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Abstract

The most important processes in organic electronics are charge and exciton dynamics. These pro-
cesses are ultrafast, in the femto- to picoseconds range. This makes the processes almost impossi-
ble to measure in an experiment. Transient Absorption Spectroscopy (TAS) is one of the few tech-
niques that give some information about the ultrafast dynamics. There is, however, difficulty in
the interpretation of the resulting transient absorption spectra. This thesis discusses a multiscale
model that can assist in the interpretation of these spectra. A kinetic Monte Carlo (KMC) approach
is used to model the dynamics of the system and it is parametrized using state-of-the-art quantum-
mechanical calculations, such as the DFT-�, -BSE method. The same quantum-mechanical cal-
culations are used to obtain the optical absorption spectra of the molecules. The state of the KMC
simulation is then linked to the absorption spectra of the molecules to simulate the TAS signal. Fea-
tures of the simulated TAS signal can subsequently be linked to the underlying dynamics.
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Chapter 1
Introduction
The field of organic electronics has seen some mayor advancements over the last few years. Almost
all current flagship phones have organic light emitting diode (OLED) displays [2] and the first fold-
able phones are based on the same technology. Other fields of organic electronics like organic solar
cells are less developed but may provide a cheaper alternative to their inorganic counterparts and
are easier to process [3]. To unlock the true potential of the whole field of organic electronics, a thor-
ough understanding is needed of the physical processes that underlie organic electronic devices.

The most important processes in organic electronic devices are charge and energy transport
[4, 5]. These processes occur at a time scale in the order of pico- and femtoseconds. A timescale so
small that most experimental techniques fail to identify the exact dynamics that occur. Nonetheless
there are experimental techniques that can be used to get an indirect measurement of the processes.
One of these techniques is Transient Absorption Spectroscopy (TAS) also known as pump-probe
spectroscopy.

The main challenge of TAS is that dynamics are not observed directly, but can only be inferred
from the absorption spectra. It is particularly difficult to assign the spectral features of the absorp-
tion spectra unambiguously to the underlying dynamic processes. The aim of this thesis is to pro-
vide a mathematical model that can assist in inferring dynamical processes from transient absorp-
tion spectra. The dynamical processes depend both on the material morphology (i.e. the layout of
the molecules in the material) and the quantum mechanical electronic structure of the individual
molecules. A multiscale modelling approach is therefore required.

In this first chapter we will introduce the basic ideas of organic electronics and spectroscopy.
Then we give an overview of the multiscale model needed to describe the dynamics and correspond-
ing absorption spectra. Finally we present the scope and layout of this thesis.

1.1 A Very Short Introduction to Organic Electronics

Organic materials are built up from organic molecules, i.e. they are mostly made up of carbon and
hydrogen atoms. The atoms are bound together by the electrostatic force between the positive nu-
clei of the atoms and their negatively charged electrons. The electrons are in constant movement,
they fly in between and around the nuclei of the molecule. Since the molecules, nuclei and electrons
are extremely small, classical mechanics fails at describing the molecules and quantum mechanics
is needed. In quantum mechanics the electrons cannot attain any arbitrary amount of energy, but
only discrete energy levels. Every energy level has a region in space associated with it, where it is
most likely to find the corresponding electron. The energy level and the region in space are bundled
in the concept of orbitals. Each molecule has different orbitals associated with it that can be occu-
pied by two electrons of opposite spin. The full concept and the details of orbitals will be explained
in Chapter 2.

In the ground state of a molecule, (0, the lowest energy orbitals of the molecules are occupied
and the higher orbitals are empty, the energy of this state is denoted by �0. The energy difference
between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
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Figure 1.1: Energy diagrams of a) the ground state, b) an exciton, where we have drawn the energy
levels closer together to indicate that we should not forget about the associated binding energy, c)
an anion (negatively charged excitation), d) a cation (positively charged excitation).
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Figure 1.2: a) The LUMO and HOMO levels in a disordered organic material, due to their interaction
every level is shifted a bit. The grey line indicates the Fermi level and is added as a visual aid to
distinguish the HOMO and LUMO levels. Also some free charges have been added. b) the density of
states (DOS) corresponding to Figure a.

(LUMO) is called the electronic (band)gap energy �6 . The different orbitals are often drawn in a
energy diagram (see Figure 1.1a) where every orbital is indicated by a line and arrows are used to
indicate the occupation of a level by a spin up or down electron.

Besides the ground state there are infinitely many other states of the molecule that we call ex-
cited states. In general we can classify them as neutral or charged. In a neutral excited state an
electron is promoted, for example through the absorption of a photon (i.e. light), from an occupied
orbital to one of the unoccupied orbitals. To simplify the picture we call the absence of an electron
a hole. A neutral excited state (exciton) can then be thought of as an electron hole pair, see Figure
1.1b. Since the hole is positively charged and the electron negatively they attract via the Coulomb
interaction. Also there are (spin dependent) quantum mechanical interactions between the elec-
tron and hole. These interactions lead to an exciton binding energy which is the energy difference
between the electron and the hole separately on two molecules infinitely far apart and the energy
for the hole and electron on the same molecule. Due to this binding energy the exciton behaves as
one particle. Energies of excited states Ω7 are given relative to the ground state energy, e.g. for the
first excited state (1 with energy �1 we have

Ω1 = �1 − �0. (1.1)

Excitons come in two flavours, singlets and triplets, depending on their spin configuration. For
molecules with an even number of electrons only singlets are optically active (i.e. absorb a photon
on creation and emit a photon on decay) and are of main interest in this thesis. The terms excitons
and singlets will therefore be used interchangeably unless explicitly stated otherwise. Charged ex-
cited states occur if the net charge on a molecule is not zero. For example we could have an extra
electron or an extra hole (absence of an electron) present on the molecule, see Figure 1.1c)&d).
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(a) Crystalline (b) Semi-crystalline (c) Amorphous

Figure 1.3: Different types of order and disorder in organic materials.

Materials are made up from many molecules that interact and polarize one another. This leads
to shifts in the energy levels of the molecules. When we for example look at the HOMO and LUMO
levels in an organic material we see that the energy levels for the individual molecules are shifted,
see Figure 1.2a. This shifting is referred to as disorder in the density of states (DOS). The density of
states is literally the density of the number of available states at a certain energy. Since there are a lot
of molecules in a material (in the order of 1023) the law of large numbers applies and we see that the
density of states approximately forms a Gaussian distribution for the different energy levels, Figure
1.2b.

1.1.1 Charge Transport

The molecules in a organic material can have different spatial arrangements depending on the
molecules and the processing technique used. The material can either be highly ordered (crys-
talline), highly disordered (amorphous) or a combination of both with ordered and disordered re-
gions (semi-crystalline), see Figure 1.3. The spatial arrangement of the molecules determines the
type of charge transport that can occur. In crystalline materials the different electronic states of the
molecules combine to form bands that stretch large parts of the material and electrons and holes
can move more or less freely within the band. This type of transport is called band-like transport
because it resembles the band transport in inorganic semiconductors. In highly disordered mate-
rials, electronic states do not combine (overlap) and every molecule has its own electronic states.
This leads to localization of charges in a disordered organic material, i.e. the charges are confined
to some space (a molecule or part of it) that we call a site. Since charges are confined to sites they
cannot move around freely and charge transport does not occur band-like. Instead it occurs as a
quantum mechanical tunnelling process, which can be thought of as charges hopping from one site
to another, this type of transport is often called phonon (i.e. temperature) activated hopping [6]. In
semi-crystalline materials combinations of the two types of transport occur, in the crystalline re-
gions electrons move band-like and in the disordered regions they need to hop. In this thesis we are
concerned with disordered organic materials, and hence, are interested in hopping transport.

To describe hopping transport, hopping models are used. A hopping model consists of sites and
hopping rates, see Figure 1.4. The hopping rates correspond to the probability that the charge carrier
will hop from one site to another. Mathematically we can think of the system as a graph where the
nodes represent sites and weighted edges represent the hopping rates.

Two often used rates are the Miller-Abrahams and Marcus rates, we will discuss them in more
detail in Chapter 3. The Miller-Abrahams rate for a hop from site 7 to site 8 is given by

D7 8 =

{
D0 exp

(
−2U'7 8 − Δ�

9�)

)
Δ� > 0

D0 exp
(
−2U'7 8

)
Δ� ≤ 0

, (1.2)

and shows us the main parameters for hopping transport. There is an attempt frequency D0 that
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Figure 1.4: An illustration of the hopping model, grey circles represent sites, possible hops are indi-
cated with arrows and for the hop from 7 to 8 the rate is given.

indicates the number of attempts to hop per time unit. There is an exponential term, exp
(
−2U'7 8

)
,

that penalizes the distance, '7 8 , a charge needs to hop (large distances are less frequent). Finally
there is a Boltzmann term, exp

(
− Δ�
9�)

)
, where Δ� is the energy difference between site 7 and 8 (Δ� =

�8 −�7 ). It describes the probability of absorbing a phonon (i.e. thermal energy) with enough energy
to make the hop to a higher energy site and can be seen as a penalty for jumping to higher energy
sites.

1.1.2 Spectroscopy

Transitions between states of a molecule do not occur out of the blue. A transition to a higher energy
state needs energy and the transition to a lower energy state releases energy. This energy can be
released or obtained from a phonon, photon or other energy source. Spectroscopy concerns itself
with transitions between states due to photon (light) absorption or emission. A molecule in state 7
with energy �7 can transition into a higher energy state 5 with energy � 5 via photon absorption if

� 5 − �7 = ℎD (1.3)

where ℎ is the Planck constant and D the frequency of the photon. Besides the photon energy that
needs to match the energy gap between the states, the photon also needs to be able to interact with
the molecule. The amount of interaction is given by a transition dipole -. In this thesis we will
mostly be concerned with electric transition dipole moments

- = 〈Ψ5 |r̂ |Ψ7 〉 (1.4)

where the Ψs are functions describing the initial state, 7 , and final state, 5 , of the molecule and r̂ is
an operator that gives the electric transition dipole. 1 The transition probability between two states
is proportional to the square of the transition dipole moment. If we normalize this square with the
excitation energy we arrive at the oscillator strength

5 =
2
3
-2Ω( . (1.5)

The oscillator strength 5 is a number between zero and one that can be thought of as the probability
of absorption or emission and hence as the probability that a transition will occur with a photon of
a certain energy.

A molecule will absorb light at certain energies depending on which state it is in. The ground-
state will absorb different energy photons than an excited state. This fact is used in spectroscopy to

1The exact details of the Ψ functions will be explained in Chapter 2. The notation used is the Dirac braket notation
that allows for convenient integral representations, 〈Ψ5 |r̂ |Ψ7 〉 =

∫
Ψ∗
5
(F1, F2, . . .)r̂Ψ7 (F1, F2, . . .) dF1F2 . . .
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Figure 1.5: An absorption spectrum (a) of TCNE (b) based on a�, -BSE calculation (this method
will be discussed in Section 2.3). Peak locations correspond to the energies of the different neutral
excitations of the molecule. The height of the peak corresponds to its oscillator strength. Note that
if an excitation has a zero oscillator strength it won’t be visible in the spectrum.

identify which states of a molecule are present in a material. As an example we show an absorption
spectrum of TCNE in the ground state, see Figure 1.5. Note that the peaks are broadened and not,
as one might expect from equation 1.5, sticks. This broadening is due to polarizing effects of the
environment and electron-vibration coupling.

1.1.3 Processes in Organic Electronics

We have just presented two processes in organic electronics, charge hopping and excitations via
photo absorption, here we present a list of all processes that are relevant for organic electronics,
and hence, this thesis.

• Charge transfer: This is the hopping of electrons and holes from site to site as presented in
section 1.1.1.

• Recombination of electrons and holes: When a hole and electron meet on the same molecule
they can form an exciton or they annihilate one another. In this thesis we assume that anni-
hilation occurs only indirectly via exciton decay.

• Exciton generation: If light of the right energy is absorbed an exciton can form.

• Exciton dissociation: Excitons can dissociate into a separate electron and hole. This is as-
sumed to be mediated by a charge transfer (CT) state, a state in which the hole and electron are
still bound, but are located on neighbouring molecules and no longer on the same molecule.

• Exciton decay: An exciton has a finite lifetime after which it falls back to the ground state via
photon emission or other path ways.

• Exciton transfer: Just like charge carriers also excitons can hop around between sites.

1.2 Transient Absorption Spectroscopy

In transient absorption spectroscopy (TAS) not only the species of particles are investigated, but
also their time evolution. The main idea of transient absorption spectroscopy is exciting a material
with a laser pulse, the pump pulse. Depending on the type of experiment 0.1% to tens of percents of
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Figure 1.6: An artificial but typical transient absorption spectrum, the black line isΔ�, with the three
main processes: excited state absorption, groundstate bleaching and stimulated emission.

the molecules get excited [7]. After the system has evolved for a small time intervalg (times of 5fs are
already possible [8]), the system is probed with a weak laser (such that multiphoton processes are
avoided), the probe pulse. The absorption spectrum is recorded for a probe pulse with and without
the pump pulse, the difference between the two (Δ�) gives us some indication of what has happened
in the time interval. By varying the time interval and the wavelength of light_, aΔ� (_,g) profile can
be built from which information about the system can be obtained.

In Figure 1.6 we present a typical transient absorption spectrum for a fixed g . Such a spectrum
contains information on different processes namely [7]:

1. Ground-state bleach: The pump pulse has excited a fraction of the molecules to an excited
state, therefore there are less molecules present in the ground state. The probe pulse will thus
have a lower absorption in the region of the ground-state.

2. Stimulated emission: Already excited states can fall back to the ground-state due to the probe
pulse. When this happens the excited state emits a photon. This emitted photon will also
result in a perceived lower absorption at the energy of the excited state. This is a process we
do not consider in this thesis.

3. Excited-state absorption: States excited by the pump pulse can be further excited to higher
energies by the probe pulse. This leads to a higher absorption in the transient absorption
spectrum.

4. Other: Once the material is excited reactions may occur or the exciton may dissociate into
a charge transfer state or free charges. This leads to new species in the material that have
their own absorption spectrum. This additional absorption may also be visible in the transient
absorption spectra.

1.3 Multiscale Modelling Approach

In the preceding sections we have seen that the processes involved in organic electronics occur at
different scales. There are molecules with their own electronic structure, that combine to form a ma-
terial. In this material the electronic structure of the molecules changes due to interactions between
the molecules that depend on the system morphology. The charge and energy transport processes
we are interested in, occur within the electronic structure of the material. To finally arrive at the TAS
signal we need to recombine the results of the charge transport model with the absorption spectra
of the individual molecules. To develop a model that can assist in the interpretation of TAS signals
the multiscale nature of the problem should be taken into account, see Figure 1.7.
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Figure 1.7: The different steps in the multiscale modelling chain needed to arrive at a full model for
transient absorption spectra.

First of all the morphology (the positions and orientations of the molecules) of the material
needs to be modelled. This can be achieved via Molecular Dynamics (MD), a technique used to
model large systems of molecules. A next step is to compute all the site energies and hopping rates
needed for the charge and energy transport model. These parameters can be obtained from Density
Functional Theory (DFT), more advanced techniques such as�, -BSE and multiple other methods
that will be discussed in Chapters 2 and 3.

Once the site parameters and rates are known the charge and energy dynamics of the material
can be simulated. There are two main approaches to model the dynamics, the Master Equation
(ME) and kinetic Monte Carlo (KMC) approach. In the ME approach a balance equation is solved
that provides the probability of occupation for every site. From these probabilities properties of the
material can be derived such as average absorption spectra, electron mobilities etc. In the KMC
approach, the different events are simulated explicitly. In principle both methods give the same
results, but both have their own uses and limitations. The ME approach is really inexpensive, large
systems can be modelled and results can be obtained within minutes by numerically solving the
ME. The main drawback, however, is that only a few (in most cases only one) organic processes can
be taken into account at the same time. For example at the moment it is impossible to account for
the dissociation of a singlet into a CT state and finally into free charges within the ME approach.
The KMC approach is able to account for any process one can think of, but at the cost of a more
expensive simulation. In particular simulations for large systems can take days to perform [9]. We
discuss the two approaches to charge and energy transport modelling in more detail in Chapter 3.

In the last step the results of the system dynamics should be coupled to the TAS signal. The
TAS signal depends on the absorption spectra of the individual molecules. These can be calculated
via �, -BSE and Time Dependent DFT (TDDFT), two techniques that we discuss in the last two
sections of Chapter 2.

1.4 Scope and Layout of the Thesis

The central question in this thesis is as follows:

Is it possible to develop a model that can assist in inferring dynamical processes from transient
absorption spectra?

To answer this question we will first answer the question whether it is possible to numerically model
the TAS signal. The methods presented in Chapter 2 and 3 will provide us with an affirmative answer.
The next logical question is whether or not the simulated TAS signal gives insight into the processes
underlying the signal. To answer this question we apply the multiscale model to a toy system of
benzene and TCNE in Chapter 4. In Chapter 5 we summarize the main conclusions and discuss
possible future work.



Chapter 2
Many-Body Theory of Molecular Systems
In this chapter we introduce the main ideas of the many-body theory of molecular systems. This
theory is used to compute geometries and the electronic structure, including spectra, of molecules.
We will firstly introduce the part of many-body theory that is relevant for molecules, the theory of
many-electron systems, one of the most important approximations in the theory and one of the first
approaches to solving the many-electron problem. Thereafter we will discuss three important, more
modern, approaches for solving parts of the problem. The first is Density Functional Theory (DFT) a
method that is good in predicting ground state properties of materials. The second is known as�, -
BSE which deals well with excited states and the third method is time-dependent DFT (TDDFT),
which is also used for excited state calculations.

2.1 Many-Electron Systems

From a chemistry perspective all materials are surprisingly similar on the nanoscale, they consist
of only two different types of particles (bodies), the atomic nuclei : of mass ": , charge /: and at
position R: and electrons 7 with mass ;, charge −4 , spin f7 and position r7 . Furthermore there
is predominantly only one interaction between the particles namely the electrostatic or Coulomb
interaction. The potential corresponding to this interaction for a particle with unit charge at the
origin is

D (r) = 1
‖r‖ , (2.1)

where we assumed atomic units, i.e. ;4 = 4 = ℏ = 4cn0 = 1. The state of the system is described by a
wavefunction Ψ(x , B ), where x contains all time-independent variables (i.e. x = {{r7 , f7 }, {/: ,X: }})
and B represents time. The dynamics of the system are governed by the system’s Hamiltonian �̂sys
via the Schrödinger equation

7
mΨ

mB
= �̂sysΨ, (2.2)

with �̂sys given by

�̂sys =
1
2

∑
:

1
":

V 2
: +

1
2

∑
7

p2
7 +

1
2

∑
: ,: ′

(:≠: ′)

/:/: ′D (X: − X: ′)

−
∑
:

∑
7

/:D (r7 − X: ) +
1
2

∑
7 ,7 ′

(7≠7 ′)

D (r7 − @7 ′),
(2.3)

where we introduced the momentum operators V: = −7∇X: and p7 = −7∇r7 . In equation (2.3)
we have from left to right, the kinetic energy of the nuclei, the kinetic energy of the electrons, the
nucleus-nucleus interactions, the nucleus-electron interactions and finally the electron-electron
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Figure 2.1: A benzene molecule.

interactions. Note that the Hamiltonian (2.3) does not depend on time. We therefore split the wave-
function in a product of spatial and temporal terms, i.e. Ψ(x , B ) = Ψ(x ) 5 (B ). This allows us to apply
separation of variables

7
1
5 (B )

m5

mB
=

1
Ψ(x ) �̂sysΨ(x ), (2.4)

and since the left side only depends on B and the right only on x , both sides must be equal to a
constant. This constant is the energy � of the system, solving both parts separately gives the time-
independent Schrödinger equation

�̂sysΨ({r7 , f7 }, {/: ,X: }) = �Ψ({r7 , f7 }, {/: ,X: }) (2.5)

and the time evolution of the system
5 (B ) = 4−7�B . (2.6)

Since the Hamiltonian does not depend on the spin of the electrons, we will ignore the spin of the
electrons for now and reintroduce it when it is necessary (i.e. Ψ = Ψ({r7 }, {/: ,X: })).

In principle all properties (geometric structure, spectra etc.) of the system can be computed
from equation (2.5). In practice however we run into problems quickly. Due to all the interact-
ing terms, equation (2.5) forms a system of coupled differential equations that cannot be split into
smaller systems and the number of variables in the system is large. For example, a single benzene
molecule, see Figure 2.1, with 12 nuclei and 42 electrons already leads to a problem of 162 spa-
tial variables. Therefore solving equation (2.5) for any reasonable molecule is impossible no matter
what numerical methods are used.

2.1.1 The Born-Oppenheimer Approximation

To be able to do anything with equation (2.5) we need approximations. The first approximation
we make is the Born-Oppenheimer approximation [10]. An obvious observation is that nuclei are
more massive than electrons at least by a factor of 1836. Therefore the dynamics of nuclei will be
much slower than the dynamics of the electrons. Electrons will follow the movement of the nuclei
almost instantaneously while the nuclei are not able to follow the motions of the electrons, but only
experience a time averaged potential.

In the Born-Oppenheimer approximation we decouple the motions of the electrons from the
motions of the nuclei. We treat the nuclei as fixed in space which lead to a reformulation of the
wavefunction

Ψ({r7 }, {/: ,X: }) = Ψ4 ({r7 }; {/: ,X: }) · Ψ< ({/: ,X: }) (2.7)

and the electronic Schrödinger equation

�̂4Ψ4 ({r7 }; {/: ,X: }) = �Ψ4 ({r7 }; {/: ,X: }). (2.8)
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Since we assume the nuclei are fixed the nuclear part of the wavefunction cancels out in the Schrödinger
equation and the positions and charges of the nuclei only enter in the equation as parameters, no
longer as variables (denoted by the semicolon). The Hamiltonian is also simpler now: we can ig-
nore the kinetic energy of the nuclei and treat the electron-nuclei interaction as the interaction of
the electrons with a fixed (external) potential i.e.

+< (r ) = −
∑
:

/:D (r − X: ), (2.9)

for an electron at position r . Furthermore the nucleus-nucleus interaction in the Hamiltonian is
now a constant and hence will only lead to an energy shift by a fixed value. The Hamiltonian �̂e is
therefore given by

�̂e =
1
2

∑
7

p2
7 +

∑
7

+< (r7 ) +
1
2

∑
7 ,7 ′

(7≠7 ′)

D (r7 − @7 ′) (2.10)

where we have from left to right the kinetic energy of the electrons, the interaction with the potential
energy from the field of nuclei and the electron-electron interaction.

Above we have presented the Born-Oppenheimer approximation from a classical point of view.
The original approximation was obtained by studying a perturbation of the time-independent Hamil-
tonian, with respect to the mass ratio of the electron and proton. It was shown that the interaction
with the nuclei does not lead to transitions of the electrons between stationary states. This is called
the adiabatic approximation. This is the actual justification of the decoupling of the movements of
the nuclei and electrons, more details can be found in the first chapters of [11] and [12].

2.1.2 The Wavefunction and the Variational Principle

With the Born-Oppenheimer approximation we have reduced the many-body problem to a many-
electron problem, that obeys the following electronic Schrödinger equation

�̂4Ψ = �Ψ, (2.11)

where we dropped the subscript4 of the wavefunction. To solve this equation we need to know more
about the wavefunction and its interpretation in a physical and chemical context. The wavefunction
Ψ describes the state of the whole # -electron system, in particular |Ψ|2 can be interpreted as a
probability distribution. |Ψ(r1, . . . , r# ) |2 is the probability of finding the system in a state where
particle 7 is at location r7 . From this we derive a first condition on the wavefunction∫

|Ψ(r1, . . . , r# ) |2 dr# = 1 (2.12)

where dr# = dr1 . . . dr# . The wavefunction must also be antisymmetric whith respect to particle
exchange

Ψ(r1, . . . , r9 , r: , . . . , r# ) = −Ψ(r1, . . . , r: , r9 , . . . , r# ). (2.13)

This condition stems from the Pauli exclusion principle that states that no two fermions (electrons
are fermions) can be in the same state at the same time.

Solving equation (2.11) for� andΨ is an eigenvalue problem and solutions are given by eigenval-
ues �9 and corresponding eigenfunctions Ψ9 . The set of eigenfunctions is complete and can always
be taken orthogonal and normalized∫

Ψ∗9Ψ: dr# = 〈Ψ∗9 |Ψ: 〉 = X9: . (2.14)
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The values �9 are the energies of the system, we will assume throughout the rest of this thesis that
the energies are ordered �0 ≤ �1 ≤ . . .. We call the lowest energy �0 of the system the ground-state.
The higher states are called excited states and �9 is the energy of the 9 th excited state.

To extract information from the wavefunction we can apply operators to it. Every observable
(measurable quantity) has its own operator, like the Hamiltonian for the energy. For a general ob-
servable with operator �̂ we can find the expectation value of that observable via

〈�̂〉 =
∫
Ψ∗�̂Ψ dr#∫
Ψ∗Ψ dr#

=
〈Ψ|�̂ |Ψ〉
〈Ψ|Ψ〉 . (2.15)

Note that if Ψ is normalized the expression simplifies to 〈�̂〉 = 〈Ψ|�̂ |Ψ〉. Furthermore the expecta-
tion value of an observable gives us a number as a function of Ψ and hence we can see the expecta-
tion value of an observable as a functional of Ψ i.e. 〈�̂〉 = � [Ψ].

The Variational Principle

A very important quantity of a many-electron system is its ground-state. To find the ground-state
we can use a variational principle. It states that for every trial wavefunction Ψtrial we have for the
energy �

� [Ψtrial] ≥ �0. (2.16)
This implies that the ground-state energy is given by

�0 = min
Ψ

� [Ψ]. (2.17)

Note that this gives us an alternative way of solving the original Schrödinger equation for the ground-
state, namely by minimizing the functional� . We can prove this result if we consider the normalized
and orthogonal eigenfunctionsk9 of the energy operator �̂e with ordered eigenvalues�0 ≤ �1 ≤ . . ..
Since the eigenfunctions form a complete basis we can expand any normalized state |Ψ〉 as

|Ψ〉 =
∑
<

2< |k<〉 . (2.18)

Therefore we have

〈Ψ|�̂e |Ψ〉 =
(∑
<

2 ∗< 〈k< |
)
�̂e

(∑
<

2< |k<〉
)

=
∑
;,<

2 ∗;2< 〈k; |�̂e |k<〉

=
∑
;,<

2 ∗;2< 〈k; |�< |k<〉

=
∑
;,<

2 ∗;2<�< 〈k; |k<〉

=
∑
<

|2< |2�<

≥
∑
<

|2< |2�0 = �0.

(2.19)

where we used in the last line that for a normalized state ∑
< |2< |2 = 1.

To make the minimization “computer solvable” we can reformulate it as a constrained mini-
mization in terms of Lagrange multipliers with the constraint 〈Ψ|Ψ〉 = 1

X
[
〈Ψ|�̂e |Ψ〉 − � 〈Ψ|Ψ〉

]
= 0, (2.20)

where � takes the role of the Lagrange multiplier.



12 2. Many-Body Theory of Molecular Systems

2.1.3 Non-interacting Electrons

To use the variational principle we need a trial wavefunction. To find a trial wavefunction we will first
look at a special limiting case in which the electrons of the system do not interact. The Hamiltonian
of such a system is

�̂ =

#∑
7=1

ℎ̂7 (2.21)

with the single-particle Hamiltonian given by

ℎ̂7 =
1
2
p̂2
7 −+< (x7 ). (2.22)

Here x7 is a variable containing both the position and spin of electron 7 or if we neglect spin only the
position. The single particle Hamiltonian has a corresponding set of eigenfunctionsk9 (also called
spin orbitals) and eigenvalues Y9

ℎ̂7k9 = Y9k9 . (2.23)

Since the particles do not interact they are independent and their total wavefunction can be written
as a product of the single particle wavefunctions, the Hartree product

Ψ(x1, x2, . . .) = k7 (x1)k9 (x2) . . . (2.24)

It is easily shown that indeed Ψ is an eigenfunction of �̂ , take for example a non-interacting two
electron system, i.e. �̂ = ℎ̂1 + ℎ̂2 then

�̂Ψ = (ℎ̂1 + ℎ̂2)k7 (x1)k9 (x2) (2.25)
= ℎ̂1k7 (x1)k9 (x2) + ℎ̂2k7 (x1)k9 (x2) (2.26)
= Y7k7 (x1)k9 (x2) +k7 (x1)Y9k9 (x2) (2.27)
= (Y7 + Y9 )k7 (x1)k9 (x2) (2.28)
= (Y7 + Y9 )Ψ. (2.29)

From this we deduce that the Hartree product is a solution to the non-interacting many electron
problem and furthermore that the energy of the system is equal to the sum of the electron energies.
The Hartree product is unphysical, it uses the fact that we can label the electrons as electron 1, elec-
tron 2 etc. Electrons are however indistinguishable and the wavefunction must be anti-symmetric
with respect to electron exchange, see Equation (2.13). This is provided by the Hartree-Fock approx-
imation.

2.1.4 The Hartree-Fock Approximation

The Hartree-Fock approximation makes use of an anti-symmetrized version of the Hartree product.
The antisymmetrization is achieved by taking a determinant of the single particle wavefunctions,
the so-called Slater determinant,

ΨHF =
1
√
# !

���������
k1(x1) k1(x2) · · · k1(x# )
k2(x1) k2(x2) · · · k2(x# )

...
...

. . .
...

k# (x1) k# (x2) · · · k# (x# )

��������� (2.30)

= |k1(x1)k2(x2) · · ·k# (x# ) |. (2.31)
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Here x7 is a variable containing both the position and spin of electron 7 . If we however neglect spin
every single particle wavefunction can contain two electrons and hence thek7 s in the Slater deter-
minant do not go to# but# /2.

The expectation value (in atomic units) of the energy for ΨHF is

�HF = 〈ΨHF |�̂ |ΨHF〉 =
∑
7

�7 +
1
2

∑
7 ,8

(
�7 8 −  7 8

)
(2.32)

�7 =

∫
k ∗7 (x )

[
−1
2
∇2 − D (x )

]
k7 (x ) dx (2.33)

�7 8 =

∬
k7 (x1)k ∗7 (x1)

1
@12

k ∗8 (x2)k8 (x2) dx1 dx2 (2.34)

 7 8 =

∬
k ∗8 (x1)k7 (x1)

1
@12

k7 (x2)k ∗8 (x2) dx1 dx2 . (2.35)

�7 is the single particle energy due to the kinetic energy and its interaction with the potential of
the nuclei. �7 8 is called the Coulomb integral, and is exactly that, it contains an average Coulomb
interaction between the electrons. The final term  7 8 is called the exchange intergral and results
from the antisymmetry property. Note that  7 7 = �7 7 and therefore the sum can be taken over all
pairs since the self interaction of the electron cancels, to compensate for double counting a factor
half is added to the interaction terms.

Now that we have a trial wave function and a way to compute its energy we can apply the varia-
tional principle. From which we obtain the Hartree-Fock equations

ℎ̂7k7 = n7k7 , 7 = 1, . . . , # (2.36)

where ℎ̂ is a single particle operator, called the Fock operator. The Lagrange multipliers n7 can be
identified as orbital energies for orbitalk7 according to Koopmans theorem [13], which states that
the energy associated with removing an electron fromk7 is approximately equal to −n7 . ℎ̂ is given
by

ℎ̂7 = −
1
2
∇2
7 ++< (x7 ) ++HF(x7 ) (2.37)

where the first two terms are again the kinetic energy and potential due to the nuclei and+HF is the
Hartree-Fock potential given by

+HF(x7 ) =
∑
8

(
�8 (x7 ) −  8 (x7 )

)
(2.38)

�8 (x7 ) =
∫ ��k8 (x2)

��2 1
@72

dx2 (2.39)

 8 (x7 )k7 (x7 ) =
∫

k ∗8 (x2)
1
@72
k7 (x2) dx2k8 (x7 ). (2.40)

�8 is the average Coulomb potential experienced by an electron due to another electron in orbital 8
and 8 is again a term due to the antisymmetry. It is called the exchange term, but unfortunately no
intuitive (classical) explanation exists for it.

2.1.5 Solving the Hartree-Fock equation

From the variational principle and the Hartree-Fock approximation we have obtained a set of equa-
tions (2.36) that once solved give an approximation for the ground state. But an important question
is unanswered, how to solve equations (2.36)? To solve the equations we need to vary the functions
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k7 . For a computer this is very hard and almost impossible, a way around this is to expand eachk7
in some basis of functions i.e.

k7 =

"∑
8

27 8q 8 . (2.41)

where the q 8 are known functions and " is the size of the basis set. By varying the coefficients 27 8
we can vary k7 . This is exactly what is done in computational chemistry. Substitution of (2.41) in
(2.36) and multiplying from the left with q: gives

"∑
8

27 8 〈q: |ℎ̂7 |q 8 〉 =
"∑
8

n727 8 〈q: |q 8 〉 , (2.42)

which can be expressed in a matrix form

LI7 = n7YI7 (2.43)

where L is the Fock matrix with L: 8 = 〈q: |ℎ̂7 |q 8 〉, Y is the overlap matrix with (: 8 = 〈q: |q 8 〉 andI7 is
a vector containing all coefficients 27 8 for fixed 7 . This equation is known as the Roothaan equation
[14] who derived it in 1951.

The Roothaan equations can be solved with the help of linear algebra techniques on a computer.
It is however important to realize that L depends on the values of the orbitals k7 via the Hamilto-
nian. Therefore, we need a special approach to solve equations (2.43). We start with a guess for
the orbitals, compute the Hamiltonian and L based on this guess, and then solve the linear system.
The solution is used as a new guess to recompute the Hamiltonian and L and then the system is
solved again. This is repeated until the input matches the output. This approach is called the Self
Consistent Field (SCF) approach.

2.1.6 Basis sets

The choice of basis set is very important, since we expandk8 in terms of basis functions the accuracy
of the solution comes, in a large part, down to how well the basis functions can describe the true
wavefunctionsk7 .

To make sure that the k7 can be approximated rather well, q7 s are generally approximations
to the true atomic orbitals of an atom. These atomic orbitals can however be nasty to work with,
therefore they are once again expanded in a basis and most frequently [15] in a basis of Gaussian-
type functions

q7 =
∑̀

0`7j` (2.44)

where j` are Gaussian functions. Gaussian functions are so popular because their product can be
easily (and analytically) evaluated, this results in easy evaluation of two-electron integrals. These
basis functions are called contracted Gaussian-type basis functions.

For contracted Gaussian-type basis functions a large number of basis sets exist. There exist so
many basis sets because in general larger basis sets will give better results, but will also lead to higher
computational cost. Furthermore for some calculations particular extra functions are needed that
can be omitted in other calculations. Hence the selection of the correct basis set is application spe-
cific. A brief overview of some of the types of basis sets, for more details see for example [16]:

• Minimum or Single Zeta: The minimum basis set is what the name implies it is the smallest
possible basis set and has one contracted Gaussian for every atomic orbital (e.g. for elements
in the second row of the periodic system we have two s-functions and one set of p functions,
>F , >G and >H ).
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• Double, Triple, ... Zeta: The minimum basis sets are usually improved by adding more func-
tions per atomic orbital. A double zeta (DZ) basis has double the number of functions per
atomic orbital, a triple zeta (TZ) basis triple the number of functions etc. The benefit from
more functions is that it allows for more freedom in the distributions of the electrons around
the atoms. This is particularly useful for molecules in which different electrons of the same
orbital are in different bond types. There are also split valence basis sets in these sets not all
orbitals are doubled or tripled but only the valence orbitals.

• Polarization functions: To allow for the polarization of a molecule, higher angular momen-
tum functions are essential. They provide the electrons with the freedom to form asymmetric
distributions around the nucleus. In general just the first empty higher angular momentum
function is added, i.e. for a p orbital an extra d orbital will be added and for a d orbital an f
orbital.

• Diffuse functions: Diffuse functions can also be added. These are functions with a small
exponent of the Gaussian such that they have a long tail and hence are good at describing
electrons that are delocalized. This is important for charged molecules and dipole moments.

2.1.7 Limitations of the Hartree-Fock Approach

The Hartree-Fock approach gives us a first approximation to the groundstate. The approach how-
ever has some limitations and drawbacks.

• The Hartree-Fock potential+HF is non-local and depends on the spin orbitals. Therefore the
SCF approach is needed.

• Since the Hartree-Fock approximation only uses a single Slater determinant correlation effects
of the electrons cannot be taken into account. Correlation is the fact that electrons repel,
hence around every electron you expect an exclusion zone where no other electrons are found.
This exclusion is however not taken into account and interactions with other electrons are
included only as an averaged effect (mean field).

It seems that in particular the last point could be solved by taking a combination of Slater determi-
nants as the approximate wavefunction. This is done for example in the Configuration Interaction
approach [17] and the Coupled-Cluster approach [18]. We however will pursue a different approach
that is centered around the electron density.

2.2 Density Functional Theory

In the previous section we presented a wavefunction oriented approach to solving the # -electron
problem (2.11). The wavefunction depends on at least 3# spatial variables for the electrons. In 1964
a paper was published by Hohenberg and Kohn in which they showed that the electron density,

< (r1) = #
∫
|Ψ(r1, r2, . . . , r# ) |2 dr2 . . . dr# , (2.45)

determines the ground state uniquely up to an “uninteresting additive constant” [19]. Every observ-
able in the ground state can thus be computed from the density. This implies that we can reduce
the problem complexity and go from a problem with 3# variables to a problem with just 3. This is
the basic idea behind Density Functional Theory (DFT) for which Walter Kohn received the Nobel
prize in 1998.
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+ext(r ) <0(r )

Ψ< ({r7 }) Ψ0({r7 })

HK

Figure 2.2: A visual representation of the result given by the first Hohenberg-Kohn theorem, indi-
cated by the thick arrow labelled HK.

We start by discussing the two main theorems showing that indeed the electron density can
be used to uniquely find the ground state and give a way of computing the ground state energy.
Thereafter we present a way of using the electron density to compute the ground state via the Kohn-
Sham equations and finally we discuss the different functionals used in DFT.

2.2.1 The Hohenberg-Kohn Theorems

We consider again the# -electron problem
∑
7

−1
2
∇2 +

∑
7

+ext(r7 ) +
1
2

∑
7 ,7 ′

(7≠7 ′)

D (r7 − @7 ′)

 Ψ = �Ψ, (2.46)

[
)̂ + +̂ + *̂

]
Ψ = �Ψ, (2.47)

where the first term is the kinetic energy, the second term the external potential (containing the po-
tential from the nuclei and any other external potential) and the last term the Coulomb interaction.
For simplicity we will assume that the ground state is non-degenerate.

Note that in equation (2.46) the solution Ψ depends only on the external potential+ext and the
number of electrons # . The rest of the Hamiltonian is equal for any # -electron system. Further-
more since the ground state is unique, the ground state density is uniquely determined by+4FB and
# . The first Hohenberg-Kohn theorem shows the reverse namely that the ground state density<0(r )
determines the external potential+4FB uniquely up to a constant.

To see the use of this result, consider Figure 2.2. Via the thin arrows we can go from the potential
+ext to the wavefunction, to the ground state and finally to the ground state electron density, this is
what we do when we solve the Schrödinger equation. With the Hohenberg-Kohn theorem we will
also be able to go from the ground state density to the potential (thick arrow) and to the wavefunc-
tion. Hence it allows us to use the electron density as the basic variable in our computations.

Theorem 1 (Hohenberg-Kohn I). For any electronic system in an external potential +ext the potential
is uniquely determined, up to a constant, by the ground state density <0(r ) .

The proof of this theorem is relatively easy and is given by a reduction ad absurdum [20].

Proof. Suppose there is another potential + ′(r ) with ground state Ψ′ that gives rise to the same
ground state density <0(r ). Then Ψ′ cannot be equal to Ψ, unless they differ by a constant, since
they satisfy different Schrödinger equations. Let� ,� ′ and� ,� ′ denote the energy and Hamiltonian
of the non-primed and primed ground state then we have by the variational principle

� = 〈Ψ|� |Ψ〉 < 〈Ψ′ |� |Ψ′〉 = 〈Ψ′ |� ++ext −+ ′ |Ψ′〉 (2.48)

=⇒ � < � ′ +
∫
(+ext(r ) −+ ′(r )) <0(r ) dr , (2.49)
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but we also have

� ′ = 〈Ψ′ |� ′ |Ψ′〉 < 〈Ψ|� ′ |Ψ〉 = 〈Ψ|� ′ ++ ′ −+ext |Ψ〉 (2.50)

=⇒ � ′ < � +
∫
(+ ′(r ) −+ext(r )) <0(r ) dr , (2.51)

which finally leads to a contradiction

� + � ′ < � + � ′. (2.52)

�

Thus both potentials need to be the same (at least up to a constant). This implies that the potential
+ext is uniquely determined by (i.e. a functional of) the density and since the potential defines the
Hamiltonian, also the ground state wavefunction is a functional of the electron density, see Figure
2.2. From this it follows that also the kinetic and interaction (Coulomb) energy are a functional of
the electron density. Therefore we can define

� [< (r )] ≡ 〈Ψ|)̂ + *̂ |Ψ〉 , (2.53)

where � is a general functional that accounts for the kinetic and interaction energy. Using � we can
define a functional for the total energy

� [< (r )] ≡ � [< (r )] +
∫

+ext(r )< (r ) dr . (2.54)

To compute the ground state energy we need more than just this functional. In the Hartree-Fock
approach we got the energy via the variational principle, it would be nice to have a similar principle
for (2.54) and that is exactly what the second Hohenberg-Kohn theorem [20] is about.

Theorem 2 (Hohenberg-Kohn II). For any trial density <̃ (r ) such that <̃ (r ) ≥ 0 and
∫
<̃ (r ) dr = # ,

we have
� [<̃ (r )] ≥ �0. (2.55)

The proof is based around the fact that every trial density has its own unique potential +̃ and there-
fore Hamiltonian �̃ and corresponding wavefunction Ψ̃.

Proof. Take the wavefunction corresponding to the trial density <̃ (r ), then we have

〈Ψ̃|�̂ |Ψ̃〉 = 〈Ψ̃|)̂ + *̂ |Ψ̃〉 + 〈Ψ̃|+̃ |Ψ̃〉 (2.56)

= � [<̃ (r )] +
∫

+ext(r )<̃ (r ) dr . (2.57)

From the variational principle we have 〈Ψ̃|�̂ |Ψ̃〉 ≥ 〈Ψ0 |�̂ |Ψ0〉 = �0 where Ψ0 is the true ground
state. Thus we also have

� [<̃ (r )] +
∫

+ext(r )<̃ (r ) dr ≥ � [<0(r )] +
∫

+ext(r )<0(r ) dr (2.58)

= 〈Ψ0 |�̂ |Ψ0〉 = �0. (2.59)

This proves the variational principle for the energy as a functional of the electron density. �
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+ext(r ) <0(r )

Ψ< ({r7 }) Ψ0({r7 })

<0(r ) + KS

kKS
7

Interacting System Non-interacting System

HK KS

Figure 2.3: A visual representation of the function of the Kohn-Sham idea. The idea is to solve a
system of non-interacting particles with the same density as the original problem.

This result seems extraordinary, but some care needs to be taken. In the first Hohenberg-Kohn
theorem we use the fact that for a given potential+ext there is a<0(r )which uniquely determines+ext.
It is however not necessarily the case that any ground state density<0(r ) has an associated potential
+ext. Hence the Hohenberg-Kohn theorems only work for densities that are + -representable, i.e.
which have a potential associated to them. Hohenberg and Kohn however, mention in a footnote in
their paper that they expect that all except some pathological distributions can be realized by some
potential [20]. For a more detailed discussion on this subject see for example section 3.3 of [21].

Given the results of Hohenberg and Kohn we could in principle find the ground state density,
using the variational principle. The ground state that we find is in principle exact, we have not made
any approximations or put restraints on the shape of the wavefunction (as we did with Hartree-
Fock). Nonetheless this Hohenberg-Kohn-DFT is never really used, since it still involves difficult
interaction terms. Instead an approach is used that was proposed by Kohn and Sham.

2.2.2 The Kohn-Sham Equations

In 1965 Kohn and Sham published a paper [22] in which they proposed a method to use the electron
density to solve the# -electron problem for the ground state. The main idea behind their approach
is the assumption that the ground state density of the true system is equal to that of a (easily) solvable
non-interacting system, where all the difficult parts (exchange and correlation) are collected in some
approximate functional. A visual representation of this idea can be found in Figure 2.3.

To make the connection between a non-interacting and an interacting system Kohn and Sham
separated the functional � [< (r )]

� [<] = )s [<] + � [<] + �xc [<] (2.60)

)s [<] = −
1
2

∑
7

〈k7 |∇2 |k7 〉 (2.61)

� [<] = 1
2

∬
< (r )< (r ′)
|r − r ′ | dr dr ′ (2.62)

�xc [<] = () [<] −)s [<]) + (+ee [<] − � [<]) . (2.63)

)s [<] is the kinetic energy of a non-interacting electron system, � [<] describes an average Coulomb
interaction and �F2 (the exchange-correlation funtional) is a correction that accounts for the differ-
ence between the non-interacting and interacting system.

Remember that for the energy functional� [<]we have a variational principle, to find the ground-
state we should minimize � as a functional of <. Reformulating this with the constraint

∫
< (r ) dr =

# in terms of Lagrange multipliers gives

X

X< (r )

[
� [< (r )] − `

∫
< (r ) dr

]
= 0 (2.64)
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with ` the Lagrange multiplier and the corresponding Euler equation

` =
X� [< (r )]
X< (r ) (2.65)

=
X)s [< (r )]
X< (r ) ++eff(r ), (2.66)

where we substituted (2.54) for the energy and used the splitting of � [<] (2.60), furthermore

+eff =+ext(r ) +
∫

< (r ′)
|r − r ′ | dr

′ ++xc(r ), (2.67)

+xc(r ) =
X�xc [< (r )]
X< (r ) (2.68)

Equation (2.66) tells us what we need, it states that we can rewrite our original problem as a problem
of non-interacting particles with kinetic energy)s [<] moving around in effective potential+eff. The
non-interacting part implies that we can write the wave function in the Slater determinant form and
moreover that we can use single particle Schrödinger equations to solve the problem[

−1
2
∇ ++eff(r )

]
kKS
7 = YKS

7 kKS
7 , 7 = 1, . . . , # (2.69)

and
< (r ) =

∑
7

��kKS
7 (r )

��2. (2.70)

We used the superscript KS to remind ourselves that the system we solve is no longer the true system
but the non-interacting system. The Kohn-Sham orbitalskKS

7
for example do not necessarily match

any physical orbitals of the original system.
Equations (2.67) through (2.69) are the Kohn-Sham equations and from them we can obtain the

ground state density. Note however that again our Hamiltonian depends on < and < depends on
the solution of the equation with our Hamiltonian. This interdependence of the variables implies
that the Kohn-Sham equations require a similar self-consistent field approach as the Hartree-Fock
equations did.

What we gained by the Kohn-Sham equations compared to for example the Hartree-Fock method
is easier computation (no exchange integrals) and an, in principle, exact method to compute the
ground state [21]. If the functional �xc is know exactly the Kohn-Sham equations give us the exact
solution. Unfortunately the exact form of the exchange-correlation functional is not known. There-
fore in order to solve the Kohn-Sham equations we need approximations of �xc.

2.2.3 Exchange-Correlation Functionals

The exchange-correlation functional is the only part in the Kohn-Sham equations that is approxi-
mated. Therefore the accuracy of the Kohn-Sham method depends on the accuracy of the exchange-
correlation functional. A large number of different exchange-correlation functionals have been de-
veloped. The different functionals can be ordered in what Perdew called Jacob’s ladder of functionals
[23]. In Figure 2.4 we have partly reproduced this ladder.

The ladder starts from the Local Density Approximation (LDA) in which the exchange and corre-
lation are taken from the homogeneous electron gas and the assumption is made that it can be used
locally for a density < (r ). The next level is the Generalized Gradient Approximation (GGA) which
besides the local density also uses its derivative to approximate the exchange-correlation potential.
This usually leads to better energy approximations but comes at a higher computational cost. The
next step up is the meta-GGA in which even higher order derivatives and the kinetic energy density
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Local Density Approximation (LDA)

Generalized Gradient Approximation (GGA)

Meta-Generalized Gradient Approximation (mGGA)

Exact exchange and compatible correlation (hybrid)

Exact exchange and exact partial correlation (RPA)
Chemical Accuracy

Figure 2.4: Jacob’s ladder ordering the different types of exchange-correlation functionals from basic
to complex. A partial reproduction of [23].
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Figure 2.5: Bandgaps obtained from DFT and self consistent�, in the random phase approxima-
tion, after Shishkin and Kresse [26].

g are included in the approximation. In the last two levels the exchange-correlation is no longer
only approximated by the local density and its derivatives but also the Kohn-Sham orbitals are used
in the approximation, these type of functionals are called hybrid functionals. They use the orbitals
for example to mix in the exact Hartree-Fock exchange. The hybrid functionals lead in general to
good results but come at a significant computational cost since they are non-local. Two examples
of often used hybrid functionals are B3LYP [24] and PBE0 [25].

2.3 Excited States via GW -BSE

Density Functional Theory gives us a good approximation to the ground state of a many-electron
system. There is however an infamous limitation to DFT that is called the band-gap problem [27].
An important quantity for the computation of spectra is the band gap, the distance between the
lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO).
DFT underestimates this gap by a large amount, see for example Figure 2.5, in particular function-
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quasiparticle

Figure 2.6: The formation of a quasiparticle due to removal of an electron from the system.

als without exact exchange perform terrible. Hence a different theory is needed to correct for this
underestimation and this is where the �, part of �, -BSE comes in. A �, calculation gives us
a correction to the molecular orbital energies obtained from the Kohn-Sham method that leads to
better band gap estimation, see Figure 2.5. The BSE part of�, -BSE is then used to describe (neu-
tral) two-particle excitations, like singlets and triplets.

The�, calculations are based around the idea of quasiparticles that we present first. Then we
present the�, method and finally we have a look at the Bethe Salpeter Equations (BSE) for two-
particle excitations. In the following we will use second quantization, a reformulation of quantum
mechanics in occupation numbers instead of wavefunctions. In the DFT section we represented a
quantum state by its wave function |Ψ〉 (first quantization) from now on we will also use occupation
numbers, |# 〉 represents a quantum state with# particles. Second quantization entails more than
just a number representation, but a full discussion lies outside the scope of this thesis. More details
can be found in [28] and [29].

Furthermore to keep everything relatively simple we restrict ourselves to a spin-singlet and closed-
shell (i.e. the total spin is zero) system. These assumptions allow us to neglect spin in our discus-
sions. Furthermore we avoid formal details of most derivations, the interested reader can find a full
and formal discussion in [12]. The discussion that follows is mostly based on [30] and [31].

2.3.1 Single Particle Excitations, the GW Method

Single-particle excitations are excitations where either an electron is removed from a system (|# 〉 →
|# − 1〉) or added (|# 〉 → |# + 1〉) (i.e. they are charged excitations). The removal or addition of an
electron to the system gives rise to a quasiparticle. In Figure 2.6 we present the main idea. If we excite
a state of# electrons by removing an electron we leave the system with a positive charge, a hole. The
other electrons will rearrange themselves around the hole and effectively screen the interaction of
other electrons with the positive charge. The hole plus the layer of negativity surrounding it is called
a quasiparticle, in this particular case a quasihole.

These quasiparticles can be described by the one-particle Green’s function (the� in�, )

�1(r , r ′, B − B ′) = −7 〈# , 0|)̂ [k̂ (r , B )k̂†(r ′, B ′)] |# , 0〉 (2.71)

where)̂ is the time-ordering operator and k̂ and k̂† are the annihilation and creation field operators
for electrons and |# , A 〉 is an# -electron state in the A -th excited state. For B > B ′ this Green’s function
can be interpreted as the creation of an extra electron at time B ′ and position r ′ and the subsequent
deletion of the electron at time B and position r . For B ′ > B the particle that is created is a hole
(electron annihilation). The Green’s function describes how the quasiparticle propagates through
the system and is therefore called the propagator.

Via a Fourier transform the Green’s function can be expressed in terms of frequency or energy
instead of time, i.e.�1(r , r ′, Y). It obeys a Dyson-type equation[

ℎ̂0 + Σ̂(Y)
]
�1(r , r ′, Y) = ��1(r , r ′, Y), (2.72)
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with ℎ̂0 = −1/2∇2 ++ext ++Hartree and Σ the self-energy. The self-energy takes a similar role as the
exchange-correlation functional in DFT, it contains all electron-electron interaction terms. More-
over if one would substitute+F2 for Σ one would arrive back at DFT. An exact solution to equation
(2.72) can be obtained from the Hedin’s set of coupled integro-differential equations [32]. The exact
solution is however intractable and therefore an approximation is made, the �, -approximation,
in which the self-energy is

Σ�, (r , r ′, Y) =
7

2c

∫
�1(r , r ′, Y + Y ′), (r , r ′, Y ′) dY ′ . (2.73)

This self-energy can be interpreted as the energy corresponding to the response of the system on
the presence of the particle [33]., = n−1D2 is the screened Coulomb interaction, where D2 (r , r ′) =
1/|r − r ′ | and n−1 is the inverse dielectric function that accounts for the screening and is calculated
in the Random-Phase Approximation (RPA) [34]. Using this approximation and rewriting (2.72) in a
wavefunction form we arrive at [

ℎ̂0 + Σ̂(YQP
7
)
]
|kQP
7
〉 = Y

QP
7
|kQP
7
〉 (2.74)

where |kQP
7
〉 are the quasiparticle wave functions and YQP

7
the one particle excitation energies. Note

that in practice [30] the quasiparticle wavefunctions are expanded in a basis of Kohn-Sham orbitals,
i.e. |kQP

7
〉 = ∑

27 8 |kKS
8
〉. The Hamiltonian can then be expressed as ℎ̂0 = �̂ KS−+̂xc. If we diagonalize

the quasiparticle Hamiltonian in the Kohn-Sham basis

�
QP
7 8
(� ) = YKS

7 X7 8 + 〈kKS
7 |Σ̂(� ) − +̂xc |kKS

8 〉 (2.75)

we obtain the quasiparticle energies and states. We can evaluate the quasiparticle energies pertur-
batively if the off-diagonal elements of the quasiparticle Hamiltonian are small

Y
QP
7

= YKS
7 + 〈k

KS
7 |Σ̂(Y

QP
7
) − +̂xc |kKS

7 〉 . (2.76)

To solve this equation different methods are used. In the�0,0 approach the equation is solved using
a Newton fixed point method. This method is also called a one-shot approach since we do not solve
the equations self-consistently but assume that one iteration gives a good enough correction to the
Kohn-Sham energies to obtain the quasiparticle energies. An improvement of the�0,0 is the ev�,
approach in which the quasiparticle energies are updated in the Green’s function and the dielectric
function until eigenvalue (ev) self-consistency is reached.

The�, -approximation gives us a correction to the Kohn-Sham energies. The Kohn-Sham en-
ergies are not physical in the sense that they are just Lagrange multipliers. What�, does is adding
a correction that makes the Kohn-Sham energies physical by introducing the interaction of the par-
ticle (electron or hole) with its environment via the quasiparticle picture. This results in a more
physical interaction than the exchange-correlation function provides in DFT. Note that this DFT
exchange-correlation contribution is actually cancelled in equation (2.76) since it is now contained
in the self-energy.

2.3.2 Two Particle Excitations, the Bethe Salpeter Equation

Neutral excitations are excitations where the total number of electrons remains constant |# , 0〉 →
|# ,(〉. These excitations consist of two particles an electron and hole that interact. To study the
two particle excitations the two particle Green’s function and its Dyson-like equation of motion the
Bethe-Salpeter equation (BSE) are investigated [35]. The electron-hole amplitudes of the two parti-
cle excitations are

j( (x , x ′) = 〈# , 0|k†(x ′)k (x ) |# ,(〉 (2.77)
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To evaluate the BSE these electron-hole amplitudes can be transformed from continuous variables
to the basis of single-particle wavefunctions [31]

j( (x , x ′) =
occ∑
D

empty∑
2

�(D2k2 (x )k ∗D (x ′) + �(D2kD (x )k ∗2 (x ′). (2.78)

Note that the first sum runs over all occupied states (D ) and the other only over unoccupied (2 ). With
this basis the BSE can be rewritten as a generalized eigenvalue problem or two-particle Hamiltonian
problem (

N res Q
−Q −N res

) (
G(

H(

)
= Ω(

(
G(

H(

)
, (2.79)

where N res and Q are
� res
D2 ,D ′2 ′ = �D2 ,D ′2 ′ + ^ F

D2 ,D ′2 ′ +  3
D2,D ′2 ′, (2.80)

 2D,D ′2 ′ = ^ 
F
2D,D ′2 ′ +  3

D2,D ′2 ′ (2.81)
where^ = 2 for singlets and 0 for triplets,

 F
D2 ,D ′2 ′ =

∫
k ∗2 (r4 )kD (r4 )D2 (r4 , rℎ)k2 ′ (rℎ)k ∗D ′ (rℎ) d3r4 d3rℎ , (2.82)

 3
D2,D ′2 ′ = −

∫
k ∗2 (r4 )k ′2 (r4 ), (r4 , rℎ , l = 0)kD (rℎ)k ∗D ′ (rℎ) d3r4 d3rℎ . (2.83)

 F is the exchange interaction between the electron and hole and is responsible for the triplet and
singlet splitting.  3 is the direct interaction between the electron and hole, it is the attractive but
screened interaction that leads to the electron-hole binding. It is assumed that the dynamic proper-
ties of, (l) are negligible and therefore the computationally less demanding approximationl = 0
is made [36].

2.3.3 Optical Spectra

One of the more important measurable quantities in experiments is the optical spectrum of a ma-
terial. As we have seen in Chapter 1 the intensity of peaks in the spectrum are given by the oscillator
strengths

5 =
2
3
〈Ψ5 |r̂ |Ψ7 〉2 Ω( . (2.84)

They require the computation of the electric dipole moment 〈Ψ5 |r̂ |Ψ7 〉. They can be calculated from
the results of the BSE according to

〈# ,( |r̂ |# , 0〉 =
√
2
∑
D2

�7D2 〈k2 |r̂ |kD 〉 . (2.85)

for transitions from the ground state. The sum is taken over all pairs of occupied and unoccupied
states. The transition dipole moment between excited states is given by

〈# ,(7 |r̂ |# ,( 8 〉 =+ +� (2.86)
+ =

∑
DD ′

∑
2

� 7
D2�

8

D ′2 〈qD |r̂ |qD ′〉 (2.87)

� =
∑
22 ′

∑
D

� 7
D2�

8

D2 ′ 〈q2 |r̂ |q2 ′〉 . (2.88)

with� 7
D2 = �

7
D2 − � 7D2 . For a full derivation of these expressions see Appendix A.
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2.4 Excited States via TDDFT

An alternative to the�, -BSE approach is Time-Dependent DFT (TDDFT). In general it is less ac-
curate than the�, -BSE approach but also less computationally demanding [37]. In this thesis we
will use TDDFT only for open shell species (molecules with an unpaired electron), for the practical
reason that an implementation of the�, -BSE method for open shell species was not available at
the time of writing. In this section we will give a short overview of the main components of TDDFT
for a full discussion see [38].

2.4.1 Runge-Gross Theorem and Time-Dependent Kohn Sham Equations

TDDFT has a lot of similarities with normal DFT. In DFT we had the Hohenberg-Kohn theorem
(Theorem 1) that states that any observable can be computed from the density < (r ), TDDFT has
a similar theorem the Runge-Gross Theorem [39]:
Theorem 3 (Runge-Gross). Two densities < (r , B ) and < ′(r , B ) starting with the same initial state
Ψ(B0) under the influence of two different external potentialsD (r , B ) andD ′(r , B ), both Taylor-expandable
around B0 and differing by only a time-dependent function 2 (B ) become different infinitesimally later
than B0.

This theorem implies that once again the (time-dependent) density is enough to determine the state
of a system. Which implies that any observable is a unique functional of the time-dependent elec-
tron density and the initial state. It was also proven that, similar to the Kohn-Sham equations, for
any interacting electron system, there exists another non-interacting electron system (with another
external potential) with the same density [40]. With this result we can construct the time-dependent
Kohn-Sham equations

7
m

mB
kKS
7 (r , B ) =

[
−1
2
∇2 + DA [<] (r , B )

]
kKS
7 (r , B ), (2.89)

with the singe-particle potential given by

DA [<] (r , B ) = D0(r , B ) +
∫

< (r ′, B )
|r − r ′ | dr

′ ++xc(r , B ). (2.90)

Also in TDDFT all the difficult parts are collected in the exchange-correlation function+F2 , only now
it also depends on time. Similar to DFT the accuracy of TDDFT is highly dependent on the accuracy
of the chosen exchange correlation functional.

2.4.2 Excitations

To find excitations from TDDFT one studies the density response of a system to an external time-
dependent perturbation and generally in an explicitly spin-dependent formulation [41]. The spin-
density response is

<1f (r , l) =
∑
f ′

∫
jA ,ff ′ (r , r ′, l)DA1f ′ (r ′, l) dr ′ , (2.91)

with the effective potential

DA1f (r , l) = D1f (r , l) +
∑
f ′

∫
5Hxc,ff ′ (r , r ′, l)<1f ′ (r ′, l) dr ′ , (2.92)

where D1f is the perturbing potential and

5Hxc,ff ′ (r , r ′, l) =
1

|r − r ′ | + 5xc,ff ′ (r , r ′, l) (2.93)
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where 5xc,ff ′ (r , r ′, l) is the functional derivative of the exchange-correlation functional with re-
spect to the density. Furthermore the Kohn-Sham response is given by

jA ,ff ′ (r , r ′, l) = Xff ′
∞∑

8 ,9=1

( 59f − 58f )
k8f (r )k ∗9f (r )k

∗
8f
(r ′)k9f (r ′)

l − l 89f + 7[
, (2.94)

where [ is an infinitesimally small number. Note that the sum runs over all pairs of occupied and
unoccupied pairs. If both are occupied their contribution is zero to the sum.

Combining these results we obtain for the spin-density response

<1f (r , l) =
∑
f ′

∫
jA ,ff ′ (r , r ′, l)

[
D1f (r , l) +

∑
f ′′

∫
5Hxc,ff ′ (r ′, r ′′, l)<1f ′′ (r ′′, l) dr ′′

]
dr ′ .

(2.95)
Exact excitation energies are obtained from the poles of the density-density response function [41].
However no perturbation is necessary, a system sustains a finite response at its excitation frequen-
cies. And the corresponding eigenmodes and eigenfrequencies can be obtained from the eigenvalue
equation

<1f (r ,Ω) =
∑
f ′

∫
jA ,ff ′ (r , r ′,Ω)

∑
f ′′

∫
5Hxc,ff ′ (r ′, r ′′,Ω)<1f ′′ (r ′′, l) dr ′′ dr ′ . (2.96)

This last equation can be cast into a generalized eigenvalue problem known as the Casida equation
[42, 43] (

G (l) H (l)
H∗(l) G∗(l)

) (
^
_

)
= Ω

(
1 0
0 −1

) (
^
_

)
, (2.97)

where
�70,81 (l) = X7 8X01 Y07 + (70 | 5Hxc(l) |81) (2.98)

�70,1 8 (l) = (70 | 5Hxc(l) |1 8 ) (2.99)

and
(>? | 5 |@ A ) =

∬
k ∗> (1)k? 5 (1, 2)k ∗@ (2)kA (2) d1 d2 . (2.100)

From this the excitation energies Ω can be obtained. It is very similar to the generalized eigenvalue
problem of the BSE and gives us the same information, i.e. we can identify^ and_ with the matrices
G and H of the generalized eigenvalue problem obtained from the BSE.



Chapter 3
Exciton and Charge Carrier Dynamics in
Disordered Organic Molecular Systems
In Section 1.1.1 we described the basic ideas of how charge transport in disordered organic molec-
ular systems takes place. Charges are localized and can hop, via a quantum mechanical tunnelling
process, from localized site to site, where a site can either be a molecule or part of a molecule. Be-
sides charges, also excitons move according to a hopping process, the basic physics of electron, hole
and exciton hopping is the same.

In this chapter we discuss the modelling of carrier (electron, hole and exciton) dynamics in more
detail. We start by discussing the most basic model that only accounts for hopping of a single carrier
and the main approach to solving it, the Master Equation (ME) approach. From there we build to-
wards more advanced models and introduce different carrier types and more processes. We will see
that the ME approach is too limited to account for all dynamical processes and a different method,
the kinetic Monte Carlo (KMC) method, is introduced. At the end of the chapter we give an overview
of how all parameters can be obtained.

3.1 The Hopping Model

The main process underlying the hopping model is a single hop between two sites. This is a bi-
molecular charge transfer process that is often described by either the Miller-Abraham’s rate [44]

D7 8 =

{
D0 exp

(
−2U'7 8 −

Δ�7 8
9�)

)
Δ�7 8 > 0

D0 exp
(
−2U'7 8

)
Δ�7 8 ≤ 0

, (3.1)

or the Marcus rate [45]

D7 8 =
2c
ℏ

���7 8 ��2√
4c_7 89�)

exp

(
−
(Δ�7 8 + _7 8 )2

4_7 89�)

)
. (3.2)

Δ�7 8 = �8 −�7 is the energy difference between the two sites,'7 8 the distance, U is called the inverse
localization length and indicates how spread out the wave function of a site is and D0 is the attempt
frequency. �7 8 is the electronic coupling element between sites 7 and 8 and _7 8 is the reorganization
energy associated with a hop.

These last two parameters are also the main difference between the Miller-Abraham’s and Mar-
cus rate. The Marcus rate takes the coupling between sites explicitly into account and accounts for
the reorganization energy of the sites (the energy associated with the structural change due to the
presence of a carrier). It is important to realize that the parameters in the rate equations are car-
rier type dependent, e.g. an electron has a different localization length than a hole, a different site
energy etc.

The hopping rates indicate how likely it is that a carrier will hop from one site to another. To
model the full material we also need to describe the sites or system morphology. For the sites often
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the center of mass of the molecules is taken as the location of a site. All other parameters of a site,
such as the site energy and reorganization energy can be computed from the electronic structure
calculations discussed in Chapter 2 and some classical simulation methods.

To turn the rates and sites into a model that describes charge transport we consider the material
as a weighted directed graph. We identify the site 7 with a vertex and the rate D7 8 with a weighted
and directed edge from site 7 to site 8 . For a single carrier the state of the system is fully described by
the location 7 of the carrier. The hopping of the carrier can now be seen as a Markovian stochastic
process and a powerful tool exists to solve the dynamics of this process, the Master Equation (ME).

3.1.1 The Master Equation

The master equation is a differential form of the Chapman-Kolmogorov equation for Markovian
stochastic processes. It describes the evolution of the occupation probability for a discrete set of
states. For a comprehensive derivation of the master equation from the Chapman-Kolmogorov
equation the reader is refered to [46]. Here we will state the master equation in its most basic form

3>7

3B
=

∑
8≠7

[
,7 8>8 −,8 7>7

]
. (3.3)

The indices 7 and 8 represent possible states of the system and the >7 the probability of occupation
of state 7 ,,7 8 is the transition rate from 8 to 7 (i.e. D8 7 ).

In general the master equation can be interpreted as the sum of the probability flow into a state
7 , ∑8≠7,7 8>8 , and the flow out of that state, ∑8≠7 −,8 7>7 . Note that this last sum can be rewritten
as ∑

8≠7 −,8 7>7 = ,7 7>7 , with,7 7 = −∑
8≠7,8 7 , resulting in the most compact form of the master

equation
3 ®>
3B

=, ®>, (3.4)

where ®> is the vector containing all >7 ’s and, a matrix where the 7 , 8 th entry is given by,7 8 .

3.1.2 The Master Equation for a Single Carrier

The ME for a single carrier is
3>7

3B
=

∑
8≠7

[
>8D8→7 − >7D7→8

]
, (3.5)

where>7 is the occupation probability of site 7 (and hence state 7 ) and D7→8 is the hopping rate from
site 7 to site 8 . A stationary solution to the system is easily found using linear algebra techniques
especially when the compact form of the master equation (3.4) is used.

What the stationary solution gives is the average occupation of a site and from these occupations
other properties like the carrier mobility can be derived. In general we have for an observable$ with
value$7 in state 7

〈$〉 =
∑
7

$7>7 . (3.6)

Using this equation most interesting material properties can be derived.

3.1.3 The Master Equation for Multiple Carriers

The ME for a single carrier is useful only for a material where the carrier density is almost zero, i.e.
the carrier does not meet any other carrier while hopping around. In a real material multiple carriers
are present and carriers repel one another, e.g. the probability of finding two electrons on the same
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site is zero due to their Coulomb repulsion. This effect is known as the site exclusion effect where no
two carriers of the same type can occupy the same site.

To describe the state of a system with multiple carriers we use site occupation numbers

{<} = {<1, <2, . . .}, <7 ∈ {0, 1}, (3.7)

where each <7 indicates whether or not site 7 is occupied. Note, for # particles in the system we
have ∑

7 <7 = # . The basic master equation for this system is

3> {< }
3B

=
∑

{; }≠{< }

[
,{< }{; }> {; } −,{; }{< }> {< }

]
. (3.8)

This set of equations gets very large due to the large size of the state space, for" sites the state space
has a size of

("
#

)
, therefore a switch is made to average site occupations 57 , as suggested by [47],

57 =
∑
{; }

;7> {; }. (3.9)

To convert the rates we need to make more assumptions. Firstly we assume that only one particle
hops at the same time, furthermore hops can only occur between an occupied and an unoccupied
site (the site exclusion from earlier). The only allowed transitions are then transitions from {<} →
{;} such that

<7 = ;7 ∀7∉{@ ,A }; <@ = 0 <A = 1; ;@ = 1 ;A = 0. (3.10)
Or in words: only single particle hops from site A to site @ , where site A was occupied and @ was
unoccupied, are allowed. The probability that site @ is not occupied and A is, is given by 5A (1 − 5@ ).
Then the total rate for the hop from A to @ is given by,@ A 5A (1− 5@ ) and we arrive at what is called the
Pauli Master Equation,

3 57

3B
=

∑
8≠7

[
,7 8 58 (1 − 57 ) −,8 7 57 (1 − 58 )

]
(3.11)

=
∑
8≠7

[
D8→7 58 (1 − 57 ) − D7→8 57 (1 − 58 )

]
. (3.12)

Note however that this equation is no longer a master equation in the mathematical sense due to
the non-linearity in 5 . Furthermore the D7→8 ’s are calculated from hopping rates and not from the
original rates of the Markov process.

It is important to note that the Pauli Master Equation is a dependent set of nonlinear equations,
hence an infinite number of stationary solutions exist. To solve this problem an extra equation is
needed that fixes the number of carriers# in the system [48],∑

7

57 = # . (3.13)

Due to the non-linearity of equation (3.12) solving it is no longer straightforward and different meth-
ods are used, a brief overview of the most used methods is given in Appendix B.1.

3.2 Extending the Hopping Model

The hopping model and master equation give us a good model to describe the dynamics of mul-
tiple carriers of the same type in a disordered organic material. We are however also interested in
dynamics with multiple carrier types, e.g. the dissociation of singlets into free charges via CT-states.
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In principle a full ME could be set up for this problem, but the state space is even larger than that
for the multiple carrier case. Furthermore a reduction of the state space to average site occupations
is no longer possible since transitions of carrier types (e.g. free charges forming an exciton) can
not be modelled as a simple hop from site to site. This makes the ME approach practically infeasi-
ble (although recently an attempt has been made to extent the ME approach with generation and
recombination of charges, see Appendix B.2).

Instead a kinetic Monte Carlo (KMC) approach is used. KMC is a brute force method, instead of
trying to solve balance equations such as the ME, the KMC approach computes different trajectories
through the state space by explicitly simulating the dynamics of the material. A KMC simulation
starts from an initial state, from there all possible transitions (events) to other states are computed.
An event is selected based on the rate (likelihood) and the state is updated, then again all possible
transitions to other states are computed, one is selected etc. In this way a trajectory is computed.

The main advantage of KMC is that we no longer need to consider the complete state space but
only the part that is relevant for the next possible events. Furthermore as long as a transition from
one state to another can be described by a rate we can add it to the simulation without difficulty.
We will now repeat the list of all the processes relevant for organic electronics presented in Section
1.1.3, but with their corresponding rates. Thereafter we present the full KMC algorithm.

3.2.1 Charge Transfer

The main process in the KMC model is the transfer of charge carriers that we discussed before. In
this thesis we will use the Marcus rate to describe the charge transfer.

3.2.2 Exciton Transfer

For exciton hopping multiple rates exist, the Förster rate, Dexter and Marcus rate are three examples.
The Förster rate is used to describe long range hopping via virtual photon exchange [49]. It is mostly
relevant for hopping of singlets since they can emit a virtual photon, triplets can not. The Förster
rate is an adaptation of the Miller-Abraham’s rate

D7 8 =


D0( 0'7 8 )

6 exp
(
−Δ�7 8
9�)

)
Δ�7 8 > 0

D0( 0'7 8 )
6 Δ�7 8 ≤ 0

, (3.14)

where 0 is the Förster radius and is an indication of how far the singlet can hop. Dexter transfer
is relevant for triplet transport and is based on electron exchange between two sites [50]. Electron
transfer is a short range process and depends on the localization length of the wavefunctions, there-
fore the rate is identical to the Miller-Abraham’s rate only the values of the parameters differ.

An alternative approach to the Dexter and Förster type rates is again the Marcus rate, equation
(3.2), where the coupling between sites is computed explicitly. This is the approach taken in this
thesis.

3.2.3 Exciton Generation

Exciton generation is modelled as a special case of charge carrier hopping and occurs if either an
electron hops onto a site with a hole or if a hole hops to a site with an electron. Since it is difficult to
obtain reorganization energies for these processes, the Miller-Abraham’s rates are used to describe
this process, equations (3.1), where the energy difference now includes the binding energy of the
exciton, i.e. Δ�gen,7 8 = �8 − �7 − �b, with �b the binding energy of the exciton.
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3.2.4 Exciton Dissociation

Excitons can also dissociate, a widely used model for exciton dissociation is based on an interme-
diate step, the charge transfer state [51]. The exciton splits in a separate electron and hole that live
on two separate molecules, the coulomb interaction keeps them bounded together. This bounded
state is called the charge transfer (CT) state. The CT state can then dissociate into free charges.
These processes are again modelled by the Miller-Abraham’s rates (eq. 3.1) with an adapted energy
term.

For the dissociation of an exciton into a CT-state the energy difference isΔ�7 8 = �8 −�7 +�b−�CT,
with �CT the CT-state binding energy. The binding energy of the CT-state can be approximated with
the Coulomb attraction, i.e. �CT ≈ 94 1

'7 8
, with 94 the Coulomb constant. For the dissociation of the

CT-state to free charges the energy difference is Δ�7 8 = �8 − �7 + �CT.

3.2.5 Exciton Decay

Singlet excitons can decay radiatively (by emitting a photon) back to the ground state. The radiative
decay time grad, is obtained from Einstein’s formula for spontaneous emission

g−1rad =
√
Y
4UΩ3

(

322ℏ3 |- |
2, (3.15)

where Y is the dielectric constant of the material, U the fine structure constant and - the transition
dipole between the ground and excited state( . Besides radiative decay excitons can also decay non-
radiatively, these processes are neglected in the current implementation. Nonetheless the radiative
decay rate is a lower bound to the full decay rate [52]

@decay = g−1decay = g−1rad + g
−1
nonrad > g−1rad. (3.16)

3.2.6 The Kinetic Monte Carlo Algorithm

The kinetic Monte Carlo algorithm is relatively simple and consists of the following steps [53, 9].

1. Initialize: Initialize the system with all parameters and add the initial carriers.

2. Compute next event rates: For all possible next events, 8 , for all carriers in the simulation,
the corresponding rates @8 need to be calculated. To keep this feasible, in general a cut-off
is applied to the distance a carrier can hop. This cut-off distance can be different between
species, for example singlet excitons can hop further than electrons and therefore a larger
cut-off is applied for singlet excitons than for electrons or holes.

3. Select next event: From the possible next events one event is selected. A uniform random
number is drawn, F ∼ Unif( [0, @) ]), @) =

∑
8 @8 , and the next event 8 is given by the 8 that

satisfies: ∑8−1
9=1 @9 ≤ F ≤

∑8

9=1 @9 .

4. Event execution: The event is executed and the time is advanced. If the event is a hop the
carrier is moved to the new site, if the event is exciton decay the exciton is deleted etc. To
advance the time a random time is drawn from an exponential distribution based on the total
rate, i.e. g ∼ Exp( 1

@)
), then the time is advanced time = time+g . Finally the change is registered

to keep track of the system trajectory.

5. Repeat: Steps two to four are repeated until a certain end time or number of events has oc-
curred. Since we are interested in transient behaviour this condition is enough. To derive
steady state properties from the KMC one needs to repeat the steps until the simulation has
converged to the steady state and enough accuracy has been reached.
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3.3 Material Morphology and Rate Parameter Calculations

To use the KMC or ME approach the system morphology and the parameters used in the rate equa-
tions need to be calculated. In this section we present a short overview of their computation, for
more details see for example [54] or [55].

3.3.1 Site Locations and Simulation Box

Only a small part of the material is modelled in the KMC model. A small simulation box is cho-
sen that is small enough to make the simulation computationally feasible and large enough to be a
representative sample. The locations of the molecules within the simulation box are obtained via
Molecular Dynamics (MD) (for example with a software package like GROMACS [56]), the material
is frozen in time and the center of masses are used as the locations of the sites in the simulation.

To allow for numerical simplifications and optimizations the sites are sometimes placed on a lat-
tice with spacing 0 . The parameter 0 is then fitted to experimental data. The argument for this sim-
plification is that in general the energetic disorder of an organic material is larger than the positional
disorder [57]. Nonetheless it means that the positional parts of the rate equations (see next section)
are just constants, which is a rather rough approximation. We will therefore adopt the model with
the site locations obtained from MD such that positional and energetic disorder are both taken into
account.

3.3.2 Site Energies

The energy levels of a single molecule are obtained by the many-body approach discussed in Chap-
ter 2. In a material however the molecules experience exchange, dispersion and electrostatic inter-
actions between them that lead to a shift in the energy levels of every molecule. This is referred to as
energetic disorder. To compute the energetic disorder we focus on the electrostatic interaction. The
reason being that we are interested in energy differences and hence we can ignore interactions that
influence both sites almost equally like the dispersion interaction [58]. Furthermore the electro-
static interaction is the strongest interaction and therefore dominates the energy shift. The energy
of a molecule in state 7 is given by

� 7 = � 7vac + � 7corr, (3.17)

where � 7vac is the vacuum (single molecule) energy and � 7corr the electrostatic correction due to the
interaction with surrounding molecules. The calculation of these electrostatic corrections is rather
involved and we rely on the VOTCA-XTP package [59, 54, 60] to compute them for us. For details
on how the corrections are computed see [55] and [58]. Note that the energies of a site are carrier
dependent. The energy corresponding to an electron is the (shifted) LUMO energy of the molecule,
for a hole the HOMO energy and for an exciton the corresponding singlet energy.

3.3.3 Reorganization Energies

If charge transfer occurs one molecule changes from an occupied to a neutral state and the other
molecule from a neutral to an occupied state. These changes lead to a reorganization of the nuclear
coordinates that consume energy, the (intramolecular) reorganization energy _7 8 . It is computed
from four points on the potential energy surface (PES) of both molecules in the neutral and charged
states. For a molecule 7 that loses its charge and molecule 8 that obtains the charge we have [61]

_7 8 = _
2<
7 + _

<2
7 =* <�

7 −* <#
7 +* 2#

8 −* 2�
8 , (3.18)

where* <�
7

stands for the energy of molecule 7 in state < and geometry (capital)� .
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3.3.4 Electronic Coupling Elements

The electronic coupling elements are given by

�7 8 = 〈q 7 |�̂ |q 8 〉 , (3.19)

where the q 7 and q 8 are wave functions corresponding to molecules 7 and 8 participating in the
charge transfer and �̂ is the Hamiltonian of the dimer (i.e. the two molecules together). The value of
the transfer integral depends heavily on the configuration of the participating molecules and there-
fore on the whole morphology [54]. Since �7 8 needs to be computed for every pair of molecules
an efficient yet accurate method is needed. We have used the DIPRO (dimer projection) approach
from [62] for the electrons and holes as implemented in the VOTCA-XTP package. For the excitons
we have used the transition charge from electrostatic potential (TrESP) method [63], to reduce the
computational cost. A DIPRO method for excitons does exist however [64], but is computationally
more demanding.

3.3.5 Attempt Frequency and Localization Length

Given the reorganization energies and coupling elements, the first factor of the Marcus rate, 2c
ℏ

| �7 8 |2√
4c_7 89�)

,
is known. To get approximate values for the inverse localization length and attempt frequency of the
electrons and holes used in the Miller-Abraham’s rates the first factor of this rate is fitted to the first
factor of the Marcus rate. To be a bit more precise the coupling elements are represented as a func-
tion of distance �7 8 (') and an exponential function of the form�4−� ·' is fitted to 2c

ℏ

| �7 8 (') |2√
4c_7 89�)

. � can
then be identified with the attempt frequency D0 and from � we get the inverse localization length
with � = 2U.



Chapter 4
Transient Absorption of a Benzene TCNE
Mixture
In this chapter we apply the multiscale model to a model system of TCNE and benzene molecules to
simulate the transient absorption spectra. We start by discussing the model system. First we briefly
discuss how all computations and simulations were done, next we discuss the results of the parame-
ter calculations, in particular the density of states and rates will be presented. Thereafter we present
the simulated carrier dynamics and TAS signal. We will see that the TAS signal can indeed be linked
to some of the underlying processes. In the last section of this chapter we present simulations per-
formed with changes to the parameters to investigate their influence on the TAS signal and carrier
dynamics.

4.1 The Model System

True organic electronic devices consist of many molecules that often have a complex and large struc-
ture. This makes simulating these systems computationally very expensive. For the objective of
this thesis (linking TAS signals to dynamics) it is not necessary to simulate full devices or materials.
Therefore we consider a smaller test system consisting of 3200 TCNE and 3200 benzene molecules
(see Figures 2.1 and 1.5b) that is large enough to get interesting dynamics, but small enough to be
easily simulated.

In this section we will start by discussing exactly how the computations and simulations were
performed for the model system. Thereafter we present an overview of the most important model
parameters/results, such as the rates and density of states. This is done to get a feel for what the
model system is and how it should behave, which will aid the discussion of the results in the sections
that follow. At the end of this section we also briefly discuss the performance and sensitivity of the
KMC method.

4.1.1 Computational Methods and Simulation Method

The molecules, 3200 of each type, are put into a 10×10×10nm simulation box with periodic bound-
ary conditions. The number of molecules is chosen such that the density of the material resembles
the average density of TCNE and benzene. The morphology of the system is obtained by relaxing
the system with constant temperature molecular dynamics using GROMACS [56]. The modified
Berendsen thermostat is used to stabilize the system to 300K. For the integration the leap-frog inte-
grator is used with a time step of 0.002fs. The system is simulated for 100ps to let the temperature
stabilize. The force field and initial structure of the molecules are obtained from the Automated
Topology Builder (ATB) [65, 66]1. A part of the morphology is visualized in Figure 4.3.

1The specific molecules and force fields used; TCNE: molid=40554, hash=c9c27; Benzene: molid=219157,
hash=167b6
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Figure 4.1: The DOS of the TCNE benzene model system. The labels refer to the molecules and
the e and h refer to the LUMO and HOMO levels respectively. The black lines are for reference and
represent the vacuum energies of the separate molecules.

All electronic structure calculations are performed with the use of the DFT and�, -BSE meth-
ods implemented in VOTCA-XTP [59, 54, 60], except for the open shell excited states of the cation
and anion of the TCNE and benzene molecule, these calculations are performed using the TDDFT
implementation of ORCA [67]. For all electronic structure calculations the def2-tzvpd basis set [68]
is used and for the DFT calculations the B3LYP functional [24].

To perform the kinetic Monte Carlo simulations the algorithm and processes discussed in Chap-
ter 3 are implemented in C++. 2 The code is currently specifically adapted for the TCNE and benzene
model system. Results of the simulations were averaged over 25 runs (trajectories) of 1500ps to ob-
tain the results that are presented in this chapter. In the KMC simulation a cut off (see Section 3.2.6)
was used for the possible hops of electrons, holes and singlets. For the electrons and holes a cut off
of 0.5 nm was employed and for singlets a cut off of 4.0 nm.

To simulate the pump-probe experiment we excite a certain percentage of the molecules at the
start of the KMC simulation (the pump pulse). After that the KMC is used to evolve the system, since
we can get the state of the system at every time step, we do not need to simulate the probe pulse. We
can just look at the state of the system at a certain time and compute the absorption spectrum from
it. From experiments it is known that 0.1 to tens of percents of the molecules get excited due to the
pump pulse [7]. We will assume that 10% of the molecules get excited due to the pulse throughout
this chapter unless stated otherwise.

The absorption spectra are obtained via an average. First the individual spectra of all the dif-
ferent molecules in there different states (electron, hole etc.) are computed using the electronic
structure calculations techniques. Then an average spectrum is taken over all the molecules in their
corresponding state. It is assumed that charge transfer states are dark, i.e. do not contribute to the
absorption spectra.

4.1.2 The Density Of States

Benzene and TCNE form a so-called donor-acceptor pair. One molecule can donate an electron and
the other is able to accept it. This system was specifically chosen for this fact, since it allows for the
easy formation of charge transfer states in which a positive and negative charge are on two different
molecules.

2www.github.com/rubengerritsen/KMC

www.github.com/rubengerritsen/KMC
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Figure 4.2: The DOS separately for the different carrier types, electrons (e), holes (h) and singlets (s).
A normal distribution has been fitted to the DOS (black dotted line), the exact parameters can be
found in Table 4.1.

�vac (eV) ` (eV) f (eV)
benzene: h -9.08 -8.9 0.34
benzene: e 1.55 0.08 0.44
benzene: s 7.2 7.18 0.04
TCNE: h -11.41 -10.88 0.23
TCNE: e -2.92 -3.5 0.21
TCNE: s 4.59 4.63 0.02

Table 4.1: A summary of the parameters of the normal distributions fitted to the DOS of the model
system. Also the vacuum energy levels for the different states are presented for comparison.
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The Density of States (DOS) is one of the most important properties for charge and exciton dy-
namics and the formation of the charge transfer states. The DOS of the model system is presented
in Figures 4.1 and 4.2. In Figure 4.1 we see the donor acceptor behaviour of the system, the LUMO
(e) level of TCNE lies lower in energy than the LUMO level of benzene. Hence the TCNE molecule
is the acceptor of the electron, since it is energetically more favourable for the electron to be on the
TCNE molecule. The benzene molecule is the donor since the HOMO level lies higher in energy and
hence it is more likely to carry a positive charge (a hole).

Besides the donor-acceptor behaviour of the system we also see the spread in energy levels due
to the electrostatic interaction between the molecules discussed in section 3.3.2. We chose to com-
pute the DOS explicitly, but in many cases a Gaussian DOS is used, in Figure 4.2 we have also fitted
a Gaussian to the DOS for comparison, the exact parameters are summarized in Table 4.1. We see
that the Gaussian approximation of the DOS is rather accurate. It should, however, be noted that
the energy landscape is more complex than just Gaussian distributed, since the molecules influence
one another the landscape is correlated, an effect that cannot be seen in figures of the DOS such as
Figure 4.2.

4.1.3 Processes Visualized

To aid in the following discussions of the processes, dynamics and the corresponding rates of the
model system, we present in Figure 4.3 a visual summary of the most important processes involved.
We see a singlet in Figure 4.3a, that dissociates into a CT state, Figure 4.3b, and finally separates into
free charges, Figure 4.3c and d.

4.1.4 Rates

An overview of the rates in the model is presented in Figure 4.4, 4.5 and 4.6. From these figures we
see that two different rates have been used. For the normal hopping we have the Marcus rate, but for
the dissociation and generation processes we have the Miller-Abraham’s rate. The Miller-Abraham’s
(MA) formalism makes a sharp distinction between hops downward in energy and upward. For
downward hops no energy penalty is included and hence we see the exponential decay with distance
for hops downward in energy as a thick line of points in the figures, e.g. 4.5b shows almost only hops
downward in energy and hence we see the exponential decay with distance of the rate. The points
below this line (for the MA rates) are for hops or transitions that are upwards in energy. We see in
particular in Figure 4.4c through f that the effect of the energy barrier can be very large and leads to
a dramatic reduction of the rates.

Figures 4.4a and b, based on the Marcus rate, can be interpreted along similar lines, the rates in
the top part of the point clouds are hops downward in energy and to similar energies and the bottom
parts correspond to hops that require more energy.

It should be noted that the large differences between the different rates for hops between differ-
ent molecules is due to the donor acceptor behaviour of the system. This becomes extra apparent
when we consider for example Figure 4.4c, we see that the rate for hops of an electron from benzene
to TCNE is very large and the hop from TCNE to benzene very small. This is exactly as expected since
TCNE is the electron acceptor in this system. Similar conclusions can be drawn for all the graphs in
Figure 4.4.

Care must be taken when interpreting the rates related to singlet dissociation. In Figures 4.4c
through f, for example, the CT dissociation via an electron (figure e) may seem fast via the hop from
benzene to TCNE. In practice, however, the electron of the CT state will be on the TCNE molecule
and hence can only hop to another TCNE or benzene molecule, for which the rates are much lower.

In Figures 4.5a and b we see the singlet generation rates, note that they are in general not en-
ergy limited (except for the formation due to an electron hop from TCNE to benzene). We see the
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(a) A singlet state (b) Dissociation of the singlet into a CT state

(c) Separation of the CT state into free charges (d) Hopping of a hole

Figure 4.3: A visual summary of the dissociation of a singlet in the simulation. We see a small part
of the simulation box in which (a) a singlet state (yellow) is present, that dissociates into a charge
transfer state (b) and then separates into free charge (c) that can hop around (d). The blue color is
used for negative charges and the red color for positive.
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Figure 4.4: The magnitudes of the rates in the KMC model as a function of distance for different
processes in the simulation.
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Figure 4.5: The magnitudes of the singlet generation rates as a function of distance.

Figure 4.6: Singlet hopping rates for the different possible hops between TCNE and benzene. The
hop from TCNE to benzene is orders of magnitudes smaller than the other hopping rates. This is
due to the large energy barrier from TCNE to benzene.

exponential decay due to distance and only a very limited amount of energy limited rates. This is
explained by the fact that the exciton binding energy is relatively large compared to the site energy
differences. This is also expected from literature where it is often assumed that the formation of an
exciton (singlet) is always a process downwards in energy [9, 69].

In Figure 4.6 we present the rates for singlet hopping. Note that these rates are at least two orders
of magnitude smaller than the hopping rates of electrons and holes. Furthermore we see a splitting
in the rates due to hops between different types of molecules. This is not unexpected since the
singlet energy differences are large between the two types of molecules. This is also the reason why
the rates for hopping from TCNE to benzene are so small.

The rate for singlet decay is on average 1.7 ·10−3ps−1 for a singlet on benzene and 0.38 ·10−3ps−1
for a singlet on TCNE. In the simulation these rates are calculated using the site energies for singlets,
here we used the average site energy for the two separate molecules.

4.1.5 Accuracy, Performance and Sensitivity of the Methods

The Monte Carlo method used to simulate the carrier dynamics is statistical in nature. Hence the
accuracy of the method heavily depends on the number of simulated events. For Monte Carlo meth-
ods, in general, two methods are used to obtain increased accuracy, either simulate more different
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trajectories through the state space or simulate longer trajectories. The latter is impossible for the
simulation of transient phenomena where the time dependence makes longer simulation useless.
Hence in this thesis the first approach is used. Multiple different trajectories were simulated and
the results are averaged to obtain the results that we present in the next sections. It was found that
25 trajectories is enough to find reasonably accurate results, the addition of more trajectories to the
average did not significantly improve the results obtained.

An advantage of the multiple trajectories to get a higher accuracy is that simulations can be very
easily parallelized. A single 1500ps run for the system of 6400 molecules takes just under an hour
in most cases. On a computer or server with a high core count this means that even simulating
25 or 50 runs takes one or two hours at most. The KMC simulation also scales very well, linear in
the number of carriers present. It is however important to realize that due to the larger cut off of
singlets, more possible next events need to be considered for singlets than for electrons or holes,
this slows down the simulation considerably. It should also be noted that the KMC scales rather
well and is relatively quick, but the parametrization calculations take very long. Parametrization
calculations are the main bottleneck for the computational performance. The computation of the
coupling elements used in the Marcus rates, for example, can take days to perform even for the small
system of 6400 molecules that we consider here. This limits the possibility of simulating multiple
different morphologies.

Since most parameters are obtained from ab initio calculations the model is almost free of fitting
and matching parameters. For that reason the outcomes of the model do not depend heavily on the
input parameters. They do, however, depend heavily on the accuracy of the ab initio calculations.
As we have seen in Section 4.1.4 in particular the energy levels have a large influence on the model.
Small differences in the energy levels can result in dramatic changes in the rates of multiple orders
of magnitude.
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4.2 Simulating the Transient Absorption Spectrum

In the previous section we explored the model system and its properties. In this section we present
the transient absorption spectrum obtained from the simulation for the model system. We first
discuss the carrier dynamics and then the TAS signal.

4.2.1 Carrier Dynamics

In Figure 4.7a and b we see the carrier dynamics of the system. After the pump pulse 10% of the
molecules in the system are excited. As we can see the excited states dissociate very quickly into
charge transfer states. Within 0.01ps most excited states have dissociated and many CT states have
formed. While the CT states form they already start to dissociate into free charges (e.g. the orange
line in Figure 4.7a). Since the CT binding energy is relatively high we see that after the formation of
the free charges, the system converges to a situation with many CT states.

4.2.2 Transient Absorption Spectrum

In Figure 4.7c we see the corresponding absorption spectrum. Our main question to answer is if
we can couple this spectrum to the carrier dynamics. Starting from the TAS signal at 0.005fs we can
clearly see the ground state bleaching (i.e. the negative peaks at t:n and b:n). It is interesting to see
that the ground state bleaching increases in the next step forward in time, at 5fs. This is explained by
the formation of the large number of CT states that occupy two sites, hence there is approximately
twice the amount of sites that are no longer in the ground state. In the time steps that follow we can
clearly see the formation of the free charges in the system by the peaks at t:e and b:h. It may be worth
noting that due to the donor-acceptor behaviour of the system almost all holes live in benzene sites
and all electrons on TCNE sites, this is also clearly visible in the carrier dynamics and TAS signal.

Besides what we do see in the TAS signal it also worth noting what we do not see. First of all
we see almost no excited state absorption (ESA) in the TAS signal, this is due to the fact that the
absorption of the singlets is weak and the fact that the singlets dissociate so quickly into CT states.
This results in a very small number of excited states with a very small absorption and hence they are
not visible. We also do not see any stimulated emission, this is expected since it is not accounted for
in the model.
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(b) Carrier dynamics on the TCNE molecules.
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Figure 4.7: The carrier dynamics and transient absorption spectrum of the benzene TCNE mixture.
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4.3 Simulating Different Cases

Our main goal is to link carrier dynamics to TAS spectra. A single system only leads to one type
of dynamic, to investigate different types of dynamics we can either simulate different systems or
change parts of the current system. In this section we adopt the latter approach to save on the com-
putational cost associated with the computation of all parameters for different systems. This leads
to some interesting, although sometimes unphysical, special cases of the simulation. We consider
in order, what would happen if we reduced the CT binding energy, what happens if the energy gaps
of the donor-acceptor system are reduced and the case where all molecules get excited by the pump
pulse of the transient absorption experiment.

4.3.1 Reduced Charge Transfer State Binding Energy

In Figure 4.8 we present what happens if the CT state binding energy is reduced. In the original
simulation we saw that the CT binding energy resulted in a large number of CT states at the end of
the simulation. If we look at Figures 4.8a and b we still see this effect but it is smaller, there are still
quite a lot of CT states, but the number of free charges is now greater than the number of CT states.
Also the dynamics just after the pump pulse have changed considerably with the weaker CT binding
energy free charges can form easier.

Similar conclusions can be drawn from the TAS signal. We see the same ground state bleach as
in the original system and the extra ground state bleach due to the CT states, but what we also see
is the increased absorption at the hole peaks of benzene en electron peaks of TCNE. This is in line
with the increased number of free charges observed in the carrier dynamics.

4.3.2 Reduced Gap Between Donor and Acceptor

The main feature of the model system is its extreme donor-acceptor behaviour. In Figure 4.9 we
present what happens if we make this effect less pronounced. We reduced the HOMO gap between
the two molecules by 1.0 eV, the LUMO gap between the molecules by 2.5 eV and the singlet gap by
2.2 eV. The new DOS is presented in Figure 4.10.

In Figure 4.9a and b we see the effect on the carrier dynamics of this change in energy gaps. At
first glance it does not appear much different from the original system, but nonetheless there is some
difference. We see that the singlets are less easily split into CT states and more singlets remain over
a longer period of time (see the green lines in both graphs). This is exactly what one expects from a
system with a smaller acceptor-donor gap. For the same reason we also see that it takes longer for
the free charges to appear in large numbers.

In the TAS signal we see the same as in the original case and the fact that the electrons and holes
take longer to form (the absorption peaks are smaller).

4.3.3 All Singlets

Physically very unlikely, but interesting as a limiting case, we consider what would happen if the
pump pulse of the TAS experiment would excite every single molecule in the system, i.e. after the
pump pulse every site is in the singlet state. The results of this numerical experiment are presented
in Figure 4.11.

In Figures 4.11a and b we see how the carrier dynamics have changed, instead of the very fast
processes that we saw before, we see a very slow decay of singlets and a slow rise of CT states for
both the benzene and TCNE molecule. This can be explained as follows; if every site is in the singlet
state it is impossible for a singlet to dissociate into a CT state, instead we need to wait for singlets to
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Figure 4.8: The carrier dynamics and transient absorption spectrum of the benzene TCNE mixture,
where the CT binding energy has been reduced by a factor of four.
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(c) The (Δ�) transient absorption spectrum for different ΔB . The vertical dotted lines are visual aids that
indicate to which carrier on which molecule a peak belongs, e.g. b:h is a hole on a benzene molecule.

Figure 4.9: The carrier dynamics and transient absorption spectrum of the benzene TCNE mixture,
with a reduced difference in energy between the donor and acceptor, the corresponding DOS is
presented in Figure 4.10.
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Figure 4.10: The DOS corresponding to the results presented in Figure 4.9. The TCNE HOMO level
has been heightened by 1.0 eV and the benzene LUMO has been lowered by 2.5 eV. The singlet level
of benzene (although not displayed) has also been lowered by 2.2 eV to reduce the singlet gap as
well.

decay. As we have seen in Section 4.1.4, the exciton decay process is much slower than the dissoci-
ation processes. Once a singlet has decayed another singlet in proximity to the decayed singlet will
dissociate into a CT state (very fast process) once again blocking all other processes from occurring
and we need to wait again for a singlet to decay before something else can happen. This repeats
itself for quite some time after which enough singlets have decayed to also allow for the formation
of free charges.

In Figure 4.11c we see the corresponding TAS signal for different time steps. Since all sites are in
the singlet state after the pump pulse, the ground state bleach is quite extreme, there is no molecule
that is not excited. Due to the almost instantaneous formation of CT states after exciton decay, the
ground state bleach also does not really decrease in time, and hence this process can not or hardly
be deduced from the TAS signal. The only process we can truly observe in the TAS signal is the
formation of the free charges.
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Figure 4.11: The carrier dynamics and transient absorption spectrum of the benzene TCNE mixture,
where all molecules are excited at the start.



Chapter 5
Conclusion and Future Work
5.1 Conclusions

The results of this thesis show that ab initio methods can be advantageously combined with a sta-
tistical model to model transient absorption spectra of disordered molecular systems. We have seen
that spectral features of the simulated TAS signal can be linked to the underlying processes within
the simulation. In particular we saw that charge transfer states may contribute heavily to the ground
state bleaching in the spectrum. By varying different parameters in the model we have seen that
carrier dynamics are very sensitive to the relative energy levels of the molecules. Also the charge
transfer state binding energy determines to a large extent to what equilibrium the dynamics will
converge. In conclusion we can answer our starting question from Section 1.4 with an affirmative
answer, it is possible to develop a model that can assist in inferring dynamical processes from tran-
sient absorption spectra. Indeed, the presented model helps and proves the concept. For it to be
used to predict experimental outcomes, however, improvements need to be made that we discuss
in the next section.

5.2 Future Work

5.2.1 Improving the Model

The multiscale model presented in this thesis is a first step towards a full model for transient ab-
sorption in organic materials. However, different parts of the model can be improved upon, we list
the most important possible improvements:

• Currently only the charge and exciton transfer models are modelled via the Marcus rate. For
the processes involving the generation or dissociation of species we had to fall back on the
Miller-Abraham’s formalism in which the parameters were obtained through a fitting proce-
dure. This will only give approximate results. A more formal and accurate rate to predict the
dissociation and generation of species is necessary.

• An important interaction between the carriers in an organic material is the Coulomb interac-
tion. In the current model it is ignored except in the case of CT-states. In a future version of
the model the Coulomb interaction should be included to allow for more realistic dynamics. A
starting point for an efficient Coulomb interaction implementation could be the recent paper
by Pippig and Mercuri [53].

• The only pathway for carriers to decay in the simulation is through singlet decay. It is however
known that more pathways exist. For example holes and electrons can meet and annihilate
one another instead of forming an exciton, also excitons can meet and destroy one another.
These extra pathways could be included in future versions of the KMC simulation.
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• The coupling between the output of the KMC model and the absorption spectra is based on
the spectra of the different species in vacuum. To simulate the effect of interaction between
the molecules and electron-vibration coupling, the spectra are broadened via a convolution
with a Gaussian or Lorentzian kernel. It is however also possible to compute the absorption
spectra for every site including the interaction with neighbours and electron-vibration cou-
pling [70]. This would allow the simulation of more detailed absorption spectra. In particular
it would be possible to see to what extend carriers move to sites of lower energy in the time of
a transient absorption experiment.

• In the simulated transient absorption spectrum we only account for ground state bleach and
excited state absorption. It would be beneficial to also include stimulated emission.

• The current KMC implementation is not optimized although some optimizations are possi-
ble. First of all, some processes have rates that are so small that their probability of occurring
is almost zero, they could be ignored, this would save memory and computation time, since
the number of possible next events would become much smaller. The difficulty in this opti-
mization is that the timescales of processes can change drastically with changing parameters
and hence which events can be ignored is very parameter and system dependent. Another
possible optimization is to check for bimolecular trap states, these are states where the rates
between two neighbouring sites are very high to jump from one to another. Carriers, hop-
ping between these two sites, do not contribute much to the overall dynamics and make the
simulation much slower. It should be investigated if these states can be eliminated or circum-
vented.

5.2.2 Different Approaches to Carrier Dynamics

Besides improving this model, completely different approaches to carrier dynamics could be con-
sidered as well.

Focussing on the very small

The master equation approach already considers the carrier hopping as random walks on a graph.
The random walk approach could however be extended. There are branching and annihilating
random walk processes that could potentially be adapted to obtain information about exciton be-
haviour such as lifetimes, distances travelled and time until dissociation or in the case of annihilat-
ing random walks the time until a positive and negative charge meet and form an exciton. Another
random model, the parabolic Anderson model, provides a way to investigate random walks in a ran-
dom potential (e.g. the disordered energy landscape of an organic material) [71]. Also work has been
done on the study of multiple random walks and interacting particle systems [72] that looks at infor-
mation exchange between meeting particles on a graph, which shows similarities to the formation
of an exciton.

While random walk methods will most likely never replace the flexibility and versatility of the
kinetic Monte Carlo approach, they may be able to provide theoretical insight and could be used to
verify the correct implementation of specific processes in KMC models.

Focussing on the very large

Considering the results of the carrier dynamics such as Figure 4.7 and 4.8, the results look like that of
a compartment model. A compartment model is a model where different species (electrons, holes,
CT states etc.) can turn into one another at certain rates. A good example is the SIR model for
infectious disease modelling. This similarity between the results and a compartment model may
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indicate that there are continuous differential equations that can approximate the behaviour of the
dissociation of singlets into CT states and into free charges and the other way around. This would
give an approach to carrier dynamics that can very quickly and easily model transient absorption
spectra at least approximately.



Appendix A
Computation of Transition Dipoles
Transition dipoles are computed from wave functions, representing states. Suppose we have two
states, represented by the wave functions k1 and k2 then the transition dipole between these two
states is 〈k1 |3̂ |k2〉. Here we will compute two kinds of transition dipoles, transition dipoles from the
ground state to the 7 th excited state (i.e. 〈∅|3̂ |(7 〉) and transition dipoles between excited states (i.e.
〈(7 |3̂ |( 8 〉). We will first discuss the representation of the states and then perform the computations.

A.1 Representation of the Ground State

The starting point for our representations are atomic orbitals (AOs), j`. Using a self-consistent field
(SCF) approach like density functional theory (DFT), we can obtain the molecular orbitals (MOs),
q7 , as linear combinations of AOs,

q7 =
∑̀

2`7j`. (A.1)

Every MO can be occupied by two electrons with opposite spin. We use q7 for the wave function of
the spin up electron and q̄7 for the spin down. Using these spin orbitals we can represent the ground
state of a closed shell system with < electrons by a Slater determinant

|∅〉 = k0 = |q1(1)q̄1(2) . . . q</2(< − 1)q̄</2(<) | =

q1(1) q1(2) q1(3) · · ·
q̄1(1) q̄1(2) q̄1(3) · · ·
q2(1) q2(2) q2(3) · · ·
...

...
...

. . .

. (A.2)

A.2 Representation of the Excited State

The following discussion is based on the first chapter of [73] in which excited states are represented
as linear combinations of singly excited states.

A.2.1 Singly Excited States

A singly excited state is a state where exactly one electron is moved from the ground state to a higher
unoccupied state. We will use the notationk7→9 to indicate such a state, where the electron previ-
ously in orbital 7 , is now in orbital 9 . Note that we do not specify which electron has moved from
orbital 7 it could be the spin up or spin down electron. This implies that our singly excited state is a
linear combination of two states namely

k7→9 =
1
√
2

(
|q1q̄1 . . . q7 q̄9 . . . q</2q̄</2 | + |q1q̄1 . . . q9 q̄7 . . . q</2q̄</2 |

)
. (A.3)
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A.2.2 Excited States (TDA)

An excited state can now be expressed (approximated) as a linear combination of singly excited
states

|(7 〉 =
∑
 

� 7
 k ,  ∈ {0→ 1, . . . , 7 → 9 }. (A.4)

In principle we should also include doubly, triply etc. excited states in the linear combination, how-
ever their occurrence is rare and can therefore be safely ignored in most cases. Equation A.4 is known
as the Tamm-Dancoff approximation where we only allow for electron-hole pair creation. In litera-
ture equation A.4 is also represented as

|(7 〉 =
=22∑
D

4;>B G∑
2

�7D2kD→2 . (A.5)

A.2.3 Excited States (RPA)

A more advanced approximation of the excited states is obtained if we not only include singly excited
states but also allow for singly de-excited states

|(7 〉 =
=22∑
D

4;>B G∑
2

[
�7D2kD→2 + � 7D2k2→D

]
. (A.6)

A.3 Transition dipoles between the ground and excited states

Within the TDA

〈(7 |3̂ |∅〉 = 〈
=22∑
D

4;>B G∑
2

�7D2kD→2 |3̂ |∅〉

=
∑
D2

〈�7D2kD→2 |3̂ |∅〉

=
∑
D2

�7D2 〈kD→2 |3̂ |∅〉

(A.7)

Now we apply “Slater’s rules” for the computation of matrix elements between Slater determinants
(see section A.5). Note that the dipole operator is a sum of one particle operators and hence we only
need to consider the one particle operator part of Slater’s rules.

〈kD→2 |3̂ |∅〉 =
1
√
2

(
〈q2 |3̂ |qD 〉 + 〈q̄2 |3̂ |q̄D 〉

)
=
√
2 〈q2 |3̂ |qD 〉

(A.8)

In the last line we used that fact that we only know that one of the two electrons is excited from theD
orbital, we don’t know which one. Nonetheless the effect should be the same. Finally the transition
dipole is

〈(7 |3̂ |∅〉 =
√
2
∑
D2

�7D2 〈q2 |3̂ |qD 〉 . (A.9)
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Within the RPA

Extension of the previous procedure to the RPA case is easy now

〈(7 |3̂ |∅〉 = 〈
=22∑
D

4;>B G∑
2

[
�7D2kD→2 + � 7D2k2→D

]
|3̂ |∅〉

=
∑
D2

[
〈�7D2kD→2 |3̂ |∅〉 + 〈� 7D2k2→D |3̂ |∅〉

]
=

∑
D2

[
�7D2 〈kD→2 |3̂ |∅〉 + � 7D2 〈k2→D |3̂ |∅〉

]
=

∑
D2

[
�7D2
√
2 〈q2 |3̂ |qD 〉 + � 7D2

√
2 〈qD |3̂ |q2 〉

]
=
√
2
∑
D2

(
�7D2 + � 7D2

)
〈q2 |3̂ |qD 〉 .

(A.10)

Here we used that 〈q2 |3̂ |qD 〉 = 〈qD |3̂ |q2 〉.

A.4 Transition dipoles between excited states

A.4.1 Representation of the Electron-Hole Pair

To represent the electron-hole pair we switch to a product basis of single particle electron and hole
wavefunctions. Assuming that a state in this product basis is a linear combination of Slater deter-
minants we get

|(7 〉 =
=22∑
D

4;>B G∑
2

[
�7D2 |qDq2 | + � 7D2 |q2qD |

]
=

∑
D2

(�7D2 − � 7D2 ) |qDq2 |

=
∑
D2

� 7
D2 |qDq2 |.

(A.11)

A.4.2 Transition dipoles

Transition dipoles between excited states are easily computed from the representation (A.11).

〈(7 |3̂ |( 8 〉 = 〈
∑
D2

� 7
D2 |qDq2 | |3̂ |

∑
D ′2 ′

�
8

D ′2 ′ |qD ′q2 ′ |〉

=
∑
D2

∑
D ′2 ′

� 7
D2�

8

D ′2 ′ 〈|qDq2 | |3̂ | |qD ′q2 ′ |〉
(A.12)

Using Slater’s rules for matrix elements we can compute the remaining matrix element

〈|qDq2 | |3̂ | |qD ′q2 ′ |〉 = 〈qD |3̂ |qD ′〉 X22 ′ + 〈q2 |3̂ |q2 ′〉 XDD ′. (A.13)

Hence we get
〈(7 |3̂ |( 8 〉 =

∑
D2

∑
D ′2 ′

� 7
D2�

8
D ′2 ′

(
〈qD |3̂ |qD ′〉 X22 ′ + 〈q2 |3̂ |q2 ′〉 XDD ′

)
. (A.14)
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For the actual implementation of this calculation in the software package VOTCA we can split the
summation into a valence part+ and a conduction part� , due to the Kronecker delta

〈(7 |3̂ |( 8 〉 =+ +� (A.15)
+ =

∑
DD ′

∑
2

� 7
D2�

8

D ′2 〈qD |3̂ |qD ′〉 (A.16)

� =
∑
22 ′

∑
D

� 7
D2�

8

D2 ′ 〈q2 |3̂ |q2 ′〉 . (A.17)

The coefficients �DD ′ =
∑
2 �

7
D2�

8

D ′2 and �22 ′ =
∑
D �

7
D2�

8

D2 ′ are obtained via matrix multiplication,
� = � 7 · (� 8 )) and � = (� 7 )) ·� 8 . We are left with

+ =
∑
DD ′

�DD ′ 〈qD |3̂ |qD ′〉 (A.18)

� =
∑
22 ′

�22 ′ 〈q2 |3̂ |q2 ′〉 (A.19)

〈(7 |3̂ |( 8 〉 =+ +� . (A.20)

A.5 Slater’s Rules for Matrix Elements

We present Slater’s rules for the one particle operator ℎ and two particle operator 6 , based on [74].
We start from the operator� = ℎ + 6 acting on a state Φ which is a product of spin-orbitalsk7 and
assume that all spin-orbitals are orthonormal.

The diagonal element equals

〈Φ|� |Φ〉 =
∑
'

〈k' |ℎ |k' 〉 +
1
2

∑
',(

(〈k'k( |6 |k'k( 〉 − 〈k'k( |6 |k(k' 〉) . (A.21a)

Matrix elements with one spin-orbital difference (k' ≠ k ′
'

) equal

〈Φ′ |� |Φ〉 = 〈k ′' |ℎ |k' 〉 +
∑
'≠(

(
〈k ′'k( |6 |k'k( 〉 − 〈k

′
'k( |6 |k(k' 〉

)
. (A.21b)

Matrix elements with two spin-orbital differences (k' ≠ k ′
'

andk( ≠ k ′
(

) are equal to

〈Φ′ |� |Φ〉 = 〈k ′'k
′
( |6 |k'k( 〉 − 〈k

′
'k
′
( |6 |k(k' 〉 . (A.21c)



Appendix B
The Master Equation Extras
B.1 Solving the Pauli Master Equation

In Chapter 3 the master equation was discussed here we briefly present three ways of solving the
Pauli Master Equation. Firstly there is the popular iterative method by Yu et al. [75]. This boils down
to sequentially updating the average site occupations according to

57 = 1/
[
1 +

∑
8 D7→8 (1 − 58 )∑

8 D8→7 58

]
, (B.1)

until satisfactory convergence has been reached. Note that as soon as a value is updated it will be
used for all further calculations (this is called implicit calculation in the Yu et al. paper).

A second method is based on Newton’s method, smart ways of computing the Jacobian have
been developed to solve the system [76]. According to [76] the most efficient way of solving the sys-
tem of equations however is a combined approach in which Newton’s method is used predominately
and an occasional “correction” step is performed via Yu’s method.

When using the Newton method, Equation 3.13 (∑7 57 = # ) can be “spread” over the Pauli Master
Equation as follows,

67 ( ®5 ) =

∑
8≠7

D8→7 58 (1 − 57 ) − D7→8 57 (1 − 58 )
 +

B2D0>7 (1 − >7 )√∑
7 5

2
7
(1 − 57 )2

[
# −

∑
7

57

]
= 0, (B.2)

where the factor D0>7 (1 − >7 ) is added to make sure that both terms are of a comparable size and B2
is the concentration tuning factor (an indicator for how much relative error we allow in the carrier
concentration)[76].

B.2 The Master Equation for Multiple Particles of Different Types

Equation 3.12 can be further extended to include generation and recombination of electrons and
holes [77]. The approach is to consider separate site occupations for electrons and holes, >7 ,4 and
>7 ,ℎ respectively. If a site is occupied by both a hole and an electron there is a rate for recombination
1/g and if a site is empty (no holes or electrons) generation of an electron hole pair can occur with
a generation rate of 27/g . The new master equations are

3>7 ,4

3B
=

∑
8≠7

[
−>7 ,4D7 8 ,4 (1 − >8 ,4 ) + >8 ,4D8 7 ,4 (1 − >7 ,4 )

]
− >7 ,4>7 ,ℎ

g
+ 27
(1 − >7 ,4 ) (1 − >7 ,ℎ)

g
, (B.3)

3>7 ,ℎ

3B
=

∑
8≠7

[
−>7 ,ℎD7 8 ,ℎ (1 − >8 ,ℎ) + >8 ,ℎD8 7 ,ℎ (1 − >7 ,ℎ)

]
− >7 ,4>7 ,ℎ

g
+ 27
(1 − >7 ,4 ) (1 − >7 ,ℎ)

g
. (B.4)
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The generation/recombination process must satisfy the principle of detailed balance at equilibrium
and, with the assumption of Fermi-Dirac statistics, the coefficient 27 can be calculated as [77]

27 =
>7 ,4>8 ,ℎ

(1 − >7 ,4 ) (1 − >7 ,ℎ)
= exp

(
�7 ,ℎ − �7 ,4
9�)

)
. (B.5)
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