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Abstract

In this thesis, I investigate the excited-state properties of molecules within the Many-Body
Perturbation Theory (MBPT) framework. MBPT is formulated as a hierarchy of coupled
equations-of-motion for the Green’s functions. The so-called GW approximation decouples
these equations such that simulations of single-electron creation and annihilation processes
are possible. The central quantity of the GW approximation is the self-energy operator
Σ. I investigate two methods for calculating the self-energy; one analytical method and
one approximate method. I implement the analytical calculation in the VOTCA software
suite. The accuracy and scaling of this implementation is benchmarked using other software
packages and theoretical estimates. I argue that the analytical method is better suited for
benchmarking other GW implementations, whereas approximate methods are better suited
for large scale analyses.
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Chapter 1

Introduction

Quantum Mechanics (QM) is a branch of physics that describes physical phenomena on
the atomic and subatomic level. Mathematical problems that arise in QM are complicated;
either an analytical solution cannot be obtained or a numerical solution is computationally
expensive. Since numerical approximations are typically the best we have, QM calculations
are generally performed on computers. The goal is to construct computational models that
accurately simulate real-world experiments. These computational models may in turn reveal
properties that real-world experiments cannot. Since QM simulations are computationally
demanding, QM models can only describe a few physical phenomena at once and are limited
in space and time scales. With increasingly powerful computers, the scale and resolution of
these simulations is improved.

One application of QM is the development of organic solar cells. In an increasingly technolog-
ically advanced society, clean and renewable sources of electricity are vital. Power generation
in a solar cell depends on three principal steps: (1) the absorption of light and creation of an
electron-hole pair through molecular excitation (2) the separation of the electron-hole pair
into two separate charge carriers and (3) the propagation of the charge carriers to opposite
poles, causing an electrical current. QM models can help us explain these processes and in
turn reveal techniques to increase their efficiency. In this thesis, we to take a closer look at
the first step: the excitation process.

In order to explain excitation processes, we must first describe the molecular system. The
molecular system is a collection of atoms, where each atom consists of a positively charged
nucleus and a negatively charged electron cloud surrounding it. We model the molecular
system using Molecular Orbital (MO) theory. In MO theory, every electron must occupy
a particular orbital around its nucleus. Each orbital has an energy associated to it, which
corresponds to the energy an electron needs to occupy that orbital. There are infinitely many
orbitals, but only a finite number of electrons. In the ground state, the electrons occupy the
lowest-energy orbitals such that the total energy of the system is minimized.

We can disturb the ground state electron configuration by supplying the molecule with extra
energy. Photons can be seen as packets of energy. Through photo-absorption, electrons are
able to absorb a photon’s energy, causing the electron to be transferred into a higher-energy
orbital. The molecule is now excited. In the excited state, the electron arrangement is
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CHAPTER 1. INTRODUCTION

disturbed and the total energy of the system is increased. The energy that is required for
this transfer process is called the excitation energy. We will see that the excitation energy can
be approximated by the energy difference between the lower-energy orbital and the higher-
energy orbital. This is a crude approximation, however. In reality, the entire system reacts
to the excitation, which influences the excitation energy.

The orbital energies are a result of interaction forces between the electrons and otherwise
external forces exerted on the system. The interaction forces depend on the relative positions
of the electrons. Heisenberg’s uncertainty principle states that both the electron position and
momentum cannot be known simultaneously. Instead of tracking the exact position of every
electron individually, we estimate the probability of each electron being at a given position.
The probability density of the electron positions is called the electron density. The problem
now is quantifying the electron density.

A popular technique for determining the electron density is Density Functional Theory (DFT)
[1]. Because of its popularity, in 1998 one of its inventors, W. Kohn, received a Nobel Prize for
it [2]. DFT is based on the notion that, in the ground state, the electrons arrange themselves
such that the total system energy is minimized. We can calculate expectation values of the
total system energy via functionals of the electron density. We can subsequently estimate
excitation energies by computing energy differences between excited states and the ground
state. A well-known practical problem with DFT is that the energy functional contains terms,
called exchange-correlation, whose form is unknown and need to be approximated. While
DFT accurately predicts the ground state energies of molecules, it underestimates excitation
energies for most materials [3]. This problem is known as the “band gap problem”.

Using the framework of Many-Body Perturbation Theory (MBPT), we can more accurately
describe the excited state system in terms of the simpler ground state system [4]. MBPT is
formulated as a hierarchy of coupled equations-of-motion for the Green’s functions. The so-
called GW approximation decouples these equations such that simulations of single-particle
creation and annihilation processes are possible. Using these single-particle processes, we
can subsequently model two-particle excitation processes in which one electron jumps from a
low-energy orbital to a higher-energy orbital. To this end, we must solve the Bethe-Salpeter
Equation (BSE). The ground state system, which serves as an initial “guess” to the GW
step, can be obtained through a preceding DFT calculation. This three-step procedure is
called DFT-GW-BSE, or more commonly GW-BSE.

The central quantity of the GW approximation is the self-energy operator Σ, which reads

Σ (r, r′, ω) =
i

2π

∫
dω′eiηω

′
G(r, r′, ω + ω′)W (r, r′, ω′). (1.1)

The calculation of the frequency-dependence in particular involves computationally expensive
convolution of the Green’s function G and the screened Coulomb interaction W . The evalua-
tion of W requires the calculation of the polarizability P . The polarizability of a molecule is
the tendency of its electron cloud to be distorted by an external electric field. The calculation
of P involves a particularly complicated frequency-dependence. There are several ways for
dealing with this frequency-dependence. We will find that P can be calculated analytically
by solving an eigenvalue problem of the size of the transition space, i.e. the space of all pos-
sible electronic excitations. This method is referred to as the Fully-Analytical Approach, or
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FAA in short. While FAA yields an analytical expression of P , it involves a computationally
demanding eigenvalue problem. Alternatively, we will find that we can approximate P using
a plasmon-pole model, This method is referred to as the Plasmon-Pole Model, or PPM in
short. While the PPM is computationally cheap, it provides us only with an approximation
of P .

Typically, approximate methods are aimed at describing large scale systems, whereas analyt-
ical methods are aimed at accuracy and robustness of the calculated quantities with respect
to experimental results. An analytical method therefore offers a reliable reference point for
the development and application of approximate methods.

In this thesis, we implement the FAA for GW-BSE in the VOTCA-XTP package as part of
the VOTCA software suit [5, 6, 7]. The role of VOTCA-XTP is the simulation of electronic
states and excitation transport [8]. Importantly, it implements the three-step DFT-GW-BSE
procedure. VOTCA-XTP is written in C++ and is freely available on Github [9].

The thesis is structured as follows. First, the theoretical footing is established in Chapter
2. Next, in Chapter 3, the mathematical formulation of GW, and specifically the FAA, is
outlined. In Chapter 4, we briefly discuss the practicalities of the implementation. The
accuracy and scaling of the implementation is tested in Chapter 5. Finally, in Chapter 6 we
summarize the thesis and reflect on the results.
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Chapter 2

Theoretical Background

In this chapter, we discuss electronic structure theory and its application in modeling molec-
ular excitation processes. First, we briefly go over the fundamental quantum mechanical
concepts and introduce the quantum system. Next, we give a quantum mechanical descrip-
tion of molecular systems. We then describe how we compute the ground state energies
of molecular systems using Density Functional Theory (DFT). Finally, we move on to the
GW-BSE method for calculating excitation energies of molecular systems using DFT input.

2.1 The Quantum System

Before we begin modeling the molecular system, we briefly go over the fundamental concepts
of quantum mechanics. We introduce the wave function, which describes the quantum state
of the quantum system. Furthermore, we introduce the Schrödinger equation, which describes
the time evolution of the wave function.

We consider a region of space in which various particles interact with each other. This
collection of particles and interactions may be referred to as the quantum system. Any
physical quantity that can be measured in the system is an observable. The quantum state
provides a probability distribution for the value of each observable, i.e. for the outcome of
each possible measurement on the system. Mathematically, we describe the quantum state
by a complex-valued probability amplitude; the wave function, which we typically denote by
|Ψ〉. The wave function exists in a Hilbert space, representing the state space of the system.
An observable operator Ô, also simply referred to as “observable”, is a Hermitian operator
that maps the wave function into itself: Ô |Ψi〉 = λi |Ψi〉. The eigenstate |Ψi〉 represents the
observed state and the eigenvalue λi denotes the value of the physical quantity related to the
observable Ô.

Central to the study of quantum mechanics is the Schrödinger equation, which describes the
time evolution of the wave function. The Schrödinger equation is regarded as the quantum-
analogue to Newton’s laws in classical mechanics. The time-dependent Schrödinger equation
is given by:

Ĥ |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 . (2.1)

5



CHAPTER 2. THEORETICAL BACKGROUND

The Hamiltonian Ĥ is the operator corresponding to the total energy of the system. If
we could solve the Schrödinger equation for the wave function, we could fully describe the
evolution of the quantum system. In the next section, we give a specific example of a quantum
system; namely, the molecular system.

2.2 The Molecular System

The molecular system is described as a collection of atoms. Each atom has a positively
charged nucleus, containing protons and neutrons, with negatively charged electrons sur-
rounding it. We consider a system with M nuclei and N electrons. The nuclei positions are
given by R = {R1,R2, . . . ,RM} and the electron positions are given by r = {r1, r2, . . . , rN}.
All particle positions are given in three-dimensional coordinates, i.e. in R3. The charges of
the nuclei are given by Z = {Z1, Z2, . . . , ZM}, Zj ∈ N+ and the charges of the electron equal
negative the elementary charge, i.e. zi = −1, i = 1, 2, . . . , N . All values are expressed in
atomic units1.

We can describe the electronic structure of molecular systems using Molecular Orbital (MO)
theory. The electrons do not float around the molecule randomly. Instead, every electron
must occupy a Molecular Orbital (MO). Essentially, an MO represents the region of space
where its occupying electrons are likely to be found. Each orbital has an energy associated
to it, called the energy level, which corresponds to the energy an electron needs to occupy
that orbital. There are infinitely many MOs, but only a finite number of electrons to occupy
them with. According to the Pauli exclusion principle, each MO can be occupied by up to
two electrons with opposite spin.

The energy level of an MO depends on the electrostatic forces between its occupying electrons
and the remaining electrons. While any two MOs describe unique electronic orbitals, their
energy levels may be the same. In that case, the MOs are referred to as being degenerate.
In the ground-state, the electrons fill up the lowest-energy valence MOs while the higher-
energy conduction MOs remain empty 2. This is referred to as the Aufbau principle. The
Highest Occupied Molecular Orbital is abbreviated by HOMO and the Lowest Unoccupied
Molecular Orbital is abbreviated by LUMO. We often visualize the MOs of a molecule using
MO diagrams, as shown in Figure 2.1 (A).

Through photo-excitation, an electron may be transferred from an occupied MO to an un-
occupied MO, as shown in Figure 2.1 (B). All electrons in the system react to this transfer
process and the energy levels of all MOs change. The energy that is required for this transfer
process is called the excitation energy or the band gap. In particular, the energy required to
transfer the electron from the HOMO to the LUMO is called the HOMO-LUMO gap. We
are interested in predicting the excitation energies.

In order to mathematically describe the molecular system, we set up the molecular wave
function Ψ(r,R, t), which represents a snap-shot, spatial description of the system. The time

1We use atomic units: me ≡ 1, e ≡ 1, ~ = h/(2π) ≡ 1 and ke = 1/(4π0) ≡ 1.
2The terms valance/conduction originate from solid state systems. In molecular systems, we also use

occupied/virtual.
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2.2. THE MOLECULAR SYSTEM

Figure 2.1: Molecular Orbital (MO) diagrams of the hydrogen molecule H2. The orbitals are
represented by horizontal bars and the electrons are represented by arrows. The direction
of the arrows represent the relative spin (spin-up or spin-down) of the electrons occupying
that orbital. The y-axis denotes orbital energy and the x-axis denotes no physical quantity.
(A) The ground-state MO diagram of H2. Two Atomic Orbitals (AOs) are combined (dashed
arrows) to form one lower-energy sigma (σ) bonding Molecular Orbital (MO). (B) An excited-
state Molecular Orbital diagram of H2. One of the electrons in the low-energy σ MO is excited
to the high-energy σ∗ MO.

evolution of the system is governed by the Schrödinger equation (Equation 2.1), which we
repeat below 3:

Ĥ |Ψ(r,R, t)〉 = i~
∂

∂t
|Ψ(r,R, t)〉 . (2.2)

The Hamiltonian Ĥ is the operator corresponding to the total energy of the system. Since Ĥ
is time-independent, we can separate Equation 2.2 into a temporal (subscript t) and spatial
(subscript s) part:

Ψ(r,R, t) = Ψs(r,R)Ψt(t), (2.3)

such that

Ψt(t) = exp(−iEt), (2.4) Ĥ |Ψs(r,R)〉 = E |Ψs(r,R)〉 . (2.5)

Here E denotes the scalar total energy of the system given the particle positions r and R.
The total energy of the system comprises the kinetic energy and the potential energy of the
particles. The kinetic energy is a result of particle motion whereas potential energy is a result
of particle interaction such as electrostatic repulsion and chemical bonds. Accordingly, we
write the Hamiltonian operator Ĥ of the system as a sum of individual operators:

Ĥ = T̂el + T̂nuc + V̂el−el + V̂nuc−nuc + V̂nuc−el, (2.6)

3We restrict our analysis to closed shell systems, in which each MO is occupied by 2 electrons with
opposite spin, resulting in a net magnetization of zero. The spin variable is thus implicitly accounted for.
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CHAPTER 2. THEORETICAL BACKGROUND

with T̂el and T̂nuc the kinetic energy operators of the electrons and nuclei respectively:

T̂el =
∑
i

p̂2
i

2me

, (2.7) T̂nuc =
∑
I

P̂2
I

2MI

, (2.8)

V̂el−el and V̂nuc−nuc the electron-electron and nucleus-nucleus interaction operators respec-
tively:

V̂el−el =
1

2

∑
i 6=j

−1 · −1 · e2

|ri − rj|
, (2.9) V̂nuc−nuc =

1

2

∑
I 6=J

ZI · ZJ · e2

|RI −RJ |
, (2.10)

and finally V̂nuc−el the nucleus-electron interaction operator:

V̂nuc−el =
∑
i,I

−1 · ZI · e2

|ri −RI |
. (2.11)

Given the expression of the Hamiltonian and a set of initial conditions, we could in principle
solve the Schrödinger equation (Equation 2.2) to obtain the wave function Ψ and thus a full
description of the system. In 1926 E. Schrödinger published the solution for the hydrogen
atom [10]. The hydrogen atom is a 2-body system containing only one nucleus (M = 1) and
one electron (N = 1). For this particular case, the Schrödinger equation can be separated
into two simpler and analytically solvable equations through separation of variables. Gener-
ally, the Schrödinger equation cannot be solved analytically and we must therefore resort to
numerical methods. However, even for small but technologically relevant systems, numerical
computations are extremely demanding because of the sheer number of variables involved.
To facilitate numerical calculations, we need to make several approximations.

2.2.1 Born-Oppenheimer Approximation

For molecular systems, a sensible approximation is the Born-Oppenheimer approximation,
which was proposed by M. Born and R. Oppenheimer in 1927 [11]. The Born-Oppenheimer
approximation is the assumption that the motion of nuclei and electrons can be treated sep-
arately. It makes use of the fact that nuclei are about three orders of magnitude heavier
than electrons. Consequently, electrons react near instantly to the movement of nuclei. Or
conversely, from the electron’s perspective the nuclei appear to be stationary. The underlying
assumption is that the nuclei positions R remain fixed and only enter the problem as param-
eters. By applying this approximation, we can separate the wave function in an electronic
wave function Ψel and a nuclear wave function Ψnuc:

Ψs(r,R) = Ψel(r; R)Ψnuc(R). (2.12)

The nuclei positions R only enter as parameters in the electronic wave function and are
hereafter neglected in the notation. The electronic system is now governed by the electronic
Schrödinger equation. Using this approximation, we simplify Equation 2.5 to:

Ĥel |Ψel(r)〉 = Eel |Ψel(r)〉 , (2.13)

where Eel denotes the total energy of the electron system and Ĥel the electronic Hamiltonian:

Ĥel = T̂el + V̂el−el + V̂nuc−el. (2.14)

8



2.2. THE MOLECULAR SYSTEM

Using the Born-Oppenheimer approximation, we simplify the nuclei-electron interactions
by treating their motion separately. However, The electron-electron interactions still pose
difficulties since the dynamics of one electron is influenced by all other electrons in the system.

2.2.2 Independent Particle System

Before dealing with the complicated electron-electron interactions, let us first consider the
simplistic case in which the electrons are non-interacting. By neglecting the electron-electron
interactions entirely, the Hamiltonian reduces to a sum of one-particle Hamiltonians ĥi:

Ĥel = T̂el + V̂nuc−el =
∑
i

ĥi, ĥi :=
p̂2
i

2
−
∑
I

ZI
|ri −RI |

. (2.15)

Now, each one-particle problem ĥiφi = εiφi can be solved independently, with φi being the
one-particle wave function and εi the one-particle energy. Since ĥi acts only on φi, we have
ĥiφj = 0, for all i 6= j. The full electronic wave function can thus be written as a product of
one-particle wave functions [12, 13]:

Ψel(r) ≈ ΨH(r) =
∏
i

φi(ri). (2.16)

This is the Hartree wave function. A shortcoming of the Hartree wave function is that it
does not satisfy the anti-symmetry constraint imposed by the Pauli-Exclusion principle:

Ψ(r1, r2, . . . , ri, rj, . . . , rN−1, rN) = −Ψ(r1, r2, . . . , rj, ri, . . . , rN−1, rN). (2.17)

In order to satisfy the anti-symmetry constraint, the wave function can instead be approxi-
mated by a Slater determinant [14]:

Ψel(r) ≈ ΨHF(r) =
1√
N !

∣∣∣∣∣∣∣
φ1(r1) . . . φN(r1)

...
. . .

...
φ1(rN) . . . φN(rN)

∣∣∣∣∣∣∣ . (2.18)

In either case, the advantage of the simplistic independent-particle system is that energy
levels do not depend on electron-electron interactions. In particular, the energy levels are
unaffected when an electron is transferred from one MO to the other. In this case, the
excitation energy simply equates to the energy level difference, as shown in Figure 2.2 (A). On
the other hand, in a fully-interacting system, the remaining electrons react to the excitation
process, resulting in a shift of the energy levels. In this case, the excitation energy does
not equate to the pre-excitation energy level difference, as shown in Figure 2.2 (B). While
the independent-particle system is insufficient to describe the fully-interacting system, it can
help us approximate the fully-interacting system.

9



CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.2: MO diagrams of two fictional molecular systems: (A) an independent-particle
system and (B) a fully-interacting system. The orbitals are represented by horizontal bars
and the electrons represented by dots. In the independent-particle system (A), the energy
levels are unaffected by the excitation process. Consequently, the excitation energy Ωs simply
equates to the energy level difference. In the fully-interacting system (B), the original energy
levels (dashed) are shifted as a result of the excitation process. Consequently, the excitation
energy Ωs does not equate to the pre-excitation energy level difference.

2.2.3 The Variational Principle

Instead of obtaining a full solution of the electronic Schrödinger equation (Equation 2.13),
we could try finding part of the solution by imposing some constraints. Specifically, we can
obtain the ground state wave function Ψ0 and the ground state energies E0 by imposing that
the system energy Eel(Ψ) = 〈Ψel| Ĥel |Ψel〉 is minimized:

Ψ0 = argminΨ Eel(Ψ),

s.t. ∫ d3r |Ψ(r)|2 = 1.
(2.19)

This is known as the variational principle. Even with the imposed constraints, solving the
electronic Schrödinger equation (Equation 2.13) is difficult because of the electron-electron
interactions. To proceed, we once again neglect all electron-electron interactions and ap-
proximate the wave function by the Hartree-Fock wave function ΨHF (Equation 2.18). The
optimization problem of the Hartree-Fock independent-particle system is then given by:

Ψ0 = argminΨHF
Eel(ΨHF),

s.t. ∫ d3rφi(ri)φj(rj) = δi,j,

∫ d3r |ΨHF(r)|2 = 1.

(2.20)

The solution of this problem is given by a system of N (partial) functional derivatives:

δ 〈ΨHF| Ĥel |ΨHF〉
/
δφi = 0, i = 1, 2, . . . , N. (2.21)
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2.3. GROUND STATE ELECTRON DENSITY VIA DFT

This system of functional derivatives yields the Hartree-Fock equations [15]:

[ĥi + VH + VX]φi = εHF
i φi, (2.22)

where εHF
i denotes the Hartree-Fock one-particle energy, VH denotes the Hartree potential

and VX denotes the exchange potential :

VH,i =

∫
d3r′

∑
i 6=j

|φj(r′)|2
1

|r− r′|
=

∫
d3r′

ρj(r
′)

|r− r′|
, (2.23)

VXφi(r) =
∑
j

∫
d3r′φj(r

′)
1

|r− r′|
φi(r

′)φj(r). (2.24)

The Hartree potential represents the classical electrostatic potential at position r′i, generated
by the charge distribution ρ(r). Important is to note that the Hartree-Fock independent-
particle energies εHF

i now depend on the potentials VH,i, which in turn depend on the variables
φi(·). The problem must therefore be solved self-consistently. This method for describing
the ground state system is called the Hartree-Fock (HF) method, or alternatively the Self-
Consistent Field (SCF) method.

2.3 Ground State Electron Density via DFT

In the previous section, we introduced the electronic wave function Ψel, of the N -electron
system. We showed how we can approximate the ground state wave functions and energy
levels of the molecular system using the HF method. Specifically, we varied the one-particle
wave functions such that the system energy was minimized. In this section, we introduce
the Density Functional Theory (DFT) method for describing the ground state system. Like
the HF method, the DFT method also applies the variational principle. However, instead of
varying one-particle wave functions, with DFT we vary the electron density of the system.
We summarize important steps and approximations of the DFT method. A more thorough
analysis of the method can be found in [16].

The electronic wave function quantifies the probability of finding the i-th electron at a given
position ri, for i = 1, 2, . . . , N . Since the electronic wave function is not an observable of the
system, it cannot be measured. We can, however, measure the electron density n(r), which
is related to the electronic wave function Ψ via

n(r) = N

∫
d3r2 . . . rN |Ψ(r, r2, . . . , rN)|2 . (2.25)

The electron density quantifies the probability of an electron occupying an infinitesimal
element of space surrounding any given point r. Since it only depends on 3 coordinates, the
electron density is a much simpler quantity than the electronic wave function.

Naturally, the electrons arrange themselves such that the total energy of the system is min-
imized. DFT is based on this natural tendency to reach ground state. Specifically, if we

11



CHAPTER 2. THEORETICAL BACKGROUND

assume that the total energy of the system is a functional of the electron density, we can find
the ground state electron density by solving the optimization problem

δE0[n]

δn

∣∣∣
n=n0

= 0. (2.26)

The foundation of DFT was established by Hohenberg and Kohn [1], who proved that the
total energy is a functional of the density. Furthermore, they proved that the ground state
electron density is a minimizer of the total energy of the system.

The total energy is commonly split into four contributing factors:

E0[n] = Enuc−el[n] + Tel[n] + Eel−el[n] + EXC[n]. (2.27)

The functional forms of the classical electrostatic electron-nucleus Eel−nuc and electron-
electron (or Coulomb) Eel−el interactions are known and given by:

Eel−nuc[n] =
1

2

∫∫
d3rd3r′

n(r)n(r′)

|r− r′|
, (2.28) Eel−el[n] =

∫
d3rV̂nuc−el(r)n(r′).

1

1
(2.29)

However, the kinetic energy Tel[n] cannot be calculated from an electron density. Further-
more, the functional form of the exchange-correlation EXC[n] is not known. In order to
proceed, we must rewrite the system such that Tel[n] may be calculated. The EXC[n] term
must be approximated.

In 1965, W. Kohn and L. Sham proposed an independent-particle model approach for dealing
with the kinetic energy Tel[n] [17]. They showed that the electron density for N interacting
particles can be constructed from N non-interacting Kohn-Sham orbitals φKS

i :

n(r) =
N∑
i=1

∣∣φKS
i (r)

∣∣2 . (2.30)

The idea is that we transform the system of N interacting particles into a fictitious system
of N non-interacting one-particle orbitals whose joint electron density is identical to the
electron density of the original system. This fictitious system of non-interacting orbitals is
also referred to as the Kohn-Sham (KS) system.

The kinetic energy functional Tel[n] of the KS system is given by:

Tel[n] = −1

2

N∑
i=1

∫
d3rφKS

i ∇2φKS
i . (2.31)

Since the kinetic energy is a function of φKS
i explicitly and no longer of n, we rewrite the

optimization problem (Equation 2.26) accordingly:

δE0[n]

δφKS
i

∣∣∣
n=n0

= 0, i = 1, 2, . . . , N. (2.32)

So, we are now required to solve N optimization problems, each corresponding to one inde-
pendent particle. However, we cannot vary the set φKS

i freely. Since the normalized orbitals

12



2.3. GROUND STATE ELECTRON DENSITY VIA DFT

φKS
i are supposed to be non-interacting, they must be orthonormal to each other:∫

d3rφKS
i φKS

j = δi,j, δi,j =

{
1 if i = j,

0 otherwise,
(2.33)

where δi,j denotes the Kronecker delta. Each of the N optimization problems is now subject
to N constraints that ensure orthonormality of the orbitals. We reformulate the constrained
optimization problem using a Lagrange function with Lagrange multipliers εi,j:

δ

δφKS
i

[
E0[n]−

N∑
j

εi,j

(∫
d3rφKS

i φKS
j − δi,j

)] ∣∣∣∣∣
n=n0

= 0, i = 1, 2, . . . , N. (2.34)

Thus far, no approximations are made and the kinetic energy functional resulting from the
Kohn-Shan system (Equation 2.31) is exact.

Unfortunately, the exact form of the exchange-correlation functional EXC[n] is not known and
it can only be approximated. As a result, all many-body complications in DFT stem from the
exchange-correlation functional. Approximate functionals may be fitted to experimental data,
e.g. B3LYP [18, 19], whereas others may interpolate between limiting cases where the exact
functional is known, e.g. PBE [20]. While approximations exist that accurately calculate
certain physical quantities, there is no go-to approximation which produces consistent results
across the board [21]. We use PBE0 functionals, which have been shown to provide accurate
excitation energies [22].

Once we have selected an approximate functional for the exchange-correlation, we can ex-
press all four energy contributions (Equation 2.27) in their functional form. We can now
proceed with solving the optimization problem in Equation 2.34. Note that we are differen-
tiating functionals with respect to the orbital function φi. Without derivation, the following
equations for the Kohn-Sham orbitals are obtained [16]:[

−1

2
∇2 + V̂nuc−el + VH [n] + VXC[n]

]
φKS
i =

∑
j

εi,jφ
KS
j , i = 1, 2, . . . , N. (2.35)

We define the DFT Hamiltonian ĤDFT[n] as the left-hand side operator acting on the orbitals,
which is Hermitian. We can look at this system of equations as a matrix equation:

ĤDFT[n]{φKS
i } = ε{φKS

i }. (2.36)

The left-hand side of this equation represents a Hermitian operator ĤDFT[n] acting on the
orbitals {φKS

i }. The right-hand side matrix of Lagrange multipliers ε must therefore also
be Hermitian. Consequently, we can diagonalize ε = UεKSUT using unitary transformation
matrices leading to

ĤDFT[n]{φKS
i } = UT εKSU{φKS

i } ⇔ ĤDFT[n]U{φKS
i } = εKSU{φKS

i },

effectively transforming the orbitals into {φKS
i } := U{φi}. The resulting equation is known

as the Kohn-Sham equation:

ĤDFT[n]φKS
i = εKS

i φKS
i , i = 1, 2, . . . , N. (2.37)

13



CHAPTER 2. THEORETICAL BACKGROUND

This equation resembles the electronic Schrödinger equation (Equation 2.14). However, the
orbitals φKS

i do not represent wave functions and the energies εKS
i do not represent physical

energies. Instead, this equation describes the dynamics of the fictitious system of non-
interacting orbitals. We note that the Hamiltonian HDFT depends on the electron density
n, which in turn depends on the Kohn-Sham wave functions φKS

i , which we are optimizing.
Therefore, we can only solve this equation self-consistently, i.e. make a guess of the electron
density n and solve for φKS

i from which a new density is constructed. This process is repeated
until the electron density is converged within a certain tolerance.

In order to optimize φKS
i , we require a mathematical representation of it. However, wave

functions are defined at an in infinite number of points and therefore cannot exist in a finite
space such as the computer memory. In practice, φKS

i (r) is expanded in a finite number of
basis functions χj(r):

φKS
i (r) =

∑Ni,χ

j=1
Xi,jχj(r), i = 1, 2, . . . , N. (2.38)

Here, Xi,j ∈ R represents the relative weighting coefficient corresponding to the contribution
of basis function χj to the full wave function φKS

i . We use atom-centered Gaussian Type
Orbitals (GTOs), which offer computationally efficient integral evaluations [23]. These types
of basis functions are of the form:

χ(r) = Nl,αYl,m(v, φ)rle−αr
2

. (2.39)

Every atom requires a distinct set of basis functions. A collection of basis functions which can
describe the molecular system in its entirety is called a basis set. When selecting a suitable
basis set, we make a trade-off between computation times and accuracy. By increasing the
number of basis functions, we can more accurately describe the orbitals φKS

i , but we also
increase the computational cost of our calculations.

2.4 Electronically Excited States via GW-BSE

In the previous section, we introduced the DFT method for computing the energy of a
molecular system given its electron density. While DFT accurately predicts the ground state
energies of molecules, it underestimates band gaps for most materials [3]. This error stems
from the use of approximate exchange-correlation functionals. Now, we introduce the GW -
BSE method. The GW-BSE method is built upon the ground state system established in
the previous section, yet it yields more accurate excitation energies than DFT. In this thesis,
we limit ourselves to the first step of the GW-BSE method: the GW method, which deals
with calculating the self-energy (Equation 1.1).

We distinguish between two types of excitation processes: one-particle excitations and two-
particle excitations. In one-particle excitations, a single electron is either added to or anni-
hilated from the system. In two-particle excitations, one electron is created and one electron
is annihilated. In the latter, the charge of the molecule remains unchanged. Two-particle
excitation processes are therefore also referred to as neutral excitations. We summarize im-
portant steps and approximations of the GW method. A more detailed explanation of the
method can be found in [16, 24, 25].
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Figure 2.3: A visualization of the one-particle excitation process as described by the Green’s
function G. (A) t > t′: an electron is created at (r′, t′), propagates through the system and
is annihilated at (r, t). (B) t < t′: a hole is created at (r′, t′), propagates through the system
and is annihilated at (r, t).

2.4.1 One-Particle Excitations

One-particle excitations are processes in which one electron is temporarily added (created) or
removed (annihilated) from the molecular system. We model these one-particle excitations
as a sequence of three events: (1) the creation of an electron at (r′, t′), (2) its evolution
from t′ to t through the interacting many-body system and (3) its annihilation at (r, t).
The annihilation of an electron is equivalent to the creation of a hole, i.e. the absence of an
electron. Mathematically, we describe these events using operators in the Heisenberg picture.

First, let |n, s〉 denote the n-electron sth excited state of the system and let En,s denote the

energy associated to this state. Acting on these states are the annihilation operator φ̂(rt),
which annihilates one electron at (r, t), and the creation operator φ̂†(rt), which creates one
electron at (r, t). The creation and annihilation operators are given by:

φ̂(rt) = exp(iĤt)φ̂(r, 0) exp(−iĤt). (2.40)

These operators are governed by the Equation Of Motion (EOM) in the Heisenberg picture4:

i
∂

∂t
φ̂(rt) =

[
φ̂(rt), Ĥ

]
. (2.41)

The energies εs associated to these creation and annihilation processes follow from:

〈n, 0| φ̂†(rt) |n+ 1, s〉 = 〈n, 0| exp(iĤt)φ̂†(r, 0) exp(−iĤt) |n+ 1, s〉
= 〈n, 0| exp(iEn,0t)φ̂

†(r, 0) exp(−iEn+1,st) |n+ 1, s〉

= 〈n, 0| φ̂†(r, 0) |n+ 1, s〉︸ ︷︷ ︸
=:fs(r)

exp
[
− i (En+1,s − En,0)︸ ︷︷ ︸

=:εs

t
]
. (2.42)

4In group theory, [f, g] denotes the commutator of elements f and g of a group G.
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The full one-particle excitation process is described by the one-particle Green’s function (see
Figure 2.3), which is defined as:

iG(rt, r′t′) =

{
〈n, 0| φ̂(rt)φ̂†(rt) |n, 0〉 t > t′ creation→ annihilation

〈n, 0| φ̂†(rt)φ̂(rt) |n, 0〉 t′ > t annihilation→ creation
. (2.43)

For now, we only consider t > t′, i.e. creation followed by annihilation (Figure 2.3 (A)). By
combining Equations 2.42, 2.43 and subsequently doing a Fourier transform ((t − t′) → ω),
we can derive the so-called Lehman expression of the one-particle Green’s function:

G1(r, r′, ω) =
Nv∑
v

φv(r)φv(r
′)

ω − εv − iη
+

Nc∑
c

φc(r)φc(r
′)

ω − εc + iη
. (2.44)

Here, index v runs over the occupied (valence) states and index c runs over the unoccupied
(conduction) states. The “small” parameter η → 0+ ensures that integrals over the Green’s
function converge. The poles of the Green’s function correspond to the desired creation
and annihilation energies: εc, εv. If we can relate the one-particle Green’s function to our
molecular system, we can compute these energies.

the one-particle Green’s function G1 satisfies the Equation of Motion (EOM) for the Green’s
function:[

∂

∂t
− ĥ
]
G1(rt, r′t′) + i

∫
d3r′′v(r, r′′)G2(r′′t, r′t′, rt) = δ(r− r′)δ(t− t′). (2.45)

Here, δ denotes the Dirac delta function and ĥ denotes the one-particle Hamiltonian (Equa-
tion 2.15). Without going into detail, it is important to note that this equation contains both
the one-particle Green’s function G1 and the two-particle Green’s function G2. This contin-
ues for higher order Green’s functions as well and leads to an infinite system of equations.
In order to obtain a closed system of equations, from which we can obtain G1, we introduce
the self-energy operator Σ(rt, r′′t′′) via

i

∫
d3r′′v(r′, r′′)G2(r′′t, r′t′, rt) = −

∫
d3r′′dt′′Σ(rt, r′′t′′)G1(rt, r′t′). (2.46)

Substitution of Equation 2.46 into Equation 2.45 yields

[
∂

∂t
− ĥ
]
G1(rt, r′t′)−

∫
d3r′′dt′′Σ(rt, r′′t′′)G1(rt, r′t′) = δ(r− r′)δ(t− t′). (2.47)

We can obtain an expression for Σ by solving a closed set of coupled equations known as

16



2.4. ELECTRONICALLY EXCITED STATES VIA GW-BSE

Hedin’s equations [26]:

Σ(1, 2) = i

∫
d34G1(1, 3)W (1, 4)Γ(4, 2, 3), (2.48a)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d4567

∂Σ(1, 2)

∂G1(4, 5)
G1(4, 6)G1(5, 7)Γ(6, 7, 3), (2.48b)

χ(1, 2) = −i
∫

d34G1(1, 3)G1(4, 1)Γ(3, 4, 2), (2.48c)

ε(1, 2) = δ(1, 2)−
∫

d3v(1, 3)χ(3, 2), (2.48d)

W (1, 2) =

∫
d3ε−1(1, 3)v(3, 2). (2.48e)

The notation is simplified by combining the space and frequency variables into a single
variable, i.e. rt ≡ 1 and r′t′ ≡ 2, or r, r′, ω ≡ 1, 2 and r, r′, r′′, ω ≡ 1, 2, 3. Here, Γ is the
vertex correction, χ the reducible polarizability, ε the dielectric function and W the screened
Coulomb interaction. Furthermore, δ denotes the Kronecker delta and v = |r− r′|−1 denotes
the Coulomb interaction. The polarizability of a molecule is the tendency of its electron
cloud to be distorted by an external electric field. The dielectric function ε describes the
response of the system to the electric screening field. The screened-Coulomb interaction
W describes the electron-electron interactions v of the many-electron system. In practice,
solving this system is impossible. The vertex correction Γ is particularly complicated as it is
given by recursive relation, containing a fourth degree integral and a functional derivative.
To proceed, we simplify the system by making two important approximations.

The first approximation is the GW approximation, which assumes that the expansion of the
self-energy Σ in terms of the Green’s function G1 can be truncated after the first term. This
is achieved by setting Γ(1, 2, 3) = δ(1, 2)δ(1, 3). Substituting this into Equations 2.48a to
2.48e yields

Σ(1, 2) = iG1(1, 2)W (1, 2), (2.49a)

P (1, 2) = −iG1(1, 2)G1(2, 1), (2.49b)

ε(1, 2) = δ(1, 2)− ∫ d3v(1, 3)χ(3, 2), (2.49c)

W (1, 2) = ∫ d3ε−1(1, 3)v(3, 2). (2.49d)

The self-energy simplifies to Σ(1, 2) = iG1(1, 2)W (1, 2) (hence the name GW approximation).
Furthermore, the reducible polarizability χ simplifies to the irreducible polarizability P =
iG(1, 2)G(2, 1). This simplification of the polarizability corresponds to the Random Phase
Approximation (RPA). In the RPA setting, electron-hole pair react with each other and the
remaining electronic system as being non-interacting.

The second approximation is the Quasi-Particle (QP) approximation, which assumes that the
excitation of a many-body system of interacting particles can be described by a single quasi-
particle. The quasi-particle can be thought of as a real particle within a cloud of screening
particles. The coulomb interactions ν between all electrons in the system are modeled by a
screened Coulomb interaction W = ε−1v of the quasi-particle with itself (see Figure 2.4). The
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Figure 2.4: (A) The many-electron system of interacting particles. The particles interact with
each other through Coulomb interactions ν. (B) The quasi-particle. The coulomb interactions
ν between all electrons in the system are modeled by a screened Coulomb interaction W =
ε−1v of the quasi-particle with itself.

excited system now only contains one particle: the quasi-particle. The total energy of this
system equals the energy of this quasi-particle and is called the Quasi-Particle (QP) energy
εQP. From the QP energies, we can obtain the desired creation and annihilation energies.
The QP energies are defined as the poles of G1 as shown in Equation 2.44.

We can visualize the QP approximation using the spectral function A(ω) (see Figure 2.5).
The spectral function is related to the photoemission spectrum of the molecule; its peaks
represent excitations. Introducing the quasi-particle, the spectral function is decomposed in
a coherent and an incoherent part:

A(ω) = ZQPAcoh(ω) + (1− ZQP)Aincoh(ω). (2.50)

The quasi-particle only accounts for the coherent part of the spectral function. The incoherent
part may contribute satellite peaks to the full spectral function, but these peaks are neglected
by the quasi-particle approximation. The weight of the coherent part ZQP is called the Quasi-
Particle (QP) weight and is defined as:

ZQP :=

1− dRe[Σ(ω)]

dω

∣∣∣∣∣
ω=εQP

−1

∈ [0, 1]. (2.51)

Note that the QP weight is defined as the sum of the zeroth and first order terms of a Taylor
expansion of the spectral function around ω = εQP . The QP approximation holds when
the quasi-particle resembles the real system, i.e. the excitations must have long lifetimes:
Im(Σc) → 0, and there must be little to no satellite peaks: (1 − ZQP ) → 0. Note that
decreasing the “small” parameter η (Equation 2.44) will decrease Im(Σ) and therefore also
decrease the error of the QP approximation.
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Figure 2.5: In the non-interacting system (e.g. the KS system), the spectral function consists
of δ-peaks (red) at the KS energies. However, in the real interacting system, the particles
rearrange in reaction to the excitation. In the spectral function, this is reflected by a separa-
tion of the δ-peaks into smaller and shifted peaks (green), each corresponding to an excited
state with a different electron arrangement. The spectral function then becomes a contin-
uum, collecting the peaks under Lorentzian curves (blue). Introducing the quasi-particle, the
spectral function is decomposed in a coherent and an incoherent part. The coherent part
is centered around the quasi-particle energy εQP and has a Lorentzian shape. Its shift from
the non-interacting energy is proportional to Re[Σ] and its Full Width at Half Maximum
(FWHM) is proportional to Im[Σ]. The lifetime of the quasi-particle is inversely propor-
tional to the peak width. The incoherent part may include satellite peaks, but is neglected
by the quasi-particle approximation.

In order to obtain the QP energies, we relate them to the self-energy. First, we generalize ω ∈
R→ z ∈ C and rewrite the Green’s function (Equation 2.44) into its spectral representation:

G1(r, r′, z) =

NMO∑
i

ψi(r, z)ψ̄i(r
′, z)

z − Ei(z)
. (2.52)

Here, ψi(r, z) and ψ̄i(r
′, z) respectively denote the right and left eigenvectors of the Hamilto-

nian Ĥ = ĥ0 + Σ(r′, r, z) and Ei(z) the corresponding eigenvalues. Substitution of Equation
2.52 into the EOM (Equation 2.45) yields the following relation between the self-energy Σ
and the energy z [24]:

ĥ0ψi(r, z) + ∫ d3r′Σ(r, r′, z)ψi(r
′, z) = Ei(z)ψi(r, z). (2.53)

Recall that the QP energies are defined as the poles of the Green’s function: εQP
i −Ei(ε

QP
i ).

Substitution of z = εQP
i , rewriting ψQP

i (r) ≡ ψi(r, z = εQP
i ) and collecting all terms in the
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integral yields:∫
d3r′

[
δ(r, r′)ĥ0ψ

QP
i (r) + Σ(r, r′, εQP

i )ψQP
i (r′)

]
=

∫
d3r′

[
δ(r, r′)Ei(z)ψQP

i (r)
]
, (2.54)

or alternatively, in bra-ket notation and only considering the diagonals:[
ĥ0 + Σ(εQP

i )
]
|φQP
i 〉 = εQP

i |φ
QP
i 〉 . (2.55)

We solve this equation using a perturbative approach. We approximate the orbitals and
Hamiltonian of the QP system by those of the KS system, i.e.

|φQP
i 〉 ≈ |φKS

i 〉 , ĥ0 ≈ ĥDFT
0 = ĤDFT − V̂XC, εKS

i = 〈φKS
i | ĤDFT |φKS

i 〉 . (2.56)

Substituting this into Equation 2.55 and left multiplying with the KS orbitals yields the QP
equation:

εQP
i = εKS

i + 〈φKS
i |Σ(εQP

i )− V̂XC |φKS
i 〉 . (2.57)

This equation relates the self-energy Σ to the QP energies εQP
i . Once the self-energy Σ is

calculated via Equations 2.49a to 2.49d, we can use this relation to find the QP energies
εQP
i . Note that the QP energies equal the KS energies plus an additional correction term.

Furthermore, the self-energy is evaluated at the QP energy, which means that Equation 2.57
must be solved self-consistently.

Before we proceed, we discuss the problem of self-consistency. We note that the computation
of the self-energy requires input in the form of MO energies. We pass these energies ε as
a parameter, i.e. Σ(ω) = Σ(ε;ω). The self-energy on the right-hand side in Equation 2.57
is evaluated as Σ(εQP; εQP). In a first attempt, we can set the input energies to the Kohn-
Sham energies obtained through DFT calculations: Σ(εQP; εQP) ≈ Σ(εKS; εQP). For the next
iterations, we can use the previously obtained QP energy. Symbolically:

1 : ε
(1)
QP = εKS + 〈φKS|Σ(εKS; ε

(1)
QP)− V̂XC |φKS〉 ;

2 : ε
(2)
QP = εKS + 〈φKS|Σ(ε

(1)
QP; ε

(2)
QP)− V̂XC |φKS〉 ;

...

k : ε
(k)
QP = εKS + 〈φKS|Σ(ε

(k−1)
QP ; ε

(k)
QP)− V̂XC |φKS〉 .

(2.58)

We refer to these iterations as GW iterations. If we terminate the this process after the first
iteration, we obtain the unconverged QP energies ε

(1)
QP. This approach is called G0W0, or

one-shot GW . If we continue this process N times such that

|ε(N)
QP − ε

(N−1)
QP | < ε, (2.59)

where ε denotes the desired tolerance, we obtain the converged QP energies ε
(N)
QP . This

approach is called evGW . While evGW provides the QP energies up to desired precision,
G0W0 provides a good estimate of the QP energies at lower computational cost.
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2.4.2 Two-Particle Excitations

Two-particle excitations are processes in which one electron is created and one electron is
annihilated, such that the total number of electrons remains unchanged. These excitations
are therefore also called neutral excitations. We model these neutral excitation processes in
the framework of Green’s functions. Recall that in the previous section we simplified Hedin’s
equation by applying the GW approximation. The reducible polarizability χ was simplified
to the irreducible polarizability P . This simplification of the polarizability corresponds to
the Random Phase Approximation (RPA). In the RPA setting, the electron-hole pair react
with each other and the remaining electronic system as being non-interacting. However, this
electron-hole interaction is exactly what we need in order to model two-particle excitations.

In order to describe two-particle excitations, we extend the two-point Green’s function to the
four-point Green’s function, systematically describing all possible neutral excitations. This
form is known as the two-particle correlation function:

L(12, 1′2′) = −G2(12, 1′2′) +G1(1, 2)G1(1′, 2′). (2.60)

It satisfies the Dyson-like, Bethe-Salpeter Equation (BSE):

L(12, 1′2′) = L0(12, 1′2′) + ∫ d3456L0(14, 1′3)K(35, 46)L(62, 52′). (2.61)

Here, L0(12, 1′2′) = G1(1, 2′)G1(2, 1′) denotes the non-interacting two-particle correlation
function and K denotes the interaction kernel. We assume that both one-particle excitation
processes occur simultaneously at time t. The time dependence can therefore be reduced:
L(12, 1′2′) ≡ L(r1, r2, r

′
1, r
′
2, t).

The non-interacting two-particle correlation function L0 describes a neutral excitation process
in a non-interacting system. We can retrieve the irreducible polarizability by evaluating:

P (r1, r2, ω) = −iL0(r1, r2; r1, r2;ω). (2.62)

The two-particle correlation function L describes a neutral excitation process in a fully-
interacting system. We obtain the reducible polarizability by evaluating:

χ(r1, r2, ω) = −iL(r1, r2; r1, r2;ω). (2.63)

Thus, in order to model two-particle excitations, we replace the irreducible polarizability P
in Equation 2.49b with the reducible polarizability χ, which follows from the Equation 2.61.
Besides this modification of the polarizability, the QP energies follow from solving the QP
equation, as explained in the previous section.

So far, we only considered the QP energies, not the two-particle excitation energies. The QP
energies can be thought of as the energy required to create or annihilate a single electron in
the MO. However, the QP energies are not physical, i.e. we cannot relate them to real-world
measurements. The two-particle excitation energies, on the other hand, are physical and can
be related to singlet/triplet excitation energies of the molecule. The two-particle excitation
energies follow from the BSE method.
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Chapter 3

Methodology

In the previous chapter, we provided the background theory for the three-step DFT-GW-BSE
procedure. To arrive at the desired Quasi-Particle (QP) energies, we must perform two steps:
(1) solve Hedin’s equations (Equations 2.49a to 2.49d) to obtain the self-energy Σ and (2)
solve the QP equation (Equation 2.57) to obtain the QP energies εQP.

The self-energy operator Σ is given by the GW convolution: Σ = GW . Here, G denotes the
Green’s function and W denotes the screened-Coulomb interaction. Recall that the screened-
Coulomb interaction W describes the electron-electron interactions v of the many-electron
system: W = ε−1v. Here v denotes the bare Coulomb interaction and ε denotes the dielectric
function. The dielectric function describes the response of the system to the electric screening
field: ε = 1−vχ. Here χ denotes the reducible polarizability. The polarizability of a molecule
is its ability to form dipoles in reaction to an electric field. The reducible polarizability is
computed by solving the BSE.

In this chapter, we discuss the methodology behind the GW step. First, we calculate the
reducible polarizability, which we need to evaluate the screened Coulomb interaction W .
Next, we discuss an analytical method and an approximate method for computing the self-
energy Σ. Once we have an expression for the self-energy, we compute the QP energies by
numerically solving the QP equation.

3.1 Polarizability

We introduced the reducible polarizability χ (Equation 2.48c) and the irreducible polariz-
ability P (Equation 2.49b). Via the GW approximation, the reducible polarizability χ was
simplified to its irreducible counterpart P . However, in order to model two-particle excita-
tions, we need to re-introduce the reducible polarizability χ. We achieve this by extending
the one-particle correlation function L0 to the two-particle correlation function L. Then,
the irreducible polarizability P follows from Equation 2.62 and the reducible polarizability χ
follows from Equation 2.63. In this section, we calculate the irreducible polarizability P and
the reducible polarizability χ.
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CHAPTER 3. METHODOLOGY

3.1.1 Irreducible Polarizability

The irreducible polarizability P is given by Equation 2.62. In order to draw conclusions for
the interacting system, we extend it from a two-point quantity to a four-point quantity:

P (12, 1′2′) = −iG1(1, 2′)G1(2, 1′). (3.1)

We express the polarizability in the Lehman representation. We start with a Fourier trans-
form to the frequency domain. The product of the one-particle green’s functions in the
time-domain results in a convolution in the Fourier domain:

P (r1, r2; r′1, r
′
2;ω) = − i

2π

∫
dω′ G1(ω + ω′)G1(ω). (3.2)

Substitution of the Lehman representation of the one-particle Green’s function G1 (Equation
2.44) yields:

P (r1, r2; r′1, r
′
2;ω) = − i

2π

∑
vc

∫
dω′I(r1, r2; r′1, r

′
2;ω), (3.3)

where

I(r1, r2; r′1, r
′
2;ω) =

(
1{c = 0} · φv(r)φv(r

′)

ω + ω′ − εv − iη
+
1{v = 0} · φc(r)φc(r

′)

ω + ω′ − εc + iη

)
×
(
1{c = 0} · φv(r)φv(r

′)

ω′ − εv − iη
+
1{v = 0} · φc(r)φc(r

′)

ω′ − εc + iη

)
. (3.4)

The integral can be evaluated analytically on the complex plane using complex contour
deformation theory [24]. We give a brief overview of contour deformation theory in Appendix
A.1. Performing this integration yields:

P (r1, r2, r
′
1, r
′
2, ω) =

∑
vc

[
φc(r1)φv(r2)φ∗v(r

′
1)φ∗c(r

′
2)

ω − (εc − εv) + iη
− φv(r1)φc(r2)φ∗c(r

′
1)φ∗v(r

′
2)

ω + (εc − εv)− iη

]
. (3.5)

3.1.2 Reducible Polarizability

The reducible polarizability χ is given by Equation 2.63. In order to compute it, we must
evaluate the two-particle correlation, which is defined as:

L(12, 1′2′) = −G2(12, 1′2′) +G1(12)G1(1′2′) (3.6)

and satisfies the Dyson-like, Bethe-Salpeter Equation (BSE):

L(12, 1′2′) = L0(12, 1′2′) + ∫ d3456L0(14, 1′3)K(35, 46)L(62, 52′). (3.7)

Here, L0(12, 1′2′) = G1(1, 1′)G1(2, 2′) denotes the non-interacting two-particle correlation
function and K denotes the interaction kernel. We assume that both one-particle excitation
processes occur simultaneously at time t. The time dependence can therefore be reduced:
L(12, 1′2′) ≡ L(r1, r2, r

′
1, r
′
2, t).
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3.1. POLARIZABILITY

To simplify the mathematical formulation, we introduce the so-called transition space as
product basis of one-particle wave functions. Any four-point quantity f(x1, x2;x3, x4;ω) ∈ C
can be transformed to this basis as follows:

f(x1, x2;x3, x4;ω) =
∑

n1,n2,n3,n4

φn1(x1)φ∗n2
(x2)[f(ω)]n3,n4

n1,n2
φn3(x3)φ∗n4

(x4), (3.8)

where the matrix f(ω) ∈ CN2
MO×N

2
MO is given by:

[f(ω)]n3,n4
n1,n2

=

∫
dx1dx2dx3dx4 φn1(x1)φ∗n2

(x2)f(x1, x2;x3, x4;ω)φn3(x3)φ∗n4
(x4). (3.9)

The indices n1, n2, n4, n1 ∈ {1, 2, . . . , NMO} run over the MOs. The two dimensions of the
matrix f correspond to the transitions n1 → n2 and n3 → n4. Note that all matrices in this
representation are Hermitian, i.e. f = f∗. Using this basis, we can rewrite Equation 3.7 as a
matrix equation:

L(ω) = L0(ω) + L0(ω)K(ω)L(ω). (3.10)

The non-interacting correlation L0 (Equation 3.5) is transformed to this basis:

[−iL0(ω)]n3,n4
n1,n2

= (δn1,v − δn2,v) ·
δn1,n3 · δn2,n4

∆εn2,n1 − ω
. (3.11)

Otherwise, in matrix representation:

− iL0(ω) =

n1n2\n3n4 vv cc vc cv


vv 0 0 0 0
cc 0 0 0 0
vc 0 0 1

∆εn2,n1−ω
0

cv 0 0 0 −1
∆εn2,n1−ω

. (3.12)

In this basis, −iL0 is diagonal: n1 = n3, n2 = n4. We limit ourselves to the subspace of
resonant (v → c) and anti-resonant (c→ v) transitions:

− iL0(ω) ∈ CN2
MO×N

2
MO → −iL0(ω) ∈ C2Nt×2Nt , (3.13)

where Nt := Nv ·Nc. Finally, we introduce the occupation matrix F such that

− iL0 = −iL̃0 · F =

[
(∆εn2,n1 − ω)−1 0

0 (∆εn2,n1 − ω)−1

]
︸ ︷︷ ︸

=:−iL̃0∈C2Nt×2Nt

·
[
1 0
0 −1

]
︸ ︷︷ ︸

=:F∈C2Nt×2Nt

, (3.14)

with the matrix elements given by:

[−iL̃0]n3,n4
n1,n2

= δn1,n3δn2,n4 · (∆εn2,n1 − ω)−1 (3.15)

[F]n3,n4
n1,n2

= δn1,n3δn2,n4 · (δn1,v − δn2,v). (3.16)
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We have rewritten the BSE (Equation 3.10) in terms of the transition space. Next, we solve
this equation for the two-particle correlation function L. First, we separate L:

−iL(ω) = −iL̃0(ω)F− iL̃0(ω)FK(ω)L(ω)

=
[
1 + iL̃0(ω)FK(ω)

]−1

· −iL̃0(ω)F

=
[
−iL̃−1

0 (ω)− iFK(ω)
]−1

F. (3.17)

Since −iL̃−1

0 (Equation 3.15) is diagonal, its inverse is given by:

− iL̃−1

0 (ω) =

[
∆εn2,n1 − ω 0

0 ∆εn2,n1 − ω

]
, (3.18)

which allows us to extract the frequency-dependence:

− iL̃−1

0 (ω) = D− ωI =

[
∆εn2,n1 0

0 ∆εn2,n1

]
︸ ︷︷ ︸

=:D∈C2Nt×2Nt

−ω
[
1 0
0 1

]
︸ ︷︷ ︸

=:I∈R2Nt×2Nt

. (3.19)

Furthermore, we introduce the two-particle Hamiltonian H2p:

H2p(ω) := D + iFK. (3.20)

Using Equations 3.19 and 3.20, we rewrite Equation 3.17 into

− iL =
[
H2p − ωI

]−1
F. (3.21)

Using this expression, we can calculate the two-particle correlation function L and in turn the
reducible polarizability χ (Equation 2.63), which we need for the GW calculations. However,
this expression is problematic since it requires the evaluation of a frequency-dependent matrix
inverse at every GW iteration. We can simplify this frequency-dependence by rewriting the
matrix inverse in terms of the eigendecomposition of the two-particle Hamiltonian H2p. In
the next section, we solve the eigenvalue problem related to the two-particle Hamiltonian
H2p to find an alternative expression of the polarizability χ.

3.2 Diagonalizing the Two-Particle Hamiltonian

By diagonalizing the two-particle Hamiltonian H2p (Equation 3.20), we compute the eigen-
values Ωs and eigenvectors us. The eigenvalues and eigenvectors are required compute the
reducible polarizability χ (Equation 3.42), which we need for the GW calculations. Due
to the symmetry between the resonant (c → c) and anti-resonant (v → c) transitions, the
two-particle Hamiltonian has a very specific block structure [27]:

H2p =

[
A B
−B −A

]
∈ R2Nt×2Nt , (3.22)
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with A,B ∈ RNt×Nt and Nt = Nv ·Nv. The individual matrix blocks read

[A]v
′,c′

v,c = (εc − εv)δv,v′δc,c′ + (vc|v′c′) + Ξv′,c′

v,c , (3.23a)

[B]v
′,c′

v,c = (vc|v′c′) + Ξv′,c′

v,c . (3.23b)

Index v = 1, 2, . . . , Nv runs over the occupied MOs (/valence states) and index c = 1, 2, . . . , Nc

runs over the unoccupied MOs (/conduction states). The BSE kernel Ξ is responsible for
modeling the electron-hole interactions that arise in two-particle excitations. A variety of
methods exists to deal with the electron-hole interactions, including: RPA, TD-HF, TD-DFT
and BSE. The only difference between these methods lies in the expression of the BSE kernel
Ξ. We calculate the polarizability χ in the RPA setting, for which Ξ = 0. The Molecular
Electronic Repulsion (ERI) integral (ab|cd) is defined as:

(ab|cd) :=

∫∫
dr1dr2 φa (r1)φb (r1) |r1 − r2|−1φc (r2)φd (r2). (3.24)

Using the resolution-of-identity (RI) approximation, we can efficiently evaluate an entire
range of ERI integrals using matrix multiplication:

Ea,c = M[a]M[c]T ∈ RNMO×NMO , [Ea,c]b,d =
∑

β
Mβ

a,bM
β
c,d ≈ (ab|cd). (3.25)

Here, M ∈ RNMO×NMO×Nx are the pre-computed three-center integrals over the auxiliary basis
set, with dimensions Nx. See Appendix B.2 for more information.

We write the 2Nt × 2Nt diagonalization of the two-particle Hamiltonian H2p as follows:[
A B
−B −A

] [
Xs

Ys

]
= Ωs

[
Xs

Ys

]
. (3.26)

The eigenvalues Ωs denote the neutral excitation energies 1. We solve this eigenvalue problem
for the purpose of evaluating the reducible polarizability (Equation 3.42). Due to the specific
block structure of H2p, we can rewrite the eigenvalue problem in Equation 3.26 into a smaller
eigenvalue problem. From Equation 3.26 follows the set of coupled equations:

AXs + BYs = ΩsXs, (3.27a)

−BXs −AYs = ΩsYs. (3.27b)

Addition and subtraction of Equations 3.27a and 3.27b yields

(A−B)(Xs −Ys) = Ωs(Xs + Ys). (3.28a)

(A + B)(Xs + Ys) = Ωs(Xs −Ys), (3.28b)

By combining Equations 3.28a and 3.28b, we obtain

(A + B)(Xs + Ys) = Ω2
s(A−B)−1(Xs + Ys)

⇔ (A−B)1/2(A + B)(Xs + Ys) = Ω2
s(A−B)−1/2(Xs + Ys)

⇔ (A−B)1/2(A + B)(A−B)1/2(A−B)−1/2(Xs + Ys) = Ω2
s(A−B)−1/2(Xs + Ys).

(3.29)

1If the BSE kernel Ξ is configured to the BSE method, the eigenvalues Ωs equate to the neutral excitation
energies of the fully-interacting system
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Finally, we define

C := (A−B)1/2(A + B)(A−B)1/2, (3.30) Zs := (A−B)−1/2(Xs + Ys). (3.31)

Equation 3.29 can then be rewritten into the smaller Ns ×Ns eigenvalue problem:

CZs = Ω2
sZs, (3.32)

where Ns := Nt denotes the number of eigenvalues of the two-particle Hamiltonian. The
matrix C is again Hermitian and half the size of the original problem. From the eigenvectors
Zs, we can recover the vectors Xs and Ys according to: 2

(Xs + Ys) = (A−B)1/2Zs, (3.33a)

(Xs −Ys) = Ωs(A−B)−1/2Zs, (3.33b)

followed by addition and subtraction of Equations 3.33a and 3.33b:

Xs =
1

2

[
(A−B)1/2 + Ωs(A−B)−1/2

]
Zs, (3.34a)

Ys =
1

2

[
(A−B)1/2 − Ωs(A−B)−1/2

]
Zs. (3.34b)

Note that the matrix (A − B) = (εc − εv)δv,v′δc,c′ is diagonal in the RPA setting (Ξ = 0).
Therefore, its inverse and square root in Equations 3.34a and 3.34b are readily available.

Returning to the original eigenvalue problem. From

H2p[YT
s XT

s ]T = −Ωs[Y
T
s XT

s ]T and [XT
s −YT

s ]H2p = Ωs[X
T
s −YT

s ]

follow the same set of coupled equations as Equations 3.27a and 3.27b and are thus valid
solutions to the eigenvalue problem. In conclusion, we find

H2pU = UΛ ⇔
[

A B
−B −A

]
︸ ︷︷ ︸

=H2p

[
X Y
Y X

]
︸ ︷︷ ︸

=U

=

[
X Y
Y X

]
︸ ︷︷ ︸

=U

Λ, (3.35a)

VH2p = ΛV ⇔
[

X −Y
−Y X

]T
︸ ︷︷ ︸

=V

[
A B
−B −A

]
︸ ︷︷ ︸

=H2p

= Λ

[
X −Y
−Y X

]T
︸ ︷︷ ︸

=V

, (3.35b)

where

X = [X1,X2, . . . ,XNs ] · c ∈ RNs×Ns , (3.36) Y = [Y1,Y2, . . . ,YNs ] · c ∈ RNs×Ns . (3.37)

Furthermore,

Λ = diag(Ω1,Ω2, . . . ,ΩNs ,−Ω1,−Ω2, . . . ,−ΩNs) ∈ R2Ns×2Ns (3.38)

2The latter follows from Equation 3.28a: (Xs −Ys) = Ωs(A−B)−1(Xs + Ys) = Ωs(A−B)−1/2Zs.
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contains the eigenvalues λk on its diagonal, U ∈ R2Ns×2Ns contains the right eigenvectors uk
in its columns and V ∈ R2Ns×2Ns contains the left eigenvectors vk on its rows. Note that, in
Equations 3.36 and 3.37, we scale the eigenvectors Xs and Ys with the normalization factors
cs, contained in the matrix c = diag(c1, c2, . . . , cNs) ∈ RNs×Ns . After some algebra:

XT
s Xs =

1

4
ZT
s

[
(A−B) + 2Ωs + Ω2

s(A−B)−1
]
Zs, (3.39a)

YT
s Ys =

1

4
ZT
s

[
(A−B)− 2Ωs + Ω2

s(A−B)−1
]
Zs, (3.39b)

XT
s Ys = YT

s Xs =
1

4
ZT
s

[
(A−B)− Ω2

s(A−B)−1
]
Zs, (3.39c)

XT
s Xs −YT

s Ys = ΩsZ
T
s Zs = Ωs, (3.39d)

XT
s Ys −YT

s Xs = 0, (3.39e)

where we assume that the eigenvectors Zs are normalized, we find:

VU =

[
X −Y
−Y X

]T [
X Y
Y X

]
=

[
XT −YT

−YT XT

] [
X Y
Y X

]
=

[
XTX−YTY XTY −YTX
XTY −YTX XTX−YTY

]
=

[
c2 0
0 c2

]
Λ. (3.40)

The normalization condition VU = I is satisfied when cs = Ω
−1/2
s . The two-particle Hamil-

tonian H2p can then be decomposed in its eigenvalues and eigenvectors as follows 3:

H2p = UΛU−1 = UΛV =
∑

k
λkukv

T
k . (3.41)

Using this eigendecomposition, we write an alternative expression of the polarizability χ:

χ = −iL =
[
H2p − ωI

]−1
F =

∑
k

ukv
T
k

λk − ω
F. (3.42)

where (λk − ω)−1 are the eigenvalues of the matrix [H2p − ωI]−1.

In summary, we first compute matrices A and B, using Equations 3.23a, 3.23b and then the
matrix C using Equation 3.32. We solve the eigenvalue problem in Equation 3.32, to find
the eigenvalues Ω2 and eigenvectors Zs of C. We then reconstruct the eigenvectors of the
original eigenvalue problem according to Equations 3.35a and 3.35b. Finally, we calculate
the polarizability using Equation 3.42.

The matrix C, being represented in the transition space, is Hermitian. Furthermore, because
the eigenvalues of C represent physical energies > 0, we must have that C is positive definite.
When we solve the eigenvalue problem related to C, we can choose an eigenvalue algorithm
that exploits these matrix properties.

3The latter equation follows from: [H2p]i,j = [UΛV]i,j =
∑

k λk[U]i,k[V]k,j =
∑

k λk[uk]i[v
T
k ]j =

[
∑

k λkukvT
k ]i,j .
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3.3 Computing the Self-Energy

Now that we calculated the polarizability χ (Equation 3.42) by diagonalizing the two-particle
Hamiltonian, we can proceed with solving Hedin’s equations for the self-energy. The self-
energy is given by the convolution of the Green’s function G and the screened Coulomb
interaction W . Symbolically: Σ = GW (Equation 2.49a). According to the convolution
theorem, a product in the time domain results in a convolution in the Fourier domain:

Σ (r, r′, ω) =
i

2π

∫
dω1e

iηω1G(r, r′, ω + ω1)W (r, r′, ω1). (3.43)

The Green’s function is given by Equation 2.44. The screened Coulomb interaction is given
by Equation 2.49d:

W (1, 2) = ∫ d3ε−1(1, 3)v(3, 2), (3.44)

or symbolically: W = ε−1v. This form is inconvenient as it contains the inversion of the
dielectric function ε. Fortunately, this inversion is known as it is required to compute the
optical excitation spectra [28]. It relates to the reducible polarizability χ as follows:

ε−1(1, 2) = δ(1, 2) + ∫ d3v(1, 3)χ(3, 2), (3.45)

or symbolically: ε−1 = δ + vχ. In Section 3.1.2, we calculate the reducible polarizability
χ (Equation 2.63) exactly by solving the eigenvalue problem related to the two-particle
Hamiltonian H2p (Equation 3.20). Substituting Equation 3.45 into Equation 3.44 yields:

W (1, 2) = ∫ d3ε−1(1, 3)v(3, 2)

= ∫ d3 (δ(1, 3) + ∫ d4v(1, 4)χ(4, 3)) v(3, 2)

= ∫ d3δ(1, 3)v(3, 2) + ∫ d34v(1, 4)χ(4, 3)v(3, 2)

= v(1, 2) + ∫ d34v(1, 3)χ(3, 4)v(4, 2), (3.46)

or symbolically: W = v+vχv. We substitute this into the expression of the self-energy (Equa-
tion 3.43). Consequently, the self-energy is split into two terms: the self-energy exchange Σx

and the self-energy correlation Σc. Symbolically:

Σ(ω) = Σx + Σc(ω), with Σx = ∫ dω′Gv, Σc(ω) = ∫ dω′vχ(ω)v. (3.47)

Practical calculations are performed in real coordinate space using the self-energy exchange
matrix:

[Σx]mn = 〈m|Σx |n〉 , (3.48)

and the self-energy correlation matrix:

[Σc(ω)]mm := Re [〈m|Σc([ω]m) |m〉] , (3.49a)

[Σc(ω)]mn :=
1

2

(
Re
[
〈m|Σc([ω]m) |n〉

]
+ Re

[
〈m|Σc([ω]n) |n〉

])
. (3.49b)

The off-diagonal elements of Σc are approximated by [29]. Note that the diagonal elements,
which are important during the GW self-consistency, are not affected by this approximation.
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3.3. COMPUTING THE SELF-ENERGY

In Section 3.3.1, we present an expression for the exchange term Σx with which we can easily
compute it. Unfortunately, calculating the correlation term Σc is not as straightforward.
As we have discussed, the calculation of χ requires the diagonalization of the two-particle
Hamiltonian H2p. This diagonalization step is particularly expensive. We could, however,
approximate the polarizability using a plasmon-pole model. Importantly, this is where the
method branches off into: (1) the Fully-Analytical Approach (FAA) and (2) the Plasmon-
Pole Model (PPM). In the FAA, we calculate χ exactly by solving the eigenvalue problem
related to H2p. This method is discussed in Section 3.3.2. In the PPM, we approximate χ
using a plasmon-pole model. This method is discussed in Section 3.3.3.

3.3.1 Self-Energy Exchange

The expectation values of the self-energy exchange are given by [24]:

〈m|Σx |n〉 = −
∑
v

∫
dr1dr2

φm(r1)φv(r2)φ∗n(r2)φ∗v(r1)

|r1 − r2|
. (3.50)

3.3.2 Self-Energy Correlation (FAA)

We can calculate the reducible polarizability χ exactly. As discussed, this calculation involves
solving the Ns × Ns eigenvalue problem related to the two-particle Hamiltonian H2p. Once
the polarizability is calculated, the self-energy correlation can be analytically integrated using
complex contour deformation theory [24]. We give a brief overview of contour deformation
theory in Appendix A.1. The expectation values of the self-energy correlation are given by
[27]:

〈m|Σc(ω) |n〉 = 2

(∑
v,s

Rs
m,vR

s
n,v

ω − εv + Ωs − iη
+
∑
c,s

Rs
m,cR

s
n,c

ω − εc − Ωs + iη

)
. (3.51)

The factor 2 accounts for the fact that, in a closed shell systems, each MO is occupied by
two electrons. The residues Rs

m,n are defined as:

Rs
m,n :=

∑
v,c

(mn|vc)(Xs
v,c + Y s

v,c). (3.52)

The real part of the self-energy correlation is found to be:

Re
[
〈m|Σc(ω) |n〉

]
= 2

(∑
v,s

Rs
m,vR

s
n,v (ω − εv + Ωs)

(ω − εv + Ωs)
2 + η2

+
∑
c,s

Rs
m,cR

s
n,c (ω − εc − Ωs)

(ω − εc − Ωs)
2 + η2

)
. (3.53)
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3.3.3 Self-Energy Correlation (PPM)

Instead of calculating the dielectric function ε exactly, we can instead approximate it using a
Plasmon-Pole Model (PPM) [30]. Before we approximate ε, we express it in its symmetrized
form. To this end, we introduce the symmetrized Coulomb interaction ṽ(r1, r2) = π−3/2|r1 −
r2|−2, which convoluted with itself gives back the bare Coulomb interaction:

v(r1, r2) = ∫ d3ṽ(r1, r3)ṽ(r3, r2), (3.54)

or symbolically: v = ṽṽ. The symmetrized Coulomb interaction ṽ relates the conventional
dielectric function ε to the symmetrized dielectric function ε̃ via:

ε̃ := ṽ−1εṽ. (3.55)

Substituting this into Equations 3.44 and 3.45 yields the symmetrized forms of the screened
Coulomb interaction W and the dielectric function ε respectively 4:

W = ṽε̃−1ṽ, (3.56) ε̃−1 = δ + ṽχṽ. (3.57)
The symmetrized dielectric function can be decomposed in its eigenvalues λ` and eigenvectors
Φ` as follows:

[̃ε]α,β(ω) =
∑Nx

`
Φα
` (ω)λ`(ω)(Φβ

` )∗(ω). (3.58)

We can now approximate ε̃ by replacing the reducible polarizability χ by the static polar-
izability P (ω = 0) (Equation 3.5). Replacing χ with P (ω = 0), in Equation 3.57, yields
the static dielectric function. The static dielectric function is then extended to the dynamic
dielectric function using a Plasmon-Pole Model (PPM) [30]. According to the PPM approx-
imation, only the eigenvalues λ` are assumed to depend on the frequency ω, whereas the
eigenvectors Φ` are assumed to be frequency independent:

λ−1
` (ω) ≈ 1 +

z`ω`
2

[
1

ω − (ω` − iη)
− 1

ω + (ω` − iη)

]
. (3.59)

Here, z` denotes the plasmon-pole weight and ω` denotes the plasmon-pole frequency. The
two model parameters z` and ω` are found by fitting the plasmon-pole model (Equation 3.58)
to the exact dielectric function for the frequencies ω = 0 and ω = E0i, with E0 an additional
model parameter. The self-energy Σ now follows from Equation 3.43, using W = ṽε̃−1ṽ.
Note that the frequency-independent part of λ`(ω), which equals 1, results in the self-energy
exchange, whose expectation values are given by Equation 3.50. The remainder yields the
self-energy correlation, whose expectation values are given by:

〈m|Σc(ω) |n〉 = 2

(∑
v,`

1
4
z`ω`M

`
m,vM

`
n,v

ω − εv + ω`
+
∑
c,`

1
4
z`ω`M

`
m,cM

`
n,c

ω − εc − ω`

)
. (3.60)

The factor 2 accounts for the fact that, in a closed shell systems, each MO is occupied by
two electrons.

4Using W = ε−1v = ṽṽ−1ε−1ṽṽ = ṽε̃−1ṽ and ε̃−1 = ṽ−1ε−1ṽ = ṽ−1(δ + ṽṽχ)ṽ = δ + ṽχṽ.
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3.4. COMPUTING THE QUASI-PARTICLE ENERGIES

3.4 Computing the Quasi-Particle Energies

Now that we computed the self-energy by solving Hedin’s equation, we can proceed with
calculating the quasi-particle energies. The quasi-particle energies εQP

i are obtained by solving
the Quasi-Particle (QP) equation (Equation 2.57) on the real axis:

εQP
i = εKS

i + 〈φKS
i |Σc(ε

QP
i ) + Σx − V̂XC |φKS

i 〉 , i = 1, 2, . . . , NMO. (3.61)

Here, εQP
i and εKS

i denote the quasi-particle and Kohn-Sham energy corresponding to the
ith MO respectively. The Kohn-Sham energies are obtained through a preceding DFT cal-
culation. The diagonal expectation values of the self-energy exchange Σx and correlation Σc

are given by Equations 3.50 and 3.51 respectively. The expectation values of the exchange-
correlation potential V̂XC depend on the specific functional that is used.

We solve the QP equation for each state separately and we can therefore drop the i subscript.
We rewrite Equation 3.61 using simplified notation:

ω = εKS + σc(ω) + σx − νXC, (3.62)

where

σc(·) := Re[〈φKS
i |Σc(·) |φKS

i 〉], σx := Re[〈φKS
i |Σx |φKS

i 〉], νXC := Re[〈φKS
i | V̂XC |φKS

i 〉].

The variable ω denotes the QP energy εQP. The KS energy εKS, the self-energy exchange σx
and the exchange-correlation potential νXC are essentially constants since they do not depend
on ω. Note that σc(ω) has a nonlinear dependence on the QP energy εQP, which means that
we must solve Equation 3.62 numerically.

Before we proceed with solving the QP equation, we first investigate the self-energy corre-
lation function. The real part of the self-energy correlation is given by Equation 3.53. Its
diagonal elements van be written as:

σc(ω) =
∑
n,s

Rs
m,nR

s
m,n (ω − εn + ΘNv(n)Ωs)

(ω − εn + ΘNv(n)Ωs)
2 + η2

, ΘNv(n) =

{
+1 ifn > Nv,

−1 otherwise.
(3.63)

We note that σc(ω) has no poles on the real axis since the discriminant of its denominator
equals −4η2 < 0. The function σc(ω) is therefore defined and continuous over the entire
real axis. This is exactly why we introduced the “small” parameter η. We can derive an
expression for the derivative σ′c(ω). Let R ≡ Rs

m,nR
s
m,n and

E(ω) := ω − εn + ΘNv(n)Ωs, s.t. E ′(ω) = 1 and [E(ω)2]′ = 2E(ω)E ′(ω) = 2E(ω).

We then rewrite Equation 3.63 into:

σc(ω) =
∑
n,s

RE(ω)

E(ω)2 + η2
. (3.64)

We compute
dRE(ω)

dω
= RE ′(ω) = R,

d[E(ω)2 + η2]

dω
= 2E(ω).
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Figure 3.1: A sketch of the real part of the self-energy correlation σc(ω). The QP energies are
defined as the points-of-intersections of σc (blue) and the line w− c (red), or alternatively as
the roots of f(ω) (yellow). σc is a construct of peaks, situated at the poles of the self-energy
correlation Σc. As η becomes smaller ((A) �(B)), the peaks become steeper. Each peak
contributes up to three solutions to the QP equation. As η becomes smaller, these three
solutions converge to the pole corresponding to their peak.

The derivative is then given by:

σ′c(ω) =
[E(ω)2 + η2] ·R−RE(ω) · 2E(ω)

[E(ω)2 + η2]2
= − E(ω)2 − η2

[E(ω)2 + η2]2
R. (3.65)

We note that E(ω)2 > 0, η2 > 0 and R > 0 such that σ′c(ω) < 0 if E(ω)2 > η2. In other
words, σc is usually decreasing except at the peaks where |E(ω)| < η, which are situated
at the poles of of the self-energy correlation Σc. We further note that, if |E(ω)| � η, we
have O(σ′c(ω)) = O(η−1), with 0 < η � 1. In other words, as η becomes smaller, the peaks
become steeper. A sketch of the real part of the self-energy correlation σc(ω) is shown in
Figure 3.1.

We now return our attention to solving the QP equation (Equation 3.62). To further simplify
the notation, we define:

f(ω) := σc(ω)− ω + c, c := εKS + σx − νXC. (3.66)

Both functions σc(ω) and f(ω) are defined and continuous over the entire real axis. Equation
3.62 can be seen as an intersection of the function σc(ω) with the line ω− c, or alternatively
as a root-finding problem of the function f(ω).
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3.4. COMPUTING THE QUASI-PARTICLE ENERGIES

An initial guess of the solution is available, namely the KS energies εKS. We can therefore
apply one-point iterative root-finding methods such as the fixed-point method or Newton’s
method. Of course, we can also find a solution through brute force evaluation of f(ω) on a
grid. We may find multiple solutions to our problem, but we are specifically looking for the
solution related to the coherent part of the spectral function (Equation 2.50). This is because
the coherent part is assumed to be centered around the QP energy, as shown in Figure 2.5.
part of the spectral function (Equation 2.50). Recall that we already assume that the QP
energy is close to the KS energy. We can therefore state that the desired solution is likely
near our initial guess εKS. In the following, we explore various root-finding methods for the
purpose of solving the QP equation.

3.4.1 Fixed-Point Method

Finding the roots of f(ω) is equivalent to finding the fixed-points of g(ω) := f(ω) + ω:

f(ω) = 0 ≡ g(ω) = ω, where g(ω) := f(ω) + ω = σc(ω) + c. (3.67)

We assume the existence of fixed-points of g(ω). According to the fixed-point method, we
can find the local fixed-point ω∗ using the following algorithm:

1. Obtain the starting guess ω0 = εKS through DFT.

2. Compute the next iterate according to ωn = g(ωn−1).

3. Repeat step 2 until |ωn − ωn−1| is smaller than the tolerance ε.

The mean value theorem states that, for the continuous function f(x), we have

f ′(ξ) = (f(a)− f(b))/(a− b), (3.68)

for some value ξ ∈ (a, b), a, b ∈ R, where

f ′(ω) =
d

dω
(σc(ω)− ω + c) = σ′c(ω)− 1, (3.69)

and with σ′c(ω) defined in Equation 3.65. By setting a = ω∗, b = ωn−1 and rearranging, we
rewrite Equation 3.68 into:

σc(ω
∗)− σc(ωn−1) = f ′(ξ)(ω∗ − ωn−1). (3.70)

Using ωn = σc(ωn−1) + c and by taking the absolute value, we find

|ω∗ − ωn| = |σc(ω∗)− σc(ωn−1)| = |f ′(ξ)||(ω∗ − ωn−1)|. (3.71)

So, if |f ′(ξ)| < 1, the method converges to the fixed-point ω∗. The fixed-point method may
“overshoot” the fixed-point (i.e. diverge) if the derivatives are large. This occurs when
η → 0 (see Figure 3.1). While this method is simple and inexpensive, we cannot guarantee
convergence to a fixed-point. Visual examples of converging and non-converging fixed-point
iterations are shown in Figure 3.2 (A) and (B) respectively.
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Figure 3.2: A sketch of the self-energy correlation function σc(ω) with the line ω − c. Using
the fixed-point method, we aim to find the QP energy εQP at the point-of-intersection, using
an initial guess (1) of the KS energy εKS. The next iterates (2) and (3) are computed using
the fixed-point method. Two scenarios are shown. (A) The scenario where the fixed-point
method converges from the KS energy εKS to the desired QP energy εQP. (B) The scenario
where the fixed-point method does not converge.

3.4.2 Newton’s Method

Newton’s method is a root-finding algorithm which produces successively better estimates of
the root ω∗ of f(ω) using the derivative f ′(ω). We can find an improved estimate ωn using
the previous guess ωn−1 via:

ωn = ωn−1 −
f(ωn−1)

f ′(ωn−1)
, where f ′(ω) =

d

dω
(σc(ω)− ω + c) = σ′c(ω)− 1, (3.72)

with σ′c(ω) defined in Equation 3.65. According to Newton’s method, we can find the local
root ω∗ using the following algorithm:

1. Obtain the starting guess ω0 = εKS through DFT.

2. Compute the next iterate according to Equation 3.72.

3. Repeat step 2 until |ωn − ωn−1| is smaller than the tolerance ε.

We can express the root in a Taylor expansion around out current guess ωn−1:

f(ω∗) = 0 = f(ωn−1) + f ′(ωn−1)(ω∗ − ωn−1) +
1

2
f ′′(ωn−1)(ω∗ − ωn−1)2 +R. (3.73)

By assuming that estimate ωn−1 is sufficiently close to the root ω∗ and that the higher order
terms are negligible (R→ 0), and subsequently dividing both sides by f ′(ωn−1), we find:

f(ωn−1)

f ′(ωn−1)
+ (ω∗ − ωn−1) = − f

′′(ωn−1)

2f ′(ωn−1)
(ω∗ − ωn−1)2. (3.74)
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Figure 3.3: A sketch of the self-energy correlation function σc(ω) with the line ω − c. Using
Newton’s method, we aim to find the QP energy εQP at the point-of-intersection, using an
initial guess (1) of the KS energy εKS. The next iterate (2) is computed using Newton’s
method. In both scenarios (A) and (B), Newton’s method converges.

We substitute Equation 3.72 to find:

ω∗ − ωn = − f
′′(ωn−1)

2f ′(ωn−1)
(ω∗ − ωn−1)2 (3.75)

From this equation follows the evolution of the error εi := ω∗ − ωi:

εn = − f
′′(ωn−1)

2f ′(ωn−1)
ε2n−1. (3.76)

So, if the assumptions hold, the rate of convergence is quadratic. Newton’s method may
“overshoot” the root (i.e. diverge), if the derivatives are large. This occurs when η → 0 (see
Figure 3.1). While we can easily compute σ′c(ω) and the rate of convergence is quadratic
in the best case scenario, we cannot guarantee convergence to a root. Visual examples of
Newton iterations are shown in Figure 3.3 (A) and (B) respectively.

3.4.3 Grid Method

If the above iterative methods fail to converge, we can always resort to brute forcing a solution.
To this end, we evaluate the target function f(ω) on a uniformly spaced grid, centered at
the initial guess εKS. Let Ng denote the number of grid points and ∆ω the spacing between
each grid point. Then

ωj = εKS +

(
j − 1−

⌊
Ng − 1

2

⌋)
·∆ω, fj = f(ωj), j = 1, 2, . . . , Ng.
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By increasing the spacing ∆ω, we increase the search range but reduce the resolution of the
grid and therefore also the accuracy of the root estimate. By increasing the number of grid
points Ng, we improve the resolution of the grid, but increase the computational cost. For
every interval [j, j + 1], we determine whether it contains a root by detecting a sign-change
in the target function, i.e. fj · fj+1 < 0. If the interval contains a root, the location of the
root ω∗ can be estimated via e.g. a mean computation, or a Newton iteration:

ω∗mean = (ωj + ωj+1)/2, ω∗fixed−point = ωj −
fj
f ′j
≈ ωj −

fj
∆f/∆ω

.

We rank every detected root by their quasi-particle weight ZQP, defined by Equation 2.51,
where we estimate the derivative:

dΣ(ω)

dω
=

dΣc(ω)

dω
≈ fj+1 − fj
wj+1 − wj

. (3.77)

We select the root associated to the largest quasi-particle weight. We assume that this root
corresponds to the coherent part of the spectral function (Equation 2.50).

While the grid method is simple and robust, it requires many function evaluations. Further-
more, the accuracy of the solution is limited to the grid resolution; the solution cannot be
“improved” until the desired convergence criterion is reached (unlike the previously discussed
iterative methods). One way to circumvent this issue is to follow-up with a bounded iterative
method, e.g. the bisection method.
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Practical Implementation

We discussed the methodology behind the GW step of DFT-GW-BSE. We subdivided the
GW step into two parts: (1) computing the self-energy Σ by evaluating the GW convolution
(Equation 3.43) and (2) computing the QP energies εQP by solving the QP equation (Equation
3.61). Furthermore, we proposed two ways for calculating the self-energy:

1. We can evaluate the GW convolution analytically by diagonalizing H2p and subse-
quently transforming the reducible polarizability χ into its spectral representation [27].
While this is the most accurate approach, it is also the most computationally de-
manding. This method is referred to as the Fully-Analytical Approach, or FAA. The
bottleneck of this method is the diagonalization of H2p, which scales with O(N6).

2. We can simplify the frequency-dependence of the GW convolution by approximating
the dielectric function ε using a Plasmon-Pole Model (PPM) [30]. The simplified GW
convolution is then evaluated analytically. This method is referred to as the Plasmon-
Pole Model, or PPM. The bottleneck of this method is the computation of the plasmon-
pole, i.e. its frequency ω` and corresponding weight z`, which scales with O(N4).

In this thesis, we implement the FAA for the GW step of DFT-GW-BSE. Our implementation
will be part of the VOTCA-XTP library. The PPM is already implemented in VOTCA-XTP
and provides a point of reference.

The VOTCA-XTP library is written in the C++ programming language. C++ is versatile
in that it provides excellent object-oriented features in addition to low-level memory manip-
ulations. It further is among the best programming languages in raw performance, which
makes it a very suitable choice for running the expensive quantum mechanical calculations.

The VOTCA-XTP library relies heavily on the Eigen3 linear algebra library [31]. Eigen3
offers abstract and vectorizable code, which allows us to implement large scale matrix op-
erations that greatly outperform manual implementations using conventional loops. This
performance boost is achieved through a number of factors, e.g. by employing SIMD instruc-
tions, smart algorithms and multi-threading. For even higher performance, we link Eigen3
with the Intel MKL library, which is a highly optimized BLAS/LAPACK library for Intel
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chip sets. Finally, we employ the OpenMP library to distribute the computational workload
of our calculations over multiple threads.

In the Eigen3 library, all of the data in a matrix is guaranteed to be contiguous in memory
and, by default, in column-major order. In memory, this means that the matrix is stored as
a sequence of chunks, where each chunk contains the data of one column. The data structure
is best traversed in the order in which they are stored. This is an important consideration
to make when optimizing code because iteration or extraction on a column is significantly
faster than doing the same operation on a row.

Through performance analysis using Intel VTune Amplifier [32], inefficient code constructs
are detected and systematically removed.
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Results

In this chapter, we benchmark the accuracy and performance of the FAA. We aim to answer
the following questions:

1. First and foremost; is the FAA implemented correctly? Can we reproduce the results of
an independent, and verified, QM package using our implementation in VOTCA-XTP?
Specifically, how does our implementation compare to MOLGW [27]? MOLGW is a
QM package that implements the many-body perturbation theory (MBPT) to describe
the excited states. Most importantly, it implements the FAA for the GW procedure.
We investigate this question in Sections 5.1 and 5.2.

2. What are the advantages and disadvantages of the FAA with respect to the approx-
imate PPM? Which method offers the greatest degree of accuracy for a reasonable
computational cost? Specifically, are there situations in which the increase in compu-
tational cost of the analytical method outweighs the gain in accuracy with respect to
the approximate method? We investigate this question in Section 5.3.

All calculations are performed on the molecules in the Thiel set [33]. The Thiel set is com-
posed of 28 small molecules which can be sorted into the four categories: (1) aldehydes,
ketones, amides, (2) aromatic hydrocarbons and heterocycles, (3) nucleobases, and (4) un-
saturated aliphatic hydrocarbons. The smallest molecule, at 4 atoms, is formaldehyde and
the largest, at 18 atoms, is naphthalene. The molecules cover three important types of
electronic transitions: σ → σ∗, π → π∗ and σ → π∗.

Thiel et al. proposed the best theoretical estimates for 104 singlet and 63 triplet excitation
energies among these molecules. These estimates are found using the best and most expensive
higher order methods, such as CCSDT, and are compiled in the TBE-2 dataset. In order to
gauge the accuracy of our GW-BSE implementation, we can compare our energies to TBE-2
estimates. Such a comparison was also made in a study by Blase et al. [34].
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5.1 MOLGW Comparison: Ethene Case Study

In this section, we investigate the ground state and excited state properties of ethene. Ethene
is classified as an unsaturated aliphatic hydrocarbon and its molecule composition is given
by C2H4, or H2C CH2. Its molecular structure is depicted in Figure 5.1.

C

H

H

C

H

H

Figure 5.1: The molecule structure of ethene.

Since ethene is such a small molecule, it requires a relatively small number of basis functions to
accurately model its MOs. Consequently, GW-BSE calculations on the molecule are cheap,
making ethene a suitable test subject. All calculations are performed using the cc-pVTZ

basis set and its corresponding aux-cc-pVTZ auxiliary basis set. In this basis, the first 116 of
ethene’s real MOs are accounted for. Figure 5.2 provides a picture of some MOs of ethene.

We calculate the KS energies εKS, the QP energies εQP and finally several neutral excitation
energies Ω of ethene. The results are compared to MOLGW [27]. MOLGW is QM pack-
age that implements the many-body perturbation theory (MBPT) to describe the excited
states. Most importantly, it implements the FAA for the GW procedure. MOLGW has
been extensively tested on a large variety of molecules and it therefore provides a valuable
benchmark.

Level 1 (HOMO - 7) Level 8 (HOMO)

Level 9 (LUMO) Level 12 (LUMO + 3)

Figure 5.2: Molecular orbitals of ethene. The first row shows MOs which are occupied in
the ground state and the second row shows MOs which are unoccupied in the ground state,
but may be occupied in excited states. The wave function is positive in the red regions and
negative in the blue regions.
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Figure 5.3: A comparison of the KS energies εKS of ethene calculated by VOTCA and
MOLGW versus the MO index. The KS energies are calculated self-consistently according to
the KS scheme (Equation 2.37), using a tolerance of ε = 10−7 Ha. The resulting KS energies
are shifted such that zero energy marks half of the HOMO-LUMO gap. The KS energies
match sufficiently well that the markers overlap on this y-scale.

5.1.1 Ground-State Kohn-Sham Energies

The Kohn-Sham (KS) energies are calculated self-consistently according to the KS scheme
(Equation 2.37), using a tolerance of ε = 10−7 Ha. The resulting KS energies are arbitrarily
shifted such that zero energy marks half of the HOMO-LUMO gap. A visual comparison of
the KS energies between VOTCA and MOLGW is shown in Figure 5.3. Furthermore, the
KS energies of the first 16 MOs are reported in Table 5.1. We observe errors in the order of
10−4 Ha. The KS energies serve only as an initial guess to the QP energies. Therefore, these
errors do not necessarily affect the QP energies.

5.1.2 Self-Energy Correlation

The self-energy correlation function Σc is given by Equation 3.53, where we set η = 10−3 Ha.
We evaluate Σc at the QP energies calculated by MOLGW, which we symbolically denote
as: Σc(ε

MOLGW
QP ). Visual comparisons of the self-energy correlation between VOTCA and

MOLGW are shown in Figures 5.4 and 5.5. Furthermore, the self-energy correlation corre-
sponding to the first 16 MOs are reported in Table 5.2. For the low-energy MOs, we observe
errors in the order of 10−4 Ha. For the higher-energy MOs, however, the errors grow to
the order of 10−2 Ha. Since the input energies were set equal, these errors suggest different
implementations of the self-energy function between VOTCA and MOLGW. Errors in Σc

will affect the QP energies.
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Table 5.1: The KS energies εKS of the first 16 MOs of ethene calculated by VOTCA and
MOLGW. The “Difference” column contains the energy differences between the VOTCA and
MOLGW results. The “Increment” column contains the energy increment between every two
consecutive MOs, calculated by VOTCA. The MSE (Mean Signed Error) and MAE (Mean
Absolute Error) of εVOTCA

QP w.r.t. εMOLGW
QP are given below.

MO [-] εMOLGW
KS [Ha] εVOTCA

KS [Ha] Difference [Ha] Increment [Ha]

1 −10.226285 −10.226300 −0.000015 -
2 −10.225366 −10.225400 −0.000034 0.000919
3 −0.783220 −0.783300 −0.000080 9.442146
4 −0.598541 −0.598600 −0.000059 0.184679
5 −0.483136 −0.483200 −0.000064 0.115405
6 −0.433338 −0.433400 −0.000062 0.049798
7 −0.367125 −0.367100 0.000025 0.066213
HOMO −0.287352 −0.287400 −0.000048 0.079774
LUMO 0.005676 0.005700 0.000024 0.293028
10 0.068650 0.068600 −0.000050 0.062973
11 0.096555 0.096500 −0.000055 0.027905
12 0.097435 0.097400 −0.000035 0.000880
13 0.161639 0.161600 −0.000039 0.064204
14 0.257713 0.257700 −0.000013 0.096074
15 0.258458 0.258500 0.000042 0.000745
16 0.301250 0.301100 −0.000150 0.042792
17− 116 . . . . . . . . . . . .

Low-energy MOs (MO ≤ 16)
MSE −3.811756 · 10−5

MAE +4.952668 · 10−5

All MOs (MO ∈ [1, 116])
MSE −2.880831 · 10−5

MAE +1.507337 · 10−4
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Figure 5.4: A comparison of the real part of the self-energy correlation Σc of ethene calculated
by VOTCA and MOLGW versus the MO index. We set the “small” imaginary number to
η = 10−3 Ha. The self-energy correlation is evaluated at the QP energies calculated by
MOLGW, which we symbolically denote as: Σc(ε

MOLGW
QP ).
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Figure 5.5: The difference between the real part of the self-energy correlation Σc of ethene
calculated by VOTCA and MOLGW versus the MO index. We set the “small” imaginary
number to η = 10−3 Ha. The self-energy correlation is evaluated at the QP energies calculated
by MOLGW, which we symbolically denote as: ΣV OTCA

c (εMOLGW
QP ) and ΣMOLGW

c (εMOLGW
QP ) for

the VOTCA and MOLGW results respectively.
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Table 5.2: The real part of the self-energy correlation Σc of the first 16 MOs of ethene
calculated by VOTCA and MOLGW. We set the “small” imaginary number to η = 10−3 Ha.
The self-energy correlation is evaluated at the QP energies calculated by MOLGW, which
we symbolically denote as: ΣV OTCA

c (·) and ΣMOLGW
c (·) for the VOTCA and MOLGW results

respectively. The “Difference” column contains the energy differences between the VOTCA
and MOLGW results. The MSE (Mean Signed Error) and MAE (Mean Absolute Error) of
ΣVOTCA
c w.r.t. ΣMOLGW

c are given below.

MO [-] ΣMOLGW
c (·) [Ha] ΣVOTCA

c (·) [Ha] Difference [Ha]

1 0.673479 0.671356 −0.002123
2 0.671605 0.670044 −0.001561
3 0.165081 0.165051 −0.000030
4 0.086467 0.086819 0.000352
5 0.051499 0.051477 −0.000022
6 0.036306 0.036297 −0.000009
7 0.018421 0.018413 −0.000008
HOMO −0.013415 −0.013423 −0.000008
LUMO −0.067993 −0.067999 −0.000006
10 −0.033701 −0.033699 0.000002
11 −0.036935 −0.036941 −0.000006
12 −0.034986 −0.034989 −0.000003
13 −0.029361 −0.029361 0.000000
14 −0.042770 −0.042767 0.000003
15 −0.044552 −0.044549 0.000003
16 −0.054992 −0.054978 0.000014
17− 116 . . . . . . . . .

Low-energy MOs (1:16)
MSE −2.125870 · 10−4

MAE +2.593844 · 10−4

All MOs (:)
MSE −3.368724 · 10−3

MAE +1.473026 · 10−2
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Figure 5.6: A visualization of the QP equation for the HOMO of ethene. The QP energy
εQP (purple cross) is found at the point-of-intersection of the self-energy correlation Σc (blue
line) with ω − εKS − Σx + νxc (red dashed line). The initial guess of the solution is given
by the KS energy εKS (purple circle), obtained through a preceding DFT calculation. The
self-energy correlation is evaluated using η = 10−3 Ha.

5.1.3 Quasi-Particle Excitation Energies

The Quasi-Particle (QP) excitation energies are calculated by solving the QP equation (Equa-
tion 3.61) using the one-shot GW , or G0W0, approach. In Figure 5.6, we plot Σc of the HOMO
as a function of the energy (/frequency) ω, near the KS energy. In this plot, the solution to
the QP equation is marked by the intersection of Σc with the line ω−εKS+νXC−Σx. We solve
the QP equation via the brute-force grid approach (Section 3.4.3), where we use Ng = 1001
grid points and a step size of ∆ω = 10−3 Ha. Visual comparisons of the QP energies between
VOTCA and MOLGW are shown in Figures 5.7 and 5.8. Furthermore, the KS energies, QP
energies and the self-energy correlation of the first 16 MOs are reported in Table 5.3. Recall
that the relative accuracy of the QP energies is limited to the grid resolution of 10−3 Ha. At
least for the first 16 MOs, the relative errors in QP energies are well below the grid resolution.
The errors increase for the higher-energy MOs. The errors of order 10−2 Ha may be caused
by the previously observed differences in Σc.

5.1.4 Neutral Excitation Energies

Finally, the neutral excitation energies Ω are calculated using the BSE implementations of
VOTCA and MOLGW. The first 20 neutral MOs are reported in Table 5.4. We observe an
MAE of 0.04848 eV = 1.7816·10−3 Ha. Recall that neutral excitation energies are eigenvalues
of the BSE matrix. Since the BSE matrix is of the same order as the QP energies, the error
in QP energies carry over one-to-one to the neutral excitation energies. We can therefore
conclude that the neutral excitation energies are accurate up to the grid resolution of 10−3 Ha.
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Figure 5.7: A comparison of the QP corrections εQP − εKS of ethene calculated by VOTCA
and MOLGW versus the MO index. The self-energy correlation is evaluated using η =
10−3 Ha. The QP equation is solved on a grid with Ng = 1001 grid points and a step size of
∆ω = 10−3 Ha, using the one-shot GW , or G0W0, approach.
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Figure 5.8: The difference between the QP energies of ethene calculated by VOTCA and
MOLGW versus the MO index. The self-energy correlation is evaluated using η = 10−3 Ha.
The QP equation is solved on a grid with Ng = 1001 grid points and a step size of ∆ω =
10−3 Ha, using the one-shot GW , or G0W0, approach.
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Table 5.3: The DFT, GW results-KS energies εKS, QP energies εQP, self-energy correlation
Σc-of the first 16 MOs of ethene calculated by VOTCA and MOLGW. The self-energy corre-
lation is evaluated using η = 10−3 Ha. The QP equation is solved on a grid with Ng = 1001
grid points and a step size of ∆ω = 10−3 Ha, using the one-shot GW , or G0W0, approach.
The MSE (Mean Signed Error) and MAE (Mean Absolute Error) of VOTCA w.r.t. MOLGW
are given below.

MO [-] εKS [Ha] εQP [Ha] Σc(εQP) [Ha]
MOLGW VOTCA MOLGW VOTCA MOLGW VOTCA

1 −10.22629 −10.22630 −10.52155 −10.52160 0.67283 0.67280
2 −10.22537 −10.22540 −10.52151 −10.52160 0.67112 0.67110
3 −0.78322 −0.78330 −0.85362 −0.85360 0.16508 0.16510
4 −0.59854 −0.59860 −0.69568 −0.69570 0.08670 0.08670
5 −0.48314 −0.48320 −0.58052 −0.58050 0.05149 0.05150
6 −0.43334 −0.43340 −0.53578 −0.53580 0.03630 0.03630
7 −0.36713 −0.36710 −0.47648 −0.47650 0.01842 0.01840
HOMO −0.28735 −0.28740 −0.38054 −0.38060 −0.01342 −0.01340
LUMO 0.00568 0.00570 0.09697 0.09700 −0.06799 −0.06800
10 0.06865 0.06860 0.13304 0.13300 −0.03370 −0.03370
11 0.09655 0.09650 0.16425 0.16420 −0.03693 −0.03690
12 0.09743 0.09740 0.15960 0.15960 −0.03498 −0.03500
13 0.16164 0.16160 0.21990 0.21990 −0.02936 −0.02940
14 0.25771 0.25770 0.33408 0.33410 −0.04277 −0.04280
15 0.25846 0.25850 0.33497 0.33500 −0.04455 −0.04450
16 0.30125 0.30110 0.38685 0.38680 −0.05499 −0.05500
17− 116 . . . . . . . . . . . . . . . . . .

Low-energy MOs (1:16)
MSE −3.81176 · 10−5 −1.83274 · 10−5 −3.36242 · 10−6

MAE +4.95267 · 10−5 +3.32078 · 10−5 +1.99265 · 10−5

All MOs (:)
MSE −2.88083 · 10−5 −5.68125 · 10−3 −5.67250 · 10−3

MAE +1.50734 · 10−4 +2.85555 · 10−2 +2.85558 · 10−2
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Table 5.4: The first 20 neutral excitation energies Ω of ethene calculated by VOTCA and
MOLGW. The self-energy correlation is evaluated using η = 10−3 Ha. The QP equation is
solved on a grid with Ng = 1001 grid points and a step size of ∆ω = 10−3 Ha, using the
one-shot GW , or G0W0, approach. The “Difference” column contains the energy differences
between the VOTCA and MOLGW results. The character of each neutral excitation denotes
the two-particle transition (from index�to index) it most resembles. The MSE (Mean Signed
Error) and MAE (Mean Absolute Error) of ΩVOTCA w.r.t. ΩMOLGW are given below.

MO [-] Ω [eV] Difference [eV] Character [-]
MOLGW VOTCA MOLGW VOTCA

1 7.486875 7.465671 −0.021204 8→ 9 8→ 9
2 8.039130 8.104795 0.065665 8→ 10 8→ 10
3 8.132460 8.116415 −0.016045 7→ 9 7→ 9
4 8.708033 8.847517 0.139484 8→ 11 8→ 11
5 9.023771 9.087175 0.063404 8→ 12 8→ 12
6 9.413006 9.395047 −0.017959 6→ 9 6→ 9
7 10.628769 10.668895 0.040125 7→ 10 7→ 10
8 10.712836 10.733653 0.020817 5→ 9 5→ 9
9 10.974270 11.018571 0.044301 8→ 13 8→ 13
10 11.680821 11.724601 0.043780 7→ 12 7→ 12
11 11.749928 11.806526 0.056598 7→ 11 7→ 11
12 12.403402 12.450279 0.046877 6→ 10 6→ 10
13 12.960973 12.933415 −0.027558 8→ 15 8→ 15
14 12.969704 13.019653 0.049949 6→ 11 8→ 14
15 12.982286 13.088307 0.106020 8→ 14 6→ 11
16 13.183205 13.256363 0.073158 6→ 12 6→ 12
17 13.588237 13.617220 0.028982 7→ 13 7→ 13
18 13.649825 13.687510 0.037685 5→ 10 5→ 10
19 13.922399 13.866056 −0.056343 8→ 16 8→ 16
20 14.331375 14.317736 −0.013639 5→ 12 4→ 9

MSE 0.033205
MAE 0.048480
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5.2 MOLGW Comparison: Thiel Set

We repeat the previous GW-BSE calculation for all molecules in the Thiel set. Specifically,
we calculate the Mean-Absolute Error (MAE) of the QP energies and neutral energies, which
we define as follows:

MAE(∗) =
1

NMO

∑NMO

i=1

∣∣εFAA
(∗),i − εPPM

(∗),i
∣∣ , (5.1)

where NMO denotes the molecule size (i.e. the number of MOs) and (∗) ∈ {QP, neutral}.
The self-energy correlation is evaluated using η = 10−3 Ha. The QP equation is solved on a
grid with Ng = 1001 grid points and a step size of ∆ω = 10−3 Ha, using the one-shot GW ,
or G0W0, approach.

The resulting MAEs are reported in Table 5.5. The lowest errors are observed in the Un-
saturated Aliphatic Hydrocarbons category whereas the highest errors are observed in the
Nucleobases category. In terms of relative accuracy of the first 16 QP energies, ethene is
only the fourth most accurate molecule, behind butadiene, benzene and acetone, all of which
are bigger than ethene. Importantly, ethene does not stand out as an exceptional case,
reaffirming our conclusions from the previous section.

5.3 PPM Comparison: Accuracy and Performance.

In this section, we compare the accuracy and performance between the FAA and PPM
implementations of VOTCA. To this end, we benchmark the Thiel set of molecules using
both implementations. All calculations are performed using the cc-pVTZ basis set and its
corresponding aux-cc-pVTZ auxiliary basis set. The DFT energies are converged up to a
tolerance of ε = 10−7 Ha. In the FAA calculations, the self-energy correlation is evaluated
using η = 10−3 Ha. The QP equation is solved on a grid with Ng = 1001 grid points and a
step size of ∆ω = 10−3 Ha. The QP equation is solved either for 1 GW iteration (G0W0), or
for 10 GW iterations (evGW ).

In order compare the accuracy between FAA and PPM, we test our neutral excitation en-
ergies against the estimates in the TBE-2 dataset. Specifically, we calculate the first singlet
(S0) energies for all molecules in the Thiel set and compare these to TBE-2. Whichever
method resembles the TBE-2 estimates the best is considered to be the most accurate of the
two. The resulting singlet energies are reported in Table 5.6. The MAEs completely agree
with the theory; the FAA yields more accurate energies than the approximate PPM and,
simultaneously, the self-consistent evGW approach yields more accurate energies than the
one-shot G0W0 approach.

While the neutral excitation energies are the final result of the GW-BSE calculation, the FAA
and PPM methods diverge from one another in the GW step. Therefore, in order to measure
the difference between two methods, we compare the QP energies between both methods.
For every molecule, we calculate the Mean Absolute Error (MAE) of the QP energies as
defined in Equation 5.1. In Figure 5.9, we plot the MAE as a function of the molecule size
NMO. We observe a decrease in MAE as NMO increases. This suggests that the approximate
PPM results approach the theoretical QP energies better for increasingly larger molecules.
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Table 5.5: The Mean Absolute Error (MAE) in Ha of the QP energies and neutral energies
between the FAA and MOLGW (Equation 5.1), for all molecules in the Thiel set. The self-
energy correlation is evaluated using η = 10−3 Ha. The QP equation is solved on a grid with
Ng = 1001 grid points and a step size of ∆ω = 10−3 Ha, using the one-shot GW , or G0W0,
approach.

MAE VOTCA w.r.t. MOLGW
Molecule NMO εQP(1:16) εQP(:) Ω(1:20)

Aldehydes Ketones and Amides
Acetamide 190 1.4530 · 10−3 1.2247 · 10−2 1.7847 · 10−3

Acetone 204 3.0527 · 10−5 1.8134 · 10−2 2.7562 · 10−3

Benzoquinone 296 2.7977 · 10−3 2.2668 · 10−2 3.3710 · 10−3

Formaldehyde 88 5.5528 · 10−3 1.9735 · 10−2 2.6727 · 10−3

Formamide 132 1.0101 · 10−3 2.1434 · 10−2 3.1503 · 10−3

Propanamide 248 5.7730 · 10−3 8.0033 · 10−3 2.9233 · 10−3

Aromatic Hydrocarbons and Heterocycles
Benzene 264 2.9704 · 10−5 3.0326 · 10−2 9.9520 · 10−4

Furan 206 7.0041 · 10−3 1.8823 · 10−2 1.7855 · 10−3

Imidazole 206 4.8687 · 10−4 1.2651 · 10−2 2.3440 · 10−3

Pyrazine 236 3.7296 · 10−5 2.6522 · 10−2 2.3565 · 10−3

Pyridazine 236 2.8867 · 10−3 1.8521 · 10−2 2.5782 · 10−3

Pyridine 250 1.1898 · 10−3 1.6134 · 10−2 2.4574 · 10−3

Pyrimidine 236 8.6926 · 10−4 1.8153 · 10−2 3.1553 · 10−3

Pyrrole 220 3.5979 · 10−5 1.8510 · 10−2 1.2814 · 10−3

Tetrazine 208 6.9412 · 10−4 2.6270 · 10−2 1.8012 · 10−3

Triazine 222 6.2258 · 10−5 1.8024 · 10−2 4.2228 · 10−3

Nucleobases
Cytosine 310 1.2920 · 10−2 9.8701 · 10−3 2.0644 · 10−3

Uracil 296 2.7424 · 10−3 1.0618 · 10−2 1.1647 · 10−3

Unsaturated Aliphatic Hydrocarbons
Butadiene 204 2.8830 · 10−5 1.7030 · 10−2 1.4319 · 10−3

Cyclopentadiene 234 5.0763 · 10−4 1.4671 · 10−2 1.7112 · 10−3

Cyclopropene 146 2.0576 · 10−4 2.9697 · 10−2 1.8945 · 10−3

Ethene 116 3.3208 · 10−5 2.8555 · 10−2 1.7816 · 10−3

Hexatriene 292 6.4991 · 10−5 1.7746 · 10−2 1.3282 · 10−3

Norbornadiene 322 4.5312 · 10−5 9.6248 · 10−3 1.3239 · 10−3

Mean 1.9359 · 10−3 1.8499 · 10−2 2.1807 · 10−3
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Table 5.6: A comparison of the first singlet transitions S0 in eV between FAA, PPM and
TBE-2. The self-energy correlation in the FAA is evaluated using η = 10−3 Ha. The QP
equation is solved on a grid with Ng = 1001 grid points and a step size of ∆ω = 10−3 Ha. The
QP equation is solved either for 1 GW iteration (G0W0), or for 10 GW iterations (evGW ).
The MSE (Mean Signed Error) and MAE (Mean Absolute Error) of FAA and PPM w.r.t.
TBE-2 are given below.

Molecule Transition G0W0 evGW TBE-2
FAA PPM FAA PPM

Aldehydes Ketones and Amides
Acetamide 16→ 17 4.97771 4.66522 5.58034 5.30572 5.62000

Acetone 16→ 17 3.67555 2.84606 4.26198 3.99425 4.38000
Benzoquinone 28→ 29 1.90735 1.71934 2.71519 2.20075 2.74000
Formaldehyde 8→ 9 3.27432 3.09754 3.91539 3.72679 3.88000

Formamide 12→ 13 4.82427 4.65837 5.52638 5.18819 5.55000

Aromatic Hydrocarbons and Heterocycles
Benzene 20→ 23 4.86174 4.82925 5.12470 5.12625 5.08000

Furan 18→ 19 6.27622 5.11582 6.78702 6.51783 6.32000
Imidazole 18→ 21 5.99352 5.94671 6.58038 6.20550 6.25000

Naphthalene 34→ 35 4.01313 3.83207 4.34703 4.22445 4.82000
Pyrazine 21→ 22 3.44741 3.05088 3.98430 3.73437 4.13000

Pyridazine 21→ 22 3.09056 2.72862 3.69500 3.39006 3.85000
Pyridine 21→ 22 4.31981 4.02911 4.95705 4.59701 4.59000

Pyrimidine 21→ 22 3.81280 3.52679 4.39806 4.16724 4.43000
Pyrrole 17→ 22 7.33080 7.16310 7.59698 7.41841 6.37000

Tetrazine 21→ 22 1.74681 1.15375 2.21190 2.11662 2.46000
Triazine 20→ 22 3.96351 3.68081 4.64286 4.33463 4.70000

Nucleobases
Cytosine 29→ 30 4.21420 3.86504 4.73955 4.03979 4.66000
Thymine 32→ 34 4.20399 3.79770 4.93056 4.42220 4.82000

Uracil 28→ 30 4.19776 3.84634 4.89970 4.21910 5.00000

Unsaturated Aliphatic Hydrocarbons
Butadiene 15→ 16 5.53701 5.36811 5.92842 5.75604 6.18000

Cyclopropene 11→ 12 6.18371 6.13841 6.63045 5.72745 6.68000
Ethene 8→ 9 8.11641 7.91217 8.57232 8.49894 7.80000

Hexatriene 22→ 23 4.50930 4.06937 4.92675 4.64083 5.10000
Norbornadiene 25→ 26 4.78619 4.21685 5.15112 4.78626 5.37000

Octatetraene 29→ 30 3.84528 3.58668 4.25007 3.96788 4.66000

MSE −0.49323 −0.82384 0.03654 −0.28534
MAE 0.59540 0.89626 0.23818 0.44521
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Figure 5.9: The Mean Absolute Error (MAE) of the QP energies between the FAA and PPM
(Equation 5.1) as a function of the molecule size NMO, for all molecules in the Thiel set. The
self-energy correlation is evaluated using η = 10−3 Ha. The QP equation is solved for 10 GW
iterations (evGW ) on a grid with Ng = 1001 grid points and a step size of ∆ω = 10−3 Ha.
The blue circles represent the MAEs and the red line represents a simple linear regression fit.

We compare the computational effort between both methods. For the duration of all calcu-
lations, we log their accumulated CPU time and memory usage. In Figure 5.10, we plot the
accumulated CPU time as a function of the molecule size NMO. By fitting power functions
to the data points, we estimate the empirical scaling of both methods. The FAA calculations
scale as O(N3.87

MO ), whereas the PPM calculations scale as O(N2.83
MO ). As expected, the FAA

is computationally more demanding than the PPM. However, the empirical scalings do not
match the theoretical scalings of O(N6

MO) and O(N4
MO) for the FAA and PPM respectively.

This suggests that the computational bottleneck of these calculations lies elsewhere, i.e. not
at the evaluation of the self-energy.

In order to explain the observed empirical scalings, we take a closer look at the FAA naph-
thalene calculation. Naphthalene is the largest molecule of the Thiel set with NMO = 412.
In order to get a sense of where the computation times are spent, we determine the accumu-
lated CPU times of: (1) the GW diagonalization step, in which the two-particle Hamiltonian
H2p ∈ RNt×Nt is diagonalized, and (2) the GW root-finding step, in which the QP equation
is solved. The resulting timings are reported in Figure 5.11. A hefty 92.59% of the total
time is spent on the root-finding step while only 7.41% is spent on the diagonalization step.
Evidently, the diagonalization step does not form the bottleneck for these small molecules.
Rather, the bottleneck is formed by the grid root-finding method, which scales with the
number of grid points, in addition to the molecule size.
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Figure 5.10: The accumulated CPU time as a function of the molecule size NMO. The self-
energy correlation is evaluated using η = 10−3 Ha. The QP equation is solved for 10 GW
iterations (evGW ) on a grid with Ng = 1001 grid points and a step size of ∆ω = 10−3 Ha.
The markers represent data points. The lines represent power function fitted to the data.
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Figure 5.11: The accumulated CPU times of: the GW diagonalization step (“GW Diag.
Time”), in which the two-particle Hamiltonian H2p ∈ RNt×Nt is diagonalized, and the GW
root-finding step (“GW Root Time”), in which the QP equation is solved. The self-energy
correlation is evaluated using η = 10−3 Ha. The QP equation is solved for 10 GW iterations
(evGW ) on a grid with Ng = 1001 grid points and a step size of ∆ω = 10−3 Ha. In (A), the
timings are represented in a bar chart and in (B) as a pie chart.
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Chapter 6

Conclusion

In this thesis, I investigated the excited state properties of molecular systems using the DFT-
GW-BSE procedure, within the framework of Many-Body Perturbation Theory (MBPT). In
the derivation of the DFT-GW-BSE procedure, many approximations have to be made,
including: Born-Oppenheimer, KS (Kohn-Sham), GW, QP (Quasi-Particle), RPA (Random
Phase Approximation). Without simplifying the quantum mechanical systems, calculations–
analytical or numerical–are impossible on larger, more interesting, systems. Despite these
approximations, DFT accurately predicts ground state energies and GW improves upon this
to yield inherently more accurate excitation energies.

The central quantity of GW is the self-energy operator Σ, which is given by a convolu-
tion of the Green’s function G and the screened Coulomb interaction W . The integration
of the frequency-dependence is particularly computationally demanding. I discussed two
methods to perform this integration; the Fully-Analytical Approach (FAA)–direct analytical
integration–and the Plasmon-Pole Model (PPM)–analytical integration of an approximate
convolution. The bottleneck of GW is not the integration itself, but rather the evaluation
of the polarizability P , which in turn involves diagonalizing the two-particle Hamiltonian
H2p ∈ RNt×Nt . The FAA performs the full diagonalization of H2p such that the GW con-
volution can be evaluated analytically, which scales with O(N6). The PPM approximates
the GW convolution and requires the computation of the plasmon-pole, which scales with
O(N4).

I implemented the FAA for the GW step of the DFT-GW-BSE procedure. Two notable
obstacles that I encountered while implementing the method were, firstly, the introduction
of the “small” parameter η and, secondly, numerically solving the QP equation. Below, I
discuss these problems.

The “small” parameter η is introduced in the FAA to shift the poles of the self-energy off the
imaginary axis. This parameter introduces an error in the GW calculation, which is reduced
as η → 0. However, as η decreases, the derivative Σ′c becomes less behaved, which causes
numerical issues in solving the QP equation. In all calculations, I simply set η = 10−3 Ha,
which is the default value used in MOLGW. It is unclear whether decreasing the value of η
would yield more accurate results. If so, would the improvement in accuracy be worth the
extra computational effort caused by small values of η? The effect of η should be investigated.
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The QP equation is solved numerically using a standard root-finding algorithm. In the earlier
versions of VOTCA, the default root-finding technique was a fixed-point iteration. While this
method is both simple and effective for the easier spectral functions that the PPM produces,
it failed to converge for the FAA. In this thesis, I proposed two alternative root-finding
methods; Newton’s method and a brute-force grid approach. The derivative of the self-energy
correlation can be expressed in closed-form, making Newton’s method a viable contender.
However, since implementing the FAA was my main objective, I resorted to the simpler grid
method, which was more workable in the GW framework of VOTCA. Furthermore, MOLGW
also uses a grid method. Using the same root-finding method allowed for more direct energy
comparisons between VOTCA and MOLGW. An important limitation of the grid method,
however, is that the accuracy of the QP energies is limited to the resolution of the root-
finding grid. In later versions of VOTCA, the default fixed-point iteration is replaced by a
grid method which kick-starts a subsequent Newton iteration.

The research questions consist of; firstly, is the FAA implemented correctly and, secondly,
how does the accuracy and performance of the FAA compare to the PPM? To answer these
questions, I performed GW-BSE calculations on molecules of the Thiel set and compared
the resulting QP and neutral excitation energies to PPM, MOLGW and the TBE-2 dataset.
The following is an overview of my findings.

I compared the FAA implementation to that of MOLGW in an ethene case study. I observed
that the KS energies between VOTCA and MOLGW matched within 10−4 Ha. Since the
KS energies only serve as an initial guess to the QP energies, any mismatch between the
KS energies does not limit the relative accuracy of the QP energies later. For the first 16
MOs, both the self-energy correlation and the QP energies matched within 10−4 Ha, the
same as the KS energies. However, for the high-energy MOs, errors increased to the order of
10−2 Ha. Note that the QP energies are limited to the grid accuracy of 10−3 Ha. The errors
of 10−2 Ha are therefore not expected. I propose two possible explanations for these errors.
Firstly, the self-energy correlation function may simply be implemented differently between
VOTCA and MOLGW. Another explanation could be that the MOs are arranged differently
between VOTCA and MOLGW. The MOs are ordered in increasing energy. Slight energy
variations in degenerate MOs may cause different MO orderings. As a result, the i-th QP
energy in VOTCA and MOLGW may be associated to different MOs. Either explanation
must be investigated. Finally, I compared the first 20 singlet energies between VOTCA and
MOLGW. These matched up to the grid resolution of 10−3 Ha and seemed unaffected by the
errors in the high-energy MOs.

The MOLGW comparison was extended to all molecules in the Thiel set. Importantly, ethene
did not stand out as an exceptional case, which reaffirmed my conclusions from the ethene
case study.

In order to test the accuracy between the FAA and PPM, I compare the first singlet excitation
energies (S0) to the estimates of the TBE-2 dataset. Whichever method resembles the TBE-2
estimates the best is considered to be the most accurate of the two. The findings completely
agreed with the theory; the FAA yielded more accurate energies than the approximate PPM
and, simultaneously, the self-consistent evGW approach yielded more accurate energies than
the one-shot G0W0 approach. Therefore, if the highest degree accuracy is desired, the FAA
must be chosen over PPM.
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While the neutral excitation energies are the final result of the GW-BSE calculation, the
FAA and PPM methods diverge from one another in the GW step. Therefore, in order to
measure the difference between two methods, I compared the QP energies between both
methods. I observed that the difference between the FAA and PPM decreased as the sizes of
the molecules increased. From this, I concluded that the approximate PPM results approach
the theoretical QP energies better for increasingly larger molecules.

The empirical scaling of the FAA was found to be O(N3.87
MO ), whereas that of the PPM

O(N2.83
MO ). As expected, the FAA is computationally more demanding than PPM. However,

the empirical scalings did not agree with the theoretical scaling of O(N6
MO) for the FAA and

O(N4
MO) for the PPM. I found that, for the small molecules in the Thiel set, the computation

times are not dominated by the diagonalization of H2p, but rather by the root-finding step,
during which the QP equation is solved. It is likely that the observed trend in CPU time
is not applicable for large molecules, where I would expect that the diagonalization of H2p

is the time-dominant step. For these small molecules, the computational cost could be
significantly reduced by employing a better root-finding strategy. For example, Newton’s
iterative method could be used instead of the brute-force grid method. Otherwise, a lower-
resolution grid could be used to kick-start one of the efficient iterative methods. Using
an iterative method to finalize the QP energies would also remove the accuracy restriction
imposed by the resolution of the root-finding grid.

From the previous results, I note the following. As the molecule size increases, the compu-
tational cost of the FAA increases more rapidly than PPM. At the same time, the difference
in QP energies between both methods decreases. If this trend continues for larger molecules,
the relatively large gain in computational efficiency of the PPM method would outweigh the
relatively small increase in accuracy of the Exact method.

In conclusion, the FAA produced singlet energies that were accurate to the MOLGW energies
up to the grid resolution. This suggests that indeed the FAA was implemented correctly.
Furthermore, the FAA was found to yield more accurate singlet energies than PPM. This
gain in accuracy, however, comes at a significant computational price. I argue that the FAA
is better suited for benchmarking other GW implementations, whereas approximate methods
such as the PPM are better suited for large scale analyses. Since only small molecules were
tested, the bottleneck of the GW calculation was not the diagonalization step, but rather by
the root-finding step. As system sizes increase, I expect to see a sharp rise in computational
cost as the diagonalization step, which is expected to scale with O(N6), takes the overhand.
The accuracy-cost trade-off would then shift even more in favour of the PPM method. Future
studies may focus on testing large molecular systems to verify this expected trend.
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[15] V. Fock. Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems.
Z. Phys., 61(1):126–148, Jan 1930.

[16] J. Wehner. Investigation of exciton properties in organic materials via many-body per-
turbation theory. PhD thesis, Department of Mathematics and Computer Science, 5
2019. PhD thesis.

[17] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation
effects. Phys. Rev., 140:A1133–A1138, Nov 1965.

[18] A. D. Becke. Density-functional thermochemistry. iii. the role of exact exchange. J.
Chem. Phys., 98(7):5648–5652, 1993.

[19] F. J. Devlin, J. W. Finley, P. J. Stephens, and M. J. Frisch. Ab initio calculation
of vibrational absorption and circular dichroism spectra using density functional force
fields: A comparison of local, nonlocal, and hybrid density functionals. J. Phys. Chem.,
99(46):16883–16902, 1995.

[20] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made
simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996.

[21] K. Burke and L. O. Wagner. Dft in a nutshell. Int. J. Quantum Chem., 113(2):96–101,
2013.

[22] C. Adamo, G. E. Scuseria, and V. Barone. Accurate excitation energies from time-
dependent density functional theory: Assessing the pbe0 model. J. Chem. Phys.,
111(7):2889–2899, 1999.

[23] S. Obara and A. Saika. Efficient recursive computation of molecular integrals over
cartesian gaussian functions. J. Chem. Phys., 84(7):3963–3974, 1986.

[24] C. Faber. Electronic, excitonic and polaronic properties of organic systems within the
many-body GW and Bethe-Salpeter formalisms : towards organic photovoltaics. Theses,
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A.1. CONTOUR DEFORMATION TECHNIQUES

A.1 Contour Deformation Techniques

Here, we provide a short description of contour deformation techniques. Integrals over the real
axis (−∞, +∞) can be simplified by means of contour deformation. Consider the following
common type of integral:∫ ∞

−∞
dωI(ω) =

1

2πi

∫ ∞
−∞

dω
f(ω)

ω − iη
, ω ∈ R. (1)

Instead of solving this integral along the real axis, we instead consider a contour integral
along the upper half of a circle with radius R in the complex plane (See Figure 1). We split
the closed contour C into the contour C1 along the real axis and the contour C2 along the
semi-circle: ∮

C

dzI(z) =

∮
C1

dzI(z) +

∮
C2

dzI(z), z ∈ C. (2)

The contour C2 is further parametrized using z = Reiθ = R cos(θ) + iR sin(θ), dz = iReiθdθ.
The contour integrals over C1 and C2 are then given by:∮

C1

dzI(z) =

∫ R

−R
dωI(ω), (3)

∮
C2

dzI(z) =

∫ π

0

iReiθdθI(Reiθ). (4)

According to the residue theorem, the closed contour integral over I(z) yields∮
C

dzI(z) = 2πi
∑
k

Res(I, zk), (5)

with zk the simple poles enclosed by the contour C and Res(I, zk) the residues corresponding
to the poles zk, i.e. the coefficient of the (z − zk)−1 summand in a Laurent expansion. Next,
we use Jordan’s Lemma, which states that∣∣∣∣∮ dzf(z)

∣∣∣∣ ≤ π

a
MR, MR := max

θ∈[0,π]

{
g(Reiθ)

}
(6)

for continuous function f(z) = eiazg(z). Furthermore, limR→∞{MR} = 0 such that

lim
R→∞

{∮
CR

f(z)dz

}
= 0, (7)

where cR denotes a semi-circular contour with radius R. Applying Jordan’s Lemma to the
contour integral of C2, we conclude

lim
R→∞

{∮
C

dzI(z)

}
= lim

R→∞

{∫ R

−R
dωI(ω)

}
=

∫ ∞
−∞

dωI(ω) = 2πi
∑
k

Res(I, zk). (8)
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Figure 1: The two contours C1 and C2 form a semi-circle in the complex plane. C1 lies along
[−R,+R] on the real axis and C2 is the upper half of the circle with radius R.

B.2 Four-Center Integral

The molecular orbital electronic repulsion integral (ERI) is defined as

Kc,d
a,b ≡ (ab|cd) :=

∫∫
dr1dr2

φa(r1)φb(r1)φ∗c(r2)φ∗d(r2)

|r1 − r2|
≡ (ab|cd). (9)

This integral is otherwise known as the four-center integral, as it calculates the convolution
of four orbitals. The evaluation of these four-center integrals is computationally demanding
and forms the traditional bottleneck for DFT-type calculations. We can accelerate their
computation using atom-centered basis functions using to the Resolution-of-the-Identity (RI)
approximation [35]. The pair product of basis functions are expanded in terms of auxiliary
basis functions χγ:

|ab) ≈ |ãb) =
∑
γ

Cγ
a,bχγ(r1), (10)

where the coefficients Cγ
a,b are found by minimizing of the error δ = (ab|cd)− (ãb|cd) [36]:

Cγ
a,b =

∑
α

(ab|α)[V−1]α,γ. (11)

The set of auxiliary basis functions χγ is called the auxiliary basis set. The three-center and
two-center integrals respectively defined as:

(ab|α) :=

∫∫
dr1dr2 φa(r1)φb(r1)

1

|r1 − r2|
φα(r2), (12a)

[V]α,γ = (α|γ) :=

∫∫
dr1dr2 φα(r1)

1

|r1 − r2|
φγ(r2). (12b)
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The four-center integral is then approximated by

(ab|cd) ≈ (ãb|cd) =
∑
γ

Cγ
a,b(γ|cd)

=
∑
α,γ

(ab|α)[V−1]α,γ(γ|cd)

=
∑
α,β,γ

(ab|α)[V−1/2]α,β[V−1/2]β,γ(γ|cd)

=
∑
β

[∑
α

(ab|α)[V−1/2]α,β

][∑
γ

[V−1/2]β,γ(γ|cd)

]
=
∑
β

Mβ
a,bM

β
c,d. (13)

In practice V is positive definite [27], such that its square root can be calculated. In conclu-
sion, four-center integrals are efficiently evaluated using pre-computed Mβ

a,b and Mβ
c,d:

(ab|cd) ≈
∑
β

Mβ
a,bM

β
c,d. (14)

Pre-computing Mβ
a,b requires the storage of N2

b · Nx doubles, whereas pre-computing the
four-center integrals exactly would require the storage of N4

b doubles.
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