and produces two identical daughter cells. Red and green cells on
the right show the state of the daughter cells in the instant after division.

Each cell can be thought of as looping through individually during
growth. The first portion of the cell cycle, growth, is being simulated
explicitly, albeit in a very approximate manner, through the growth force
(Section 5.2.2). The next step in the cycle is division (mitosis). A detailed
description of mitosis and cytokinesis is out of the scope of this thesis,
though an approximation of it was presented in Section 3.3.1.

Step 1. of the loop is simulated with MD, explained in Section 5.5.3.
We assume that cells can only divide symmetrically, and such that they

produce two identical child cells. The final state of the child cells can
be seen in Figure 5.8. Other types of division can occur as well, as was
discussed in Section 3.3.1, and simulated in Chapter 4. Nevertheless we
assume that this is the only way cells divide. Cell division division is
achieved by making some simple geometrical arguments and creating an
algorithm that will take a single parent cell that has been chosen.

After the cell has grown to a sufficient size, typically this means dou-
bled in volume, it is set aside for division. The division algorithm, also
shown in Figure 5.9, is as follows:

1. Select a random orientation (s) for the cell division plane by sam-
pling a unit sphere. The division plane passes through the centre of
mass of the cell.

2. Copy all of the nodes of the parent cells such that there are 180
nodes representing each child cell at the same location as the parent
cell

3. Project all of the nodes of one child cell onto another plane that is
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Division plane
selection

Node copies Projection ŝ ·
(
x−xCoM − R A

◦
2 ŝ

)
= 0

ŝ ·
(
x−xCoM + R A

◦
2 ŝ

)
= 0

Figure 5.9: Sketch of the cell division algorithm. Left: The cell division algorithm
shown in 2D for simplicity. A cell larger then threshold division volume is chosen,
and its nodes are copied (black and red). Then, a randomly oriented division line is
chosen (purple) such that it divides the cell in half. The corresponding nodes of the
two new cells are projected such that their nodes are within interaction range. The
two planes that the nodes are projected to are shown in dashed lines.

parallel to the division plane but a further by 0.5R A◦ to the right of
the division plane, i.e. the plane ŝ ·

(
x−xCoM + R A

◦
2 ŝ

)
= 0. Do the same

for the other child, but project the nodes to the left to a plane 0.5R A◦ .
The two planes are shown in in Figure 5.9

In other words, the positions of the nodes of the first child cell m
with respect to the centre of mass of the parent cell, shown in green
in Figures 5.8 and 5.9, with parent cell n, is given by

xm
i =

{
xo

i −xi · ŝ− R A
o

2 ŝ if xi · ŝ ≤ 0

xo
i otherwise

,

and the second child nodes are given by

xn
i =

{
xo

i −xi · p̂− R A
o

2 p̂ if xi · p̂ ≤ 0

xo
i otherwise

where p̂ =−ŝ.

From this point forward, the two cells continue their dynamics as sepa-
rate entities, and the mass of the system has risen by

∑180
i mi = 180m, since

we assume all nodes of each cell have the same mass m. This state is me-
chanically unstable since all of the nodes of the child cells are displaced
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from their equilibrium positions, thankfully the MD simulation quickly
remedies this problem. The whole process, along with the resulting three
dimensional tissue, can be seen in Figure 5.10.

We also assume that there are two criteria for cell division. The first,
is that the cell must be greater than a threshold volume to be divided.
The threshold volume is typically double the starting volume. In princi-
ple, the actual threshold is not of great concern if it is the same for all
cells. Changes in the threshold volume would only change how often the
division would occur. Threshold division volume is double the starting
volume in all of the simulations and results presented in this thesis.

The second criterion is that the parent cell must be sufficiently spheri-
cal to be divided. This is known from experimental measurements of the
shapes of animal cells just before division cells [193, 376, 377, 383]. The
sphericity ψ of an object is a measure of how close the shape is to that of
a sphere. It was defined as a way to quantify the shapes of Quartz parti-
cles [384]. Sphericity (ψ) is a function of volume V and surface area A
and it is defined as

ψ= π
1
3 (6V )

2
3

A

Cells over a threshold sphericity ψo > 0.95 are divided. ψo is currently
a fixed parameter in CellSim3D, though it can become an input threshold
in the future. Sphericity is tested since cells may enter highly irregular,
unfavourable conformations that have a volume that is high enough, but
have an irregular shape that is not amenable to division.

5.3.1 Epithelia in CellSim3D

An epithelium is a quasi two-dimensional sheet of cellular tissue in which
cells are coordinated in some plane, but not coordinated out of the plane.
These tissues are vital for the functioning of many organs, and are vital
components of all glands. Some examples of epithelial tissues include [11,
162, 385]:

• the retina; the light sensitive organ in the eye

• the epidermis; the outer layer of skin
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Figure 5.10: Figure showing how growth progresses in a typical simulation. The
starting point is a single, or multiple cells, which each grow individually. The vector
Ŝ, is sampled from a sphere to define the division plane. This is repeated over
simulation time to finally result in 3D tissue. The lag phase, was very short in
this case.

• endothelia; the inner lining of blood vessels

We call epithelia quasi two-dimensional because even though epithe-
lia themselves are relatively planar, at least locally, the cells that they are
composed of are, of course, three dimensional. Moreover, as a single ob-
ject, epithelia can be the surfaces of complex geometries, with varying
curvatures. As a general model and package, CellSim3D should be able to
simulate two dimensional tissues (i.e. epithelia) as well. When studied ex-
perimentally, since these tissues can be laid flat to have a planar structure,
they are easier to characterize with conventional experimental methods,
such as fluorescence microscopy, with a higher abundance of experimen-
tal data for them. Comparing to known data about epithelial systems is
vital for validating CellSim3D. Furthermore, many of the models that ex-
ist in literature, some of which are summarized in Section 3.4, are two
dimensional and used to study primarily two dimensional systems. Yet
another reason to have a method to simulate epithelia since one would
like to compare to existing methods. Fortunately, one can alter the Cell-
Sim3D cell division algorithm to produce such systems. We also gain the
advantage of accurately portray such systems in 3D. This allows tackling
further problems such as buckling, and how epithelia may interact with
other objects.

CellSim3D simulations would create three dimensional tissues natu-
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Figure 5.11: Alteration to division plane algorithm to produce a epithelial system.
An epithelial plane is defined by the vector Ê, the XY-plane here, the division furrow
plane is then sampled from a sphere in the plane defined by

rally with the division scheme shown in Figure 5.10 So some changes are
needed to create epithelia. The simulator accepts an optional vector which
defines the normal to the epithelial plane in space, E in (Figure 5.11) that
enables epithelium generation. One would normally also require a point
in space to properly define the epithelial plane, however this is not needed
since the cell division algorithm operates in the frame of reference of each
cell and so the plane is assumed to be passing through the centre of each
cell. Then, to simulate epithelial growth, s is sampled from a unit cir-
cle in the plane defined by E. This results in a configuration as shown
in Figure 5.10. Epithelial cells are also confined between two plates, the
bottom plate simulates basal tissue and the top plate is placed there to
avoid excessive buckling.

5.4 Simulation Units

In this section we explain the units that are used in the CellSim3D system.
The length scale is chosen with regards to the average HeLa [386,

387]cell, which is the canonical biological model for human cells. HeLa
cells have an approximate volume of V ≈ 103 µm3 [388, 389]. With that,
we take the unit of volume in the simulation as [V ]≈103 µm3, therefore
the unit of length [L]≈10 µm.

The internal pressure of cells has been measured experimentally by
Stewart et al. [189] who found that it is roughly 10−8 N[L]−2. We also
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assume that the area of the average cell is approximately A≈5 [L]2 (from
[L] and the average volume of a cell). The total force on the membrane
due to the pressure is

∑
i F P

i ≈ 5×10−8N. Each cell is made of approximately
200 nodes, then the average mass per node is 2.5×10−10, The pressure in
the system can grow, and there are other forces as well, so we set the unit
of force to [F] = 10−9N = 1 nN.

The Young’s modulus of whole mitotic cells was also measured by
Stewart et al. [189] to be E≈ 1×10−9 nNµm−2 = 100 [F][L]2. E is assumed
to be related to kB , the spring constant of the bonding springs in Equa-
tion 5.2, by kB = E A◦

R◦
, where A◦ is the cross-section area of the cortex in the

mechanical cell, R◦ is the equilibrium bond length of the springs used to
approximate the mechanical cell membrane. From the C180 structure this
equilibrium length is ≈ 0.1[L], so we rearrange to obtain a spring constant
on the order of 103[F][L]−1.

We will borrow the analysis carried out in Ref. [43] for CeDEM to de-
termine up with possible values of the adhesion and repulsion spring con-
stants. They argued that that the repulsion forces should be stronger than
internal pressure forces. This follows form the fact that a pressure force of
(PS)o is pushing outwards against neighbouring cells, so more rigid cells
require stronger repulsion between them. They begin by requiring that
the two spring constants can be assumed to be defined as kR = RkB , and
k A = AkB , with proportionality constants R and A. The force FP

i = (PS) will
be pushing outwards on the surface of the cell, so the repulsive constant
is set to (PS) which is on the order of 100; i.e. kR ≈ 100kB . The adhesion
spring constant is set based upon an assumed energy density of cell mem-
branes Uadh = 2.5× 10−17Jµm−2 which translates to 0.25[F][L][L]−2. This
same adhesion energy is related approximately to Uadh ≈ k A

(
R A

o −RR
o

)2,
which results in a the scaling value A = 0.5 with R A

o ≈ 2RR
o ≈ 0.2.

The mass is set by comparing to the mass of HeLa cells which is on the
order of 10−12kg [390]. Setting [M] ≈ 10−12kg, and assuming a cell mass of
1 [M] makes the mass of a single node ~0.01[M]. Using this information
the damping coefficient of the bonded intracellular force is set to γint =
100, which is well beyond the critical damping of the bond which is γc

int =
2
p

kB m ≈ 10 (allowing for some variation in kB and m).
The unit for time is set such that it produces an epithelial system com-

parable to a Drosophila wing disc at 10 hours (see Ref. [43] for details),
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Figure 5.12: Measurement of average cell division time during a simulation run
with the input parameters shown in Table 5.2. a) Probability density function of the
time required a cell to divide, measured in number of time steps times ∆t and over
25,900 division events resulting in approximately 26,000 cells. Most cells divide
in the interval [0.75,1.0]. The long tail indicates some minority of cells that divide
very slowly. The dashed orange line shows a Pareto distribution fit with parameters
t ′dir ≈ 1.41, α ≈ 8.05. (b) Cumulative distribution function of cell division times.
Approximately 63% have divided by tdiv = 1 (solid black line), and 83% by tdif = 1.69
(dashed orange line).

and time step ∆t = 10−4[T]. The viscosity of the cell cytoplasm, which is
one of the causes of the drag force on the cell membrane, is 103Pas [236,
391], we use values of ~1−10 in our simulations, which results in a speed
up of approximately a factor of 10 in CellSim3D, compared to real time
scales.

Cells can take anywhere from a few minutes in fruit files [392], seven
hours in hamsters [393] to 20 hours [394] in humans, to complete their
cycle. A common time unit for all cell types would be inadequate. We
solve this problem by scaling simulation time by the mean time for a cell
to divide, tdiv. This is measured by tracking the time required for each divi-
sion event, and analyzing the resultant distribution of tdiv. Figure 5.12(a)
shows the probability density function (pdf) of tdiv measured over roughly
25,900 division events resulting in approximately 26,000 cells with the pa-
rameters shown in Table 5.2 after a simulation lasting 150,000 steps. The
mean division time can be quantified by fitting a Pareto distribution to the
pdf in Figure 5.12(a). The Pareto distribution, also known colloquially as
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the “80-20” rule, is defined as

Pr (Tdiv > tdiv) =


(
t ′div
tdiv

)α
iftdiv ≥ t ′div

1 iftdiv < t ′div,

where t ′div would be the time below which approximately 80% of the divi-
sions occur, and α is a shape parameter which describes how close, with
respect to tdiv, the rest of the data is. Fitting to the Pareto distribution
reveals that most cells divide with a division time of tdiv ≈ 1.69, and large
majority of cells divide with 0.75 ≤ tdiv ≤ 1.69. The cumulative distribution
function (cdf) for this data is shown in Figure 5.12(b), which shows that
approximately 63% of cells divide by tdiv = 1.0. For simplicity, we shall use
this value to set the scaling factor in our simulations τ= 1.0 which we will
refer to as the “mean time to division” in this thesis.

The pressure force increase rate, which is a proxy for the volumetric
growth rate, is set as ∆(PS) ≈ 1− 10× 10−4[F][L]−2. The pressure varies
in the range (PS)o ≈ 65−85 which keeps cellular volume at roughly 1 [V].
The maximum pressure (PS)∞ and the pressure growth rate ∆(PS), can be
chosen to set the desired growth rate in a system.

Table 5.2 summarizes the parameters and their numerical values used
typically in CellSim3D simulations. These can be set in the input configu-
ration file that is passed to the simulator, as is explained in Section 5.5.5.

5.5 The CellSim3D Software Package

The model and the algorithms outlined above have been implemented
into a open source software package. The software package has the same
name, CellSim3D. The full source code is available under the GNU General
Public License version 2 (GPLv2) [395] on github at https://github.com/-
SoftSimu/CellSim3D. The software is written in standard C/C++ and is
accelerated with CUDA [396] to run on a single NVIDIA Graphics Pro-
cessing Unit (GPU). Purely from a memory use standpoint, most modern
mid-range GPUs can store up to 105 cells (such as the GTX 970 or the
GTX 980) and high end GPUs (such as the GTX 1080Ti, GTX TITAN, or
TESLA devices) can store up to 106. Most modern laptops and worksta-
tions with NVIDIA GPUs have enough capacity for cell populations on the

https://github.com/SoftSimu/CellSim3D
https://github.com/SoftSimu/CellSim3D
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Parameter Name Notation Value Units
Nodes per cell Nc 180 -
Node mass m 0.02 to 0.04 20 to 40 fg
Bond stiffness kB 1000 100 nN/µm
Bond damping coefficient γint 100 0.01 g/s
Minimum pressure (PS)o 50 0.5 nN/µm2

Maximum pressure (PS)∞ 65 0.65 nN/µm2

Pressure growth rate ∆(PS) 0.002 2×10−5 nN/µm2

Attraction stiffness k A 500 50 nN/µm
Attraction range R A

o 0.2 2 µm
Repulsion stiffness kR 1×105 1×104 nN/µm
Repulsion range RR

o 0.3 3 µm
Growth count interval - 1×103 †

Intermembrane friction γext 1 to 10 10 to 100 µg/s
Medium friction γm 1 to 10 10 to 100 µg/s
Time step ∆t 0.0001 ∗

Mean time to division τ 1.0 ∗∗

Threshold division volume V div 2.0 2000µm3

† In units of ∆t
∗,∗∗ In units of mean time to cell division, which varies between cell types

Table 5.2: Values of the parameters used for this work. The values shown here
determine the mechanical properties of each cell. They are normally varied slightly
to simulate cells of different type.



5.5 The CellSim3D Software Package 97

order of 103−4. As more and more global memory becomes available on
hardware, even larger systems can be simulated in the future. 100,000
cells can be stored in the memory of a computer configured with the a
GTX980 GPU (4GB of RAM); simulating a system of up to approximately
12,000 cells required approximately 2.5 hours.

CellSim3D has been tested on the following GPUs: GTX 760, GTX 780,
GTX 980, GTX 1080Ti, GTX Titan Xp, GTX 960M, on systems configured
with Intel CORE i7 and i5 CPUs (CPU architecture is of no consequence).
The software has been successfully compiled with CUDA versions 5.5 to
9.1 — with the corresponding supported gcc versions (see the CUDA
Toolkit Documentation [396]). Most of the performance of the simula-
tor is from hardware design of GPUs, and not from complex compiler
optimization, thus the software is agnostic of the compiler versions used.

Communication and synchronization are known to be bottlenecks when
accelerating any kind of computations with GPUs due to the higher latency
of communication between host RAM (Random Access Memory) and GPU
RAM. In fact, this is a problem when parallelizing any code to run in a
multi-threaded configuration. Therefore, as much of the computations as
possible are done entirely on the GPU. The CellSim3D force field (Eq. 5.1)
contains only short-range potentials. This allows us to write the software
such that you allocate a single thread to compute all of the necessary cal-
culations for each particle (or cell, depending on the computation), since
no information regarding other particles is needed — apart from their
positions and velocities of course. Thus, the entire potential and force cal-
culations can be done on the GPU only, greatly minimizing the need for
communication. Communication is only necessary for input and output to
disk to produce trajectory files.

The use of atomic operations allows the simulator to generate neigh-
bour node lists on the GPU itself. Neighbour lists are generated with a
simple domain decomposition algorithm that subdivides the simulation
box into sub-domains in parallel. The domain that each cell belongs to
is also calculated in parallel. This information is then used to calculate a
per-node neighbour list during force calculations.

Thanks to the above optimizations, most of the computations are done
in CUDA only, with minor host code in C/C++ that controls execution
and handles data input and output. Therefore, normal workstations with
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modest mid-range CPUs may be used with CellSim3D without much degra-
dation in performance.

5.5.1 Implementation

Full documentation for the simulator is not within the scope of this the-
sis. The most important parts of the code are summarizes here. The
documentation wiki on the github page (https://github.com/SoftSimu/-
CellSim3D).

Core Simulator and system requirements

Since most of the heavy computations are carried out on the GPU, the
requirements on the rest of the hardware configuration is not stringent.
These modest hardware requirements allow the study of interesting sys-
tems with relative ease on a single node with a single GPU.

The memory use is constant over the simulation and can be config-
ured with the input JSON file, see Fig. 5.13. This is to avoid repetitive
allocation/deallocation of memory on the host and on the GPU. Memory
is allocated for a maximum number of cells for the simulator. This number
is typically much bigger than needed in the actual simulation, but a large
allocation is needed since we simulate division in the simulations.

CellSim3D can be easily compiled with the makefile provided. Only
Linux operating systems are supported at the moment. Any corresponding
gcc compiler that is required by the CUDA version may be used. For ex-
ample, CUDA 9.1 requires gcc 5.3.1 on Ubuntu 16.04 running on x86_64
systems. Refer to the CUDA Toolkit Documentation for details [396].

CellSim3D only depends on the jsoncpp [397] and HDF5 [398] li-
braries, the former is pre-packaged with CellSim3D for ease of use. No
other libraries are needed by the simulator. Some Python libraries are
required for the analysis tools, which are outlined in Section 5.5.5.

5.5.2 Minimum System Requirements:

• NVIDIA GPU of compute capability of 3.5 or higher

• 1 GB of GPU memory (4GB recommended)

https://github.com/SoftSimu/CellSim3D
https://github.com/SoftSimu/CellSim3D
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• 4 GB of host memory (8GB recommended)

• CUDA 5.5 or higher (later versions recommended)

• Python 3.5, with required libraries (see 5.5.5)

• Blender 2.7 or higher (only needed for visualization)

5.5.3 The Simulation Loop

A sample input file inp.json is provided with default values of all of the
simulation parameters for convenience. An example input file with an
explanation of all the parameters is given in Appendix A.

We will not dwell on syntax and the proper programming techniques
used in the simulator here. For our purposes it is sufficient to understand
the flow of information in the program, which is given below.

5.5.4 Program Summary:

1. Parse Arguments
The input arguments are the number of initial cells to be simulated,
the path to the input JSON file, and the GPU id of the GPU to be
assigned to the simulator. Recommendations:

• Users interested in developing for the simulator are recom-
mend to do

1 export CUDA_DEBUGGER_SOFTWARE_PREEMPTION=1

for stable debugging. A recent version of the CUDA toolkit,
GPU, and graphics driver is required for this. This allows one
to debug on a GPU that is running a display server.

• A relatively modern GPU should be used, preferably one made
after 2013.

• Only one instance of the simulator per GPU should be run. No
other performance heavy program should be using the GPU in
question. A display server (such as the X server) may share
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the GPU, but we recommend a completely idle GPU for best
performance.

• There should be adequate hard drive space. The program makes
no checks or calculations of possible file size, as that would de-
pend heavily on the cell growth rate ∆(PS), and the other pa-
rameters of the simulation. It is non-trivial to calculate space
requirements beforehand. The simulator will terminate if space
runs out without warning.

2. Allocate Memory
In the JSON file one can specify the maximum number of cells in the
simulation this is used to allocate memory for all the data in the sys-
tem. This value is set to 100,000 cells, which require approximately
4 GB of memory. Values of 10,000-50,000 are sufficient for most pur-
poses. This memory is mirrored on the host as well. Both the GPU
and the workstation should have sufficient memory. Once allocated,
memory need not be managed again. This means that there will not
be any other programs running that will required access to this al-
located memory (this assumption is valid for most software). It also
eliminates all memory management concerns, we allocate memory
once and deallocate once at the end of the simulation. This makes
the memory footprint of CellSim3D significantly higher compared to
most MD software, but it is easily matched mid-range hardware.

3. Initialize the system
The initial conditions of this system include setting the node posi-
tions and their bonding, which are read from included data files.
This data may also be provided with the input JSON file.

• The cells are placed on a uniform grid in 2D. Or randomly
through out the simulation box. This is determined by values
in the JSON input file.

• A simulation box with closed boundaries is always assumed.
An open boundary can be simulated by choosing a very large
box size.

• While the nodes themselves have initial conditions, there are
parameters that are properties of whole cells, such as initial
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pressure (PS)o , which are also set at this phase.

4. Find nearest neighbours
There are dedicated kernels that handle the finding of nearest neigh-
bours in the system. This is performed every time step.

5. Set pressure (growth rate)

The growth rate of the cells must be set before the force calculations
may proceed. Pressure increases from (PS)o to (PS)∞ at a rate of
∆(PS) per time step.

6. Force calculations and position updates The force calculation is done
for each particle in each cell. This part of the simulation is most
susceptible to inefficiencies and may be the slowest step.

• Spring force calculation

• Pressure force calculation

• Internal Damping force calculation

• Intercellular Force calculations (adhesive, repulsive, and fric-
tion)

• Time propagation with the DPD-VV integrator, see Section 5.2.3

7. Analysis and cell division Now some analysis of the cells is done
which is needed to determine which cells are ready to divide. The
volume of each cell is calculated by using the conformation of each
cell. Those cells with high enough volumes are divided. The division
is not spontaneous and is done by introducing new mass points and
separating the mass points of the parent cell into two daughter cells.
The division plane is chosen so that it divides the parent into two
equal halves, see Section 5.3.

The simulation loop and the basic algorithm of the simulator is sum-
marized in the form of a flow chart, shown in Figure 5.13.
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Figure 5.13: Simulation flowchart. All of the parameters used in the simulation are
set in a JSON (JavaScript Object Notation) file that is given as an argument to the
simulator (the program distribution includes a sample file). The GPU id (assigned by
the system) and the initial number of cells are also program arguments. Flowchart
reproduced from [42] with permission from Elsevier.
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5.5.5 Source files

Here we discuss some of the source files that are in the software package
here. There are two main types of files that the CellSim3D package. The
first, and most vital, are the source files that contain all the code. The
second are data files that contain information such as cell geometry and
bonding. There is also an interface to the trajectory file that is output by
the simulator, and a collection of scripts that can be used for analysis.

The list below summarizes some of the source code files in the Cell-
Sim3D package.

• GPUBounce.cu is the main source file that outlines the flow of the
simulation. For all intents and purposes, it contains all of the sim-
ulator code, the rest of the files only contain contain function calls
that must be linked with this file. GPU selection, memory allocation,
variable initialization, simulation, and output is handled here.

• propagate.cu contains mostly GPU kernel code written in CUDA.
All of the forces are calculated and integrated here.

• propagatebound.cu contains all of the routines for calculating the
neighbour lists of each cell. The operation is broken down into two
steps: 1) finding the cells which neighbour each other, 2) then, find-
ing the nodes that neighbours each other.

• volume.cu calculates cell volumes in parallel on the GPU, and flags
them for division if needed. The volume is calculated by subdivid-
ing each cell into tetrahedra, calculating the volume of each tetrahe-
dron, and summing over all tetrahedra for an approximation of the
volume. Cells above a threshold volume and with a high sphericity
are chosen for division.

• celldivision.cu performs the actual cell division. Any cell that
is greater than a threshold volume is divided, using the algorithm
summarized in Figure 5.9.

• pressurekernels.cu contains GPU kernels that are used to track
and update the internal cell pressure. Each cell starts at a value of
(PSo), this pressure grows at the rate of ∆(PS) up to (PS)∞.
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And the data files are:

• C180 contains the positions of the nodes (carbon atoms) from the
C180 fullerene molecule, rescaled for CellSim3D.

• C180N contains topological (which node is bonded to which) infor-
mation

• C180_pentahexa contains a listing of the node indices that are in
each pentagon and hexagon in the C180 structure. This is used
during volume calculation and in the visualization script.

Input/Output and Analysis Tools

Most of the data from the simulation is written to a HDF5 [398] format-
ted file. This format is a hierarchical platform independent binary format
that will not be discussed here. All that matters to us is that is a powerful
and flexible format that is well suited for the needs of CellSim3D. It is very
well documented and there are many tools and APIs available to read and
manage HDF5 files. Some output is also written to ASCII files, though this
is being phased out in favour for the HDF5 trajectory file. Other data for-
mats that are commonly used with MD simulations are not suitable as they
do not generally support variable number of particles. The number of cells
in the simulation is variable, mostly increasing or constant, and the output
format should support this. The trajectory file can be read and processed
in python with a packaged module named celldiv.TrajHandle, the tra-
jectory handler. This is a simple interface between the trajectory output
from the simulator and NumPy [399] arrays in python3. python2 is not
supported. In this way, all the power of the numerical libraries available
through Python can be applied easily on any of the data. All the tools, in-
cluding a movie rendering script, are wrappers around this interface. This
file also serves as a checkpoint for the state of the simulator. There are
many tools around the handler that can perform many analyses. Quanti-
ties such as density, mitotic index, density, radius of gyration can be calcu-
lated with these tools. The Python tools require the latest versions of the
following python libraries: NumPy [399], Scipy [400], matplotlib [401],
tqdm [402], and pandas[403]. A file called requirements.txt contain-
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ing a detailed list of the needed libraries, along with compatible library
versions, is provided for easily building a suitable python environment.

5.6 Measuring the Performance of the CellSim3D
Simulator

The two main challenges, in our view, that face computational scientists
are that simulations are either not sufficiently large, or if they are of ap-
propriate size, then they take very long times and a high amount of com-
putational resources. One needs to be able to run simulations efficiently
as access to hardware is expensive (to purchase, setup and maintain), and
to iterate upon computational experiments quickly. We rarely only need
to test a single parameter set and would like to see how a system behaves
over a regions of parameter space. Therefore, it is important to have an es-
timate of how performant this particular simulator is. The standard way
to measure this would be to see how the wall clock time per time step
(ts(t )) varies with different number of particles. This measurement can
then be compared between different parameter sets, different hardware
configurations, or even between different software packages.

The number of cells in a CellSim3D simulation is dynamic as the cells
grow and divide. In fact the number of cells, N (t ), is generally increas-
ing non-linearly with increasing time, at a rate that is dependent on many
parameters such as the cell stiffness (approximated by bonding spring con-
stant kB ), cell growth rate (induced by the increase in internal pressure
∆(PS)), and the evolving cellular environment. We discuss this growth
behaviour in more detail in Chapter 6, but an example of it is shown in
Figure 5.14 (a) via the rescaled number of cells defined as

N (t ) = N (t )

max N (t )
.

Since N (t ) is a function of time, ts(t ) also becomes a function of time. This
complication can be circumvented if we instead measure the wall time
consumed per time step as a function of N (t ). Before we do this, however,
we also rescale time consumed per integration step as

ts(t ) = ts(t )

max ts(t )
.
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Figure 5.14: (a) The number of cells in the system N , and the time it takes per
integration time step ts . The two values have been rescaled so as to be compared
easily, and to eliminate any effects of the hardware configuration. Note that the
number of particles in the system is 180 times greater than N . Inset shows the
number of cells N and time per integration step ts . (b) Rescaled time per integration
step ts against rescaled number of cells N . The scaling is linear.

The rescaling is done for three reasons:

1. To make N (t ) and ts(t ) comparable to each other by making them
dimensionless.

2. To eliminate any effects of differences in hardware, driver and soft-
ware configuration, and simulation parameters. All of these effect
performance, but rescaling in this way cancels those factors out.

3. The number of particles per cell can, in principle, be different for
different cell types, this rescaling eliminates that problem as well.

N and ts will always increase monotonically over a simulation, if cell
growth and division is enabled, as one can see in Figure 5.14 (a). The inset
in Figure 5.14 (a) shows the unscaled versions of these measurements.

The next step, then, is to see how ts(N (t )) behaves over time. This
is done trivially plotting ts(t ) versus N (t ) in Figure 5.14 (b). This graph
shows that the simulator scales linearly with the number of cells in the
system.

A more practical way to measure performance for the average user
would be the time required to achieve a certain number of cells on a typi-
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Figure 5.15: (a) The mean number of cells achieved for a typical simulation of
CellSim3D time 150,000 integration steps (Nend). The final mean number of cells
〈Nend〉 increases linearly with the pressure growth rate ∆(PS). The error in the
measurement is too small to show. The final number of cells increases linearly.
(b) The average time needed to get to some final number of cells Nend, if using the
parameters in Table 5.2,

cal workstation, assuming the parameters chosen in Table 5.2, with some
changes in growth rate, over some number of integration steps. Exactly
this is measured in Figure 5.15, which shows, for 5 simulation runs, the
final number of cells after 150,000 time steps at different values of ∆(PS),
〈Nend〉. Linear scaling is achieved, which means that the growth rate sim-
ply increases the number of cells created in the simulation linearly. The
error in the measurement is too small to plot here. Finally, the time taken
to reach some number of cells N is plotted in Figure 5.15(b), which shows
a linear increase the time required to reach some number of cells.

5.7 Conclusions

Our aim in this chapter was to design a model and software package with
a model that was well suited to study the mechanics of cellular materi-
als. In the introduction to this chapter we outlined two main issues with
the models in this field: 1) Most of the models in literature, while well
suited for the problems they were suited for (e.g. vertex models are good
for reproducing the structure of tissues, but cannot be used for anything
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else), are unable to simulate the dynamics of the interactions between cell
membranes and extracellular medium accurately. 2) Even if we were to
accept a model and use it for our research, there is a lack of open source
implementation available into software that is highly performant to allow
the study of thousands of cells simultaneously in 3D with high resolution.

We proposed the CellSim3D software package which implements the
CellSim3D force field. The force field an extension of the 2D Cellular Dis-
crete Element Model [43], a model that can be used to study the forces in
the system as we saw in Chapter 4, into 3D. The force field contains terms
that allow for the precise control of the mechanical properties of cells with
great tunability. The package is a highly performant Graphics Processor
Unit (GPU) accelerated software that is able to simulate up to tens of
thousands of cells on a single workstation with an NVIDIA GPU. Since this
software is open source and published on github (https://github.com/-
SoftSimu/CellSim3D), researchers can also modify it to their needs if the
force field is insufficient and share their improvements with others.

We will tackle the task of validating CellSim3D by reproducing vari-
ous growth phenomena known from experiment, theoretical models, and
other computational models in the next chapter.

https://github.com/SoftSimu/CellSim3D
https://github.com/SoftSimu/CellSim3D


Chapter 6
The Dynamics of Growth and
The Cellular Mechanical
Environment

6.1 Introduction

The growth of cells, or colonies of cells, has traditionally been an impor-
tant area of study for biologists [232, 404–411]. The process of growth of
cells into a colony, or organ, is called proliferation. The previous chapter
discussed how the growth of a single cell can be simulated (Section 5.3).
While vital, we recognize that the growth of a single cell is only part of
the story. Growth has traditionally been studied from the biological per-
spective, focusing on the reactions of growing tissues to biochemical stim-
uli. Recently there has been a great interest in how mechanics can affect
growth, and even vice versa. This mechanobiology of cellular systems is
known to affect many facets of cellular behaviour including growth [412],
stem cell differentiation [28, 31], and embryonic morphogenesis [413–
415]. The latter is the differentiation of young embryonic cells into spe-
cialized collections that will ultimately become different organs.

Other elements of cell behaviour such as cell migration and taxis [22,
32], also contain biomechanical elements. Mechanotransduction has been
studied experimentally quite extensively [21, 28–30, 38, 416, 417]. Com-
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putational methods provide new insights into the processes occurring with
resolutions that are not experimentally accessible. Simulations can pro-
vide detailed information about the underlying physical mechanisms and
that information can be used to guide experimental explorations, or even
suggest new experiments. Both theoretical [418, 419] and computational
models [255, 261, 262, 294, 315, 353, 355, 356, 420, 421] (Section 3.4)
have been created for this purpose.

This chapter will show how the CellSim3D model (Chapter 5), with
its associated software package, can be used to study the growth of tis-
sues of cells containing up to tens of thousands of cells. In Chapter 5,
we discussed how to approximate the growth and division of a cell. Tis-
sues consist of collection of cells. Their growth can be studied a variety of
ways, some of which are discussed in Section 6.2 and compared to sim-
ulation results. It turns out that many of the growth characteristics of
tissues emerge out of the CellSim3D algorithm organically. We will both
demonstrate how this growth behaviour emerges and propose some pos-
sible physical reasons for it.

This chapter will serve three goals: 1) to validate the CellSim3D method
and software implementation, which was discussed in Chapter 5, 2) to
explain how growth can be measured with CellSim3D, we compare it to
some known experimental and computational methods, and 3) to study
the interaction between tissue growth and the mechanical environment of
cells at the cellular level.

First in Section 6.2, we will explain how growth can be measured with
CellSim3D and compare it to other experimental, computational, and the-
oretical results. Then in, Section 6.3, we will explore some mechanical
explanations for this behaviour. The process of considering these ques-
tions, we validate our model as well.

6.2 How is Tissue Growth Studied?

We will consider only three methods of measuring growth: population
trends, the rate of change of population trends, and system (cell colony)
sizes. The results in this chapter were produced with the parameters
shown in Table 5.2, over 150000 steps of simulation which corresponds to
approximately 15 cell cycle time intervals and m = 0.04, γint = 1.0, γm = 1.0.
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Simulation time

Initial Intermediate End

Figure 6.1: Images showing the progress of a simulation. Left: initial conditions,
middle: an intermediate stage, and right: the end of the simulation using Cell-
Sim3D [42] software. Top panels show the progression of system growth for 3D
tissue, and the lower panels show growth of a 2D tissue (epithelium). Epithelia
are created by confining them between two plates (not shown in this visualization)
and by modifying the cell division algorithm. Confinement between plates avoids
excessive buckling in the system. The bottom plate approximates the basal layer in
epithelial tissues [11, 289]. A detailed description of how growth is simulated and
how cells are divided is given in Section 5.3.

Visualizations of two simulation runs are shown in Figure 6.1. The top
panel shows a simulation configured to produce 3D tissue, the bottom
panel shows a system configured for epithelia. In both cases we start
with 25 cells placed evenly on a grid. Over time the cells grow due to
an increase in their internal pressure, as was described in Section 5.2.2.
Once reaching threshold division volume, they are divided with the algo-
rithm described in Section 5.3 configured for either 3D or epithelial tissue.
Additionally, epithelial systems are confined between two plates to avoid
excessive buckling in the system. The bottom plate represents the basal
layer in epithelial tissues [11, 289].
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Population trends are discussed in Section 6.2.1, population growth
rate in Section 6.2.2, and cell tissue size in Section 6.2.3.

The reader should bear in mind that the cell growth force, and its
strength, the growth rate (∆(PS)), are kept identical between all cells in
all of the simulations run for this chapter. The details of this term in
the force field were discussed in Section 5.2.2. Since it approximates the
energy input into the cells, one can assume that the input of nutrient to
all cells is identical. The growth rates discussed in this section are rates of
increase of population number or system size, not of individual cells. The
two are related, of course, since increasing the former would increase the
rate of increase of population or system size.

6.2.1 Population Trends

In systems of cells that exist in uniform media, there is a known trend
of cell population that is observed experimentally shown in Figure 6.2.
Growth trends can be divided into four phases: lag, growth, stationary,
and death/decay [11, 422]. The lag period, a time when nutrients and
growth factor concentration is building up within cells, followed by a
phase of exponential growth in the population of cells, which often asymp-
totically approaches a maximum that is determined by the quantity of nu-
trient in the system and the death rate of the cells. The stationary phase
is when the death rate balances growth rate. Eventually, cell death over-
comes growth and the population dies out due to the absence of nutrient.
This idealized trend of cell growth is an approximation to the actual exper-
imentally observed population trends. An experimental population trend
of bacteria, carried out by Rolfe et al. [422], is shown for comparison in
Figure 6.2 (b) with orange stars. These trends are also observed in ani-
mal cell systems that are not supported by vascular systems [237, 407].
Experimental measurement of population growth of mouse cancer cells is
shown in Figure 6.2(b) (blue dots) for comparison, taken from measure-
ments by Assanga et al. from Ref. [237]. The data is rescaled to make the
two systems comparable; animal cells and bacteria have different sizes
and growth dynamics.

Naturally, cells of different organisms will grow at different rates, and
their population trends will be different, such as animal cells and bacterial
cells. Anomalies in population trends can also be linked to illness [232,
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Figure 6.2: (a) Trend showing the population of cells over time for cells not sup-
ported by vascular systems. There is a lag phase (L), exponential growth phase
(E), stationary phase (S), and death phase (D). (b) Example measurement of the
population behaviour of mouse leukemic monocyte macrophage cell line, a type of
mammalian cell (blue circles, τ ≈ 20 h), measured by Assanga et al. [237]. Mea-
surement of the S. typhimirium growth curve extracted from the paper by Rolfe et
al. [422] (orange stars, τ≈ 40 min).

407]. Population trends can also be monitored to measure the response of
cancer cells to treatment [423, 424]. Population curves can differ greatly
within the same organism as well, depending on what stage of life that
organism is in (development, reproduction, death, etc.).

All of the phases of the population trend curve are important markers
of a biological system, but since we do not simulate death in CellSim3D,
we shall ignore the death phase. The transition from lag, exponential,
to stationary phase can be modelled mathematically with a number of
sigmoidal functions such as those discussed in Section 3.5.1. We will use
the generalized logistic function is defined as

N (t ) = Nmax(
1+Qe−r t

) 1
ν

(6.1)

where ν > 0 is a constant (most of the time ν ≈ 1), r is the growth rate
and Q =

(
Nmax

N0

)ν
, and N0 = N (t = 0). Note that the growth rates (r ) in

these functions are actually related to both the rate of increase in number
of cells due to division, and decrease in the number of cells due to death.
Furthermore, the growth and death rates are themselves functions of time.
The stationary phase is when the two rates are balanced perfectly.

The logistic type functions will be used as a reference to validate the
growth produced by simulations of CellSim3D. However one should bear
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in mind that the generalized logistic function, and its relatives, apply to
systems with a certain carrying capacity, which is the maximum number
of cells at the saturation phase in Figure 6.2. Since we do not simulate
cell death, we would not expect the output of CellSim3D simulations to
saturate in population. However, one can still use these functions in the
exponential growth region. The lag phase is immaterial, as it simply de-
lays the onset of growth by some time interval, so we ignore it as well.
Since cell death is not simulated in CellSim3D, one may expect to observe
intrinsic growth, given by

N (t ) = N0er t (6.2)

where N0 is the initial number of cells.
The growth loop (Figure 5.10) is the term we use for the process of

cells growing and dividing. Each cell in the simulation grows by gaining
volume due to an increase in its internal pressure. Once it is greater than
or equal to the threshold division volume, it is divided into two child cells.
The two new cells are symmetrical and oriented randomly. Each new cell
then goes on to grow itself. The pressure force causing the growth was
explained in Section 5.2.2 and the cell division algorithm was explained
in Section 5.3.

The growth loop is repeated until a large system of cells is created.
One such configuration of cells is shown in Figure 6.1. A simulation was
run for 150,000 time steps, corresponding to 15 [T] with the parameters
shown in Table 5.2, that resulted in system of 25,951 cells (≈ 4.7× 106

nodes). The population trend of cells over time produced from a single
simulation run is shown and compared to exponential growth and logistic
growth in Figure 6.3 (a). The fit to Equation 6.1is

N (t ) = 25926(
1+630e−5.56t

) 1
0.94

and the exponential fits are N (t ) = 30e0.0.695t at the beginning of the sim-
ulation with 25 cells, N (t ) = 176.5e0.379t in the middle of the simulation,
and finally N (t ) = 725.5e0.240t at the end, which stays constant, going past
the stationary stage of the logistic fit.

The simulation population value, N , increases rapidly in the beginning
since the cells are not in contact during the initial conditions, as shown
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in Figure 6.1. The jumps in population number at the beginning of the
simulation in Figure 6.3(a) indicate successive doubling of the population
number due to the unrealistic initial conditions in the system. However,
after two or three generations (each blue point in the plot corresponds to
approximately one generation), a trend comparable to logistic is observed.
Then the trend becomes exponential at the end, with a constant growth
rate. The population trends produced by CellSim3D compare favourably
to known analytic expressions used to model cell proliferation in the E
phase, at least when proliferation is measured with population size. For
comparison, we renormalize the population trends by the time to the end
of the E phase and the population by the maximum population at the end
of the E phase. We assume here that CellSim3D simulations do saturate
for the comparison to be valid. This assumption should be kept in mind
since cell growth never stops in CellSim3D, though the growth rate does
decay to a constant (discussed further in Section 6.2.2).

To compare to experimental results, we first ignore all experimental
data not pertaining to the E phase. Then we rescale the number of cell at
each point in time with the maximum number of cells, which is at the end
of the E phase, N (t ) = N (t )/max(N (t )), and we rescale time by the time at
which E phase ends, t = t/max t . The result is shown in Figure 6.3 (b),
and compared to the population trends of mouse cells [237], lung cancer
cells [237], and bacteria [422] (S. typhimirium). The trends are qualita-
tively similar for all measurements, though the bacterial trends matches
more closely to CellSim3D results.

We have observed in this section that the population size in CellSim3D
simulations compares well with the analytical approximations of growth
in the exponential phase, even though there is no cell death modelled
in CellSim3D. This comparison with experiment is not as favourable, but
that is due to the unknown mechanical parameters of the experimental
systems. Nevertheless, the comparison holds qualitatively. This is very
surprising since all of the cells in the simulation are given the same growth
parameters ((PS)o , (PS)∞, and ∆(PS)) and they have the same stiffness.
Real cells must contend with spatial and temporal variations in biological
factors such as variations in nutrient concentration, or chemical variations
such as pH. The CellSim3D model does not account for such terms, so why
are similar trends being produced? The answer to this question is explored
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Figure 6.3: (a) Population trend measured with CellSim3D compared to logis-
tic (Equation 6.1) and exponential (Equation 6.2) growth functions. The growth
trend emerging from the simulation is not exponential for the whole period of sim-
ulation. It matches logistic growth more closely than exponential growth in the
E phase. Though it eventually becomes exponential, with a constant growth rate,
at the end. (b) The same trend compared to various experimental measurements,
rescaled to cancel out differences in length and life cycle times. The comparison is
quite favourable to the bacterium case. Data for mouse and lung cancer cells was
taken from Ref. [237], and S. typhimirium from Ref. [422].
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in Section 6.3 after considering two more ways to measure cell growth,
system size via radius of gyration and mitotic index.

6.2.2 Mitotic Index

Observing the population trend in time, as we saw before, yields interest-
ing results both theoretically and computationally, and sheds light on the
growth dynamics of cellular tissues. Now, we would like to draw atten-
tion to the rate of change on the number of cells N (t ), the slope of the
graphs that were shown in the previous section. In biological context, the
derivative of N is generally named mitotic index [236, 409, 423–428].

The mitotic index, denoted by µ, can be measured over various vari-
ables to characterize the reproductive performance of cellular systems,
most commonly position, and time. Spatiotemporal variations in mi-
totic index have been measured in reaction to treatment to cancer treat-
ment [423, 425, 429, 430], presence or lack of growth factor [236, 431],
and even in unaltered tissues [238, 432]. We will focus on the temporal
derivative of population number

d N

d t
=µ(t ). (6.3)

We know that the derivative above varies with time from the varying
slopes in the graphs from Section 6.2.1. It is calculated experimentally
as

µ|∆texp (t ) = Nmit

N (t )
, (6.4)

where ∆texp is the experimental time interval over which the measurement
occurs. Typically this corresponds to one cell cycle (τ in the CellSim3D al-
gorithm), Nmit are the number of cells in some phase of mitosis (the phases
are explained in Section 3.3) in that time interval, and N (t ) is the number
of cells at time t . Wartlick et al. [236] measured this mitotic index in their
study of the effects of a hormonal growth signal named the Dpp growth
factor 1. Their readings of unaltered mitotic index of a growing Drosophila

1Details regarding this growth factor are not within the scope of this thesis. See
Ref. [236]. Ultimately, it is not of significance to the results in this thesis.
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(fruit fly) wing disk (an epithelial system) is shown in Figure 6.4 (a). The
rate of change of the number of cells (i.e. growth rate) starts at approxi-
mately 10 % (µ= 0.1), and decays over time. Ten simulations of CellSim3D
were configured to simulate epithelia, as described in Section 5.3.1, and
the resulting mitotic index average over all simulations is also plotted in
Figure 6.4(a). However, since CellSim3D does not explicitly simulate all of
the phases of cell division, the definition of mitotic index (Equation 6.4)
is changed slightly to µ(t ) = ∆N (t )

N (t ) , where ∆N is simply the number of cells
that are created in the time interval corresponding to τ—the mean time
to cell division (Section 5.4).

The characteristic decay of mitotic index can be approximated [300]
by

µ(t ) =µ0e−t/τµ +µ∞, (6.5)

where µ0 is the initial mitotic index, µ∞ is the final mitotic index of the
tissue, and τµ is the half life time of µ. Thus, we postulate that in tissues
where: (1) cell death can be ignored, and (2) the input of nutrients into
cells is identical over all cells, the number of cells will change with a rate
given by Equation 6.5. A fit to this formulation (µ(t ) = 0.042e−t/0.119 +
0.0054) is also shown in Figure 6.4(a), where we see good agreement
between experiment, simulation, and theory. The same analysis is carried
out for a 3D simulation, where cell division is not confined to a single
plane. The results are shown in Figure 6.4 (b), and the fit obtained is
µ(t ) = 0.88e−t/0.155 + 0.0116. In both systems, the rate of change of the
number of cells remains positive, and decays exponentially to a constant
over time.

Note that the first few generations of the system always have a very
high mitotic index (µ ≈ 1), this is because most of the cells in the first
few generations of a new cellular system divide, unimpaired with plenty
of space. Hence, the first few generations of cells are ignored for the
measurement of µ and fit to Equation 6.5.

It is not obvious, given the formulation of the CellSim3D model, why
this decay in growth is seen. For real systems, there are myriad factors that
can hinder cell growth (health, nutrient rarity, competition between cells,
physiological parameters such as temperature, etc.). None are included
in CellSim3D. This must mean that the observed mitotic index is a purely
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Figure 6.4: Mitotic index measurements for 10 simulations of CellSim3D aver-
aged over ten simulations (black dots) for (a) epithelia, and (b) 3D tissue. (a) Ep-
ithelium CellSim3D simulation compared to mitotic index measured by Wartlick et
al. [236] of a growing Drosophila wing disc, and fit to Equation 6.5, µ(t ) =
0.042e−0.119t + 0.0054. The results from simulation match experimental measure-
ments of Drosophila well. (b) Similar measurement of mitotic index from CellSim3D
simulations with a fit of µ(t ) = 0.88e−0.155t + 0.0116. An analogous experimental
measurement was not found since counting the number of cells in 3D spheroids
is difficult, though measurements of cell population at low resolution have been
done [433].
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mechanical effect as it occurs despite the drivers of growth in CellSim3D
(∆(PS), (PS)o , and (PS)∞) being constant during simulation. This slowing
down of tissue growth must be due to the evolving physical environment
of the cells. This will be studied in more detail in Section 6.3.

6.2.3 System size

Thus far, the value used as a measurement of proliferation was the to-
tal number of cells in a system, the population. Another approach is the
overall size of a system of cells, the radius or diameter of an aggregate of
cells—assuming that the whole system is relatively spherical. CellSim3D
simulations result in approximately spherical systems, unless they are con-
fined to the shape of the simulation box. Studying the size of cellular
systems is a standard protocol for assessing the growth [238, 292, 432]
and/or health of a colony of cells. In some ways, it is not dissimilar to
measuring the population, or mass, trend in cell colonies, but it is still
relevant as “size” implies that we are considering a monolithic object that
is a single whole such as a colony of interacting cells. Measuring size also
takes into account the spatial density of the cells within the system, which
is ignored by population models.

We shall compute the size of a system of cells using its radius of gyra-
tion, defined as

R2
g (t ) = 1

N

N∑
i

(
x(t)i −x(t )

)2 , (6.6)

where N is the number of particles, xi is the position of particle i and x is
mean position of all of the particles in the system. In our case, we shall
take xi to be the centre of mass of the i th cell. This method of validation is
taken from the work of Radszuweit et al. [292], who compared their own
2D and 3D cell model to measurements of radius of the gyration of mouse
fibroblast cells carried out by Brú et al. [238, 432]. We in turn compare
our results to those of Radszuweit et al. and Brú et al.. Figure 6.5 shows
qualitative comparisons between a CellSim3D simulation, with parameters
shown in the previous chapter in Table 5.2, the 3D model of Radszuweit
et al., and mouse fibroblasts. Figure 6.5(a) shows the Rg trend in time,
which is qualitatively similar to the model by Radszuweit et al. and the
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measurements Brú et al.. The simulations by Radszueweit are more ac-
curately fitted to the fibroblasts, and they reproduce the most accurate
radius of gyration trend. The CellSim3D results are not applicable to the
exact same fibroblasts studied by Brú et al., but they qualitatively pro-
duce similar results. A better match can be obtained when considering
the rate of change of Rg with respect to time, Ṙg , rescaled to dimension-
less units, in other words the growth rate of Rg , which is shown in Fig-
ure 6.5(b). The growth rate of Rg matches the data produced by model of
Radszuweit et al. more closely, although their measurements are offset by
a time interval since they ignored the measurements at the start of their
simulations [292]. Both measurements show a high Ṙg at the beginning
of growth, with a decay to a constant over time. This can also be seen in
the slopes of the lines representing Rg measurements of mouse fibroblasts
in Figure 6.5 (a). This same effect was seen earlier in Section 6.2.1, al-
beit with less clarity. The population trends produced by CellSim3D did
not saturate over time, but its rate of change, Ṅ , approaches a constant
value. Once again, the constant Ṙg over time is surprising since both the
CellSim3D model and Voronoi-based model of Radszuweit et al. [292] do
not contain terms for cell death, or any competition for cell growth. The
fact that these models can reproduce this growth characteristics is inter-
esting on its own, however there is an opportunity here to study how the
mechanics of the system can cause this. We know this effect ought to be
mechanical since CellSim3D does not account for any biochemical factors
at all.

6.3 Why does growth rate slow down in a purely
mechanical system?

We have observed in the previous sections that as a cell population grows,
the ability of cells to reproduce changes. We first observed this in the
changing growth rate of cell populations N in section Section 6.2.1, which
is slow at the beginning (lag phase), grows to a constant (exponential
phase) and decays to zero (saturation phase). Similarly, the rate of change
of the radius of gyration, Ṙg (Section 6.2.3), is low at the beginning and
grows to a constant over time. The traditional biological notion as to why
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Figure 6.5: (a) Trends in radius of gyration Rg measured for a Voronoi based 3D
cell model by Radszuweit et al. [292], and samples of mouse fibroblasts measured
by Brú et al. [238, 432], compared to the radius of gyration trend in a CellSim3D
simulation with the parameters in Table 5.2. The graphs are qualitatively com-
parable between the three cases, though the model by Radszuweit et al. is more
tuned to the experiment. (b) Comparison of the slope of the measurements in (a)
(R ′

g = dRg

d t/τ)—an approximation of the growth rate of the system. The growth rates
are comparable between the two systems, accounting for the offset in the data from
extracted from the work ofRadszuweit et al. [292]. They chose to ignore the first
few data points from their simulation.



6.3 Why does growth rate slow down in a purely mechanical system? 123

this occurs is due to the rarefaction of nutrients over time [11, 410, 411].
But why do we see the same phenomenon in a purely mechanical model,
such as CellSim3D? We pose that the evolving mechanical environment
of the cells is what drives this decay in growth rate in CellSim3D, and it
plays a vital role in the decay of growth rate in real cellular systems. We
will investigate the mechanical environment of the cells by measuring the
changes in density and number of nearest neighbours.

6.3.1 Density

At the beginning of the simulation, cells have space to be able to grow
without any hindrance from their neighbours. Over time, however, their
environment becomes crowded due to the increasing numbers of neigh-
bouring cells. Growing cells have to push neighbouring cells away to be
able to grow. This crowding can be quantified with a simple measurement
that is meant to approximate the density of cells in the system. We shall
estimate the density of the system, which evolves over time as the cells
grow as

ρ(t ) = N (t )

(Rg (t ))3

for 3D tissue and

ρ2D(t ) = N (t )

(Rg (t ))2

in epithelia. For easy comparison, and to remove all effects of length scales
in the system, the density is renormalized with respect to the maximum
density achieved in the system to

ρ0 = ρ(t )

ρmax
.

We then monitor how ρ0 changes over the simulation as tissues grow.
In both the 3D and epithelium cases ( Figure 6.6), ρo increases to 1 as µ
decays to µ∞. As tissue grows, cells fill the space between each other and
eventually crowd their neighbours. Over time this limits cell growth in the
centre of the system until most of the growth is happening on the surface



124 The Dynamics of Growth and The Cellular Mechanical Environment

(a) Epithelium

0 20

t/τ

0.00

0.05

0.10
µ

ρ◦
µ

0.0

0.5

1.0

ρ
◦

(b) 3D Spheroid

0 10

t/τ

0.00

0.05

0.10

µ

ρ◦
µ

0.0

0.5

1.0

ρ
◦

Figure 6.6: Rescaled density ρ0, compared to the mitotic index measurements from
Section 6.2.2 for (a) an epithelium, and (b) a 3D spheroid. Mitotic index is strongly
correlated with the density in the system.

(or the perimeter in epithelia). From this point on-wards, density and
growth rate are more or less constant. The slowing down of growth due
to an increase of density is well established in multiple cell cultures [308,
432, 434–438], though it is most often associated with reduction in bio-
chemical factors related to cell-cell contacts [434–438]. This effect has
also been demonstrated with other mechanical cell models [439, 440].

As density increases to its stead state (ρ0 = 1), growth occurs near the
edge of the sample. This is quantified in Figure 6.7 which shows histogram
of the distance from the centre of the tissue (a disk in epithelia and a
spheroid in 3D) versus simulation time. In both cases the distribution of
division events is spread from the edge towards the centre at the beginning
of the simulation. Over time, the local density in the vicinity of each
cell increases and slows down cell growth. By the end of the simulation
growth is mostly concentrated at the outer edge of the tissue, and halted
in the centre. The location of growth being the outer edge of tissues is
a well known biological fact [4, 11, 432]. The biological (and chemical)
reasoning for why it occurs is that the nutrients in the interior of tissues
are being depleted as new cells are created and more time is needed for
nutrients to diffuse inwards. While that is certainly one of the factors for
the slowing down of growth, it is clearly not the only factor. The evolving
mechanics in the system play a crucial role alongside other biochemical
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factors in slowing down cell growth in cellular systems.

6.3.2 Number of Nearest Neighbours

Evidence from the previous section suggests that the reduction in growth
rate is purely due to increase in density. Here the number of neighbours
is used as another way of measuring crowding. This also serves as further
validation for the CellSim3Dmodel as the number of nearest neighbours
has been measured experimentally for epithelia [441].

Sandersius et al. [441] compiled a number of experimental measure-
ments of nearest neighbours (Nn) in epithelial systems (shown in Fig-
ure 6.8). Note that the proportion of cells with each value of Nn is ba-
sically the same between species. This suggests that that even if the ep-
ithelial tissue taken from different species are biologically very different,
they may be mechanically quite similar. Sandersius et al. showed that this
may be the case by comparing to the results of their own computational
study with the topological model of Gibson et al. [278]. Here we do the
same with CellSim3D. The number of nearest neighbours measured from
simulation trajectories serves as: (1) another measurement for crowding,
(2) more validation for the CellSim3D model.

Figure 6.8 shows the distribution of Nn in a variety of epithelia from
various species compiled by Sandersius et al. [441]. The cells are biologi-
cally quite different as they come from different species. Why is a similar
distribution seen for all of them? When considered from a mechanical per-
spective, most cells have approximately the same structure (explained in
Section 3.2) from which they derive their mechanical properties [38, 442–
444]. They are constructed of a cell membrane and cytoskeleton, which
are themselves composed of three kinds of fibres material: microtubules,
intermediate filaments, and actomyosin. The mechanical properties of the
fibres have been measured experimentally and do not vary greatly be-
tween species [19, 198, 444, 445]. We hypothesize that the packing of
cells in this system should be reproduced in a purely mechanical system.
To test this hypothesis, ten simulations were run with CellSim3D that were
set to simulate epithelia (as described in Section 5.3.1). Figure 6.1 shows
one such simulation. The epithelial plane is assumed to be parallel to the
XY plane. The number of nearest neighbours were measured by conduct-
ing a Delaunay triangulation [296] on all of the centres of mass of the
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Figure 6.7: Evolution of the distribution of division events from the centre of the
cellular masses to the edge. xi denotes centre of mass of cell i , and x is the centre
of mass of the whole system. (a) Epithelium (b) 3D spheroid. p(t ) is renormalized
to be 1 at its maximum. In both cases, the growth is more spread out throughout
the tissue at the beginning of the simulation and concentrates more at its edge over
time.
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cells. Delaunay triangulation is done as follows. Let the centres of mass of
all of the cells in the system be considered as nodes in a plane—which is
true for flat epithelia. Delaunay triangulation is an algorithm that places
edges between the nearest neighbours of each node. This triangulation
outputs a graph in which cells that are “first shell” neighbours are con-
nected with an edge. Then, the neighbours of each cell are counted by
counting the number of edges at each node. See Ref. [296] for a detailed
description of Delaunay triangulation. The resultant graph of the triangu-
lation is the dual of a Voronoi triangulation in 2D. The number of nearest
neighbours additionally serves as measurement of crowding.

The results of Delaunay analysis for the output of a CellSim3D sim-
ulation is shown in cross-hatched bars in Figure 6.8. It compares the
number of nearest neighbours (Nn) between simulation and experimental
measurements of epithelia compiled by Sandersius et al. [441]. This was
shown already by Mkrtchyan et al. [43] with a purely 2D model, and it
is reproduced here as validation for, and a measure of the flexibility of,
CellSim3D. As can be seen in Figure 6.8, Nn values that were measured
experimentally have been reproduced here by a purely mechanical model,
suggesting that this phenomenon is due to primarily the mechanics of the
cellular system. This was already shown before by multiple other studies
with the help of other 2D mechanical models [278, 279, 441, 446].

For comparison, the same analysis was done for points placed ran-
domly and uniformly in a plane, with at least a distance of one unit be-
tween points. Nn measurement for the random case is also shown in Fig-
ure 6.8, lime green. The fractions of cells at Nn = 5 and Nn = 7 are the same
for experimental measurement, CellSim3D, and for randomly distributed
points, but different for other values of Nn . This is due to the attractive
nature of the of the interaction between cells that favours a nearest neigh-
bour count closer to 6, which is the same for maximizing density of hard
spheres. The randomly distributed points do not attract each other, so the
of Nn in the random case distribution is not similar.

The obvious question to ask here is: What about in 3D? The same
nearest neighbour measurement can be carried out for the 3D tissue, and
another distribution of Nn emerges. Figure 6.9 shows Nn measured for 3D
simulated tissue (green downward triangles). The number of neighbours
are distributed approximately in a log-normal distribution, which is given
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Figure 6.8: The number of nearest neighbours obtained after simulating an epithe-
lium with CellSim3D compared to various experimental measurements compiled by
Sandersius et al. [441]. The cross-hatched bars are from a CellSim3D simulation.
The same distribution as experiment is produced. Finally, simulation and experi-
mental data is compared to number of nearest neighbours of randomly generated
points with a spacing of one unit between points. The type of distribution of the ran-
dom system is perhaps comparable (with the same asymmetry at N = 5 and N = 7),
but that is where the similarity ends.
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by

p = 1

Nnσ
p

2π
exp

(
− (ln Nn −N∗)2

2σ2

)
(6.7)

where p is the fraction of cells with number of nearest neighbours Nn , the
mean number of neighbours is given by exp

(
N∗+ σ2

2

)
and the variance is

given by
[
exp

(
σ2

)−1
]

exp
(
2N∗+σ2

)
.

The number of nearest neighbours in Figure 6.9 is approximately log-
normal with mean of approximately 15 neighbours, and variance of 3.63.
The appearance of a log-normal distribution of Nn is an indication that
the filling of space with new cells is a multiplicative process [447]. At
any given time there is some percentage of cells that divide (as measured
by the mitotic index in Section 6.2.2), all the new cells then occupy ad-
ditional space and the overall average empty space around cells is re-
duced. This multiplicative reduction in space could be the reason why
the log-normal distribution of Nn is observed. A simple way to verify this
measurement would be to compare to experimental results, since exper-
imental distributions of 2D systems (epithelia) are reproduced readily by
CellSim3D (Figure 6.8). To the best of our knowledge, Nn has not been
measured experimentally for 3D cellular systems. It can be measured triv-
ially with computational methods such as CellSim3D since the Delaunay
triangulation method can be applied in 3D as well. We instead compare
our Nn results to Nn measurements in emulsions, since the CellSim3D cells
at the end of the simulation can also be considered as a packing of soft
spheres with friction between them. The packing of jammed emulsions in
3D was measured by Clusel et al. [448, 449] and their findings are com-
pared to CellSim3D results in Figure 6.9 (purple dots). The distribution
that was found by them is also approximately log-normal (Equation 6.7),
though with different mean and variance (14 and 14.55 respectively). This
measurement suggests that number of nearest neighbours distributions
could be of the same family in systems of soft spheres, and for 3D cel-
lular spheroids the distribution is narrower and higher. The emulsion in
the work of Clusel et al. [448] does not have as much adhesion between
the bodies, which could be reason behind the different distributions. Fur-
thermore, the mechanical properties (e.g. stiffness) of the emulsion may
also incomparable to the CellSim3D simulation. Nn for 3D cells is also
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Figure 6.9: Number of nearest neighbours measured for a simulated 3D tissue of
cells (downward triangles), randomly placed points (upward triangles), and experi-
mental measurement of packing in an emulsion from Ref. [448] — though their sys-
tems are polydisperse (data extracted with WebPlotDigitizer [450]). Inset shows the
distributions in linear scale y-axis. This distribution is log-normal (Equation 6.7)
with mean of 15 neighbours, variance of 3.63. Comparison with experimental mea-
surement of Clusel et al. [448] indicates that the approximately log-normal distri-
bution of soft spheres in 3D is a multiplicative process.

compared against a random collection of points in 3D, placed such that
a spacing of 1.0 is guaranteed between points. This is, again, a multi-
plicative process as the fraction of space being filled is reduced with the
addition of each new point. Again an approximately log-normal distri-
bution (mean 16, variance 8.6) is found suggesting a multiplicative space
filling process may be valid for multiple types of systems of soft spheres.
The difference is once again due to the interaction between the different
cells and the medium. We hypothesize that a collection of measurements
of Nn , similar to those compiled by Sandersius et al. [441] but for 3D
tissue, will yield a similar distribution of nearest neighbours that is con-
served between species. Experimental measurement of spheroidal tissues
are needed to confirm this.

It has been shown before [43] that Nn approaches a steady state as
tissue grows; it converges over the course of the simulation. A simple
scalar value can be defined that quantifies how close the system of cells
is to the final distribution of Nn , as follows. Assume that the number of
neighbours is always some value between 1 to 25. Then vector Nn can be
defined with the components being the proportion of cells (p) with the
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corresponding number of neighbours as

Nn := (Nn(1), Nn(2), . . . , Nn(25)) ,

Nn ∈ R25 in general. Neighbours counts higher and lower than the range
of possible values for epithelia (3-8) are set to 0 for epithelial systems (in
fact this is done automatically by the triangulation algorithm). The system
of growing cells will have an evolving Nn that converges to the vector
No over time, i.e. No = limt→∞ N(t ) and corresponds to the coordination
measurements shown in Figure 6.8 and Figure 6.9.

The deviation, ε, from this No distribution is defined as

ε(t ) = 1− ‖N(t)−N◦‖
max‖N(t)−N◦‖

, (6.8)

i.e., the maximum distance between instantaneous number of neighbour
distribution NN (t ) is the highest at t = 0. The Euclidean norm is indicated
by ‖·‖. ε approaches 1 as the system grows. The coordination is at a steady
state when N(t ) = No and ε = 1 at the end of the simulation. Thus, ε is a
way to measure the maturity of the system of cells and a simple number
to quantify the difference between tissue structure when tissues are young
(start of the simulations, little crowding) and old (end of the simulations,
high crowding).

Figure 6.10(a) shows how ε changes for the two systems as a func-
tion of the effective density ρo . As density approaches its steady state,
the distribution of N approaches its steady state (ε = 1). A sensible re-
sult as one would expect number of nearest neighbours to be correlated
to an increase in density. The space around each cell is filled with the
highest possible number of neighbours at highest density. The two are
proportional to each other, but the constant of proportionality is higher
for epithelia than for 3D tissue. This is because epithelia do not have as
much freedom to grow and they necessarily react to increasing density
more strongly than 3D tissue, which have more space to expand into.

We can now study how the growth rate (mitotic index) of the tissues
varies with the structure of the tissues, or the increase in number of neigh-
bours. Figure 6.10(b) shows how mitotic index varies with ε. At low
coordination (ε≈ 0), growth occurs at its initial high value µ= µ0. It then
continues to decrease proportionally to the increase in ε (which indicates
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Figure 6.10: The trends of ε, the deviation of the measured number of nearest
neighbours from its final distribution shown in Figures 6.8 and 6.9, and the relative
change in mitotic index µ, the mitotic index as a function of ε. (a) The number
of neighbours approaches its steady state as density increases to its steady state.
In other words the nearest neighbour distribution approaches its steady-state dis-
tribution over time, since we know that density increases to its steady state from
Figure 6.6. The undulations at the beginning of the data are due to the unhindered
growth of cells at the beginning of simulations. (b) The mitotic index is highest
when ε= 0, before the system has reached its steady state nearest neighbour distri-
bution. It then decreases to its minimum (µ∞), where it remains, implying that cells
with neighbours tend to grow less and the distribution of the number of neighbours
converges to a constant distribution (see Figure 6.8 and Figure 6.9).

more crowding), until the critical value of ε≈ 0.8. After this point, growth
decays much faster and eventually converges to about 15 to 20% its orig-
inal value (µ/µ0 ≈ 0.2).

The results in Figures 6.8, 6.9 and 6.10, combined with the results in
Figure 6.4 from Section 6.2.2, provide ample evidence that cell growth
and the physical environment of cells are directly related, and this rela-
tionship still persists even in a purely mechanical model where all bio-
chemical factors are assumed to be constant between cells.
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6.4 Effects of Friction on Tissue Growth and Struc-
ture

The connection between growth, structure, and density was described in
the previous section with various measurements of growth rate (via mi-
totic index). In this section, we shall consider the effects of intermem-
brane friction and medium friction on the mitotic index and on the dis-
tribution of the number of nearest neighbours. Since the relationship be-
tween tissue structure, density and growth is qualitatively similar between
epithelial and 3D tissues, we shall only consider three dimensional tissues
in this section.

The two parameters γext and γm set the strength of intermembrane
friction and medium friction respectively in CellSim3D. An increase γext

would hinder the motion of cells past each other and could perhaps af-
fect the number of neighbours, and therefore growth. Since γm slows all
motion in the system, one would expect growth to slow down as well.
An increase in γm simulates a more viscous medium or a medium that in-
teracts more strongly with the adhesion molecules in the cell membranes
(Section 3.2.1).

Let the fit to the mitotic index measured in Figure 6.4(b) be our ref-
erence, which we denote as µ′(t ), measured with parameters shown in
Table 5.2, and γext = 1 and γint = 1. Its mitotic index function (Equa-
tion 6.5) is denoted µ

(
γext = 1,γm = 1, t

) = µ′(t ) = µ′
0e−t/τ′µ +µ′∞, with pa-

rameters µ′
0 = 0.088 (reference starting mitotic index), τ′µ = 0.155 (refer-

ence decay half-life), and µ′∞ = 0.0116 the reference final mitotic index. We
then measure the resulting mitotic index at increasing values γm and γext

and then compare them to the reference mitotic index. With that we shall
have an idea of which parameter has the stronger influence on growth
and to what degree an increase in the parameter influences growth.

Ten simulations at γext and γm values ranging from 1.0 to 10.0 were
run, their mitotic indices measured, and compared to µ′(t ). The results of
this analysis are shown in Figure 6.11. All of the systems result in trends
of mitotic index of the same form shown in Equation 6.5, but with differ-
ent dynamics in each case. The dashed line in the figure is the µ= µ′ line
(γext = 1, and γm = 1). The coloured bars beside the graphs show increas-
ing γext (violet to yellow) and γm (dark red to white). Intermembrane
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Figure 6.11: Mitotic index of systems with varying (a) γext (intermembrane fric-
tion) and (b) γm (medium friction) plotted against the reference case of µ′ =
µ
(
γext = 1,γm = 1, t

)
. The dashed line indicates µ = µ′. The two colour bars are for

(a) increasing γint and (b) γm respectively. Mitotic index does not vary much over
changes in γext, the intercellular friction coefficient. In contrast, γm, the medium
viscosity, has a profound effect.

friction has a smaller influence than medium friction, though both slow
growth significantly. The effect is quantified further in Figure 6.12(a),
where we plot how the initial (µ0) and final (µ∞) mitotic index changes
with respect to the reference at different values of γext and γm. Higher
friction always results in slower initial and final growth, but increase in
medium friction, again, has a greater effect. Medium friction acts on
all nodes in the simulations, i.e. all parts of the cell membrane, equiv-
alently and simultaneously since viscous drag acts on all points with the
same coefficient (γm), whereas intermembrane friction is only between
those membranes that are within attraction range (intermembrane dis-
tance smaller than the attraction range R A

0 ). The term for intermembrane
friction in the force field (Section 5.2.2) arises from averaging the inter-
actions between Cell Adhesion Molecules (CAM) between cells. We know
from experimental measurements [182, 378, 451] that these interactions
can be dynamic and variable in strength. The dynamic nature of these
interactions may play a vital role, but they are not captured by CellSim3D.

On the other hand, the decay from µ0 to µ∞, quantified by the mitotic
index half-life τµ in Figure 6.12(b), is slower at higher friction coefficients.
While the mitotic indices are lower over all at higher friction, they remain
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Figure 6.12: (a) Change in initial mitotic index relative to reference (µ0/µ′
0), and

final mitotic index relative to reference (µ∞/µ′∞)(b) Change half life of mitotic index
decay (τµ/τ′µ). In both cases, γext does have an affect, but it is lower than γm, which
hinders growth much more.

above their steady state values for longer. This could be because µ0 is
already quite close to the final steady state, so there is smaller driving
force towards a lower mitotic index. The error bars in Figure 6.12(b) are
higher at higher friction coefficients, hinting at insufficient statistics in this
case.

With the same simulation data as before, we also have all the tools to
analyze the effects of friction on the final structures of tissues. It stands to
reason that the level of interaction between cell membranes of different
cells would affect how the cells are placed near each other. We begin by
defining another measure for the deviation of nearest neighbour distribu-
tions from the reference state at Nn

(
γext = 1,γm = 1

)= N′
n as

εγ = 1− ‖Nn
(
γext,γm

)−N′
n‖

‖N′
n‖

,

where the vectors Nn are the steady state of Nn(t ) at the corresponding
γext and γm. εγ = 1 means no change from reference. Figure 6.13 shows εγ
measured at increasing levels of γext and γm. Dashed lines are simulation
results, and solid lines are linear fits to the data. Both γext and γm alter
the Nn attained by the cells, but medium friction has a greater effect (by a
factor of approximately 3). This is due to the short-range transient nature
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Figure 6.13: εγ = 1 indicates a perfect
match with the distribution of number of
neighbours (N) at γext = 1 and γm = 1.
Dashed lines mark simulation data, and
solid lines linear fits to them. The fits are
εγ = −0.01γext + 1 and εγ = −0.03γm + 1.
Both intermembrane friction (γext) and
medium friction (γm) alter the coordi-
nation levels attained by the cells, but
medium friction has a greater effect.

of intermembrane friction (as it is currently approximated in our model).
Ultimately, altering the degree to which cells interact does affect their
nearest number distribution, and therefore tissue structure, provided the
medium is kept the same.

This disruption of structure could perhaps be alleviated by an active
driving force in the cells that rearranges and deforms the cytoskeleton to
optimize the contact with other cells—something that is missing in the
CellSim3D model. The most straightforward way to implement this would
be to introduce a random term in the force field, akin to a Langevin type
system. Adding a term that simulates the active reshaping and rearrange-
ment that cells exhibit, such as those that cells use to migrate (Figure 1.1),
could lead to different and more preferred distributions of nearest neigh-
bours. More details of such a random force are discussed in Chapter 7.

6.5 Conclusions

In this chapter we showed how CellSim3D can be used to measure growth
in cellular systems. We compared the growth produced by CellSim3D
against three methods of measuring growth: population trends, popu-
lation growth rate (mitotic index), and finally system size. In all of the
three cases, we showed that trends comparable to known results were
produced. CellSim3D was created to be a general purpose and flexible
model that can be used to study various aspects of cell behaviour simul-
taneously. We demonstrated we are able to reproduce various types of
growth data without modifications of CellSim3D.
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We went even further by making connections between the slowing
down of growth in cells, and tissue density and structure. Real biological
cells are known to slow their growth over time, which was thought to be
due to the higher scarcity of nutrients as the tissue grows. The same be-
haviour is observed with CellSim3D. We later observed that the reduction
in growth rate is due to the evolving mechanical environment of cells.
Both the evolving structure of tissue and the lack of available space to
grow play major roles in the growth rates of tissues in addition to nutrient
scarcity.

We also demonstrated the connection between cell growth and the
mechanical properties of cells by seeing how increasing intermembrane
friction between cells reduces overall growth rate and how it is slowed
down more severely when the friction with the medium is stronger. Al-
though the strength of interaction between cells is crucial in determining
their proliferation, the strength of interactions between cells and their en-
vironment is the dominant factor.

In pursuing the answers to the questions summarized above, we have
also validated the CellSim3D model, as a flexible method that can be used
to study cell behaviour from a multitude of perspectives. We are convinced
that it will be a useful tool in probing other questions of mechanobiology.
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Chapter 7
Summary and Outlook

In this thesis, we considered the problem of mechanotransduction: the in-
terplay between the biochemical processes within cells (e.g. metabolism),
the mechanical properties of cells, the medium that they are in, or physical
stimuli acting on the cells. Experimental techniques often can only mea-
sure macroscopic properties. They offer a zoomed out view that makes
it difficult to draw conclusions regarding the underlying physics. Fur-
thermore, ensuring controlled experimental conditions, such as identical
cell stiffness or equal provision of nutrition is impossible in experiments.
Computational methods that aim to bridge the underlying biophysics to
experimental observables are vital tools in gaining insight about mechan-
otransduction. The work described in this thesis aims to introduce such a
model with CellSim3D [42].

CellSim3D uses the algorithms developed for molecular dynamics (MD)
to simulate cells in 3D in a coarse grained (CG) model. We briefly sum-
marized the basics of atomistic MD, and how it can be extended to study
larger systems with CG methods in Chapter 2. Of particular interest was
the discussion of the degrees of freedom used in MD, which inspired the
CellSim3D force field.

We provided a short general introduction to cell biology in Chapter 3
and focused on the mechanical cell as well to describe the mechanical prop-
erties of cells, and how they can be simulated. The mechanical cell is then
used to develop our model. For context, we reviewed a few cell models
available in the literature in Section 3.4. Many of the models available
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currently either make too many simplifications of cell structure such that
they obscure the dynamics of cell membranes, or do not have efficient im-
plementations in fast software. One of the models we introduced, named
CeDEM (Section 3.6.5), is able to simulate growth, membrane dynamics,
and growth of cells with different stiffness and intermembrane friction in
2D. We used CeDEM to study the morphology of different 2D tissues in
Chapter 4. In that chapter, we saw that cell growth was slowed down
at higher intermembrane friction and that softer cells constrict stiff cells
into unfavourable conformations. We also noted that the forces are high-
est in the system at the boundary between stiff and soft cells. CeDEM is,
however, a 2D method so it can only be applied to 2D systems of cells.
There was a need in the field of a 3D model for cells with the ability to
simulate forces at subcellular length scale, while describing the correla-
tions between growth, cell mechanics and structure. Additionally, since
the aim was to study large collections of cells and their properties, the
model would have to be implemented in an efficient software package
that can be used on the average workstation.

The desire to meet the two goals above resulted in the creation of the
CellSim3D [42] package and simulator. CellSim3D, extends the 2D Ce-
DEM model into 3D, is a new flexible models for cells with an open source
software package released on github https://github.com/SoftSimu/Cell-
Sim3D. The details of the force field and the software package were dis-
cussed in Chapter 5.

CellSim3D was then used to reproduce a number of results known from
literature in Chapter 6. We were able to correctly predict the growth
trends in population, population growth rate, and system size with the
same model for both epithelia and 3D systems. We also analyzed why
growth slows in such systems. The biological argument for the reduction
in growth over time is that the level of nutrition available for the cells is
depleted over time, due to either diffusion or competition with other cells.
Our results showed that even in systems where cells are given identical
growth potentials (approximated in CellSim3D with the rate of increase
in internal pressure), the growth slows down due to mechanical effects.
We later showed in Section 6.3 that the crowding of the cellular system
drives the decay in growth rate. We measured the crowding by measur-
ing the distribution of density and the number of nearest neighbours in

https://github.com/SoftSimu/CellSim3D
https://github.com/SoftSimu/CellSim3D
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Section 6.3.1 and Section 6.3.2.

Since the distribution of number of nearest neighbours is known for
epithelial systems, we used CellSim3D to reproduce the distribution for
those systems. We also used it to make a prediction about the nearest
neighbour distributions of 3D tissues which has not been measured exper-
imentally yet. Then we showed that the evolving mechanical properties
(density and structure) of the cellular systems play a key role in deter-
mining the growth dynamics, even if all cells are given identical growth
forces. Finally, we also demonstrated how the model can be used to study
the growth trends and nearest neighbour distributions of tissues with dif-
ferent intermembrane and medium friction coefficients.

In the process of comparing data produced from CellSim3D to known
experimental and theoretical results, we also validated the model and
implementation of the software. However, recall that we made several
assumptions during the development of the model, see Section 5.1 for
details. Some of these assumptions could be lifted to add features to
CellSim3D, and we describe such extensions here. Since the simulator
is based on CG MD, we can use its framework and add new potentials
and/or degrees of freedom to extend the model. Additionally, the soft-
ware implementation is such that new terms can be added to the force
field.

Below, we discuss three possible extensions to CellSim3D to simulate
heterogeneous cell mechanical properties, asymmetric cell division, and
directed migration. The state of a cell in CellSim3D is determined by its
position. We first propose that another parameter be added to the cells:
cell polarity. Polarity can then be used to add terms in the force field
for cell heterogeneity, which would make cell-cell interactions and me-
chanical properties non-isotropic. Next, we reuse the cell polarity defined
before to propose a framework for directed cell migration. The notation
from Chapter 5 and definitions of the parameters of CellSim3D are taken
from Table 5.2. Finally, we discuss possible extensions to simulate asym-
metric cell division.
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Heterogeneity in the Mechanical Properties of Cells

We have assumed before that the distribution of the Cell Adhesion Molecules
(CAMs) is always uniform over the surface of cells. However, this is not
always the case, the distribution of CAMs on cell surfaces need not be
uniform. The heterogeneity of the distribution of CAMs, structure, and
functionality of cells is dependent upon cell polarity [452–454]. A cell
is considered to be polarized when there is an asymmetric distribution of
proteins or structures that span the cell. As a result the mechanical prop-
erties of polarized cells, and their interaction with other cells, can change
depending on direction. Many phenomena, such as cell migration [455],
cell differentiation [456], and even division [457] by cell polarity.

The simplest way to introduce polarity in CellSim3D is to define a po-
larity vector p̂m , for cell m. The properties of m can then depend on this
vector. This is a common approach to introduce polarity in cell models
such as Vertex models [284] or the Cellular Potts Models [458].

For example, consider the intermembrane force terms in the CellSim3D
force field as described in Section 5.2.2. These terms aims to describe
the adhesion, repulsion, and friction between cell membranes. A simple
spring force was used to model the attraction of the nodes of different
cells to each other. The adhesive spring force acting on particle i in cell
m, due to some other particle j in another cell is given by

FA
i =

{
k A(ri j −R A

o )r̂i j if ri j < R A
o ,

0 if ri j ≥ R A
o .

(7.1)

where k A is the adhesion spring constant, R A
o is the spring equilibrium

and cut off length, and r is the vector pointing from i to j . So far we have
assumed k A to be a constant in our simulations for all nodes i . Instead,
we can make it depend on the orientation of node i in the cell. Let ri =
xi −xm , xm being the centre of mass of m, then we can replace the spring
constant k A with k inter = k A(r̂i · p̂m). The result will be an adhesive or
repulsive spring that varies over the surface of the cells augmenting it
with a polarity, see Figure 7.1. The formulation for the adhesion terms
described above would make intermembrane forces attractive if operating
along the polarity vector, or repulsive if operating opposite to it, with a
smooth transition between the two regimes.
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Figure 7.1: An approximation for cell
polarity. The spring becomes attractive
(blue) or repulsive (red) over the surface
of cells. The quantity r̂i · p̂m , can be used
to vary many other mechanical properties
such as intracellular bond stiffness and
friction coefficients.

The introduction of a new polarity vector above would induce hetero-
geneity that is linear along the vector, as shown in Figure 7.1. One can
introduce non-linear heterogeneity by instead proposing a more complex
dependence on the polarity vector (k inter = k A f (r̂i ·p̂m)), or even introduce
two polarity vectors k inter = k A

1 f1(r̂i ·p̂1
m)+k A

2 f2(r̂i ·p̂2
m), where the adhesion

term is a linear combination of two functions of the orientation of each
cell node with respect to the polarity vector. This would allow the study
of cells with different distributions of adhesion molecules in 3D.

This same extension can be applied to the other parameters as well,
such as the intermembrane (γext) and medium friction coefficients (γm),
or the stiffness in the other parts of the force fields such as bond stiffness
kB .

Directed Cell Migration with CellSim3D

The CellSim3D simulator makes use of the DPD-VV (Section 5.2.3) algo-
rithm to calculate the motion and growth of the cells in the system. How-
ever, we assumed that there are no random displacements in CellSim3D.
Once a cell is created, it is static as the medium and intermembrane fric-
tion terms damp all motion in the system. However, it has been shown
that certain cell types exhibit migration [459–461] and which plays a vi-
tal role in the development of disease [461] and the invasion of cancer
into surrounding tissues [460].

Another aspect of cell behaviour that was neglected by CellSim3D is
the stochastic nature of cell membrane interactions [284], recall that we
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assumed that cell membranes do not undergo Brownian motion. We pro-
pose an augmentation to the CellSim3D model here to include a random
term for Brownian motion, and combine it with cell polarity to model
directed cell migration. This relies on the Dissipative Particle Dynamics
method described in Section 2.2.2 and the intermembrane friction term
defined in Section 5.2.2. We repeat their definitions here with the vari-
able names and notation from Chapter 5 for clarity.

Let i be a node in cell m with polarity pm . Then the intermembrane
friction force acting on i due to node i ′ at a distance ri i ′ = ‖xi −xi ′‖ in some
other cell n, can be set to

FF,e
i =

{
−γextω

D (ri i ′)vτm

i i ′ if ri i ′,n < R A
o

0 if ri i ′,n > R A
o ,

(7.2)

where γext is the intermembrane friction coefficient. The magnitude of
γext can be different depending on the cells that are interacting, however
assume that it is the same between all cells, and vτm

i i ′ is the component
of the relative velocity vi ′ − vi tangential to the surface of m at xi . This
equation is almost identical to Equation 5.8 in the current CellSim3D force
field, with the addition of a new term ωD (ri i ′) which is a weight on the
strength of intermembrane friction depending on the distance between i
and i ′. The random force would then be set to

FR (ri j ) =σωR (ri j )ξi j r̂i j , (7.3)

where σ is the random force coefficient, ξi j is a random variable dis-
tributed normally with unit variance, and ωR (ri j ) is a weight on the ran-
dom force strength. The intermembrane friction weight and this random
term are related [159] by

ωD (ri j ) = [
ωR (ri j )

]2 = 1. (7.4)

Furthermore the random force and intermembrane friction coefficients
would be related by

σ2 = Tmγext, (7.5)

where Tm is a measure for the oscillations possible in the membrane for
cell m. It is not related to the temperature of the system, rather it is a
parameter that approximates how dynamic the membrane of cell m is.
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Above, we have defined a formulation for the stochastic motion of cell
membranes in the context of DPD. We can use the definition of the polarity
vector p̂n to add an additional random force to the CellSim3D force field
given by,

FR
mig =

{
σmigζi j r̂i if (r̂i · p̂) ≥ 0

0 if (r̂i · p̂) < 0
(7.6)

where ri = xi −xm , xm is the centre of mass of cell m, and σmig represents
the strength of the migratory force, and ζi j is a uniformly distributed num-
ber between zero and one. This would result in a random migratory force
that is parallel to the cell polarity.

Asymmetric Cell Division

Only symmetric random division is implemented in the current version of
CellSim3D. In this regime, both new simulated cells are identical in every
way to their parent cell. Asymmetric division is a kind of cell division in
which the two daughters are not identical [462]. This form of cell division
is vital in the differentiation of stem cells into different cells with different
mechanical properties, structure, and biological function [213–215] (e.g.
neurons versus liver cells).

Asymmetric division, from the perspective of the CellSim3D model,
would result in child cells that are different from their siblings in several
properties such as size, shape, mass, stiffness, and friction. Since each cell
can be defined by a set of mechanical properties in CellSim3D, different
cell types can be simulated by simply ascribing different values to the
parameters for them. This was done for 2D systems with cells of different
stiffness with the CeDEM method in Chapter 4, but without asymmetric
division. The same can be done in 3D with the addition of a chance for
either cell to be given different mechanical properties compared to the
parent.

For example, consider differences in cell size. Difference in child cell
size can be implemented by scaling the equilibrium bond lengths (R0

i j in
Equation 5.2) between bonded nodes relative to the parent cell’s equilib-
rium bond length. Consequently the child cells’ volumes would be scaled
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as well. The threshold division volume (V div) for the child cells would
have to be scaled as well.
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Appendix A
Example Input file to CellSim3D

All input parameters are passed into the simulator via a configuration file
that is formatted in JSON format. The parameters are divided into a num-
ber of categories:

• "core"
Defines the parameters given to CellSim3D simulator. The simula-
tion cannot run without these values defined. They are given non-
physical initial values. A sample is given in Listing 1.

• "counting"
Defines parameters related to counting the number of new cells born
during a simulation. See the sample in Listing 2.

• "divParams"
Parameters for the plane perpendicular to which cells will divide.
Used in most cases to set up epithelial simulations. See the sample
in Listing 3.

• "boxParams"
Defines the box size. See sample in Listing 4
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1 "core": {
2 "MaxNoofC180s": 100000,
3 "particle_mass": 0.04,
4 "repulsion_range": 0.2,
5 "attraction_range": 0.3,
6 "repulsion_strength": 100.0,
7 "attraction_strength": 0.5,
8 "Youngs_mod": 1000,
9 "viscotic_damping": 1,

10 "internal_damping": 100.0,
11 "gamma_visc": 1.0,
12 "division_Vol": 2.0,
13 "div_time_steps": 50000,
14 "time_interval": 0.0001,
15 "trajWriteInt": 1000,
16 "non_div_time_steps": 50000,
17 "trajFileName": "cellsim.cdv",
18 "binaryOutput": 1,
19 "maxPressure": 65.0,
20 "minPressure": 50.0,
21 "growth_rate": 0.002,
22 "checkSphericity": 1,
23 "constrainAngles": 1,
24 },

Listing 1: The core parameters used in the simulation. These variables must be
defined for simulations to run. They correspond to the constants in the CellSim3D
force field.
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1 "counting": {
2 "countCells": 0,
3 "mit-index_file_name": "inp.dat",
4 "count_only_internal_cells?": 0,
5 "radius_cutoff": 0.6,
6 "overwrite_mit_ind_file?": 0,
7 "cell_count_int": 1000
8 },

Listing 2: Counting parameters in CellSim3D. This file is only used for analysis.

1 "divParams":{
2 "useDivPlaneBasis": 0,
3 "divPlaneBasisX": 0,
4 "divPlaneBasisY": 0,
5 "divPlaneBasisZ": 1
6 },

Listing 3: Parameters setting the division plane of new cells. When
"divPlaneBasis" is set to 1, the cells divide in the plane defined by the
"divPlaneBasisX", "divPlaneBasisY", and "divPlaneBasisZ" values with are
the components of the normal to the epithelial plane E; it is always normalized in
the code.
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1 "boxParams":{
2 "useRigidSimulationBox": 1,
3 "box_len_x": 500.0,
4 "box_len_y": 500.0,
5 "box_len_z": 500.0,
6 "flatbox": 0,
7 "dom_len": 1.5,
8 "rand_pos": 0
9 },

Listing 4: Properties of the simulation box CellSim3D simulations. All of the simu-
lations conducted with this configuration of the simulation box.



Summary

Molecular Dynamics Modelling of the Mechanics of
Cells

All of life as we know it owes its success to the ability of cells to sur-
vive and thrive, in diverse and often intense circumstances. Biological
functions in plants and animals are mediated by cells by growing, coop-
erating or competing with one another to keep the process of evolution
alive. The key to unraveling the mysteries of life, finding cures for dis-
eases, and discovering new life forms lies in investigating the behaviour
of individual and collections of cells. We owe a significant debt to the work
of the numerous biologists in the past few centuries who discovered and
studied these remarkable organisms. For example, one of the most impor-
tant developments arising form the study of cells is the field of modern
medicine.

There are, however, important aspects of cell biology that we must not
ignore. Namely, the physical nature of cells and how it may influence cell
biology. Cells are physical objects with mass, density, and viscosity that
passively interact with their surroundings (which could consist of other
cells). Cells also actively interact with their surroundings by altering their
physical properties and even exerting forces on their surroundings. Mus-
cle cells are a simple example of this in action. A biological signal to mus-
cle cells is translated into a physical signal (contraction). The converse
can also occur. Physical forces acting on a cell can change its biological
state as well, as was shown in stem cell differentiation. The interplay be-
tween the biological and the mechanical characteristics of cell behaviour
is named mechanotransduction. This thesis focuses on exploring one part
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of mechanotransduction: the connection between the physical properties
of cells, their growth, and division.

Biologists have developed many powerful experimental tools to study
cells, and they have used them with great success to teach us about mi-
croorganisms (the microscopic living entities that are cells). While quite
powerful, experimental tools do have some shortcomings that can limit
the amount of knowledge that can be gained from them. For example,
while one can measure the forces generated in cell membranes of sin-
gle cells, it is impossible to measure the forces between cells within tis-
sues. Computational methods (simulators), such as the ones discussed
in this thesis, are powerful tools to probe phenomena that are otherwise
unreachable experimentally. Simulators also allow us to study why cells
behave a certain way, and not just how they behave. Computational meth-
ods lie somewhere between experimental measurements and mathemati-
cal models of the underlying biophysics. Researchers can simulate cells in
ways that obey the underlying biophysical laws known from theory, either
known to be true or hypotheses, while producing systems in silico that
can generate predictions that can be tested experimentally. This thesis is
about the use of a such simulation methods to study cell growth and how
it depends on tissue composition.

The methods that were used in this thesis are based on Molecular Dy-
namics (MD), a particle based modeling method typically used to study
systems of interacting molecules. The basics of MD was described in Chap-
ter 2. With some modifications MD can be “coarse-grained” to study much
larger objects, such as cells. Before we do that, we explain the basic struc-
ture of cells in Chapter 3 named the mechanical cell. Properties of of real
cells, approximated by the mechanical cell, can then be translated into
parameters to be used in different computational methods.

The Cellular Discrete Element Model (CeDEM), a two dimensional
model that is based on cell structure and mechanical properties, was then
used to study the formation of one dimensional tissues reminiscent of
cyanobacteria and the growth of softer cells surrounded by stiff cells in
Chapter 4. The research there led to two conclusions. Firstly, we can sim-
ulate the growth of tissues of various structures by simply selecting the
orientation of cell division planes1. Secondly, softer cells quickly over-

1Cell division planes were explained in Section 3.3.1
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whelm stiffer cells during growth in 2D systems such as epithelia2. Since
some types of cancer cells are softer than healthy cells, this result leads us
to believe that their lower stiffness may be the reason for the faster growth
of cancer cells. We also learned that the overwhelming of stiff (healthy)
cells by soft (unhealthy) cells can be mitigated significantly by increasing
the friction coefficient between the cell membranes. CeDEM is, however,
a 2D model so it can only be used to study two dimensional systems such
as epithelia.

The CellSim3D model, an extension of CeDeM into 3D, was introduced
in Chapter 5. CellSim3D is a more general model that can be used to study
epithelia and 3D tissues. A 3D model such as CellSim3D allows researchers
to study a greater variety of cellular systems with more flexibility. The
CellSim3D model is implemented into a high performance open source
software package available GitHub at https://github.com/SoftSimu/Cell-
Sim3D. The performance and simple usage instructions of the simulator
were also discussed in Chapter 5. Hopefully the simulator will be a useful
tool for computational biologists interested in studying tissue growth.

Finally, we studied the connection between cell growth and the local
cellular environment with CellSim3D in Chapter 6. Biologists have long
known that the growth rate of cells eventually slows down due a decreas-
ing concentration of nutrients and the increased competition of cells for
the nutrients that remain. We showed that this slowing of growth rate is
inevitable, even in systems of cells given identical level of nutrients due to
the evolving physical environment of each cell in growing tissues. Crowd-
ing and density play a crucial role how tissues grow. Some possible ex-
tensions to CellSim3D where proposed in Chapter 7, where we discussed
how to model cell migration and differentiation.

2See Section 5.3.1

https://github.com/SoftSimu/CellSim3D
https://github.com/SoftSimu/CellSim3D
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