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Abstract: By means of an impedance boundary condition and numerical
solution of integral equations for the scattering amplitudes to which its use
gives rise, we study as a function of its angle of incidence the reflection of
a surface plasmon polariton beam propagating on a metal surface whose
dielectric function is ε1(ω) when it is incident on a planar interface with
a coplanar metal surface whose dielectric function is ε2(ω). When the
surface of incidence is optically more dense than the surface of scattering,
i.e. when |ε2(ω)| � |ε1(ω)|, the reflected beam undergoes a lateral dis-
placement whose magnitude is several times the wavelength of the incident
beam. This displacement is the surface plasmon polariton analogue of the
Goos-Hänchen effect. Since this displacement is sensitive to the dielectric
properties of the surface, this effect can be exploited to sense modifications
of the dielectric environment of a metal surface, e.g. due to adsorption of
atomic or molecular layers on it.
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When an electromagnetic beam of finite cross section is incident from an optically more
dense medium on its planar interface with an optically less dense medium, and the polar angle
of incidence is greater than the critical angle for total internal reflection, the reflected beam
undergoes a lateral displacement along the interface, as if it has been reflected from a plane in
the optically less dense medium parallel to the physical interface. This effect was first observed
by Goos and Hänchen [1], who measured a displacement D = 1.495λ ± 0.261λ for a beam
reflected from a silver coated glass-air interface at an angle of incidence θ0 = 44.1◦. This Goos-
Hänchen effect was explained soon after by Artmann [2], who related it to the phase ϕ(θ0) of
the amplitude of the reflected beam by

D(θ0) =− λ
2π

1
k‖ cosθ0

dϕ(θ)
dθ

∣
∣
∣
∣
θ=θ0

. (1)

In recent years analogues of optical effects originally associated with volume electromag-
netic waves have begun to be studied both theoretically and experimentally in the context of
surface plasmon polaritons (SPP). These include, e.g. negative refraction [3, 4], the Talbot ef-
fect [5, 6], lasing [7], cloaking [8, 9, 10, 11] and Young’s double-slit experiment [12]. The
interest in such effects is due to a desire to discover new properties of these surface electromag-
netic waves and to the possibility of basing novel nanoscale devices on them.

With these motivations, in this paper we study the analogue of the Goos-Hänchen effect for
SPP by investigating the system sketched in Fig. 1 in which a SPP propagating on the surface of
a metal whose dielectric function is ε1(ω) is incident on a planar interface with an optically less
dense metal whose dielectric function is ε2(ω) (|ε2(ω)| � |ε1(ω)|). We consider the two cases
in which the second metal is either infinitely long (single interface) or of finite length L (double
interface). The electromagnetic field of the SPP is determined by use of an impedance boundary

Fig. 1. Scattering geometry of the double interface system. The blue (gray) vectors are the
beam reflected from the first interface, the red (black) vectors are the beams reflected from
the second interface, and the green (light gray) vectors are the actual reflected beams.
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condition [13] on the surface x3 = 0. Scattering amplitudes Ai(p‖) for p- and s-polarized fields
(i = p,s) can be obtained from the solution of a pair of coupled integral equations

Ai(p‖)+ζ (ω) ∑
j=p,s

∫

S̃(p‖ −q‖)
Mi, j(p‖|q‖)

d j(q‖)
Aj(q‖)

d2q‖
(2π)2

=−ζ (ω)S̃(p‖ −k‖)Mi,p(p‖|k‖). (2)

Here, ζ (ω) = ω
c (κ2(ω)− κ1(ω)) with κ j(ω) = i/

√−ε j(ω) and the terms Mi, j(p‖|q‖) are
given by

Mp,p(p‖|q‖) =−Ms,s(p‖|q‖) = i p̂‖ · q̂‖
Mp,s(p‖|q‖) =−Ms,p(p‖|q‖) = (p̂‖ × q̂‖)3.

(3)

dp(q‖) = β0(q‖)+ i ω
c κ1(ω) and ds(q‖) = β−1

0 (q‖)− iκ1(ω) c
ω denote the dispersion relations

for p- and s-polarization, where β0(q‖) =
√

q2
‖ − ω2

c2 with Reβ0(q‖) > 0 and Imβ0(q‖) < 0.

S̃(Q‖ = p‖ −q‖) is the Fourier transformed of the surface profile function

S̃(Q‖) =
∫

R2

S(x‖)e
−iQ‖·x‖ d2x‖ = 2π δ (Q2) f (Q1), (4)

where

f I(Q1) =
1

i(Q1 − iη)
, f II(Q1) =

Lsinc(Q1)

2 exp( iQ1 L
2 )

(5)

for the single and double interface, respectively. Due to the translational invariance of the sys-
tem in the x2-direction Ap,s(q‖) have the general form

Ap,s(q‖) = 2π δ (q2 − k2) ap,s(q1). (6)

Substituting Eq. (6) into Eq. (2) leads to a pair of effective one-dimensional integral equations

ai(p1)+ζ (ω) ∑
j=p,s

∞∫

−∞

Mi, j(p̄‖|q̄‖) f (p1 −q1)
a j(q1)

d j(q̄‖)
dq1

2π

=−ζ (ω)Mi,p(p̄‖|k‖) f (p1 − k1), (7)

in which we define p̄‖ = (p1,k2) and q̄‖ = (q1,k2). Equations (7) are solved numerically us-
ing the Nystrom method [14]. The infinite range of integration is replaced by a finite interval
[−q∞,q∞]. The resulting integrals over q1 were converted to sums using a N-point extended
midpoint method. p1 was given the values of the abscissas used in the evaluation of the inte-
grals and a square 2N × 2N supermatrix equation with N = 18001 for ap,s(p1) is solved by a
standard linear equation solver. The convergence of the solution was monitored by increasing
q∞ and N systematically until the solution did not change upon further increases of these param-
eters. A lateral displacement of the incident SPP beam is identifiable in the far field region by
the intensity distribution of the scattered electromagnetic field of the propagating p-polarized
SPP mode with wave number k‖. For an incident plane wave, the scattered field is given by

Esc(x|ω) =
∫ êp(q‖)Ap(q‖)

β0(q‖)+ i ω
c κ1(ω)

eiq‖ x‖−β0(q‖)x3
d2q‖
(2π)2 (8)
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where êp(q‖) = c
ω
{

iq̂‖β0(q‖)− x̂3q‖
}

is the polarization vector for p-polarized SPP. The con-
tribution to this field in the region x1 < 0 from the reflected surface plasmon polariton is given
by the residue of the integrand at the simple pole it has at q1 = −k1(ω) = −cos(θ)k‖(ω).
With the assumption that ε1(ω) has an infinitesimal positive imaginary part, this pole lies in
the lower half of the complex q1 plane. It can be shown that ap(q1) has no pole in this region.
On evaluating the residue at this pole we obtain for the electric field of the reflected SPP in the
region x1 < 0, x3 > 0

Eref(x|ω) = r(−k1)
c
ω

êp(−k1,k2)e−ik1x1+ik2x2−β0(k‖)x3 , (9)

where r(−k1) =
ω
c κ1

ap(−k1)
k1

= R(−k1)eiϕ(−k1) is the reflection amplitude.
In Fig. 2 we present a plot of R as a function of the angle of incidence when a SPP in

the form of a plane wave whose wavelength is λ = 632.8 nm, propagating on a gold surface
with ε1(ω) = −11.8 at the corresponding frequency, is incident on its planar interface with
aluminum (ε2(ω) = −64.07). Since the mean free paths of SPP on these two surfaces are
L1 = 7 μm and L2 = 30 μm, we expect the effect of ohmic losses on the our results obtained
for real-valued εi(ω) to be small. The angle of incidence is θ = 78◦, and the 1/e half width
of the beam is w = 20c/ω . The critical angle for total internal reflection, given by sinθc =

[1− 1/ε1(ω)]
1
2 /[1− 1/ε2(ω)]

1
2 , has the value θc = 75.4◦ in this case. Note that preliminary,

non-converged results were shown unanalyzed as work in progress in Ref. [15].
It is seen from this figure that R is small (∼10−4) for all angles smaller than θc, and equal

to unity for angles greater than θc. R is not a monotonically increasing function of θ , but has
a pronounced minimum at the angle of incidence θ ≈ 45◦. The occurrence of this dip has
been explained for a somewhat different SPP scattering problem as the Brewster effect for the
incident SPP [16]. The shift of the position of the minimum in Fig. 2 from θ = 45◦ is due to
a small imaginary part added to ε1(ω). The phase shift ϕ(θ) at the interface is close to π for
angles smaller than θ = 45◦, and jumps to nearly 2π at this angle. In the rather narrow interval
[θc,90◦] the phase decreases continuously from 2π to π . Because of the derivative of ϕ(θ)
in Artmann’s result one can therefore expect a significant lateral displacement of the reflected
beam.

To observe the Goos–Hänchen effect we need the intensity distribution of the field of the
reflected SPP when the incident SPP has the form of a beam instead of a plane wave. Such a

Fig. 2. The modulus of the reflection amplitude R and phase shift ϕ as functions of the
angle of incidence θ for an incident SPP plane wave at the single interface.
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(a) (b)

Fig. 3. (a) Color-level plot of the intensity of the incident beam (left), and the reflected
beam (right). The angle of incidence is θ0 = 78◦, the beam width is w = 20c/ω and x3 =
0.1c/ω . The maxima of the incident and reflected beam are marked with dashed lines,
the displacement is D = 60.3c/ω = 9.6λ . (b) Plot of the respective intensities along the
x2-direction at the interface (x1 = 0).

field is represented by a superposition of plane waves weighted by a Gaussian function of θ
with 1/e half width 2/[k‖(ω)w], centered at θ = θ0, and normalized to unity, which yields a
Gaussian beam of 1/e half width w whose angle of incidence is θ0.

In Fig. 3 we present a color-level plot of the intensity distribution of the incident and reflected
SPP beams for the system assumed in obtaining the results plotted in Fig. 2. The positions of
the maxima of both beams at the interface (x1 = 0) are marked with a dashed line, showing a
displacement of D = 60.3c/ω = 9.6λ .

In Fig. 4, we compare the results for D as a function of the angle of incidence of the beam
θ0 for different widths of the beam. For a broad beam (w = 200c/ω , solid line) we note the
existence of a pronounced negative displacement for an angle of incidence close to 45◦ arising
from the jump in the phase shift from π to 2π as in Fig. 2. However, since the reflectivity R is
very small (about 10−5) at this angle, it might be difficult to observe this negative displacement
experimentally. At θc, D increases substantially, and the pronounced peak can be related to the
maximum slope of ϕ(θ) in Fig. 2. The behavior for θ0 → 90◦ is in agreement with 1/cos(θ0)
dependence in Artmann’s formula. The faint negative D close to θc is a result of the use of a
small value for η = 0.01 in f I(Q1).

In the case of beams with smaller half widths, Artmann’s formula no longer holds, resulting
in noticeable differences in the dependence of D on the angle of incidence: the smaller the
width, the fewer the structures in D(θ0), e.g. as in Fig. 4 for beams with w = 30c/ω (dashed
line) or w = 10c/ω (dotted line). For instance, the negative displacement at θ0 = 45◦ becomes
less pronounced and the feature in the curve smears out. Similar observations can be made for
the structures close to the critical angle for total internal reflection. In particular, D remains
finite when θ0 → 90◦.

At a double-interface with L = 20c/ω the phase of a reflected SPP plane wave (see inset of
Fig. 5) is identical to the one at the single interface in the interval [θc,90◦] since the wave is
totally reflected at the first interface. The major difference is the oscillating behavior at smaller
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Fig. 4. Calculated lateral displacement D for different beam widths (200, 30, and 10 c/ω)
as a function of the angle of incidence of the beam θ0.

Fig. 5. Lateral displacement as a function of angle of incidence θ0 at a double interface
with L = 20c/ω (solid line) compared to the result for a single interface (dashed line). The
width of the SPP beam is w = 30c/ω . The inset shows the phase of a reflected SPP plane
wave as a function of θ .

angles, which is due to multiple scattering at the two interfaces leading to destructive or con-
structive interference at different angles as in a Fabry-Pérot interferometer. These oscillations
also appear in D(θ0) shown in Fig. 5 and decay with larger L.

The absolute values for the lateral displacements of SPP beams of up to 25λ are about one
order of magnitude larger than the corresponding results for volume waves [1]. This can be
rationalized by the larger critical angle and the concomitantly steeper decrease of the phase in
the interval [θc,90◦] in the case of SPP. The values are also sensitive to changes in the dielectric
functions. Figure 6 shows the change in D upon variation of either ε1(ω) or ε2(ω) while the
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Fig. 6. Change of D upon variation of the dielectric functions of the two metals at an angle
of incidence of θ0 = 80◦.

other one is fixed. This results were obtaind by the use of Artmann’s formula (1). In particu-
lar, the strong dependence of the calculated lateral displacement on the value of ε1(ω), i.e. the
dielectric function of the gold surface, indicates that small modifications of the latter may be
resolved. Adsorption of molecules changes the dielectric environment of surfaces. Experimen-
tal measurements of the Goos-Hänchen effect for SPP for θ0 > θc, i.e., at grazing incidence,
depending on molecular coverage may prove useful in sensing this change and thereby allowing
drawing conclusions on adsorption or desorption processes, complementing techniques such as
surface plasmon resonance spectroscopy.

In summary, we have demonstrated in this paper the existence of the analogue of the Goos-
Hänchen effect for SPPs at a gold-aluminum interface. Due to the large critical angle of
θc 	 75◦ for total internal reflection of the SPP, lateral displacements of several times the wave-
length of the incident beam occur. The sensitivity of the displacement to changes of the surface
optical properties may be exploited to measure, for instance, the modification of the dielectric
environment of the metal upon molecular adsorption.
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