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Abstract

Simulating excitation processes in organic materials is an essential part in the
development of organic solar cells. These simulations can be performed within
the framework of many-body Green’s function theory, in this thesis within the
GW approximation. These simulations are, however, very time consuming. A
major bottleneck is the computation of the microscopic polarizability, which
includes a sum over all occupied and unoccupied electron states. In this thesis
an alternative approach to the GW approximation that uses the Sternheimer
equation was implemented. The Sternheimer equation is a result from linear
perturbation theory and allows the calculation of the linear response of a quan-
tum mechanical system to an external perturbation. The Sternheimer GW
method avoids the treatment of unoccupied states and could provide a speed
up for GW calculations. [1] Compared to previous implementations that use
plane wave basis sets, this implementation uses localized basis sets that allow
for a more efficient treatment of non-periodic systems. Because localized basis
sets have different mathematical properties, several topics throughout the im-
plementation process of the GW Sternheimer method need special attention.
These topics will be discussed throughout this thesis.

While it was possible to reproduce results of standard GW methods, the de-
sired speed up was not achieved. This is because the Sternheimer GW methods
requires multiple numerical integrations that cannot be performed as efficient
with localized basis functions as with plane waves. However, the self-consistent
Sternheimer cycle, implemented as a part of the GW method, can be used to
calculate various other properties. [2] [3] As an example of this, the framework
to calculate polarizability tensors was implemented and tested as well.
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Chapter 1

Introduction

Computer simulations have become an important part of scientific research.
They provide a way to use results from theoretical and experimental research
to compute properties that are otherwise hard to obtain. A computational
method can thus be used to examine the underlying processes of physical phe-
nomena helping in confirming experimental evidences or enlightening unknown
processes, paving the way for new applications. An example is the study of
opto-electronic devices, for example solar cells or LEDs. Building on quan-
tum theory, there are several approaches to simulate the processes that need
to happen in order for the solar cell to produce electrical energy or an LED to
emit the desired light. [4] The basic principle of opto-electronic devices is either
the absorption of photons and converting their energy into electricity or using
electricity to emit photons. [5]

Structural and atomic properties are the main ingredients to understand the
electronic behaviour of materials. [6] In the case of simulating opto-electronic
materials the behavior of the electrons is especially interesting. [6] Since elec-
trons are quantum particles they cannot be described using classical mechan-
ics. [7] That is why the principles of quantum mechanics are used. An electron
is described as a wave. The square of this wave can be interpreted as a prob-
ability amplitude for the position of the electron, and as a result there is no
specific position the electron is in, but rather a probability that the electron is
in a specific place at a specific time is observed. [7] It will be explained in chap-
ter 2 how the many-body wave function of a quantum mechanical system is a
very complicated object to deal with. Consequently, in the context of quantum
mechanical simulation, often the wave functions of the individual electrons are
examined. [7] A detailed description on how the many-particle problem can be
reduced to treating individual single particle wave functions can be found in the
next chapter. A region where such an electron wave function is not zero, which
means that the electron can be present there, is called an orbital. [7] There are
different types of orbitals with different forms and distances from the nucleus.
Due to Pauli’s exclusion principle each orbital can be occupied by a maximum of
two electrons. [7] Each orbital corresponds to an energy level, that depends on
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its distance from the nucleus, while different orbitals can have the same energy
level. [7]

The state of a quantum mechanical system is obtained as a function of all
single electron wave functions. [7] In the context of quantum chemistry one
differentiates two types of states the system can be in. The ground state of
a quantum mechanical system is the state with the lowest energy level. [7] It
is the state an atom or molecule is in when there is no external perturbation.
This means, that all electrons are in the lowest orbitals. The highest of these
occupied levels is called highest occupied molecular orbital or short HOMO.
Electrons in the HOMO level are particularly interesting. They are the least
strongly bound by the nucleus and because of that are especially susceptible to
external perturbations. [8] That is why they take a prominent role in excitation
processes. There are several well tested methods that simulate the ground state
of atoms or molecules very well. [9] Excited states on the other hand are states
where at least one electron is on a higher energy level. [10] One way to reach
an excited state is the aforementioned absorption of a photon. [5] When the
photon has the right energy an electron can be elevated to a free orbital with
a higher energy level. As mentioned above, electrons on the HOMO level are
the easiest to excite since the energy difference to the unoccupied states is
the lowest. [6] An important term to mention here is the lowest unoccupied
molecular orbital (LUMO), which is the free orbital with the lowest energy level,
and, consequently, exciting electrons to this level requires the least amount of
perturbation energy. [8] Computing excited states is a lot more challenging since
most methods are constructed for the ground state specifically. [10]

In solar cells characteristics of the electronic structure of the molecule or
atom determines which photons are absorbed. [6] One important property of
a material is the HOMO-LUMO gap, which is the energy difference between
the highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO). [6] Only if a photon has enough energy to bridge
the energy gap from occupied to unoccupied states and thus is able to excite an
electron it can be absorbed. This creates a so called exciton, that consists of the
excited electron and the hole it leaves behind. [11] Absorption alone does not yet
lead to electricity being produced. First the electron that has been excited to a
higher energy state needs to be separated from the hole. [5] Usually the ’hole’
the electron leaves behind is treated as a positive charge because it represents
the lack of a negative charge. Thus, another important property of a solar cell
is its ability to successfully separate the electron and the hole. [12]

The quality of photovoltaic cell depends largely on the properties of the
material used. [13] The rate at which photons are absorbed is important as well
as how many of the excitons are separated. Today, most solar cells are made
from crystalline semi-conductors like silicon. [14] One major advantage of these
cells is that by dividing the cell into two layers and doping one with boron
and the other one with phosphorus an internal electric field is present in the
silicon crystal. [15] That is because boron has fewer electrons than silicon and
phosphorus has more. The internal electric field is able to separate the hole and
the excited electron since they are driven to different layers. While these cells are
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Figure 1.1: This figure shows the schematic structure of a two layer organic solar
cell. In the left layer an electron is excited from the HOMO to the LUMO level,
leaving behind a hole. The goal of this thesis is to implement an alternative
way to obtain the excitation energy of an exciton like this. That in turn allows
to find new materials that can be used in organic solar cells.

very efficient once in use, they are very expensive and complicated to produce
because high temperatures are needed to form the crystalline structure of silicon.
[14] Although they are widely used today, alternatives to these kinds of cells are
needed. One of those options is the use of organic polymers. The production
of organic solar cells is cheaper and uses less energy, but those cells do not yet
reach the efficiency of silicon cells. While silicon cells reach efficiencies of over
20%, organic cells only reach an efficiency of 12%. [16] This is where quantum
mechanical simulations come into play. It is possible to calculate energy levels
of molecules and simulate the behavior of excitons using for example many-
body Green’s function theory and the GW approximation. [17] While other
methods for excited states simulations exist, in this thesis however the focus lies
on the GW approximation presented in chapter 2. These computations can be
very helpful for the search of new organic material to use in solar cells and for
designing the structure of organic cells. Different materials and arrangements
can be simulated and tested for viability in solar cells.

Calculation using the GW approximation can be time consuming and com-
putationally demanding because in addition to the occupied orbitals the un-
occupied orbitals of a molecule need to be treated as well. In the standard
GW method all possible combinations of occupied and unoccupied need to be
examined. [1] This poses a major bottleneck particularly since the number of
unoccupied states is significantly larger than the number of occupied states. [10]
Therefore, it is favorable to find an approach that avoids the need for unoccu-
pied states. [1] In this thesis such an alternative approach for these kinds of
simulations is presented that uses the Sternheimer equation.

The Sternheimer equation will be derived in detail in chapter 3. In sum-
mary, it is an equation derived from linear perturbation theory that allows the
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computation of the linear response of the electron wave functions to an external
perturbation potential. It will be explained in chapter 6 how the Sternheimer
equation can be used to avoid the need to treat unoccupied states and replaces
that with solving linear systems. The goal of this method is to reduce the
computation time of the GW approximation by avoiding the bottleneck of the
standard approach. [10]

There already exist implementations of the Sternheimer algorithm that use
plane wave basis functions. [10] [2] Plane waves are periodic functions and are
therefore very well suited to represent systems with periodic boundary condi-
tions like crystals. While they can also be used for single molecules the boundary
conditions can become a problem since the wave functions of the electrons decay
to zero towards the boundaries of the system. This leads to plane waves being
inefficient in non-periodic systems because a large space around the molecules
needs to be examined to avoid self interaction of the molecule through the peri-
odic boundary conditions. Consequently, the plane waves need to be evaluated
on a large space which leads to high computational costs. [10]

The goal of this work is to implement the algorithm using localized basis
functions that allow cheaper simulations of molecules and atoms. Localized
basis functions have their maximum at the nucleus and thus represent the shape
of single electron orbital better than a plane wave. [18] The functions used in
localized basis sets have different mathematical properties than plane waves.
Therefore, several topics need to be addressed when implementing this method
with localized basis sets.

1. Convergence: The Sternheimer algorithm contains a self-consistent cycle.
[1] These cycles often have the problem that convergence is not guaranteed
and depends on different parameters. It needs to be investigated how the
usage of localized basis sets affects the convergence properties of the self-
consistent Sternheimer cycle and what measures can be taken to improve
the convergence rate.

2. Integration: The Sternheimer method requires an integration over the three
spatial directions and over the frequency axis. [19] When using plane wave
basis sets, the integrals can be dealt with efficiently using the fast Fourier
transform. [20] This is not possible for localized basis sets. The integrals
thus have to be evaluated on a discrete grid. It needs to be tested carefully
how fine the integration grids need to be in order to calculate accurate re-
sults. The finer the grids used are the more time the computations take.
It is crucial to find the right balance between computational efficiency
and accuracy. Consequently, it needs to be tested how the numerical in-
tegrations are affecting the run time of the algorithm and whether the
Sternheimer method is also faster for localized basis sets than other GW
methods.

3. Parameters: The number of parameters that need to be set before starting
the Sternheimer calculation also needs attention. As can be seen when
the implementation details are discussed in chapter 4, there are several
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parameters that need to be chosen. For example, different integration
grids can be used, but also the convergence tolerance and factors of an
analytical continuation method need to be set beforehand and it needs to
be investigated how these parameters affect the results.

4. Analytic Continuation: An additional set of parameters is introduced by
the use of analytic continuation. Some quantities investigated in this thesis
have poles on the real axis. [1] To avoid having to deal with the poles these
quantities can be evaluated on the imaginary axis and then projected
onto the real axis using analytic continuation. Careful investigations are
required to analyse how the continuation used is able to reproduce results
on the real axis and how advantageous the calculation on the imaginary
axis are compared to the real axis.

5. Basis expansion: Lastly, to obtain the desired quantities they have to be
expanded in the basis set, in order to calculate them in matrix form. It
needs to be examined how the results of the Sternheimer algorithm can
be used to compute the needed results when a localized basis set is used.

In the following, first, the fundamentals of quantum mechanical simulation are
presented in chapter 2 as well as the conventional approach for excited states
simulations using Green’s function theory calculations. In chapter 3 the Stern-
heimer equation is derived from perturbation theory and in chapter 4 the Stern-
heimer algorithm is presented. Subsequently results of polarisabilty calculations
are discussed in chapter 5 to address topics 1, 3 and 4 without the need of nu-
merical integration. The details of implementing the GW algorithm using the
Sternheimer methods are presented in chapter 6, dealing with topics 2 and 5.
Finally the results of the implemented method are discussed and assessed in
chapter 7.
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Chapter 2

Many-Body Theory of
Electrons and Nuclei

The focus of this thesis lies on quantum mechanical simulations that describe
nuclei, electrons and their interaction. In this chapter an overview over the fun-
damentals of quantum mechanics is given and different approaches to perform
quantum mechanical calculations are presented.

In classical mechanics it is possible to calculate the path of a particle from its
position and momentum. A system of particles can be described using Hamilto-
nian mechanics. Introducing the Hamiltonian function H(qi, pi, t) that depends
on the spatial coordinates of the particles qi, their momenta pi and the time
t. The Hamiltonian function corresponds to the total energy of the system.
For example the Hamiltonian function of a non-relativistic particle moving in a
potential V is:

H(q,p) =
p

2m
+ V (q). (2.1)

The first term corresponds to the kinetic energy of the particle, the second term
to its potential energy. When the potential is constant over time the Hamilto-
nian function is time independent as well. From the Hamiltonian function the
change of the positions and momenta can be calculated from the Hamiltonian
equations. The change of the positions is:

d

dt
qi =

∂H
∂pi

, (2.2)

the change of the momentum is:

d

dt
pi = −∂H

∂qi
, (2.3)

creating a system of differential equations that can be solved to obtain the
positions and momenta. For the example above, we obtain:

d

dt
qk =

pk
m
,
d

dt
pk = − ∂V

∂qk
. (2.4)
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When taking the time derivative of the first equation and multiplying the mass
m we can derive the Newtonian equation:

d2

dt2
qk = Fk = − ∂V

∂qk
. (2.5)

Something similar is done, for example, in molecular dynamics simulations. In
each time step the forces on each particle are calculated and from that the
position of that particle in the next step. [21]

For quantum mechanical objects this is not possible. Heisenberg’s uncer-
tainty theorem states that the position and momentum of a quantum mechan-
ical object, for example an electron, cannot be known at the same time. Thus
observing the positions and momenta of electrons as in the classical case is not
possible. As an alternative approach a wave function Φ(r, t) is introduced to
describe a system of quantum mechanical particles like an atom, a molecule or a
crystal. [7] Before discussing how to obtain the wave function of a system some
practical details are introduced to simplify the notation.

In this thesis atomic units are used in all equations unless stated otherwise.
This allows to slim down equations because several frequently used constants
are equal to one: me = h̄ = e = c = 4πε0 = 1. [22] The constants are the mass
of an electron me, the elementary charge e, which is the charge of a proton
or the absolute of the charge of an electron, the reduced Planck constant h̄,
that connects the frequency of a photon to its energy, and the inverse Coulomb
constant 4πε0. To clarify the dimensions of certain quantities the constants can
be reintroduced later.

2.1 The Schrödinger Equation

The central equation in quantum mechanics is the Schrödinger equation:

ĤΦ(t) = i
∂

∂t
Φ(t). (2.6)

It describes the evolution of the wave function over time where Ĥ is the Hamil-
tonian of the system and Φ(t) is the wave function of the system that depends
on the time t. The Hamiltonian Ĥ is an operator that sums over all kinetic
and potential energies. It is the quantum mechanical analog to the Hamiltonian
function in classical mechanics. When looking at a many body system, like a
crystal, an atom or a molecule, the Hamiltonian can be specified as:

Ĥ =− 1

2

∑
i

∇2
i −

∑
j

1

2mj
∇2
j −

∑
i,j

Zj
|ri −Rj |

(2.7)

+
∑
i,k 6=i

1

|ri − rk|
+
∑
i,k 6=i

ZjZk
|Rj −Rk|

= T̂e + T̂N + V̂eN + V̂ee + V̂NN . (2.8)
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The first two terms describe the kinetic energy of the electrons and the nuclei
respectively. The last three terms the coulomb interaction between electrons
and nuclei, electrons and electrons and nuclei and nuclei. The nuclei-nuclei and
electron-electron interactions are repulsive terms because the have the same
charge, the nuclei-electron interaction is attractive and thus has a negative sign.
In equation 2.7 the lowercase ri refers to the position of the electron i and the
capital Rj to the position of the nucleus j. Accordingly electrons are always
referred to with the index i and nuclei with the index j. Zj is the charge of the
nucleus j. The operator ∇2

n is the Laplacian, the second derivative respective to
the three cartesian directions, of the particle n. Since the Hamiltonian depends
on the positions of the particles the wave function of the system depends on
them as well. [7] The Schrödinger equation is a linear differential equation since
there all terms are linear in Φ(t, {ri}, {Rj}). Therefore, a linear combination of
solutions of the Schrödinger equation, the wave functions, is itself a solution of
the equation. The wave functions thus form a vector space. Also the standard
L2 scalar product can be applied to the wave functions. This inner product:

(φr, ψr) =

∫
drφ(r)ψ(r) (2.9)

can be interpreted as the overlap of two wave functions which is the probability
of a system in a state corresponding the wave function φ(r) transitioning into
the state corresponding to ψ(r). A widely used notation in quantum mechanics
is the Bra-Ket or Dirac notation. It shortens and clears up notation. An element
of the vector space is denoted as a ”ket”:|ψ〉. Where as an operator acting on a
vector is denoted as a ”bra”: 〈φ|. A scalar product of two vectors can thus be
written as 〈φ|ψ〉 and the Hamiltonian acting on a wave function is written as
Ĥ |ψ〉.

The simplest system to examine is the Hydrogen atom. It consists of one
nucleus and one electron. Therefore, the electron electron and nucleus nucleus
interaction terms are omitted. For this case the Schrödinger equation is analyt-
ically solvable by using the spherical symmetry of the atom to split the three
dimensional partial differential equation into three separate equations that can
be solved individually. For all cases with more than one electron however, no
such solution exists. As will be visible throughout this chapter, the many-body
wave function is a very complicated object to deal with.

With no analytic solution available, a possible alternative is to solve the
equation numerically. This has proven to be impractical as well. When looking
at a system of N particles, the wave function Φ depends on 3N coordinates.
A naive attempt to solve the equation numerically is to discretize the wave
function on a spatial grid. Even when choosing a very coarse grid of 20 grid
points in each direction, 203N values are needed to describe the wave function
on the grid. A water molecule has 10 electrons. Therefore, more than 1039

values would be required. This is not feasible even on large computers. [9]
For most cases it is sufficient to calculate the wave function of a stationary

state. If the Hamiltonian does not explicitly depend on the time, the space and
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time dependence of the wave function can be separated: [7]

Φ(t, {ri}, {Rj}) = φ({ri}, {Rj})τ(t). (2.10)

Inserting this ansatz into the Schrödinger equation and applying separation of
variables yields that the time dependent function τ(t) is always of the form:

τ(t) = exp

{−iEt
h̄

}
(2.11)

and thus the equation only needs to be solved for φ({ri}, {Rj}). Consequently,
the time derivative simplifies to a constant E, that is the energy level of the
system. The problem is simplified to an eigenvalue problem described using the
time-independent Schrödinger equation:

Ĥ |Φ〉 = E |Φ〉 . (2.12)

The eigenvectors of the Hamiltonian, Φn ,are the stationary solutions of the
Schrödinger equation.

Still, all the issues of solving the time dependent Schrödinger equation also
apply to the time independent case. As a result, the problem needs to be
simplified in order to approximate the wave function of a non-trivial quantum
mechanical system.

2.2 The Born Oppenheimer Approximation

A first idea to simplifying the problem is to treat the electrons separately from
the nuclei. The Born-Oppenheimer approximation provides a way to achieve
exactly that. Using the approximation, the position of the nuclei can be fixed
and only the electrons need to be examined. [23] The Born-Oppenheimer ap-
proximation is used in a variety of different methods. At the end of this section
it will be discussed, when the Born-Oppenheimer equation can be used and it
what cases it fails.

The motivation to this approximation is that the mass of the nuclei is ap-
proximately four orders of magnitude larger than the mass of an electron. [23] A
nucleus with the same kinetic energy as an electron moves therefore significantly
slower.

The central idea is that the electrons follow the movement of the nuclei
instantaneously. The initial ansatz is to separat the wave function into

Φ({ri}, {Rj}) = ψe[{Rj}]({ri})ψN ({Rj}) (2.13)

an electronic wave function, that depends parametrically on the position of the
nuclei, and the nuclear wave function. To keep the notation short the parametric
dependence on all nuclear positions {Rj} is written as ψe[R]. When fixing the
nuclear positions the electronic Hamiltonian simplifies to:

Ĥe = −1

2

∑
i

∇2
i −

∑
i,j

Zj
|ri −Rj |

+
∑
i,k 6=i

1

|ri − rk|
= T̂e + V̂eN + V̂ee. (2.14)
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The kinetic energy term of the nuclei can be dropped because the nuclei do
not move. The nuclei nuclei Coulomb term provides a constant contribution
since it only depends on the fixed nuclei positions. Therefore, it only introduces
a constant shift of the eigenvalues and is neglected here. We thus obtain the
electronic Schödinger equation:

Ĥe

∣∣ψe[R](r)
〉

= Ee
∣∣ψe[R](r)

〉
(2.15)

This equation can be used to calculate the electronic part of the wave function.
The number of particles as well as the number of terms in the Hamiltonian
reduced compared to the original Schrödinger equation.

When inserting the split ansatz of the wave function into the original time
independent Schrödinger equation:

Ĥψe[R](r)ψN (R) = Eψe[R](r)ψN (R) (2.16)

we need to investigate how each term of the Hamiltonian acts on the wave
functions. For the kinetic energy term of the electrons we obtain:

T̂eψe[R](r)ψN (R) = ψN (R)T̂eψe[R](r) (2.17)

since the operator T̂e has no dependence on R. The same does not hold for the
kinetic energy of the nuclei, here we get:

∇2
Rψe[R](r)ψN (R) =ψe[R](r)∇2

RψN (R) + 2∇Rψe[R](r)∇RψN (R)+ (2.18)

+ ψN (R)∇2
Rψe[R](r) (2.19)

by chain rule.
Inserting this and the electronic Schödinger equation 2.15 back into equation

2.16 yields:

ψe[R](r)∇2
RψN (R) + ψN (R)ψe[R](r) (Ee + VNN ) (2.20)

−
[∑ 1

2mn
(2∇Rψe[R](r)∇RψN (R) + ψN (R)∇2

Rψe[R](r))

]
(2.21)

= Eψe[R](r)ψN (R). (2.22)

The last term in brackets needs to be approximated because it contains the
derivatives of the electron wave function. As long as they are in the equation,
we cannot decouple the nuclear part of the equation. It is usually approximated
with p2

e/2mn = (me/mn)Ee. Because me/mn is around 10−5, it can be dropped.
This is the actual Born-Oppenheimer approximation that allows the decoupling
of the equations. Here we see again the motivation explained in the beginning.
The mass ratio between electrons and nucleus is small enough such that we can
ignore the coupling term of the nuclear kinetic energy operator and thus the
systems can be decoupled with only a small error introduced. What remains is:

ψe[R](r)T̂NψN (R) + ψN (R)ψe[R](r) (Ee + VNN ) = Eψe[R](r)ψN (R). (2.23)
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Finally we obtain the nuclear Schrödinger equation by dividing out the electronic
wave function:

(T̂N + Êe + V̂NN )ψN (R) = EψN (R). (2.24)

We can now solve the electronic and nuclear Schrödinger equations indepen-
dently. Usually the nuclei electron interaction in the electronic Schrödinger
equation is expressed using a potential v(r) with fixed nuclei. Because this ap-
proach neglects nuclear motions like vibrations, the kinetic energy of the nuclei
can be introduced again in the nuclear Schrödinger equation. It can be solved
to obtain the nuclear motions. [7]

To see when the Born Oppenheimer approximation is applicable, we look
at vibronic coupling, a way to improve the approximation by including nuclear
coupling effects. [24]

Suppose that the functions ψk[R](r) are the N orthonormal electronic eigen-
functions from the time independent Schrödinger equation. The corresponding
matrix formulation of the electronic Hamiltonian:

He
ij =

〈
ψi[R](r)

∣∣ Ĥe

∣∣ψj[R](r)
〉

= δijEk(R) (2.25)

is a diagonal matrix. The nuclear Hamiltonian matrix Hn however is not diag-
onal as can be seen from equation 2.19. The matrix formulation of the nuclear
Hamiltonian, with respect to the electronic wave functions, is:

Hn
ij = δijTn −

∑
nα

1

Mn
〈ψi|Pnα |ψj〉Pnα + 〈ψi|Tn |ψj〉 . (2.26)

With

Pnmψi[R](r) = −i∂ψi[R](r)

∂Rnα
; α = x, y, z (2.27)

and n being the indices of the nuclei.
The term dropped in the Born-Oppenheimer approximation in equation 2.21

represents the off diagonal elements of the nuclear Hamiltonian. Analog to
before, the off diagonal elements prevent the decoupling of the Schrödinger
equation. Neglecting the off diagonal elements is the same as dropping the term
in the Born-Oppenheimer approximation, and thus also leads to the decoupling
of the electronic and nuclear wave functions. The off diagonal elements of the
matrix formulation satisfy:

〈ψi|Pnα |ψj〉 =
〈ψi| [Pnα,He] |ψj〉
Ei(R)− Ej(R)

(2.28)

with the numerator:

〈ψi| [Pnα,He] |ψj〉 = iZn
∑
m

〈φi|
(rm −Rn)α
(rm −Rn)3

|ψj〉 . (2.29)

The potential energy surfaces Ei(R) are the electronic eigenvalues obtained
from solving the electronic Schrödinger equation for different configurations of
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the nuclei. Thus we obtain a potential energy surface for each electron in the
system. When the potential energy surfaces are well separated for all electrons:

E0(R)� E1(R)� E2(R)� . . .� En(R), (2.30)

the Born-Oppenheimer approximation can be trusted because the off diagonal
elements of the nuclear Hamiltonian can be neglected. On the other hand, when
two potential energy surfaces come too close, the Born-Oppenheimer approxi-
mation breaks down since the coupling effects cannot be ignored. Then other
methods like vibronic coupling need to be used to account for these effects.

The Born-Oppenheimer approximation is widely used since decoupling the
electrons and nuclei decreases the complexity significantly. The problem is sepa-
rated into two smaller problems. When the approximation is applicable it yields
good results and from here on all methods and theories presented work within
the Born-Oppenheimer approximation. Additionally the following methods all
focus on the electronic structure of the system and the nuclei are assumed to
be fixed.

2.3 The Hartree-Fock Method

The Hartree method was one of the first methods introduced to approximate the
solution of the Schrödinger equation. [25] The motivation to this methods lies
in the variational principle. The correct wave function is the one that minimizes
the expected value of the Hamiltonian and thus the ground state energy level.
Consequently, any other wave function gives a higher energy value. By testing
all possible wave functions the correct one would be easy to identify. Since this
is clearly not possible, the goal of the Hartree method is to introduce a way to
calculate a trial function that is optimal under the assumptions made for this
method.

The fundamental idea of the Hartree method is to break down the many
body nature of the N-electron wave function by introducing single particle wave
functions. Each electron is represented by an individual wave function χi(ri).
The pairwise interaction of the electrons is approximated by the interaction with
a field potential that summarizes the contributions of all other electrons. The
advantage of this method is that instead of solving the N-electron Schrödinger
equation the one particle Schrödinger equation can be solved for each electron.
This simplifies the calculation significantly.

In the Hartree Method the wave function of the system is assumed to be the
product of the single electron wave functions: [26]

Φ(ri) =
∏
i

χi(ri) (2.31)

While this ansatz is simple to implement, it fails to reproduce the anti-symmetric
property of fermions, such as electrons, that is stated by Pauli’s exlusion princi-
ple. Switching two electrons should result in a sign change of the wave function.
This is not the case when the single particle wave functions are only multiplied.
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A more sophisticated approach is used in the Hartree-Fock method, an ex-
tension of the Hartree Method. Here the N electron wave function of the system
is calculated using a so called Slater determinant: [27]

Ψ(ri) =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(r1) χ2(r1) · · · χN (r1)
χ1(r2) χ2(r2) · · · χN (r2)

...
...

. . .
...

χ1(rN ) χ2(rN ) · · · χN (rN )

∣∣∣∣∣∣∣∣∣ (2.32)

When using a Slater determinant, switching two electrons changes the sign of
the wave function. [26]

The Hartree-Fock method calculation starts with an initial guess for the one
electron wave functions. These guesses can be atomic orbitals of a hydrogen
atom or linear combinations of atomic orbitals in the case of molecules. Then the
Fock-operators, that are a result of the aforementioned variational conditions,
are built from the orbitals as:

F̂ [ψj ]i = Ĥi +

N/2∑
j=1

2Ĵji − K̂ji. (2.33)

F̂ [ψj ]i is the Fock-operator built from the wave functions ψj for the i − th

electron. Ĥi is the single particle Hamiltonian:

Ĥi =
1

2
∇2
i −

∑
n

Zn
|rirn|

. (2.34)

It consists of the electron’s kinetic energy and the nuclei electron Coulomb
interaction. Jji is the Coulomb operator that corresponds to the Coulomb in-
teraction between the electron and the electrons in the j − th orbitals. Because
each orbital holds two electrons, the operator is multiplied by two. When there
is an uneven number of electrons, the single electron orbital needs to be treated
outside the sum without the factor two. K̂ is the exchange operator that incor-
porates Pauli’s exclusion principle. It is a relic of the Slater determinant used
to build the wave function. To obtain the single electron wave functions, the
eigenvalue problem:

F̂ [ψj ]iχi = εiχi (2.35)

is solved. The calculated one electron wave function are themselves orbitals that
can be used to construct new Fock-operators. Therefore, the Hartree method
is performed in a self-consistent manner. The new one electron wave functions
are used to build new Fock operators that in turn are used to calculate new one
electron wave functions. This cycle is reaped until self-consistency is reached.

The Hartree-Fock method uses, as described, simplifications, that can for
some cases lead to large deviations from experimental observations. One of
the main reasons is that the many electron wave function cannot be expressed
using only one Slater determinant. The Hartree-Fock method is therefore not
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capable to fully incorporate the electronic correlation. There are extensions,
called post-Hartree Fock methods, that improve on some of its weaknesses, e.g.
Configuration Interaction. The idea of Configuration Interaction is to use more
than one electron configuration and thus built the wave function from a linear
combination of Slater determinants. While this accounts for electron correlation
much better than standard Hartree-Fock methods, Configuration Interaction
and other post Hartree-Fock methods are computationally very demanding. [28]

2.4 Density-Functional Theory

Density functional theory (DFT) is an exact theory that allows to investigate the
electronic structure of many body systems, like molecules. Traditional density
functional theory is specifically constructed for the ground state of a system,
and the theory is therefore mainly used to investigate ground state properties.

Compared to other approaches like the Hartree(-Fock) method, it does not
require the direct solution of the many electron Schrödinger equation. As al-
ready mentioned above, the main problem with solving the Schrödinger equa-
tion is its many body nature. It is computationally very demanding to solve
the Schrödinger equation for even a small number of atoms. In DFT instead
of looking at each electron individually all electrons are treated simultaneously
by observing the electron density. The ground state energy can be uniquely
expressed by that electron density that depends on three spatial coordinates
only. [9] This reduces the complexity of the many body problem from 3N elec-
tron coordinates to only three spatial coordinates of the electron density through
the use of functionals.

2.4.1 The Hohenberg-Kohn Theorem

The central idea of DFT is to map the many particle problem of the Coulomb
interaction onto the electron density n(r). The density is defined as:

n(r) = N

∫
dr2 · · ·

∫
drN Φ∗(r, r2, . . . , rN )Φ(r, r2, . . . , rN ) (2.36)

with Φ(r, r2, . . . , rN ) the many electron wave function.
At the core of DFT stands the theorem of Hohenberg and Kohn, which

states that for a fixed potential v(r), that can for example be the potential of
the nuclei, the ground state energy of a quantum mechanical system can be
expressed through a unique functional of the electron density n(r). [29] Instead
of working with the wave function, that depends on 3N variables, we can look
at the electron density that only depends on 3 variables. The resulting ground
state energy functional has the following form:

E[n] = T [n] +

∫
v(r)n(r)dr +

1

2

∫
n(r)n(r′)
|r− r′| drdr

′ +G[n]. (2.37)
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The first part corresponds to the kinetic energy of the electrons, the second
term to the contribution from the external field v(r), the third term corresponds
to the Hartree energy and the fourth term Ĝ[n] corresponds to contributions
from the electron-electron interactions not covered from the terms before. This
functional is often referred to as the exchange-correlation functional. The exact
form of this functional is not known for non-trivial cases. Therefore, it needs to
be approximated. It is important to note that DFT is an exact theory. The only
approximation lies in the estimation of the exchange-correlation functional. [9]

When looking at this result it is not immediately clear how the number
of variables can be reduced from 3N to three while still obtaining the same
information. To understand this apparent contradiction, we need to look at the
variational principle using the density. For a given ground state density n0(r),
the corresponding ground state wave function Φ(ri) must not only reproduce
the ground state density, it also needs to minimize the energy. [9] The ground
state wave therefore must satisfy the requirement:

Ev,0 = min
Φ→n0

〈Φ| Ê |Φ〉 (2.38)

Φ → n0 stands for all wave functions that reproduce the ground state density
n0. From all the wave functions that reproduce the ground state density, the
ground state wave function is the one that also minimizes the energy. [9] Using
an electron density n(r) different from the ground state density, we obtain a
different wave function Ψ. When looking at the functional

Ev[n] = min
Φ→n

〈Φ| Ê |Φ〉 , (2.39)

according to the variational principle the resulting energy for an arbitrary den-
sity is greater or equal than the ground state energy:

Ev[n] ≥ Ev[n0] = Ev,0. (2.40)

Thus, it is always possible to set an upper bound to the ground state energy
even if the ground state density is not exactly known. The knowledge of the
ground state density combined with the energy minimization requirement there-
fore allows us to uniquely express the ground state wave function as a functional
of the electron density.

2.4.2 The Kohn-Sham Equations

There are several approaches to practical DFT calculations. An obvious idea
would be to directly minimize the total Energy with respect to the density. The
correct density is the one that minimizes the energy functional. In practice this
is not optimal. A more popular approach is the Kohn-Sham approach. [30] It
does not exclusively rely on electron density calculations, but instead introduces
non-interacting single orbital wave functions.

The idea remains to minimize the ground state energy functional:

δE[n]

δn(r)
=
δT [n]

δn(r)
+
δV [n]

δn(r)
+
δUH[n]

δn(r)
+
δG[n]

δn(r)
= 0 (2.41)
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with respect to the electron density. V [n] and UH [n] are the external field
and Hartree energy functionals respectively. The ansatz introduced by Kohn
and Sham is to use non-interacting particles that move in a potential vs. The
equation thus simplifies to:

δE[n]

δn(r)
=
δT [n]

δn(r)
+
δvs[n]

δn(r)
= 0, (2.42)

when the potential vs is chosen to be:

vs[r] = v[r] + vH[r] + vxc[r], (2.43)

the sum of the external, Hartree and exchange-correlation potential. This are
exactly the potentials corresponding to the energy functionals in equation 2.37.
The density n(r) that solves equation 2.42 is the same density that solves equa-
tion 2.41. [9] The many electron problem is thus reduced to a problem of non-
interacting electrons moving in a potential. In practice the computation starts
by calculating an electron density using non-interacting electron states:

n(r) = 2

nocc∑
i=1

ψ∗i (r)ψi(r). (2.44)

The number of occupied orbitals is nocc and the factor 2 accounts for spin
degeneracy.

Spin is a property of quantum mechanical objects. Although no real rotation
is involved it can be described as an angular momentum. In quantum mechanics
the term degeneracy is used if two or more different quantum states correspond
to the same energy level. Electrons are fermions and therefore obey the Pauli
exclusion principle. It states that two electrons in an atom cannot be in the
same quantum state. Thus each atomic orbital can be occupied by a maximum
of two electrons, one with up spin and one with down spin. From now on we
use the degeneracy factor of two to avoid the need to explicitly treat the spin
of the electrons.

The density obtained is then used to construct the Kohn-Sham Hamiltonian:

ĤKS = −1

2
∇2 + v̂(r) + V̂ H(r) + V̂ XC(r) (2.45)

where

V H(r) =

∫
dr′

n(r′)
|r− r′| (2.46)

is the Hartree potential. Using the non-interacting particles reduces the com-
plexity of the Hamiltonian because no pairwise interactions need to be treated.
This reduces the cost of solving the Schrödinger equation drastically.

ĤKSψn(r) = εnψn(r) (2.47)

These single particle Schrödinger equations are also known as the Kohn-Sham
equations. We now have a self-consistent procedure similar to the one from the
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Hartree-Fock method. The electron density depends on the single particle wave
functions, which are calculated from the non interacting Schödinger equation,
that is constructed from the Kohn-Sham Hamiltonian that in turn depends on
the electron density. This cycle can be iterated until convergence is reached.
A brief description on how the Kohn-Sham density functional theory can be
implemented using localized basis functions can be found in chapter 4.

2.4.3 The Local Density Approximation

The last piece missing is the exchange-correlation functional. There are several
different approaches to approximating this functional. One of them is the local
density approximation.

The local density approximation (LDA) estimates the exchange-correlation
energy of the system with the exchange-correlation energy of a homogeneous
electron gas. Therefore, it can be written as:

ÊXC[n(r)] =

∫
εXC(r)n(r)dr. (2.48)

The function εXC(r) is the energy per electron at point (r). [31] This is a very
simple approximation since variations in the charge density are not accounted
for. Regardless, the LDA has proven to be reliable for a large variety of systems.

The LDA can be improved by including the gradient of the electron density
to account for changes in the density. These functionals are known as general
gradient approximation functionals. The exchange-correlation functional can be
further improved by including the Laplacian of the electron density or include
results of the exact exchange energy from Hartree-Fock calculation. The latter
are known as hybrid functionals. Also linear combinations of different function-
als exist to balance out advantages and disadvantages of the used functionals.

Because these various different approximations for the exchange-correlation
functional exist, the choice of the exchange-correlation functional is crucial for
the results of a DFT simulation. Often a compromise between accuracy and
computational cost has to be found. However, more accurate results are not
guaranteed when for example using a GGA functional instead of an LDA func-
tional. [31] [32]

2.4.4 Analysis and Limits

While Kohn-Sham DFT yields good results for many different applications,
it also has its drawbacks. The Introduction of non-interacting particles is an
essential part in reducing the complexity of the problem, but as a result the
Kohn-Sham wave functions have little physical meaning because they represent
artificial non-interacting particles and not real electrons. A good example where
this causes problems is Koopman’s theorem. It states that in Hartree-Fock
calculations the first ionization energy is the negative orbital energy of the
HOMO level. [33] The theorem assumes that removing an electron from the
highest occupied orbital does not change the orbitals. The accuracy of ionization
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energies calculated this way is directly linked to the quality of the Hartree-
Fock calculation and yields results that qualitatively agree with experimental
values. [34] This is not possible in the same way for Kohn-Sham orbitals. While
there exists a version of this theorem for Kohn-Sham orbitals, the resulting
ionization energies are often very different from experimental values. [35] This is
due to the approximation of the exchange-correlation functional and the nature
of the artificial wave functions.

Due to its construction, DFT also fails to produce reliable results for excited
states calculation. That is why other theories like the many body Green’s
function theory are applied to compute properties of excited systems.

2.5 Green’s Function Theory and the GW Ap-
proximation

As mentioned above, excited states calculations prove to be a difficult task since
the widely used density functional theory is limited to ground state calculations.
The many body Green’s function theory provides a way to treat excited states
by introducing creation and destruction operators which can add a particle, for
example an electron, to the system or remove it. First the Green’s function is
introduced and some simple applications are shown. We then focus on the GW
approximation which uses the single particle Green’s function G as well as the
screened Coulomb interaction W to approximate the self energy Σ of a system.

2.5.1 The Green’s Function

Green’s functions are widely used for solving partial differential equations (PDEs).
[36] They where first introduced by George Green. For excited states calcula-
tions we state the single particle Green’s function: [20]

G(r, t, r′, t′) = 〈N | T̂
[
ψ̂(r, t)ψ̂†(r′, t′)

]
|N〉 . (2.49)

In this equation T̂ is the time ordering operator. In the case t > t′ it orders
the events in a way that t′ happens before t. ψ and ψ† are the creation and
destruction field operators for electrons. They are defined as:

ψ̂(r′, t′) =
∑
n

φn(r)cn(t) (2.50)

and
ψ̂†(r′, t′) =

∑
n

φn(r)c†n(t), (2.51)

with φn being single particle wave functions, cn the annihilation operator and
c†n the creation operator. Further, N is the ground state wave function for the
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N particle system.
Using the Heaviside function Θ, equation 2.49 can be expanded to

G(r, t, r′, t′) =− iΘ(t− t′) 〈N | ψ̂(r, t)ψ̂†(r′, t′) |N〉 (2.52)

+ iΘ(t′ − t) 〈N | ψ̂†(r′, t′)ψ̂(r, t) |N〉 .

The Heaviside function is zero for negative arguments and one for positive ar-
guments. Therefore, the the first bracket is evaluated if t > t′ and the second
if t ≤ t′. For the first case, this equations describes the insertion of an electron
at time t′ and coordinates r′ and the removal of said particle at t and r. In the
second case the equation represents the removal of an electron and therefore the
creation of a hole at time t, which is filled again at time t′.
The time dependence of the field operators can be expressed using the single
particle eigenvalues εn:

ψ̂(r′, t′) =
∑
n

φ∗n(r)cne
−iεnt. (2.53)

Inserting this into equation 2.49 yields

G(r, t, r′, t′) =− iΘ(t− t′)
∑
εn>εf

φn(r)φ∗n(r′)e−iεn(t−t′) (2.54)

+ iΘ(t′ − t)
∑
εn<εf

φn(r)φ∗n(r′)e−iεn(t−t′)

εf is the energy level of highest occupied electron state. The first term of
the equation only takes unoccupied states into account since it represents the
addition of an electron into an unoccupied state. The opposite holds for the
second term since only the occupied states are used. This is because in this
case an electron has to be removed from an occupied state. For r′ → r and
t′ → t+ = t+ δ the Green’s function becomes the charge density of the system
as creation and destruction times and positions coincide. [20]

This is an example on how the Green’s function can be used to treat a one
particle excitation. The Green’s function theory can also be expanded to treat
the excitation of more than one particle. In this thesis however we look at the
GW approximation that uses the single particle Green’s function to approximate
the self-energy of a system.

2.5.2 The Screened Coulomb Interaction

To define the screened Coulomb interaction, first, the dielectric function has
to be established. Therefore, we look at the potential that is acting on the
electrons: [20]

V (r, t) = φ(r, t)− i
∫
dr′v(r, r′)G(r′, r′, t, t+). (2.55)

23



In this case φ is the a perturbation potential acting on the system. The term
iG(r′, r′, t, t+) is the same as the single particle density n(r′), as the arguments
of the Green’s function coincide.

The inverse dielectric function is then defined as the variation of the potential
with respect to the perturbation potential: [20]

ε−1(r, r′, t, t′) =
δV (r, t)

δφ(r′, t′)
. (2.56)

Putting both equations together we obtain

ε−1(r, r′, t, t′) = δ(r− r′)δ(t− t′) +

∫
dr′′v(r, r′)

δn(r′′, t)
δφ(r′, t′)

(2.57)

this form for the inverse dielectric function. [20] It contains the variation of
the charge density with respect to the perturbation. Since there is a change in
the charge density, the coulomb interaction between two points is also changed.
Therefore, we obtain the changed Coulomb interactionW also called the screened
Coulomb interaction:

W (r, r′, t, t′) =

∫
dr′′dt′′v(r, r′′)δ(t− t′′)ε−1(r′, r′′, t′, t′′). (2.58)

2.5.3 The Self-Energy

Using this knowledge about the Green’s function and the screened Coulomb in-
teraction, one can derive a self-consistent system of five equations, called Hedin’s
equations. [17] For these equations a different notations is used to minimize the
number of arguments of each functions. We introduce 1 = (r, t), 2 = (r′, t′) and
so on. Further the polarizability:

P (1, 2) =
δn(2)

δV (1)
(2.59)

and the vortex function:

Γ(1, 2; 3) =
δG−1(1, 2)

δV (3)
(2.60)

are needed for Hedin’s equations. These equations will however not be derived
here as the focus lies on the alternative approach presented in chapter 6. Com-
bining all five quantities yields: [17]

Σ(1, 2) = i

∫
d4d3W (1+, 4)G(1, 3)Γ(3, 2; 4) (2.61)

W (1, 2) =

∫
d3ε−1(1, 3)v(3, 2) (2.62)

ε(1, 2) = δ(1, 2)−
∫
d3v(1, 2)P (3, 2) (2.63)
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P (1, 2) = −i
∫
d4d3G(1, 3)Γ(3, 4; 2)G(4, 1+) (2.64)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
d4d5d6d7

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3) (2.65)

These equations can be solved self-consistently by starting with a guess and
then solving the equations iteratively to calculate the self-energy of the system.
The self-energy can then be used to calculate the quasi particle correction of
the DFT eigenvalues and eigenfunctions. The quasi particle energy is obtained
by solving the fixed point problem: [37]

Σn(ω∗) + εKSn − V xcn = ω∗. (2.66)

The quasi particle energy is the energy needed to remove an electron from a
specific orbital and are thus very important properties of a molecule when it
comes to the development of solar cells. [37]

In practice solving Hedin’s equation is computationally very demanding. To
perform a single iteration of Hedin’s equation we start by applying the GW
approximation that approximates the vertex function in a very simple way:

Γ(1, 2; 3) ≈ δ(1, 2)δ(1, 3). (2.67)

This is turn reduces the calculation of the polarizability to:

P (1, 2) = −iG(1, 2)G(2, 1+). (2.68)

From the polarizability the dielectric functions can be calculated which then can
be used to calcualte the screened Coulomb interaction. Using again the GW
calculation, the self-energy is then obtained as:

Σ(1, 2) = iG(1, 2)W (1+, 2). (2.69)

When starting from DFT calculations the polarizability is calculated using
the Adler-Wiser expression: [38] [39]

P (r, r′;ω) = 2
∑
nm

fn − fm
εn − εm − ω

φ∗m(r)φn(r)φm(r′)φ∗n(r′). (2.70)

In this case, fn is one if n is an occupied state, and zero otherwise. Here
the problem with this method of calculating the self energy mentioned in the
Introduction is visible. It is necessary to sum over all possible combinations of
occupied and unoccupied states, n and m. This can amount to a lot of terms
needing to be computed. The dielectric function can then be calculated as seen
before:

ε(r, r′;ω) = δ(r, r′)− v(r, r′)P (r, r′;ω) (2.71)

and from that the screened Coulomb interaction:

W (r, r′;ω) = ε−1(r, r′;ω)v(r, r′). (2.72)
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The Green’s function is obtained as:

G(r, r′;ω) =
∑
n

φn(r)φ∗n(r)

εn − ω ± iη
, (2.73)

where η is an infinitesimal. Finally, combining the Green’s function and the
screened Coulomb potential, the self energy is calculated as:

Σ(r, r′;ω) = i

∫
G(r, r′;ω − ω′)W (r, r′;ω′)eiω

′δdω′. (2.74)

The self energy obtained through a single iteration of Hedin’s equations like this
is known as the G0W0.

As can be seen from equation 2.70 this calculation of the self-energy scales
badly with the number of unoccupied states. Thus, in this thesis an alternative
approach to calculate the screened Coulomb potential is presented that avoids
the need of including unoccupied states. Therefore, the Sternheimer equation
is introduced and derived in the next chapter.
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Chapter 3

The Sternheimer Equation
in Linear Perturbation
Theory

3.1 The Sternheimer equation

In this chapter the Sternheimer equation will be derived using linear perturba-
tion theory, and it is explained how perturbation theory is linked to screened
Coulomb interaction and, consequently, to the self energy. The Sternheimer
equation:

(Ĥ − εi)
∣∣∣ψ(1)
i

〉
= −P̂CVext |ψi〉 (3.1)

is a result from linear perturbation theory and was first used by RM Sternheimer
in 1954. [2] [40] In this chapter the equation will be derived step by step and all
symbols and operators will be explained. We start from the time independent
Schrödinger equation:

Ĥ |ψi〉 = εi |ψi〉 . (3.2)

The equation is perturbed by adding a linear term in the following way:

Ĥ(λ) |ψi(λ)〉 = εi(λ) |ψi(λ)〉 (3.3)

with
Ĥ(λ) = Ĥ + λĤ(1) (3.4)

ψ(λ) = ψ + λψ(1) (3.5)

ε(λ) = ε+ λε(1) (3.6)

and λ being the strength of the perturbation. The perturbation to the Hamilto-
nian Ĥ(0) can be interpreted as an external potential Vext acting on the system.
Substituting this into equation 3.3 yields:(

Ĥ + λĤ(1)
) ∣∣∣ψi + λψ(1)

〉
=
(
εi + λε

(1)
i

) ∣∣∣ψi + λψ(1)
〉

(3.7)
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Multiplication expands the equation to:

Ĥ |ψi〉+ λĤ
∣∣∣ψ(1)
i

〉
+ λĤ(1) |ψi〉+ λ2Ĥ(1)

∣∣∣ψ(1)
i

〉
= (3.8)

εi |ψi〉+ λεi

∣∣∣ψ(1)
i

〉
+ λε

(1)
i |ψi〉+ λ2ε

(0)
i

∣∣∣ψ(1)
i

〉
.

To simplify this equation, we choose to only take the linear response of the sys-
tem into account. We therefore neglect the terms quadratic in λ. This is known
as the linear approximation which has proven to be a reasonable assumption. [2]

When we subtract the time independent Schrödinger equation 3.2, we end
up with the terms linear in λ:

Ĥ
∣∣∣ψ(1)
i

〉
+ Ĥ(1) |ψi〉 = εi

∣∣∣ψ(1)
i

〉
+ ε

(1)
i |ψi〉 . (3.9)

Since λ is not zero because this case would just be the unperturbed system, we
can divide it out. Factoring out the wave functions leads to:

(Ĥ − εi)
∣∣∣ψ(1)
i

〉
= −(Ĥ(1) − ε(1)

i ) |ψi〉 . (3.10)

This looks already similar to the Sternheimer equation

(Ĥ − εi)
∣∣∣ψ(1)
i

〉
= −P̂CĤ(1) |ψi〉 , (3.11)

where the the operators

P̂occ = P̂C =
∑
n∈occ

|ψn〉 〈ψn| (3.12)

and
P̂unocc = P̂V =

∑
n∈unocc

|ψn〉 〈ψn| (3.13)

are the projection operators of the occupied states and the unoccupied states
respectively. They satisfy the following equation because of the orthonormality
of the wave functions:

1 = P̂V + P̂C . (3.14)

The right hand side of the Sternheimer equation can therefore be expanded to:

(−1 + P̂V )Ĥ(1) |ψi〉 = (−Ĥ(1) + P̂V Ĥ
(1)) |ψi〉 . (3.15)

Using the expansion from equation 3.13 we obtain

(−1 + P̂V )Ĥ(1) |ψi〉 = −Ĥ(1) |ψi〉+
∑

n∈unocc

|ψn〉 〈ψn| Ĥ(1) |ψi〉 . (3.16)

The orthonormality constrains of the wave functions yield the first order eigen-
values of the first order correction of the Hamiltonian:

ε
(1)
i = 〈ψi| Ĥ(1) |ψi〉 . (3.17)
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Therefore, we obtain:

− P̂CĤ(1) |ψi〉 = −Ĥ(1) |ψi〉+
∑

n∈unocc

ε
(1)
i |ψn〉 δni. (3.18)

Which then simplifies to:

− (Ĥ(1) − ε(1)
i ) |ψi〉 . (3.19)

That is exactly the right hand side of equation 3.10 with Ĥ(1) = V̂ext. So the
Sternheimer equation was derived from linear perturbation theory.

To account for time dependent perturbations, the Sternheimer equation is
extended using the ansatz: [41]

ψ(1)
v (r) −→ e±iωtψ(1)

v (r,±ω) (3.20)

and
V̂ext(r) −→ V̂ext(r,±ω), (3.21)

in combination with Fourier transformation, introducing the time t and fre-
quency ω. Inserting these equations into the time dependent Schrödinger equa-
tion:

i
∂ψn
∂t

= Ĥψn, (3.22)

we obtain
(Ĥ − εn ± ω)ψ(1)

n (r,±ω) = −P̂C V̂ext(r,±ω)ψ(0)
n (r) (3.23)

for all occupied states n. The Sternheimer equation can now be used to calculate
the response of the wave function and therefore the electron density of a given
system to an external perturbation potential that depends on a frequency ω.
In the context of density functional theory an interesting property to observe
is the electron density of the perturbed system. It can be calculated from the
perturbed wave function analogously to unperturbed density in equation 2.36:

∆n(r) = N

∫
dr2 · · ·

∫
drN ∆Φ∗(r, r2, . . . , rN )Φ(r, r2, . . . , rN ) (3.24)

Because the change of the electron density is in itself a perturbation of the
system, the Sternheimer equation needs to be solved self-consistently. The per-
turbation potential is updated using the response of the electron density and
the equation is solved again using the new perturbation. The details of this
process are explained in the implementation part 4 of this thesis.

The Sternheimer equation has a lot of practical applications. [2] [42] It allows
the calculation of the response of the system to an external perturbation, under
the assumption that the linear approximation mentioned above holds. Depend-
ing on the chosen perturbation it is possible to calculate various properties. As
mentioned in the previous chapter, the Sternheimer equation can be used to
calculate the self energy of a system. Depending on the initial perturbation
chosen, other quantities such as the polarizability or the inter atomic forces can
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be calculated from the linear response of the electron density calculated via the
Sternheimer equation. Further, the solutions of the Sternheimer equation de-
pend only on the occupied states of the quantum mechanical system. This is a
great advantage of this strategy compared to the approach outlined in chapter
2. As mentioned in the Introduction the sum over all state combinations in the
Adler-Wiser expression for the polarizability is a major bottleneck in the stan-
dard GW approach. Due to its construction, the Sternheimer equation does not
need unoccupied states and thus has the potential to reduce the computational
workload. [1]

For practical calculations, the Sternheimer equation can be very ill condi-
tioned. It is therefore favorable to add αPV to the Hamiltonian on the left hand
side. [1] This does not change the solution since it only depends on the occupied
states. Adding the projection operator onto the unoccupied states therefore
does not effect the results but leads to a better conditioned left hand side of the
equation.

This equation can now be used to formulate an algorithm that allows the
calculation of various properties of functional perturbation theory.

3.2 Analogies to Density Functional Perturba-
tion Theory

In this section the perturbation theory used before to derive the Sternheimer
equation will be put into the context of density functional theory and the GW
approximation explained in the previous chapter.

Density functional perturbation theory, or short DFTP, is, as the name
suggests, an extension of classic DFT. The theory looks at how the electron
density described by DFT responds to external potentials. In most cases only
the linear response of the electron density is accounted for. We now investigate
the case in which the perturbation is a point test charge introduced into the
system. In the dielectric approach the total potential experienced by an external
test charge is expressed in term of the external perturbation using the inverse
dielectric matrix ε−1(r, r′): [43] [2]

∆Vtest(r) =

∫
dr′ε−1(r, r′)∆V (r′). (3.25)

Alternatively, the response of the electron density can be expressed through the
electron polarizability χ(r, r′):

∆n(r) =

∫
dr′χ(r, r′)∆V (r′). (3.26)

When looking at DFT, the independent-electron polarizability χ0(r, r′) can be
defined as the electron density response to the a perturbation of the Kohn-Sham
potential:

∆n(r) =

∫
dr′χ0(r, r′)∆VKS(r′). (3.27)
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The independent-electron polarizability can be expressed in terms of the Kohn-
Sham wave functions:

χ0(r, r′) =
∑
n,m

fn − fm
εnεm

φ∗n(r)φm(r)φ∗m(r′)φn(r′), (3.28)

with the summation going over all occupied states n and unoccupied states
m and fn being the occupancy of a state. The variation of the Kohn-Sham
potential can be linked to external perturbation via the kernel:

K(r, r′) =
e2

|r− r′| +
δ2Exc

δn(r)δn(r′)
, (3.29)

which expresses the potential that acts on the electron density when redis-
tributing in response to a point charge. The first term is the classical Coulomb
potential, the second term corresponds to quantum effects. The Kohn-Sham
variation is thus:

∆VKS(r′) = ∆V (r′)
∫
dr′K(r, r′)∆n(r′). (3.30)

From this result the electron polarizability can be calculated as:

χ(r, r′) = χ0(r, r′) +

∫
dr1dr2χ0(r, r1)K(r1, r2)χ(r2, r

′). (3.31)

The inverse dielectric matrix can be obtained from the electron polarizability
with:

ε−1(r, r′) = δ(r− r′)−
∫
dr1

e2

|r− r1|
χ(r1, r). (3.32)

The approach is in many ways equivalent to the Sternheimer approach. Its
advantage is that all relaxation processes introduced by the point charge can
be expressed through the dielectric matrix. The drawback is that this method
is only valid for point charges and not for non-local perturbation potentials.
The Sternheimer method is more versatile as it can deal with various different
perturbations, as will be explained in the next chapter.

An additional advantage of the Sternheimer method can be seen when look-
ing at the calculation of the independent-electron polarizability. Here all states,
occupied and unoccupied, need to be treated. The Sternheimer method avoids
this and uses occupied states only.
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Chapter 4

Implementation

Before discussing the implementation of the Sternheimer algorithm, we need to
introduce a numerical solution strategy for the Kohn-Sham density functional
theory because the starting point for Sternheimer calculations are the results
from DFT calculations like the Kohn-Sham wave functions and the Kohn-Sham
Hamilitonian. In practice often basis functions are used as a way to represent
the wave functions introduced by the Kohn-Sham approach of DFT.

4.1 Basis Functions

To approximate the wave functions in DFT calculations commonly a set of basis
functions called a basis set is used. The wave functions are expressed through
a linear combination of basis functions:

ψi(r) =

M∑
j=1

Xijχj(r) (4.1)

Where M is the number of functions χj(r) in the used basis set and X the
corresponding coefficient matrix. There are different approaches to which types
of function to use in a basis set. [10]

One option is to use plane waves of form:

χ(r) =
∑
k

uke
ikr. (4.2)

These sets work very well for periodic systems such as crystal structures since
the basis functions themselves are periodic. Further some very common integrals
over the real space can be treated efficiently using fast Fourier transform. For
non-periodic systems however, plane wave basis sets are a poor choice because
of their periodic character. To avoid self-interaction, large boxes need to be
used leading to a large space on where the plane waves need to be evaluated on,
which is very inefficient. [10] That is why in this thesis localized basis sets are
used.
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Slater orbitals are another type of basis functions:

χ(r) = rne−α|r|. (4.3)

They approximate the form of atomic orbital wave functions really well since
the have a sharp peak at r = 0 and they decay with exp{−|r|}. That is because
Slater type orbitals are the analytic solution of the Hydrogen atom Schrödinger
equation. [44] Therefore, Slater-type orbitals are physically very well founded as
they originate from physical results. They require however numerical integration
because they are not differentiable for r = 0.

A compromise for this are Gaussian basis sets:

χ(r) = rne−βr
2

. (4.4)

Gaussian basis functions are cheaper to integrate than Slater orbitals, but do
not reproduce the properties of the wave functions as well. [45] [46] Another
advantage of Gaussian basis functions is that the linear combination of Gaussian
basis functions is itself a Gaussian function. Therefore, the functions used in
the implementation are all of the same type.

Additionally several integrals that are very common in DFT implementa-
tions, like overlap integrals or kinetic energy term, can be computed analytically
when using Gaussian basis functions. [47] This reduces the computation time
significantly, as no costly numerical integration has to be performed.

The software package votca-xtp which was used for this thesis uses Gaussian
basis sets. Therefore, all calculation in this thesis use them as well. In the
following some key properties of Gaussian basis functions are explained.

4.1.1 Properties of Gaussian Basis Functions

An alternative way to formulate a Gaussian basis function is as Cartesian Gaus-
sians:

Gikl(a, r,A) = xiAy
j
Az

k
Ae
−ar2A . (4.5)

Where rA = r−A with A being the center of the Gaussian. [48]
The goal is to represent the different electron orbitals of an atom with Gaus-

sian basis functions. To account for different types of atomic orbitals, the ex-
ponents are chosen independently for each Cartesian coordinate. For example,
an s orbital is represented by G000, the three p orbitals, one in each direction,
are represented by G100, G010 and G001 respectively. Due to this construction
of the Gaussian basis functions, they can be split into the contribution of each
direction: [46]

Gikl(a, rA) = Gi(a, xA)Gj(a, yA)Gk(a, zA) (4.6)

with
Gi(a, µA) = µiAe

−aµ2
A , µ = x, y, z. (4.7)

Therefore, we can treat each contribution separately and put them back together
in the end.
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Differentiating such a Gaussian results in a linear combination of two Gaus-
sians:

∂Gi(a, µA)

∂µ
= iGi−1(a, µA)− 2aGi+1(a, µA) (4.8)

Another important property is, as mentioned above, that the product of two
Gaussian functions is another Gaussian:

e−aµ
2
Ae−bµ

2
B = e−αX

2
ABe−pµ

2
P . (4.9)

With e−αX
2
AB being a prefactor independent of µ and e−pµ

2
P being the product

Gaussian with the exponential factor p = a + b and center Pµ =
aAµ+bBµ

p .
The exponent of the prefactor can be given in term of the Gaussian factors as
α = ab

a+b and XAB = Aµ−Bµ. The center of the product Gaussian lies between
the centers of the factor Gaussians. The cost of an integral over Gaussian basis
functions can be reduced significantly by contracting a product of Gaussians
into a single Gaussian. [48]

4.2 Implementation of Kohn-Sham Density Func-
tional Theory

The foundations of every Sternheimer calculation are the results of an underlying
density functional theory calculation. To build the Sternheimer equation, the
Kohn-Sham Hamiltonian and wave functions are needed. That is why in this
section a summary of how the Kohn-Sham approach to density functional theory
is implemented is presented.

As explained in section 2.4 the DFT workflow is done in a self consistent
manner. The computation starts with an initial guess for the Kohn-Sham or-
bitals. One way is, as discussed, using non-interacting particle orbitals as a
starting point for the DFT calculation. The orbitals are obtained by solving the
non-interacting Schrödinger equation.

The orbitals are used to set up the overlap matrix:

Sij = 〈χi|χj〉 , (4.10)

the non-interacting Hamiltonian matrix Hn and the initial guess for the electron
density matrix:

Dkj =

N∑
i=1

XikXij . (4.11)

X is the coefficient matrix that constructs the orbitals from the basis functions
as shown in equation 4.1.

From the density matrix the exchange-correlation matrix:

Vxc,ij = 〈χi| V̂xc |χj〉 (4.12)

34



that depends on the exchange-correlation functional chosen and the electron
repulsion matrix:

VH,ij = 〈χi| V̂H |χj〉 =

∫ ∫
drdr′χi(r)χj(r)

1

|r− r′|n(r′). (4.13)

are calculated. The integral used to calculate the electron repulsion matrix is a
very complicated object to deal with. It can be written as:

〈χi| V̂H |χj〉 =
∑
kl

Dkl(ij|kl). (4.14)

with

(ij|kl) =

∫
drdr′

χi(r)χj(r)χl(r
′)χl(r′)

|r− r′| (4.15)

being called a four center integral. A very similar integral needs to be evaluated
in the Sternheimer algorithm. That is why an efficient approximation of the
integral can be found in section 4.3.12. Once all matrices needed to build the
Kohn-Sham Hamiltonian:

HKS = Hn + Vxc + Vee (4.16)

are constructed, the Kohn-Sham equation in matrix form is obtained as:

HKSXi = εiSXi. (4.17)

Diagonalizing the Kohn-Sham Hamiltonian yields the Kohn-Sham energies εi
and the coefficient Matrix X that can be used to construct the new Kohn-Sham
wave functions. They can in turn be used to construct a new electron density
matrix that is used to construct a new Kohn-Sham Hamiltonian. This cycle is
repeated until convergence.

This section only scratches the surface of DFT implementations. There are
a lot of ways to optimize the convergence properties of the self-consistent cycle
and the computation time of the integrals. However, it should give an overview
over how the matrices used in the next section are constructed.

In the next section the self-consistent Sternheimer algorithm will be pre-
sented. It builds directly on the results of the DFT calculations as the Kohn-
Sham Hamiltonian, the wave functions, the density matrix as well as the overlap
matrix and the coefficients are needed to construct the Sternheimer equation.

4.3 The Self-Consistent Sternheimer Method

As discussed in the previous chapter 3, the Sternheimer equation can be used to
calculate different properties, such as the polarizability or the screened Coulomb
potential in the context of density functional perturbation theory. In this section
the algorithm used to compute these properties is presented. Also several of the
important topics outlined in the Introduction are addressed. The algorithm is
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commonly referred to as the self consistent Sternheimer method. In this section
the method is explained step by step. Further some additional algorithms are
presented that are required to perform the procedure or provide some sort of
improvement. This chapter mostly focuses on the calculation of the polarizabil-
ity tensor [3] as an example on how the Sternheimer method can be used, but
changes needed for other computations are noted when they arise. It is noted
here that computing the polarizablity tensor does not involve an integration
over space or frequency. Therefore, issues arising from numerical integrations
will be addressed in chapter 6 where the Sternheimer GW method is discussed.

Before discussing the algorithm itself the Sternheimer equation needs to be
transformed into matrix form. [19] We start by expanding the wave function in
the basis functions:

ψv(r
′) =

∑
i∈occ

= cviχ(r′) (4.18)

ψ
(1)±
v[ω] (r′) = ∆ψ±v (r′) =

∑
i∈occ

∆c±vi[ω]χ(r′). (4.19)

Inserting this into the dynamic Sternheimer equation 3.23 and projecting both
sides onto the basis functions we obtain:∑

ij

〈φi| Ĥ − ω1̂ |φj〉∆cvi = −
∑
nm

〈φn| 1̂− P̂occ∆V |φm〉 . (4.20)

This simplifies to

(H− (εv ± ω)S)∆c±v[ω] = −(1− SρT )∆V[ω]cv (4.21)

the matrix formulation of the Sternheimer equation. [19] With S being the
orbital overlap matrix, ρ being the density matrix, H the Hamiltonian matrix,
∆V the perturbation potential and cv the coefficients of the respective wave
functions.

The Sternheimer method starts with a standard DFT calculation to obtain
the Kohn-Sham wave functions and the Kohn-Sham Hamiltionian of the system.
We can then use the Matrix formulation of the Sternheimer equation from above:

[H− (εv ± ω)S]∆c±v = −
[
1− SρT

]
∆Vcv. (4.22)

The results of the DFT calculation allow the construction of the Sternheimer
equation. Inserting the Kohn-Sham Hamiltonian H, the overlap matrix S,
the density matrix ρ, the Kohn-Sham coefficients cv and eigenvalues εv, the
only pieces missing are the perturbation matrix that is chosen according to
the wanted quantity and the frequency ω. [19] Consequently, the self-consistent
Sternheimer method can now be set up.

4.3.1 Frequency Grid

The Sternheimer equation can be solved for different frequencies. Often the
property is wanted as a function of the frequency, so the Sternheimer equation
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Start from DFT 
results

Set initial perturbation

Solve the Sternheimer 
equation

Calculate the changed 
electron density

Update the perturbation
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Convergence

Return 
corrected electron 

density

Figure 4.1: This flowchart describes the workflow of the self-consistent Stern-
heimer equation. In the following, each step is explained in detail.
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needs to be evaluated on a grid of frequencies. Since the matrix on the left hand
side of the equation can be ill conditioned for real frequencies, the Sternheimer
equation is solved for complex frequencies of form ωreal + iκ. [3] For values of
κ between 3-5eV, the system is better conditioned and converges faster. [19]
The approximation of the values on the real axis is performed using analytic
continuation, in this case the Padé approximation. [49] How many frequencies
are evaluated depends on the desired quantity. In the following chapter 5 an
analysis of different frequency grids can be found.

4.3.2 Perturbation

Depending on what property needs to be calculated, the initial perturbation
∆V needs to be chosen accordingly.

It is possible to use a variety of different perturbation potentials and calculate
the response of the system. For polarizability calculations the perturbation is
initialized as an electric field Vin = r·E(ω). [3] For GW calculations the potential
is chosen as the bare Coulomb potential Vin = v(r, r′). [1] It is explained later
how to calculate the stated properties from the solution of the Sternheimer
equation.

The Matrix values of the perturbation are determined by expansion in the
basis functions: [19]

Vin,ij[ω] =

∫
drφi(r)Vext(r, ω)φj(r). (4.23)

4.3.3 Spatial Grid

Depending on the perturbation chosen, the Sternheimer equation sometimes
needs to be solved on a spatial grid. For the polarizability tensor this is not the
case since the electric field does not depend on r. The solution only depends on
ω:

[H− (εv ± ω)S]∆c±v[ω] = −
[
1− SρT

]
∆Vcv. (4.24)

For GW calculations on the other hand, the perturbation directly depends
on r. [19] Therefore, the solution of the Sternheimer equation depends on r as
well:

[H− (εv ± ω)S]∆c±v[ω,r] = −
[
1− SρT

]
∆V[r]cv. (4.25)

The Sternheimer equation, in that case, has to be solved on a spatial grid to
obtain the response of the wave function for each point in space. The details
on how the grid can be set up and how the spatial integration is implemented
can be found in chapter 6 because for now the focus lies on the polarizability
calculation.

4.3.4 Solving the Sternheimer Equation

Once the initial perturbation potential is known, the Sternheimer equation can
be solved for ∆cv(r, ω). While different solvers can be used to compute the solu-

38



tions of the Sternheimer equation, the complex bi conjugate gradient algorithm
has proven to be a good method for this task. [1] [50] It can also be used to
initialize a multi shift solver that is introduced later on.

For small real parts of ω the right hand side of the Sternheimer equation is
changed to (H + αSρ)− (ε± ω)S. [1] This is the matrix formulation of adding
the projection operator introduced in the theory section. While this does not
effect the solution, the system is better conditioned using this left hand side.

4.3.5 Calculating the Change in Electron Density

The solution of the Sternheimer equation can be used to calculate the change in
the Kohn-Sham electron density ∆n caused by the perturbation potential. This
change is a result of the electrons interacting with the perturbation potential.

The following formula is used to determine the reaction of the electron den-
sity: [1]

∆nij(ω) = 2
∑
v,σ=±

cv,i∆c
σ
v,j(ω). (4.26)

The reaction of the electron density is calculated from the coefficients of the KS
wave function and the first order correction of the coefficients calculated from
the Sternheimer equation. This is an important step because from the response
of the electron density, the perturbation potential can be updated. [1]

4.3.6 Updating the Perturbation Potential

The change of the electron density is in itself a perturbation to the original
system, that has to be taken into account. That is why the Sternheimer equation
is solved in a self-consistent manner. To include the potential induced by the
change of the electron density the Hartree and exchange-correlation potentials
are calculated and added to the perturbation potential: [3]

∆Vij(ω) = Vext,ij[ω] + VH(ij)(ω) = Vext,ij[ω] +
∑
kl

(ij|kl)H,xc∆nkl(ω). (4.27)

With

(ij|kl)H,xc =

∫ ∫
drdr′φi(r)φj(r)(vc(r, r′) + fxc(r, r′))φk(r′)φl(r

′) (4.28)

being a four point integral. In this implementation the integral is split up into
the sum two integrals:

(ij|kl)H + (ij|kl)xc =

∫ ∫
drdr′φi(r)φj(r)(vc(r, r′))φk(r′)φl(r

′) (4.29)

+

∫ ∫
drdr′φi(r)φj(r)(fxc(r, r′))φk(r′)φl(r

′) (4.30)

In comparison to the Random Phase Approximation, that is often used to cal-
culate the linear screening of electrons, this method takes exchange-correlation
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interaction into account. Thus this approach goes beyond what is done in the
standard approach and includes additional term leading to increased physical
accuracy.

To speed up the computation an auxiliary basis is used to approximate the
first integral via three point integrals. This method is explained later on in
section 4.3.12. The second integral is evaluated numerically on a spatial grid.
To reduce computation time, the second integral can be computed once at the
start of the method and then saved. Hence, the integral does not have to be
evaluated in every step. This is especially important because the evaluation of
the integrals is the most time consuming part of the cycle. As seen in figure 4.2,
presaving the integral reduces the computation time for a small basis sets by a
factor of more than 20. Although the implementation uses the symmetries of the
integral to save memory, for a higher number of basis functions the time saved
per cycle is reduced. When exceeding 120 basis functions, it is more efficient
to evaluate the integral in every step. Another reason why this solution is not
feasible for large basis sets is the amount of memory it requires. The memory
needed scales with N4 where N is the number of basis function. To reduce
the computation time for larger molecules, the auxiliary basis approximation
mentioned above could be used for the fxc integral as well.

When the integration is complete, the updated perturbation is inserted back
into the Sternheimer equation and the equation is solved again. This self con-
sistent cycle is continued until the change of the perturbation potential in one
step is below a predefined threshold. In the implementation a history of the last
perturbation potentials is stored and compared to the updated potential. If the
difference is not below the defined threshold, the perturbation is inserted into
the Sternheimer equation again and the cycle is repeated once more.

4.3.7 Convergence Properties

The first problem that needs to be investigated when implementing the self-
consistent Sternheimer method using localized basis sets is the convergence
properties of the self-consistent cycle.

The self-consistent cycle is not guaranteed to converge. Simply using the
newly calculated perturbation potential resulted in the cycle diverging for most
test cases. There are several ways to improve the convergence of this fixed point
iteration. The crucial point is updating the perturbation potential. Calculating
the full four center integral instead of approximating it improves the convergence
because even small errors introduced can hinder the convergence of the cycle.
In this case calculating the full integral is impractical for larger systems since it
scales badly with the system size.

Another method that was tested is moving the frequency grid points away
from the real axis. While this improves the convergence, the approximation
of the real frequency values via analytic continuation is not accurate enough
for this method to be feasible. The error introduced by the large shift of the
frequencies is too large. For Benzene, shifts of κ = 25eV are necessary to guar-
antee convergence. As discussed later, only shifts up to 5eV lead to reasonable
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Figure 4.2: The plot shows the computation time needed to evaluate the fxc
integral 4.30 and to update the potential, depending on the number of basis
functions used. When presaving the integral and updating the potential using
the stored integral, less time is needed when using less than 120 basis functions.
The scaling with the number of basis functions is worse however for this method.
When using more basis functions, computing the integral in every step is more
efficient.
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results. As a result, a different method is needed to improve the convergence of
the self-consistent Sternheimer method, independent of the frequencies chosen.

Instead of blindly using the new potential, a mix of the new potential and
potentials calculated in previous steps is used. [51] A very simple method of
doing this is choosing the new input potential to be linear combination of the
last two potentials:

∆Vin = α∆Vnew + (1− α)∆Vold (4.31)

This simple method already leads to a considerable improvement though it did
not lead to convergence in every test case. Another downside of the method is
that α has to be chosen according to the system and the frequency ω.

Therefore, a more sophisticated method was implemented. The Anderson
method provides a way to mix the last M potentials calculated into a new input
potential. [52] Consider

∆V
(m)
out = F [∆V

(n)
in ] (4.32)

where F stands for the Sternheimer algorithm described above that calculates

the new potential from an old potential. And ∆V
(in)
out/in the input and output

potentials in the mth iteration of the self-consistent cycle Sternheimer respec-
tively. In the Anderson method the mixing coefficients are chosen in a way
that minimizes the quadratic difference between the latest output and inputs
potentials.

We define
Dm = ∆V mout −∆V min , (4.33)

the difference between input and output potential in each iteration. Now the
last M input and output potentials are mixed separately:

∆̃V in = ∆V Nin +

M∑
m=1

ϑ
(
∆V N−min −∆V Nin

)
, (4.34)

∆̃V out = ∆V Nout +

M∑
m=1

ϑ
(
∆V N−mout −∆V Nout

)
. (4.35)

Where N is the latest iteration and the coefficients ϑ are calculated by solving
the linear system:

Aϑ = c, (4.36)

with

Amj = Re 〈DN −DN−m|DN −DN−j |DN −DN−m|DN −DN−j〉 (4.37)

and
cm = Re 〈DN −DN−m|DN |DN −DN−m|DN 〉 . (4.38)

Lastly, the new input potential is the mix of the input and output potentials
calculated above:

V N+1
in = αṼout + (1− α)Ṽin. (4.39)
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Figure 4.3: The graph shows the norm off the difference of the self-consistent
perturbation potential for Benzene. One can see that the fastest convergence is
reached using the Anderson Mixing. Using linear mixing does not necessarily
lead to convergence but does depend on the mixing constant α. Choosing the
right constant is not straight forward because it depends on the system and
frequency. The Anderson mixing is thus the preferred method for the self-
consistent Sternheimer algorithm.

Again, the factor α can be chosen freely, but in this case, the impact of the
value chosen is not as important as in the linear mixing case.

Using the Anderson mixing of order M ≥ 10, the self-consistent Sternheimer
method converged for all test cases used. Also the number of iterations needed
until convergence was reduced compared to linear mixing.

In can be concluded that by introducing the Anderson mixing scheme, the
convergence of the self-consistent Sternheimer cycle ensured. Consequently,
topic 1 can be regarded as solved.

In the following it will be explained how the results of the Sternheimer
equation can be used to calculate the polarizability tensor.

4.3.8 Calculating the Polarizability Tensor

Once the self-consistent Sternheimer cycle is converged, the results like the cor-
rected density or the converged perturbation potential can be used to calculate
the desired property. One example that is given hear is the calculation of the
polarizability tensor the system. [3]

To calculate the polarizability tensor, the self-consistent Sternheimer method
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is used to calculate the response of the electronic structure of system, for ex-
ample a molecule, to an external electric field. Under the assumption that
the positions of the nuclei are fixed, the electric field induces an electric dipole
p(t). [3] It is given by:

p(t) = −e
∫
dr r n(r, t). (4.40)

Fourier transforming p(t) and n(r, t) as p(ω) and n(r, ω), the polarizability
tensor←→α (ω) can be defined as the first order variation of the dipole with respect
to the external electric field:

←→α (ω) =
∂p(ω)

∂E(ω)
. (4.41)

Putting the two equations together, we obtain:

←→α µν(ω) = −e
∫
dr rµ

∂n(r, ω)

∂E(ω)ν
. (4.42)

Where rµ points into one of the three spatial directions µ = x, y, z.
The variation of the electron density with respect to the electric field is

exactly the ∆n calculated during the Sternheimer cycle. [3] By expanding it
with the basis functions:

∆n(r, ω) =
∑
ij

∆nij(ω)φi(r)φj(r) (4.43)

we obtain a matrix formulation of ∆n, that can be inserted into equation 4.42.
The polarizability tensor can then be calculated from the change of the

electron density:

←→α µν(ω) = −
∑
ij

∆nνij(ω)

∫
drφi(r)rµφj(r). (4.44)

With ∆nν(ω) being the converged change in electron density resulting from an
external electric field in direction ν and the integral being the dipole integral in
direction µ. [3]

In the result section of this thesis the isotropic average of the polarizability
tensor is used to compare results. It is defined as:

α = (←→α xx +←→α yy +←→α zz)/3, (4.45)

the average of the diagonal entries.
To calculate the polarizability tensor for a given frequency, several parame-

ters need to be chosen that are not necessarily known beforehand. For example
the optimal shift along the imaginary frequency axis can depend on the system.
The closer the frequencies are to the real axis, the more accurate the Padé-
approximation is. But when the frequencies are too close to the real axis, the
matrices become ill conditioned and the self consistent cycle becomes unstable.

Further the absolute value of the polarizabilty depends on the strength of
the electric field applied to the system.
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4.3.9 Kramers-Kronig

The Sternheimer method calculates the real part of the response function. For
some cases it is also desirable to investigate the imaginary part of the function.
The Kramers-Kronig relations allow the computation of the imaginary part of
a function from its real part if it satisfies this symmetry:

φ(1)(−ω∗) = φ(1)∗(ω). (4.46)

This identity follows directly from the construction of the dynamic Sternheimer
equation in equation 3.20. [41] We therefore obtain Im(φ(ω)) with: [41]

Im(φ(1)(ω)) = −
∫ ∞
−∞

dξ
Re(φ(1)(ξ))

ξ − ω (4.47)

4.3.10 The Padé Approximation

The only thing left is to project the calculated values onto the real axis. Since
the Sternheimer equation is solved for frequencies shifted away from the real
axis, a continuation onto the real axis is needed.

The N-point Padé approximation is an analytic continuation of the following
form: [49]

CN (ω) =
a1

1 + a2(ω−ω1)

1+...
aN (ω−ωN−1)

1

(4.48)

For each frequency and value, a coefficient ai = gi(ωi) is calculated using the
recursive formula: [53]

gp(ω) =
gp−1(ωp−1)− gp−1(ωp)

(ω − ωp−1)gp−1(ωp)
(4.49)

with initial starting value:
g1(ωi) = ui, (4.50)

where ui is the calculated value at ωi.
The N-Point Padé approximation can be evaluated using another recursive

algorithm: [53]

CN (z) =
AN (z)

BN (z)
(4.51)

with
An+1(z) = An(z) + (z − zn)an+1An−1(z), (4.52)

Bn+1(z) = Bn(z) + (z − zn)an+1Bn−1(z) (4.53)

and A(0) = 0, A(1) = a1, B(0) = B(1) = 1.
The use of the Padé Approximation allows us to solve linear systems that are

ill conditioned or even singular, by adding an imaginary part to the frequency
ω. This reduces the numerical error of the solver and speeds up the solution
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process. For some cases finding a solution would even be impossible without
introducing a shift.

The Padé approximation also speeds up the convergence of the self consis-
tent Sternheimer cycle since the solution of the linear system is better for well
conditioned system. Smaller numerical errors lead to a more stable cycle.

The accuracy of the Padé Approximation depends mainly on two factors,
the number of input points and how close these points are to the evaluation
points. Therefore, it is important, as shown above, to choose the grid size and
the shift carefully.

One of the drawbacks of this recursive implementation is that the number of
grid points is limited. Since the values A and B directly depend on the previous
value, they tend to become very large or small which in some cases can lead
to a overflow error. This error is caught in the implementation. Nevertheless,
for a large range of frequencies splitting up the range into smaller batches is
recommended.

Further this implementation can only approximate scalar valued function.
Therefore, each entry of the tensor is approximated independently. A matrix
valued approximation was implemented but was ultimately not used since it was
less accurate due to the error induced from the matrix inversion needed during
the calculations.

Since during the calculation several divisions are needed, the algorithm al-
ways checks the denominator to avoid division by zero. This can lead to an
input point being rejected. But for a large enough grid size, this does not effect
the overall accuracy.

To account for the symmetry of the polarizability function, for each tensor
calculated four points are added to the Padé Approximation: [3]

f(ωreal + iκ) = α, (4.54)

f(ωreal − iκ) = α∗, (4.55)

f(−ωreal + iκ) = α, (4.56)

f(−ωreal − iκ) = α∗. (4.57)

This scheme ensures that the symmetries

α(ω∗) = α∗(w) (4.58)

and
α(ω) = −α(w) (4.59)

are preserved.

4.3.11 The Multi Shift Algorithm

The Multi Shift algorithm is a method designed to speed up the calculation of
the solution of a linear system that are similar to an already solved seed system
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Ax = b. A linear system of form Ax + ωI = b can be solved by replacing
expensive matrix vector operation with vector operation.

The foundation of the Multi Shift method is the complex bi conjugate gra-
dient algorithm. [50] It is an extension of the well known conjugate gradient
algorithm that allows to compute solutions of non symmetric complex linear
systems. Both algorithms are Krylov subspace methods that rely on projecting
the solution vector on a Krylov subspace that is expanded in each step. It can
be shown that the associated subspaces of the seed system: {b, Ab,A2b, ...} and
the shifted system {b, (A+ ωI)b, (A+ ωI)2b} form the same linear space. [50]

Therefore, it is possible to store and reuse the coefficients:

αn =
〈r̃n|rn〉
〈p̃n|Apn〉

(4.60)

and

βn = −〈A
∗p̃n|rn+1〉
〈p̃n|Apn〉

(4.61)

from the BiCG algorithm. Here rn and r̃n are the biorthogonal residuals and
pn and p̃n the search directions. The matrix vector operations performed here
are the most expensive part of the algorithm.

One obtains the new residuals and coefficients for the shifted system using
the following formulas:

rn,ω =
rn
πn,ω

(4.62)

αn,ω =
πn,ω
πn+1,ω

αn (4.63)

βn,ω =

(
πn,ω
πn+1,ω

)2

βn (4.64)

where π is calculates recursively:

πn+1,ω = (1 + ωαn) +
αnβn−1

αm−1
(πn,ω − πn−1,ω). (4.65)

These equations avoid matrix vector multiplication. Therefore, the Multi Shift
Solver reduces the computational costs of solving shifted linear system. [50]

For the Sternheimer equation it is straight forward to bring it into a form
that is suitable for the Multi Shift solver. Multiplying the inverse density matrix
S−1 yields:

[S−1 − (εv ± ω)1]∆c±v = −
[
S−1 − ρT

]
∆Vcv. (4.66)

This is exactly the form needed for the Multi Shift method. Once the system
is solved for ω = 0, the Sternheimer equation can be solved more efficiently for
other frequencies.
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4.3.12 Four Center Integration

When updating the perturbation potential a four point integral has to be eval-
uated. It is noted here that this integration is not the spatial integration men-
tioned as topic 2 in the Introduction, but rather an integral of shape:

(ij|kl)H =

∫ ∫
drdr′φi(r)φj(r)(vc(r, r′))φk(r′)φl(r

′). (4.67)

Integrating over four sets of basis functions is a very costly procedure and scales
badly with the N4, with N being the number of basis functions. [45] There are
N2 different combinations of this product φi(r)φj(r). Fortunately the functions
in this set of products are highly linear dependent and can therefore be approx-
imated using a reduced number of functions. This reduced set of around 3−5N
functions is called an auxiliary basis set. We call the functions ξν(r) in this set
the auxiliary basis functions.

The four center integral can thus be approximated using two and three center
integrals: [54]

(ij|kl)H ≈
∑
ν,µ

(ij|ν)(ν|µ)−1(µ|kl), (4.68)

where

(ν|µ) =

∫ ∫
drdr′

ξν(r)ξµ(r′)
|r− r′| (4.69)

is the two center repulsion integral and (ν|µ)−1 its inverse. (ij|ν) is the corre-
sponding three center integral:

(ij|ν) =

∫ ∫
drdr′

φi(r)φj(r)ξν(r′)
|r− r′| . (4.70)

This approximation leads to a significant reduction in computational load since
the approximation scales only with N3. The quality of the approximation can
be improved by using a larger auxiliary basis set.

In the next chapter the self-consistent Sternheimer method will be tested by
calculating the polarizability tensor for different parameter sets.
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Chapter 5

Polarizability Results

For this thesis the self-consistent Sternheimer algorithm was implemented for the
simulation code votka-xtp. Additionally algorithms for the Padé Approximation
and the Anderson mixing were implemented. Before goining into details on
how the Sternheimer cycle can be used in GW calculations, the self consistent
Sternheimer method was tested by calculating polarizability tensors using the
method described in the previous chapter. To test and analyse the Sternheimer
method, the framework to compute the polarizability tensor was also added
to the code. The calculation of the polarizability tensor does not require an
integration over space or frequency other than the four center integral from
section 4.3.12. Thus these calculations provide a good way to see how the
Sternheimer method behaves when changing different parameters like the shift
of the Padé-approximation or the basis set used without the need to investigate
the numerical integrations as well. This will help to get a deeper understanding
of several topics stated in the Introduction. In this chapter topic 3 is discussed in
detail as several different parameter sets are tested and compared to investigate
their respective effect on the calculations. Additionally topic 4 is addressed
because different input configurations of the Padé approximation are used and
discussed as well.

All calculations were performed for Benzene to compare the data to calcu-
lations from reference [3].

The algorithm was tested for different parameters. First the frequency grid
was altered. Several numbers of grid points were tested to see how many are
needed to achieve a sufficient accuracy.

The plot in figure 5.1 shows that even with very few grid points the first peak
is still approximated very well. For frequencies greater than 9eV the graphs
differ a lot. Using the Sternheimer method, it is fairly simple to reproduce the
first peak, while everything beyond that is very sensitive to the parameters.

Looking at the isotropic average for different imaginary shifts of the frequen-
cies in figure 5.2, a similar pattern is visible. The first peak is reproduced for
all shifts but for high frequencies there are no similarities. The first peak is
very useful since it corresponds to the energy gap between the highest occupied
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Figure 5.1: The graph shows the isotropic average of the polarizability tensor
of benzene for different frequency grids. The first peak is reproduced for even
small grids with only ten grid points. For frequencies larger than 10 a higher
number of grid points is needed for better accuracy.
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Figure 5.2: The graph shows the isotropic average of the polarizability tensor of
benzene for different values of κ in the frequency grid. Again, the first peak is
very similar for all different shifts and for higher frequencies the graphs differ a
lot. This is due to a loss of accuracy for higher values of κ. When the grid points
are further away from the real axis, the Padé approximation is less accurate.
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Figure 5.3: The graph shows the isotropic average of the polarizability tensor of
benzene for different parameters. Changing the accuracy of the numerical inte-
gration for the four center integrals needed to update the perturbation potential
does not have a large effect on the results. Also changing the tolerance of the
convergence does not effect the output drastically. Using the projection operator
onto the unoccupied states to regularize the left hand side of the Sternheimer
equation has a small effect on the first peak of the graph.

orbital and the lowest unoccupied orbital. The specific parameters of the grid
do not have a large influence on the result. Therefore, to calculate this property,
the grid can be chosen freely as long as there are enough grid points and the
shift is around 3eV.

This matches with the results from other tests seen in figure 5.3. Changing
the accuracy of the numerical integration of the four center integrals calculated
to update the perturbation potential in the self-consistent Sternheimer cycle
does not effect the first peak of the isotropic average. Neither does changing
the tolerance criterion for convergence. Only the values for higher frequencies
differ. It is therefore possible to choose a coarse grid for numerical integration
which saves around 2

3 of computation time. Improving the regularization of the
left hand side of the Sternheimer equation by adding the projection operator
onto the occupied states manifold changes the results slightly but for small
frequencies it is necessary to so for the Sternheimer equation to be numerically
solvable.

Using different basis sets indicates how the algorithm behaves for a different
number of basis functions. More basis functions usually increase the accuracy
of the computation, however there is no guarantee that this is the case. Figure
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Figure 5.4: The graph shows the isotropic average of the polarizability tensor
of benzene using different basis sets. All used basis sets are Karlsruhe basis
sets with def2-svp being the smallest set and def2-qzvp being the largest one.
The first peak shifts slightly towards smaller frequencies for larger sets. For
frequencies larger than 10eV there are no similarities between different basis
sets to be seen.
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5.4 shows that increasing the size of the basis sets leads to a shift of the first
peak towards smaller frequencies. For even larger sets only the absolute value
of the isotropic average changes. For frequencies larger than ten the graphs
differ heavily. This indicates that the Sternheimer methods is not well suited
to calculate high frequency polarizabilities.

To summarize all the tests explained above it is clearly visible that the
first peak is reproduced by all parameter sets tested while the results differ
for frequencies larger than 10eV. Conclusively the Sternheimer method is very
robust respective to changes in the parameters discussed in this chapter when
it comes to calculating the first spike of the isotropic average. This is to be
expected because the first peak is a very distinct feature of the polarizability
tensor as in the reference used to compare the results to [3] only the first peak
could be reproduced from experimental data. So while the effects of changing the
grid, the Padé parameters, the convergence tolerance and other parameters can
be seen in the results for higher frequencies, the pronounced features are mostly
unaffected by the changes. The largest changes can be observed when changing
the basis set. This can be explained by the fact that while the parameters are
affecting the mathematical tools and methods used in the Sternheimer method
changing the basis sets also affects the underlying DFT calculations and thus
the single particle wave functions and the electron density used as the starting
point for the cycle.

To conclude on topic 3, different parameters always need testing to find suit-
able values. In the case of the self-consistent Sternheimer method the parameter
sets shown in this chapter prove to be reliable and robust in regards to changes
in the magnitudes depicted here. Regarding topic 4 the Padé-approximation
proves to be a reliable method to avoid treating poles on the real axis, and
enforce symmetric properties onto the observed function. It is important that
enough input points are used and that the distance to the targeted evaluation
points is small enough, but as the examples shown here indicate already ten
gridpoint on a range of more than 25eV is enough to produce good results while
the shift that is introduced can be chosen freely as long as it is under 5eV.
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Chapter 6

GW Sternheimer
Implementation

As mentioned above, the self-consistent Sternheimer method can be used for
GW calculations as well. [1] The goal is to construct the self-energy:

Σ(r, r′, ω) =
i

2π

∫
dω′G(r, r′, ω + ω′)W (r, r′, ω′). (6.1)

In the Introduction it was already mentioned as topic 5 that it needs to be
examined how the self-energy, the screened Coulomb potential and the Green’s
function can be expressed in a Gaussian basis set. In this chapter it is first
explained how the screened Coulomb interaction and the Green’s function can
be obtained, and subsequently how the integrations can be performed to evaluate
the self-energy.

6.1 The Screened Coulomb Interaction and the
Green’s Function

The Screened Coulomb interaction W (r, r′, ω) can be calculated directly using
the self consistent Sternheimer method as already mentioned in chapter 4. When
using the bare Coulomb potential v(r, r′) as the initial perturbation potential,
the resulting self consistent potential is the screened Coulomb potential. [1]
The only change to the polarizability calculation is, as explained previously,
that the Sternheimer equation needs to be solved not only on a frequency grid
but also on a spatial grid because the bare Coulomb potential depends on two
spatial variables. One spatial dependency is integrated out by expansion in the
Gaussian basis:

W [r]
µν (ω′) =

∫
dr′χµ(r′)W[r](r

′, ω′)χν(r′). (6.2)
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The remaining spatial dependence is treated using a spatial grid thus evaluating
the self-consistent Sternheimer cycle for different points in space.

The other quantity needed is the Green’s function

G(r, r′;ω) =
∑
n

ψn(r)ψ∗n(r′)
ω − εn + iηn

. (6.3)

The poles of the Green’s function have a physical meaning. They are the excita-
tion energies of the electrons. [55] Because the propagation direction is different
for occupied and unoccupied states, the poles corresponding to occupied states
lie on the opposite site of the axis compared to the poles corresponding to the
unoccupied states. That is why the infinitesimal ηn is positive for occupied
states and negative for unoccupied states. An example of the pole structure of
the Green’s function can be seen in figure 6.1.

So when splitting the sum into a sum over occupied states v and unoccupied
states c we obtain:

G(r, r′;ω) =
∑
v∈occ

ψv(r)ψ∗v(r′)
ω − εv − iη

+
∑

c∈unocc

ψc(r)ψ∗c (r′)
ω − εc + iη

(6.4)

We continue to separate the Green’s function, by adding and subtracting the
sum over the occupied states only:

G(r, r′;ω) =
∑
v∈occ

ψv(r)ψ∗v(r′)
ω − εv − iη

+
∑

c∈unocc

ψc(r)ψ∗c (r′)
ω − εc + iη

±
∑
v∈ occ

ψv(r)ψ∗v(r′)
ω − εv + iη

(6.5)

By rearranging the fractions we can split the Green’s function into an analytic
and a non-analytic term:

G(r, r′;ω) = GA(r, r′;ω) +GN (r, r′;ω) (6.6)

The analytic term is the sum over all states with a negative η:

GA(r, r′;ω) =
∑
n

ψn(r)ψ∗n(r′)
ω − εn + iη

. (6.7)

The left over term form the non-analytic term:

GN (r, r′;ω) =
∑
v∈occ

ψv(r)ψ∗v(r′)
ω − εv − iη

− ψv(r)ψ∗v(r′)
ω − εv + iη

. (6.8)

For real frequencies when η goes to zero the formula simplifies to:

GN (r, r′;ω) = 2πi
∑
v∈occ

δ(ω − εv)ψv(r)ψ∗v(r′), (6.9)

where δ(ω− εv) is the Dirac delta distribution. The non-analytic Green’s func-
tion GN can be calculated directly, from the formula states above. Later in this
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chapter when the frequency integration methods are described it will become
clear that in some cases complex frequencies are needed. In these cases the
complete formula from equation 6.8 is needed. To calculate the analytic part
GA both sides of equation 6.7 are expanded with (Ĥ − ω) to obtain:

(Ĥ − ω)GAr,ω =
∑
n

ψn(r)[Ĥ − ω]ψn
ω − εn + iη

. (6.10)

Using the orthonormality of the basis functions the equation simplifies to:

(Ĥ − ω)GAr,ω = −δ[r](r
′). (6.11)

This is a linear system similar to the Sternheimer equation that can be solved
to obtain the analytic part of the Green’s function. It is important to note that
there is no need for self-consistency for the Green’s function because the right
hand side of the equation is known and not dependent on the solution.

6.2 The Self-Energy

We have all the pieces to calculate the self-energy. We start by projecting the
self-energy on the Kohn-Sham states:

Σnm(ω) =

∫
drdr′ ψKS

n (r)(Σc(r, r′, ω) + Σex(r, r′))ψKS
m (r′). (6.12)

The self-energy is split into two parts: the Coulomb part:

Σc(r, r′, ω) =
i

2π

∫
dω′G(r, r′, ω + ω′)(W (r, r′, ω)− v(r, r′)) (6.13)

and the exchange part:

Σex(r, r′) = −
∑
v∈occ

ψ∗v(r)ψv(r
′)v(r, r′). (6.14)

The exchange part needs no integration and can be calculated directly from
the Coulomb potential. The Coulomb part needs a closer look. For simplicity
reasons the notation W c

[r](r
′, ω) = W[r](r

′, ω)−v(r−r′) is used. The Kohn-Sham
states are known from DFT calculations and can be expressed in the Gaussian
basis functions using the Kohn-Sham coefficients cnµ:

Σnm(ω)c =
i

2π

∑
µν

cnµ

(∫ ∞
−∞

dω′Iµν(ω, ω′)

)
cmν (6.15)

With Iµν(ω, ω′) being the double spatial integral over the Green’s function and
the screened Coulomb interaction. We express one of those integrals numerically
to obtain:

Iµν(ω, ω′) =
∑

r∈ grid

w[r]χ
[r]
µ

∫
dr′G[r](r

′, ω + ω′)W c
[r](r

′, ω′)χν(r′). (6.16)
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With w[r] being the integration weight corresponding to the grid position r.
Further, the Green’s function is expanded in the Gaussian basis as well:

G[r](r
′, ω + ω′) =

∑
αβ

Gαβ(ω + ω′)χ[r]
α χβ(r′). (6.17)

Inserting this into the integral 6.16 yields:

Iµν(ω, ω′) =
∑

r∈ grid

w[r]χ
[r]
µ

∑
αβ

χ[r]
α Gαβ(ω + ω′)

∫
dr′χβ(r′)W c

[r](r
′, ω′)χν(r′).

(6.18)
The integral is exactly the matrix representation of the screened Coulomb po-
tential from equation 6.2. Replacing the integral leads to:

Iµν(ω, ω′) =
∑

r∈grid
w[r]χ

[r]
µ

∑
αβ

χ[r]
α Gαβ(ω + ω′)W [r]c

βν (ω′). (6.19)

Putting the Iµν(ω, ω′) back into equation 6.15 for the self-energy we obtain an
expression for the self energy:

Σcnm(ω) =
i

2π

∑
µν

cnµ

∫ ∞
−∞

∑
r∈grid

w[r] χ
[r]
µ

∑
αβ

χ[r]
α Gαβ(ω + ω′)W c,[r]

βν (ω′)dω′

 cmν

(6.20)
In practice to evaluate this expression, the evaluation frequency ω is fixed. To
perform the frequency integration, a set of integration frequency grid points ω′n
is chosen. For each of these frequencies the self-consistent Sternheimer cycle is
evaluated on all spatial grid points. Consequently, for each frequency point ω′n a
numerical integration over all spatial grid points is performed. This is repeated
for all ω′n so that the frequency integral can be numerically approximated. The
procedure can be repeated for all chosen frequencies ω. As already noted in the
Introduction as topic 2, the two integrals that need to be approximated form
the bottleneck of the Sternheimer GW approach with localized basis sets.

6.3 Numerical Integration

The spatial integration can be performed using a three dimensional rectangle
quadrature: ∫

box

f(r)dr ≈
N∑
n=1

wnf(rn) (6.21)

Where ’box’ is the area around the molecule that can be determined from the
nuclear coordinates and N is the number of grid points. The integration area
can be bounded because the Gaussian basis function decays as e−r

2

. Because of
that, this integral is not as problematic as the frequency integral. Also to ensure
reasonable computing times the grid size should be kept as small as possible.
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That is why the placement of the integration points needs special attention. For
this thesis a cubic, equidistant grid as well as a atom centered spherical grid as
used in reference [56] were used. A discussion of both methods can be found in
the next chapter 7.

The frequency integration poses more problems because the integration needs
to be performed over the whole frequency axis. Additionally the poles of the
Green’s function and screened Coulomb potential make numerical integration
difficult. [1] In figure 6.1 the structure of the poles can be seen. Integrating along
the real axis can pose problems because the poles lie very close to it which can
result in very unstable results. That is why in this chapter several different
integration methods and integration paths are presented. First three different
quadratures for the integration over ω′ will be explained.

All methods used are Gaussian quadratures. These types of quadratures
aim to optimize the numerical approximation of the integral by splitting up the
integrated function into a weight function w(ω) and a polynomial Ψ(ω) and
approximating the integration as a sum:∫ b

a

f(ω)dω =

∫ b

a

Ψ(ω)w(ω)dω ≈
∫ b

a

pn(ω)w(ω)dω =

n∑
i=1

Ψ(ωi)wi. (6.22)

with n being the integration order. The polynomial pn is chosen in a way that it
approximates the function at the grid points and can be integrated exactly. The
difference in the integration methods used comes from the integration interval
[a, b], the grid points ωi and the weight function w(ω). The three methods used
are the Gauss-Legendre, the Gauss-Hermite and the Gauss-Laguerre quadra-
ture.

The Gauss-Legendre can be used to compute an integral of form:∫ 1

−1

f(ω)dω ≈
n∑
i=1

f(ωi)wi (6.23)

With the grid point ωi being the roots of the Legendre polynomial Pn(ω) and
the weights are given by:

wi =
2

(1− ω2
i )P ′n(ωi)2

. (6.24)

This choice of weights and grid points is optimal in the way that a polynomial
of order 2n−1 can be integrated exactly, which is the maximum degree possible.
This integration method can be adapted to arbitrary intervals by scaling the
grid points to the desired interval:∫ b

a

f(ω)dω ≈ b− a
2

n∑
i=1

f(
b− a

2
ωi +

a+ b

2
)wi. (6.25)

In the case of an infinite integration interval a cutoff c needs to be introduced
so the integral is approximated by a finite integral: [57]∫ ∞

−∞
f(ω)dω ≈

∫ c

−c
f(ω)dω (6.26)
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Figure 6.1: In this figure the location of the poles of G(ω + ω′) and W (ω′)
illustrated. The poles of both functions are located close to the real axis. That
poses a problem when integrating along the real axis. The path shown is an
alternative approach. The value of the purple paths vanishes when the radius
goes to infinity and thus the value of the green path must be minus the value of
the cyan path because the complete integral equals zero as it contains no poles.
Thus, instead of computing the integral along the real axis, it can be evaluated
on a vertical line that is further away from the poles. This should improve the
stability of the numerical integration.
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The Gauss-Hermite integration does not need a cutoff. When the function
being integrated decays fast enough which for this case is e−x

2

, it is possible to
approximate the integral on a finite interval with:∫ ∞

−∞
e−ω

2

f(x)dω ≈
n∑
i=1

wif(ωi) (6.27)

with ωi being the roots of the nth Hermite polynomial Hn and wi the corre-
sponding weights:

wi =
2n−1n!

√
π

n2(Hn−1(xi))2
. (6.28)

The Gauss-Laguerre quadrature approximates integrals of the form:∫ ∞
0

e−ωf(ω)dω. (6.29)

The integration weights and points are obtained in the same way as before, only
this time the Laguerre polynomials are used. When applying this quadrature
to the integration at hand, we need to assume symmetry of the functions inte-
grated. This is not the case when integrating along the real frequency axis so
when using the Gauss-Laguerre quadrature, the integration interval needs to be
transformed.

Transforming the integration interval is preferable even for the other quadra-
ture methods as the Green’s function and the screened Coulomb potential, as
mentioned above, are not well behaved on the real axis. [1]

Because there are two frequency dependencies, ω and ω′, there are several
different transformations to take into account. A simple way is to keep the
evaluation points of the self-energy ωi on the real axis and only changing the
integration points ω′j by rotating the integration interval by 90 degrees and
thus integrating along a vertical line parallel to the imaginary axis. This can
be achieved by looking at a contour integral that consists of an integral along
the real axis and an integral along a vertical line along the imaginary axis
connected by two quarter circles as depicted in figure 6.1. The values of the
circular parts vanish as the radius of the quarter circles approaches infinity
because the functions G(r, r′, ω′) and W (r, r′, ω′) decay as |ω′|−1 and |ω′|−2

respectively. [58] Because the contour integration does not contain any poles,
the vertical integration must be the same as the horizontal integration, only
with a different sign, leading to this variations of the self-energy formula 6.1:

Σ(r, r′, ω) =

∫ ∞
−∞

dω′G(r, r′, ω + iω′)W (r, r′, iω′). (6.30)

The frequencies iω are purely imaginary, and thus the integration is performed
parallel to the imaginary axis. The evaluation frequency ω of the self-energy is
kept real. Because the integrants satisfy: [58]

G(r, r′, ω′) = G(r, r′, ω′) (6.31)
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and
W (r, r′, ω′) = W (r, r′, ω′), (6.32)

this integration is suitable for the Gauss-Laguerre quadrature and can be written
as:

Σ(r, r′, ω) = 2

∫ ∞
0

dω′G(r, r′, ω + iω′)W (r, r′, iω′). (6.33)

It is important to note that this approach is only viable if the path does not
contain any poles. Depending on ω the path can contain poles because changing
the value of ω shifts the poles of the Green’s function parallel to the real axis.
This can result into the poles above and below the axis overlapping so that a
path containing no poles is no longer possible. In that case the residues of the
poles need to be taken into account according to Cauchy’s integral theorem. A
different approach is approximating the integral over the real axis by shifting
the integration interval into the complex plane resulting in: [1]

Σ(r, r′, ω) =

∫
dω′G(r, r′, ω + ω′ + iκ)W (r, r′, ω′ + iκ). (6.34)

That way the integration interval is moved away from the poles. The further
away the interval is shifted the more stable the integration becomes, but the
approximation becomes also less accurate.

An alternative approach is to avoid the evaluation of the self-energy on the
real axis all together and evaluate it on the imaginary axis:

Σ(r, r′, iω) =

∫
dω′G(r, r′, iω + iω′)W (r, r′, iω′). (6.35)

and use analytic continuation in form of the Padé-approximation to map the self-
energy onto the real axis. A detailed analysis of all three different quadratures
and the different intervals can be found in the next chapter 7.

One final approach that was tested is motivated from the split of the Green’s
function into an analytic and non-analytic part as seen in equation 6.6. The
non-analytic part of the Green’s function contains all the poles and is thus
harder to integrate numerically. Therefore, the self-energy:

Σ(r, r′, ω) =
i

2π

∫
dω′G(r, r′, ω + ω′)W (r, r′, ω′) (6.36)

is, consequently, separated into a part corresponding to the analytic part of the
Green’s function:

ΣCOH(r, r′, ω) =
i

2π

∫
dω′GA(r, r′, ω + ω′)W (r, r′, ω′) (6.37)

called the Coulomb hole part (COH) and the screened exchange part (SEX)
corresponding to the non-analytic Green’s function:

ΣSEX(r, r′, ω) =
i

2π

∫
dω′GN (r, r′, ω + ω′)W (r, r′, ω′) (6.38)

=
i

2π

∫
dω′GN (r, r′, ω + ω′)Wc(r, r

′, ω′). (6.39)
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The Coulomb hole part is evaluated in the same way as the Coulomb part of
the self-energy. The Coulomb potential can be left out since GA is an analytic
function in the upper half of the complex plain, therefore, the integration with
the frequency independent Coulomb potential v(r, r′) vanishes and we are left
with Wc(r, r

′, ω). Because only the analytic part of the Green’s function is
evaluated the numerical integration should be more stable. Next, the formula
for the non-analytic part of the Green’s function is inserted into equation 6.39:

ΣSEX(r, r′, ω) = −
∑
v∈occ

∫
dω′δ(ω + ω′ − εv)ψv(r)ψ∗v(r′)W (r, r′, ω′). (6.40)

From the delta function we obtain ω′ = εv − ω and thus:

ΣSEX(r, r′, ω) = −
∑
v∈occ

ψv(r)ψ∗v(r′)W (r, r′, εv − ω). (6.41)

The screened exchange part can be evaluated without numerical integration over
the frequency axis. The formula can be split up further by using W = Wc + v
resulting in:

ΣSEX
c (r, r′, ω) = −

∑
v∈occ

ψv(r)ψ∗v(r′)Wc(r, r
′, εv − ω). (6.42)

and
Σex(r, r′) = −

∑
v∈occ

ψ∗v(r)ψv(r
′)v(r, r′), (6.43)

the frequency dependent screened exchange part and the frequency independent
exchange part.

Consequently, the integration over the non-analytic Green’s function can be
avoided, which should lead to more stable results.

The representation of the self-energy in Gaussian basis functions along with
the integration methods stated, can now be used to calculate the self energy of
system using the self-consistent Sternheimer cycle:

Σnm(ω) = (6.44)

i

2π

∑
µν

cnµ

 ∑
ω′∈freq.

wω′
∑

r∈grid
w[r]χ

[r]
µ

∑
αβ

χ[r]
α Gαβ(ω + ω′)W c,[r]

βν (ω′)

 cmν
Topic 5 is thus dealt with, and the only problem left is topic 2 the performance
of the numerical integration. In the next chapter the Sternheimer GW method
is tested in particular respective to the integration methods used.
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Chapter 7

GW Results

The Sternheimer GW method was used to calculate the self-energy Σ(ω) of
hydrogen and water molecules. The simple structure of these molecules allows
for fast calculation so that different parameter sets can be tested. While the
same parameters investigated in the polarizability section can be tested here
again, this section is focused on the numerical integration aspects of calculation.
As presented in the previous chapter to obtain the self-energy of a system a
numerical integration over the space as well as the frequencies needs to be
performed.

7.1 Spatial Integration

First, the spatial integration is analysed. This is a very costly operation espe-
cially since it has to be performed for each step of the frequency integration.
The most basic idea to perform numerical integration is to set up an regular
equidistant grid and evaluate the screened Coulomb potential on all these grid
points. The corresponding weights can be calculated as w = d3 with d the
distance between the grid points. Although this is very easy to implement it
is not the most efficient way to perform the numerical integration. To increase
accuracy d needs to be decreased. But since the number of grid points scales
with d3, the number of grid points can become too large to allow computations
in reasonable time. Taking the structure of the observed system into account
can lead to less grid points being needed to achieve the same accuracy. This
motivates a different arrangement of the integration grid points. Arranging the
points in a spherical fashion around the nuclei leads to more grid points being
close to the nuclei and less points being further away from the nuclei. Grid
points are arranged around each nucleus and overlapping cells are merged. The
exact process of how the grid points and weights are calculated can be found
in. [56] The computation of the spatial integral takes a lot of time. Although
each iteration of the self-consistent Sternheimer cycle is really cheap for small
molecules, as investigated in figure 4.30, the sheer amount of cycles needed for
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Figure 7.1: The plot shows the real part of the self-energy diagonal matrix
element of the HOMO level of a hydrogen molecule. The grid with 5 points
in each direction does not reproduce the results of the finer grids, whereas the
spherical grid and the 10 step grid produce similar results. The peaks of the
spherical grid graph are however much more pronounced although overall less
grid points where used.

a GW calculation leads to high computation times. For example, the smallest
grid tested, a 5× 5× 5 equidistant grid, contains 125 grid points. A simple in-
tegration scheme for the integration over the frequency ω′ needs 12 grid points,
and to plot the self energy in dependence of the frequency ω 50 calculation are
needed, resulting in 12 ∗ 125 ∗ 50 = 75000 Sternheimer cycles being calculated
in a simple hydrogen GW calculation. That is why it is important to keep the
number of integration points as low as possible.

From the test performed it can be observed that even a comparably very
coarse grid is able to produce stable results. The graphs of the 10 step grid
and the spherical grid are very similar but the spherical grid uses less grid
points. Consequently, it can be assumed that the spherical grid provides a good
accuracy to complexity ratio. Still, even the coarse grids used in these tests,
lead to very high computation times. That is also why finer grids where not
tested as even for small molecules the computational workload is too high.
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Figure 7.2: The plot shows the real part of the self-energy diagonal matrix
element of the HOMO level of a water molecule. Different integration orders
of the Gauss-Hermite quadrature where used to integrate along the real axis to
produce these results. It can be observed that changing the quadrature order
drastically changes the results. Consequently, integrating along the real axis is
not a feasible option.

7.2 Frequency Integration

The integration over ω′ poses a different challenge because the integration needs
to be performed over the whole frequency axis. Thus the three different Gaussian
quadratures outlined in the previous chapter are used to see which performs
best. Additionally the Green’s function and the screened Coulomb potential
have poles close to the real frequency axis, as was explained in figure 6.1.

Consequently, already mentioned as topic 2 in the Introduction the numer-
ical integration over the real frequency axis is a major challenge of the imple-
mentation of the Sternheimer method. During the course of this thesis several
different approaches to resolve the two problems noted where tested in differ-
ent combinations. In the implementation chapter 6 three different quadrature
methods were outlined: the Gauß-Legendre, Gauß-Laguerre and Gauß-Hermite
quadrature methods. All methods address the problem of integrating over an
infinite interval in different ways. In chapter 6 also different ways to treat
the integration interval where presented. In the following tests of the different
methods are presented and discussed.

First, the purely real and purely imaginary approaches where tested. From
the plots in figures 7.2 and 7.3 of the tests it can be observed that the frequency
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Figure 7.3: The plot shows the real part of the self-energy diagonal matrix
element of the HOMO level of a water molecule. For this test, imaginary fre-
quencies combined with the Padé-approximation where used to produce the
results. The structure of the self-energy cannot be reproduced by this approach
as the values are way to small and in comparison to results from the standard
approach show, that this integration method is also not feasible.
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Figure 7.4: The plot shows the real part of the self-energy diagonal matrix ele-
ment of the HOMO level of a hydrogen molecule. These results where produced
using the shifted approach. It can be observed that this ansatz is much more
reliable. An increased shift flattens the peaks. The reference data was produced
using votca:xtp’s G0W0 calculation, that uses a standard GW approach. The
intercept with the yellow line gives the quasi particle energy of the HOMO level
as the intercept gives the fixed point of the quasi particle equation 2.66. It can
be observed that the Sternheimer method is able to reproduce the intercept well
for both shifts. However, a larger shift leads to a more stable result.

integration is indeed a major issue of the GW Sternheimer implementation.
Integrating along the real axis only is not feasible. The results are very unstable
and even small changes in the integration order or changing the quadrature
method lead to vastly different results. Consequently, results obtained that
way are not reliable. Using purely imaginary grid points is also not a viable
option because the Padé approximation is not able to reproduce the structure
of the self-energy on the real axis from the purely imaginary input points. The
structure is too smooth and barely visible and all values are very close to zero.
Reference data was not included in these plots because the results produced
by these approaches are too unreliable to be comparable. Thus, the focus from
here on lies on the two other transformation methods: shifting the interval by an
imaginary term or integrating along a vertical line and employing the COHSEX
approach.

The shifted and vertical approaches produced much more reliable results as
can be seen from plots 7.5 and 7.4. Changing parameters of the integration does
not affect the results as badly as before. Consequently, it is preferable to use
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Figure 7.5: The plot shows the real part of the self-energy diagonal matrix
element of the HOMO level of a hydrogen molecule. These results where pro-
duced using the vertical integration approach. The structure of the reference
is not reproduced. However, the intercept that gives the quasi particle energy
is very close to the reference. Also the Gauss-Laguerre quadrature could be
used here because of the vertical integration. It returns the same results as the
Gauss-Hermite quadrature.
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one of these two frequency integration approaches. Also the Sternheimer GW
method is able to reproduce the quasi particle energy with a small error. The
quasi particle energy is obtained by computing the fixed point of the quasi par-
ticle equation 2.66 which is represented by the intercept with the yellow line in
the figures. By convention the intercept that is not part of a pole is chosen. [37]
Possible reasons for this error are the numerical integrations performed as par-
ticularly the spatial grid is very coarse. The structure of the reference graph is
not reproduced. Most likely the attempts to avoid integrating close to the poles
also leads to the poles of the self-energy to be smoothen out as well. In topic 2 in
the Introduction it was already discussed that a major difference of going from
plane waves to localized basis function is the numerical integrations that need
to performed. The numerical integrations are very costly to do, particularly the
spatial integration because it needs a lot of grid points in combination with the
integration being needed to be performed for all combinations of ωi and ω′j .
Therefore, it is not possible to perform the spatial integration on a finer grid
making it a likely source of errors. Further, the vertical integration does not
compensate for poles being present inside the integration path presented in fig-
ure 6.1. While the results suggest that this does not have a great effect because
both vertical and shifted integration lead to similar results, it still is a source
of error, that needs to be mentioned. Although the frequency integration was
vastly improved by transforming the integration interval, numerical integration,
particularly over an infinite interval, can still lead to errors.

The COHSEX approach also leads to a more stable numerical integration
along the frequency axis compared to the standard approach. Because the non-
analytic part of the Green’s function is treated separately, there are no poles of
the Green’s function close to the real axis that are hard to handle for the nu-
merical integration applied. Thus no transformation of the integration interval
needs to be applied to avoid the poles. The COHSEX approach, consequently,
provides a way to stabilize the integration without the need to approximate the
integral by shifting the interval or by using vertical integration path that needs
knowledge of the poles position in order account for the residues of the poles
inside the integration path depicted in figure 6.1. However, the results are not
as smooth as the results from the transformation approaches. But the COHSEX
approach reproduces the structure of the self-energy better that the transfor-
mation approaches, that fail to reproduce the poles. However, the quadrature
order still needs to be chosen carefully as in the test cases only quadratures of
order 30 or higher were reliably able to reproduce the results of the reference.

The best results were achieved by combining the two approaches. Using the
COHSEX splitting as well as integrating along a vertical line leads to remarkable
stability of the integration as well as an accurate reproduction of the reference
data. The first pole can be reproduced with vertical integration because the
non-analytic part of the Green’s function is treated separately. When not using
the COHSEX approach the pole is not visible because the integration path is
transformed to be away from the poles of the Green’s function and so the pole
of the self-energy cannot be reproduced. Additionally the combination of the
vertical integration and the split ansatz lead to a very smooth results and an
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Figure 7.6: The plot shows the real part of the self-energy diagonal matrix
element of the HOMO level of a hydrogen molecule. The results where computed
using the COHSEX splitting approach and numerical integration along the real
axis. It can be observed that compared to figure 7.2 the results are more stable
when changing the quadrature. However, when the quadrature order is too
small the accuracy of the results suffers as can be seen from the graph of the
Hermite quadrature of order 12.
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Figure 7.7: The plot shows the real part of the self-energy diagonal matrix
element of the HOMO level of a hydrogen molecule. The results were computed
by combining the COHSEX and the vertical integration approach. That way,
the reference data can be reproduced very well. Especially the intercept is
approximated very well as can also be seen from table 1.
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Table 7.1: The table shows the quasi particle energy of the HOMO level of a
Hydrogen molecule computed with different integration method.

Method used QP energy (Eh)
Reference -0.5823
Shift approach -0.2171
Vertical approach -0.6313
COHSEX approach -0.4902
COHSEX vertical -0.5510

accurate computation of the quasi particle energy.
Table 7.1 shows the quasi particle energies computed from the different

approaches analysed in this chapter. The reference data was produced using
votca:xtp’s G0W0 method, that works along the lines of the approach outlined
in chapter 2. It can be seen that the combined approach of COHSEX and
vertical integration yields the best result. The purely vertical approach and
the COHSEX approach are also close the the reference value but not as good as
their combination. The shifted approach performs worst as it only approximates
the frequency integration and a shift of at least one eV is necessary to achieve
reliable and stable results.

After good results were achieved with the vertical integration COHSEX ap-
proach, the different spatial integration methods were tested again to see how
the improved frequency integration affects the spatial integration schemes. In
this test only the spatial integration of the COH part was altered because for
the SEX part no frequency integration needs to be performed, and thus the time
consumption of the spatial integration for that part is not as critical.

From figure 7.8 it can be observed that the regular cubic grids do not re-
produce the results from the spherical grid. Independent of the number of grid
points used the COH part produced from the cubic grid is too small. The re-
sults are very close to the SEX part of the self-energy. A possible reason for this
is that the cubic grid does not take the structure of the molecule into account
and thus wastes grid points in areas where the screened Coulomb potential is
very small and, consequently, the grid points are arranged to coarse in areas
where a finer grid would be needed. This suggests that the spherical grid is the
preferred grid to use for the spatial integration performed for the Sternheimer
GW method.

As a last test, the Sternheimer GW method was used to calculate the self
energy of water. The quasi particle energy could not be reproduced as well as
for hydrogen as the reference data gives −0.4142 Eh, while the GW Sternheimer
method yields 0.67 Eh. This can be explained by the spatial numerical integra-
tion. As figure 7.8 suggests the structure of the graph is mainly determined by
the SEX part of the self-energy. The intercept also depends on the COH part,
that in turn depends on the spatial integration grid. Consequently, the more
complex the molecule is the more crucial a fine grid is. Choosing finer girds
however is very costly.
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Figure 7.8: The plot shows the real part of the self-energy diagonal matrix
element of the HOMO level of a hydrogen molecule. As the spherical grid results
are very close to the reference data, no additional reference plot was included.
A plot of the SEX part of the self-energy is included. It can be observed that
the results obtained using the regular cubic grids are very close to the plot that
does not contain the COH part at all suggesting the cubic grids are not well
suited for this integration. Also increasing the number of grid points does not
compensate for that as the results for a 10x10x10 are very similar to a 2x2x2
grid.
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Figure 7.9: The plot shows the real part of the self-energy diagonal matrix
element of the HOMO level of a water molecule. The result obtained with the
GW Sternheimer is compared to the data produced using votca xtp. While the
reference data could not be approximated as well as for Hydrogen, the structure
of the plot is reproduced well. The intercept at −0.4142 Eh is only approximated
as 0.67 Eh.
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Figure 7.10: The plot shows the time needed to evaluate the GW Sternheimer
method for Hydrogen for 10 frequencies, depending on the number of spatial grid
points needed and the number of frequency grid points. The computation time
depends linearly on the the number of grid points. A comparable computation
using a standard GW approach used to obtain the reference results only took a
few seconds.
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The plots in figure 7.10 show how the computation time increases with the
number of grid points. As expected the time needed to evaluate the GW Stern-
heimer methods increases linearly with the number of frequency and spatial
grid points. The frequency grid points are less crucial because they don’t need
to be increased for larger molecules. The number of spatial grid points how-
ever increase with the molecule size simply because the integration needs to be
performed over a larger space. The main problem is that even for the smallest
number of grid points tested the computation time is greater than for other GW
methods, that need only a few seconds to compute the self energy and quasi
particle energy of hydrogen. Thus the GW Sternheimer method is not able to
provide a speed up compared to other GW methods when using localized basis
sets.

In conclusion it was possible to improve the performance and accuracy of
the numerical integrations from the initial approaches, but they are still ma-
jor issues of the GW Sternheimer method. As suspected in the Introduction,
they form a major bottleneck from a computational workload and from an ac-
curacy perspective. While it was possible to stabilize the frequency integration
by using the COHSEX approach combined with transforming the integration
interval leading to reliable and accurate results in the test cases, the main prob-
lem remains the spatial integration as it needs a large amount of grid points,
particularly for larger and more complex molecules. So while it was possible to
reproduce the quasi particle energy of a hydrogen molecule, to accurately ap-
proximate the quasi particle energy of water, a finer grid is needed. In practice
this is not feasible, especially since the desired speed-up could not be achieved.
Finer spatial grids would lead to unreasonable computing times as the timing
of the code in figure 7.10 suggests.
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Chapter 8

Summary and Outlook

The goal of this thesis was to implement the Sternheimer GW method for local-
ized basis sets. Five topics where presented that would need special attention
throughout this work because they could be problematic when using localized
basis sets. To summarize the results of this thesis, all the crucial topics explained
will be revisited and it will be evaluated how well they were handled.

1. Convergence: The convergence of the self-consistent Sternheimer cycle is
problematic when no mixing methods are used. However, using the Ander-
son mixing scheme introduced in chapter 4, the self-consistent Sternheimer
cycle converged quickly for all test cases.

2. Integration: The numerical integration poses the biggest issue of this im-
plementation of the GW Sternheimer method. The numerical integrations
are very time consuming. It was possible to improve the computation time
and accuracy of the integration from the initial naive approaches. How-
ever, while reference results could be reproduced, the computation time
needed is still not on par with other GW methods for localized basis sets.

3. Parameters: In chapter 5 several parameter sets were compared and it was
found that the results were not affected much by changing the mentioned
parameters. Although the parameters always need to be chosen careful,
the method is robust to minor changes of parameters like the convergence
tolerance.

4. Analytic Continuation: The Padé-approximation is a useful tool in polar-
izability tensor calculations, see chapter 5, as one can avoid evaluations on
the real axis. For the GW calculations however, in chapter 7 it was shown
that analytic continuation of the self-energy evaluated on the imaginary
axis onto the real axis did not produce reliable results.

5. Basis expansion: Equations to express the self-energy in terms of Gaussian
basis function were derived in chapter 6.
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All in all, while all topics could be addressed in this thesis, the numerical
integration is the major bottleneck of the GW Sternheimer method for localized
basis sets. From the beginning it was clear that the Sternheimer GW method
could not be adapted one to one from the plane waves implementation. In this
thesis it was verified that the Sternheimer GW method is not as well suited for
localized basis sets as it is for plane waves. As discussed in chapter 7 the special
properties of plane waves allow for a much cheaper treatment of the numeri-
cal integrations. [1] While is was possible to reproduce quasi particle energies
using the Sternheimer GW method for localized basis sets, the tradeoff of the
Sternheimer method is not favorable. The advantage of using only occupied or-
bitals is negated by computational workload caused by the excessive amount of
Sternheimer cycle evaluations needed for the numerical integrations over space
and frequency. Although the main goal of speeding up GW calculation with the
Sternheimer method could not be reached, there were still insights gained.

For one it was verified that the GW Sternheimer method provides no speed
up when using localized basis sets. There are however possibilities that could
improve the performance and accuracy of the GW Sternheimer method. For
example the computations performed in the Sternheimer GW method could be
optimized even more. It might be possible to save some parts of the integration
that are used repeatedly in order to prevent performing the same operation
multiple times. Particularly the screened Coulomb interaction does not depend
on ω, thus, for each evaluation point the same screened Coulomb potential is
calculated. It might be possible to save the screened Coulomb potential so the
spatial integration has to be performed less often. Additionally it was observed
that the COH part of the self energy is very close to constant with respect
to the frequency. Therefore, it might be possible to reduce the number of
frequencies for which the COH part is evaluated and only calculate the SEX
part for the intermediate frequencies. The COH part could then be used for a
set of frequencies, instead of calculating it for each individual frequency. It is
questionable however, if the GW Sternheimer method can be optimized so far
that it is on par with other approaches.

Further the self-consistent Sternheimer method explained in chapter 4 can
be used to calculate various different properties. While the method does not
perform well for GW calculation it can still be used to calculate other proper-
ties from linear perturbation theory like inter-molecular forces, electron-phonon
coupling terms or the polarizability tensor. [2] The self-consistent Sternheimer
method implemented in this thesis is easily adaptable to any kind of pertur-
bation as the only thing that needs to be changed is the input perturbation.
The change of the electron density ∆n or the self consistent perturbation po-
tential ∆V can then be used to obtain the desired property. Consequently,
the self-consistent Sternheimer cycle is a useful tool for different perturbation
calculations.

For example the frequency dependent polarizabiliy tensors calculated in
chapter 5 could not be calculated previously with the votca-xtp package. Sim-
ilarly to the process described in chapter 4 for the polarizability tensor, other
properties can be calculated. The Sternheimer method can therefore also be
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used in future project that involve perturbation calculations.
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