
Self-Healing of Comb Polymer Vitrimers

Author
F.M. Sherry (1310380)

Supervisors
Dr. W.G. Ellenbroek & Dr. B. Baumeier

Departments of Applied Physics & Mathematics and Computer Science

Eindhoven University of Technology

Friday 7th July, 2023



Self-Healing of Comb Polymer Vitrimers SMB | CASA

Abstract
To combat the many challenges to sustainability posed by a ‘take-make-waste’ society, the European
Union wants to transition to a ‘circular economy’, in which products are re-used as much as possible.
The usable lifetimes of the materials these products are made of must therefore be extended. Due to
their omnipresence, improving the lifespan of polymers is of particular importance; we can achieve this
by making the polymers capable of autonomous self-healing, so that they can heal damage incurred
during operation without any external interference. This promising idea has been held back by the poor
mechanical properties of typical self-healing polymers. Fortunately, in 2019, Ciarella and Ellenbroek
developed a vitrimer network based on star polymer that was capable of self-healing, while remaining
rigid on timescales around three orders of magnitude greater than the healing time [1]. In this work,
we seek to improve upon this result by using comb instead of star polymers, hypothesising that the
networks will heal on similar timescales, which being stable for much longer due to the entanglement of
the backbones.

We first develop a simple theoretical model to predict the typical bond swap times in the network, and
test this using Molecular Dynamics simulations; our model appears to extrapolate well outside of the
data it was fitted on. The simulations additionally show that the swap times cannot be described by an
exponential or Weibull distribution.

Using these typical swap times, we derive an expression for the evolution of the number of bonds around
damage and the equilibrium shear modulus. These models are again tested using Molecular Dynamics
simulations. We see that the vitrimer networks based on combs indeed heal at similar speeds to the one
based on stars, confirming the first part of our hypothesis.

Finally, we measure the stress relaxation of a comb vitrimer network using Molecular Dynamics
simulations to find the timescale on which the network is rigid. Unfortunately, we believe we have
encountered an issue in the implementation of the dynamic bonds in simulations, causing us to observe
a nonphysical stress relaxation; we therefore have been unable to test the second part of our
hypothesis.

In short, vitrimers made of combs are promising candidates for a self-healing polymer; their long-term
stability remains to be investigated in future research.
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Chapter 1

Introduction

The current ‘take-make-waste’ society poses myriad challenges, such as the loss of biodiversity and vast
greenhouse gas emissions [2]. To combat these issues, the European Union (EU) has proposed a transition
to a ‘circular economy’. A central aspect of a circular economy is the waste hierarchy, shown in Figure 1.1,
which defines how we should preferably deal with the 2.2 billion tones of wastes we generated each year
[3]. At the top of the hierarchy is prevention, which means that we should re-use products as much
as possible [4]. It is therefore clear that the success of the circular economy rests on the existence of
materials that allow for re-use.

Figure 1.1: The European waste hierarchy, showing
waste management strategies sorted by preference
from top to bottom. Taken from the EU Waste
Framework Directive.

In this context, polymers deserve particular
attention due to their ubiquity and the
environmental impact of the techniques
commonly employed to deal with them at their
end-of-life, such as landfilling and incineration
[5, 6]; there is consequently a lot to be
gained by extending the lifetime of polymer
materials. There are numerous ways in which
the longevity of polymer could be increased.
One approach, which has been frequently
studied in the last decade (e.g. [7, 8, 9, 10, 11]),
is to improve the reprocessibility of polymers,
so that they can be made into new products
more easily. However, we can do even better by
preventing the need for reprocessing in the first
place, for instance by making the polymers
capable of healing damage they incur during their life. Ideally, this healing happens autonomously,
with as little outside intervention as possible [9]. Self-healing polymers are already in use for instance
in the automotive industry [12], but have been held back by numerous deficiencies. For instance, they
often require some trigger such as temperature to activate the healing [13], and they are typically weak
and prone to damage [14], mitigating the advantages of damage recovery.

To understand these weaknesses, we must look to the past. We have historically been able to divide
polymer materials into two categories, depending on how their constituent polymers are bound together
[15]. On the one hand we have thermosets, which have been cured irreversibly into an polymer network
[16]. In this process permanent crosslinks are formed, which tend to make thermosetting materials tough
and resistant to solvents. Thermosets are also almost impossible to recycle [17, p. 965], however, since it
is difficult to destroy the crosslinks without destroying the bonds within the polymers. They moreover
have no mechanism to recover their mechanical strength after sustaining damage. On the other hand
we have thermoplastics, which consist of polymers that are bound by relatively weak, thermoreversible
intermolecular forces [18], such as van der Waals forces. These materials become soft when heated, and
can therefore be molded and recycled more easily [19]. Regrettably, they also tend to be less resilient
[20, p. 45]. Consequently, neither traditional thermoset nor thermoplastics materials are well-suited to
self-healing.
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Fortunately, recent years have seen the development of Covalent Adaptive Networks (CANs), a new
family of polymer materials, which are bound together by strong forces and nevertheless are able to
alter their topology [21], and therefore ‘CAN’ intrinsically self-heal [22]. In particular, Leibler et al.
investigated polymer networks with strong yet exchangeable covalent crosslinks in 2011. They called
these materials vitrimers1 for their glasslike properties [17]. The rate at which bonds are exchanged
increases as the temperature goes up, and, as a consequence, vitrimers tend to be hard like thermosets
at low temperatures, but malleable like thermoplastics at high temperatures. Vitrimers moreover are
resistant to solvents [17, p. 966] and creep [10] like thermosets. In short, vitrimers promise to combine
the best properties of both thermosets and thermoplastics [23, p. 72].

The dynamic nature of vitrimers moreover makes them capable of self-healing: in 2019, Ciarella and
Ellenbroek found in a simulation study that a vitrimer network consisting of star polymers can self-heal
while displaying thermoset-like mechanical properties on timescales around a thousand times as large
as the typical healing time [1]. Star polymer vitrimers are very tunable: by varying the distribution of
reactive groups at the ends of the stars, we can exercise great influence on the stress relaxation [24], for
instance. Their usability is limited, however, by the similarity of the mechanisms that effect the self-
healing and those that bring about the stress relaxation: to heal, the network must be able to rearrange
itself around the damage; to relax, the stars must be able to move. One must therefore choose between
autonomous healing and long-term stability [1].

This dilemma naturally raises the following question:

How can we design a vitrimer network that is capable of healing autonomously without giving
up long-term rigidity?

We believe that the solution may be found by considering different building blocks than stars. In
particular, we hypothesise that comb polymers with long backbones and many branches can give rise
to a vitrimer network that heals autonomously on similar timescales as the network investigated in [1],
while relaxing much more slowly. To support this hypothesis, we consider the following arguments. We
can create a network made of combs with a similar density of reactive groups, which should heal at
a comparable rate, since this density appears to determine how fast the network can recover around
damage [1]. Additionally, the backbones of the combs in this network will become entangled, so that
their motion is limited; the time it takes for them to become unentangled and relax will scale with the
length of the backbone [25, Eq. (9.8)], giving us a way to prolong the stability of the network.

In this project we will test the validity of our hypothesis by developing simple theoretical self-healing
models and simulating damaged vitrimer networks. We start off in Chapter 2 by discussing the bond
exchange mechanism which defines vitrimers. We additionally go over the statistical theory of lifetime
distributions and the basics of linear viscoelasticity. Thereafter, in Chapter 3, we summarise how we
simulate vitrimer networks. We present our results in Chapter 4; this chapter is divided into three
sections. In Section 4.1, we create a model to predict the typical swap times in the network depending
on the shape of the building blocks. We subsequently perform simulations to find the entire swap time
distributions and verify our mathematical model. Next, in Section 4.2, we derive and solve rate equations
that describe the evolution of the number of bonds across damage in the network, making use of the
typical swap times found in Section 4.1. We can then predict the mechanical response of the material
as a function of healing time using the theory of linear viscoelasticity; we then validate this model with
simulations. This will allow us to compare the healing time of a vitrimer network made of combs with
the star polymer based one considered in [1], testing the first part of our hypothesis. Finally, we attempt
in simulations to measure the time it takes for a comb polymer vitrimer network to lose its rigidity, which
would allow us to test the second part of our hypothesis. We conclude in Chapter 5 by summarising our
findings and conclusions and highlighting some interesting avenues for future research.

1Derived from ‘vitrum’, Latin for glass.
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Chapter 2

Theory

In this chapter, we will review some polymer theory, to serve as a basis for our mathematical model
in Chapter 4. We will start with an introduction to bond swaps, the defining feature of vitrimers. We
will also go over some tools from the theory of sequential and nonparameteric statistics with which we
may investigate and characterise the distribution of the swap times observed in simulations. Thereafter,
we will review the basics of linear viscoelasticity, since we will be using concepts from that theory to
quantify the mechanical stability of our materials. Finally, we will briefly discuss the morphologies of
the building blocks of our vitrimer networks.

2.1 Bond swaps
Vitrimers are defined by the interesting behaviour of their crosslinks. For a concrete vitrimeric example,
Leibler et al. in their seminal paper [17] considered carboxy (–C(––O)OH) and hydroxy (–OH) moieties,
which bond to form an ester group (–C(––O)O–), with a water molecule as by-product. It turns out
that such an ester bond is exchangeable; the corresponding bond swap, – called transesterification [17] –
is depicted in Figure 2.1.

Figure 2.1: Transesterification, an example of a bond swap mechanism, depicted schematically. The
target ester bond and the swapping alkoxy moieties are circled in blue and red, respectively. Adapted from
[17].

Other chemistries give rise to vitrimers too; we will hence consider generic vitrimer networks with two
distinct types of reactive moieties, which we will call (type-)A1 and (type-)A2. By construction, A1 can
form a bond with A2, but A1 cannot form a bond with A1 and A2 cannot form a bond with A2.

In Figure 2.2, we have schematically depicted one of our generic bond swaps, with the red spheres
representing A1 moieties and the blue spheres representing A2 moieties.1 We start (a) with a bond
between moiety 1 and 2, of type-A2 and -A1, respectively. Subsequently (b), moiety 3, of type-A1, joins
in, forming an intermediate state. This is called the association of the moieties [17]. Finally (c), moiety
2 separates from the complex, leaving behind a new bond.

There is a notable asymmetry in the transesterification reaction: the associating group must be an
hydroxy moiety [27, Eq. (2)]. While our vitrimer networks are more general, they will also be asymmetric
in this sense: the associating moiety must be of type-A1.

1We keep this convention throughout the figures in this report.
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Figure 2.2: Illustration of a generic bond swap, where the blue sphere represents a A2 moiety and the
red spheres represent A1 moieties. Generated using OVITO [26].

The exchangeable bonds are very strong: the chance that a crosslink will break due to thermal fluctuations
is assumed to be negligible [28, p. 3]. In particular, this means that the number of crosslinks cannot
decrease. If a given vitrimer network contains NA1

, NA2
∈ N moieties of type-A1 and -A2, the maximum

number of bonds would be min{NA1
, NA2

}. It follows that we must have more moieties of type-A1 than
type-A2 for the network to be dynamic. We therefore assume that NA1

> NA2
.

2.1.1 Empirical Lifetime Distributions
Since vitrimers derive their unique properties from the bond swap mechanism, it makes sense to ask how
this mechanism behaves statistically. A particularly interesting quantity to investigate for this is the swap
time Tsw, which we will discuss in greater detail in Section 4.1. Since the swap times are determined
by the complex interactions between polymers involving innumerable particles on a microscopic scale, a
deterministic model for the swap times is not feasible, and consequently it makes sense to treat them as
being random. Then, swap times are typical examples of lifetime data, since they are nonnegative, real
random numbers [29, Def. 1.1], and for such data it is natural to look at the so-called survival function
[29, Eq. (1.2)]

S(t) := P(T ≥ t), (2.1.1)

which may be interpreted as the probability that some random timer T ‘survives’ until at least time
t.

It is possible to estimate the survival function using observations. In practice, however, data is often
imperfect due to censoring, so that a naive estimator would be biased. Unfortunately, this will also be
the case for the swap times that we will measure in Section 4.1. We will consequently now introduce the
necessary machinery to deal with censoring. Censoring comes in many shapes and sizes:

• Left censoring: when we know only an upper bound for the value of a random variable;

• Right censoring: when we know only a lower bound for the value of a random variable;

• Interval censoring: when we know a lower and upper bound for the value, but not the precise value,
of a random variable.

For us, only right and interval censoring are relevant. Interval censoring is rather difficult to deal with
analytically2; we can mitigate these issues by choosing our intervals sufficiently small, and simply ignoring
the interval censoring. In other words:

Assumption 2.1.1. Observations are either right censored or exact, but not left or interval
censored.

2Methods exist (e.g. [30]), but they scale poorly with the number of observations. We will be dealing with much more
data (roughly 105 points) than in typical medical research, making these methods impractical.
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Observations (censored or not) will be denoted Ti, with corresponding censoring indicator3

∆i := 1− 1{Ti censored}. (2.1.2)

With any censored observation we do not know what the ‘true’ value is; some information has been lost.
However, we can effectively maximise the amount of gathered information by including the censoring
indicator ∆i in our estimator, since we know that the ‘true’ value is at least equal to the observed
value if that observation was right censored. This is precisely the idea behind the Kaplan-Meier (KM)
estimator.

Definition 2.1.2 (Kaplan-Meier Estimator). Let {Ti}Nobs

i=1 be independent and identically
distributed (i.i.d.) observed lifetime data, with corresponding censoring indicators {∆i}Nobs

i=1 , where
the censoring times are independent of the true lifetimes. Then, define {T ′

i}ni=1 to be the unique
ordered observed times, i.e. {Ti}Nobs

i=1 = {T ′
i}ni=1 and T ′

1 < . . . < T ′
n. Then, define {di}ni=1 and

{ri}ni=1 by

di =

Nobs∑
k=1

∆k1{Tk = T ′
i}, and ri =

Nobs∑
k=1

1{Tk ≥ T ′
i},

respectively. The Kaplan-Meier (KM) estimate of the survival function of the distribution underlying
the lifetime data is given by [31, Eq. (2b)]

ŜKM(t) =
∏

i:T ′
i≤t

(
1− di

ri

)
. (2.1.3)

E.L. Kaplan developed the KM estimator particularly for use in medical studies [31], but it may be
applied to any lifetime data. Note that di is equal to the total number of uncensored observations at
time T ′

i , while ri is the number of timers that last until at least T ′
i . Consequently, if there is a censored

observation at T ′
n, ŜKM(t) > 0 for all t ≥ 0. We can also construct approximate confidence intervals for

the KM estimator, since we can estimate its variance:

Definition 2.1.3 (Greenwood’s Formula). Let ŜKM be a KM estimate, and {di}ni=1 and {ri}ni=1

as in Definition 2.1.2. Then, we may estimate the variance of ŜKM using Greenwood’s formula [31,
Eq. (6d)] [32, Eq. (4)]:

V̂(ŜKM(t)) := ŜKM(t)2
∑

i:T ′
i≤t

di
ri(ri − di)

. (2.1.4)

Using Greenwood’s formula, we can estimate the standard deviation on the KM estimate at each time.
If this standard deviation is small compared to the value of the survival function, we can be confident
about our KM estimate4; if the standard deviation is large, we need to be careful inferring distributional
properties from the empirical survival curves.

In theory, all information about a lifetime distribution can be extracted from the corresponding survival
function. It is, however, quite difficult to read local information about the distribution (e.g. where the
mode is) from a survival curve. Such local information could be helpful when trying to identify relevant
physical processes that contribute to the lifetime. For this reason, we will also look at the Probability
Density Function (PDF), defined as the continuous function f satisfying [33, Def. 4.1(1)]

P(T ≤ t) =:

ˆ t

0

f(u)du, t ≥ 0. (2.1.5)

It can easily be seen that5

f(t) = − d

dt
S(t).

3Note the confusing convention that the censoring indicator is unity when the observation is uncensored.
4assuming the bias is small too, which should be the case if the amount of censoring is limited.
5e.g. by the Fundamental Theorem of Calculus [34, Theorem 6.4.4].
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The PDF f(t) gives a measure of the likelihood of a lifetime being around t, in the sense that

P(T ∈ [t−∆t, t+∆t]) ≈ f(t) · 2∆t.

Consequently, a peak in the PDF will indicate that we will commonly observe a lifetime value around
that peak; if a PDF displays multiple peaks, this suggests that there are multiple distinct processes –
each with their own typical time scales – which together determine the lifetime.

Unfortunately, we cannot estimate the true PDF by taking the derivative of the empirical survival
function since it is discontinuous at every observation but constant in between observations. We can
deal with this issue by mollifying the empirical survival function. To that end, let K be a kernel, so that´∞
−∞ K(t)dt = 1, and observe that

f(t)
(I)≈ (K ∗ f)(t) :=

ˆ ∞

−∞
K(t− x) f(x)dx︸ ︷︷ ︸

−dS(x)

(II)≈ −
ˆ ∞

−∞
K(t− x)dŜKM(x)

= −
ˆ ∞

−∞
K(t− x)

dŜKM

dx
(x)dx =

ˆ ∞

−∞
K(t− x)

n∑
i=1

δ(x− T ′
i )∆ŜKM(x)dx

=

n∑
i=1

ˆ ∞

−∞
K(t− x)δ(x− T ′

i )∆ŜKM(x)dx =

n∑
i=1

K(t− T ′
i )∆ŜKM(T ′

i ).

(2.1.6)

Using this idea, we define the following density estimator, which has frequently been used to investigate
the distribution of censored lifetime data (e.g. [35, 36, 37]):

Definition 2.1.4 (Kaplan-Meier Kernel Density Estimator). Let {T ′
i}ni=1 be the unique ordered

observed times of some lifetime data and ŜKM the corresponding KM estimate of the survival
function. Next, define

∆ŜKM(t) = lim
x↑t

ŜKM(x)− lim
x↓t

ŜKM(t),

which gives the size of the jump discontinuities of ŜKM. Finally, let K be a kernel, so that´∞
−∞ K(t)dt. Then, we define the Kernel Density Estimator (KDE) by

f̂KM(t) :=

n∑
i=1

K(t− T ′
i )∆ŜKM(T ′

i ), (2.1.7)

for t ∈ R.

Notably, if we are dealing with uncensored data so that we may replace the ŜKM estimate of the survival
function by the standard naive estimate, Equation (2.1.7) reduces to the commonly used Rosenblatt-
Parzen KDE [38, 39]

f̂(t) :=

Nobs∑
i=1

K(t− Ti).

Definition 2.1.4 allows for quite general kernels K, but the choice of the kernel is in fact rather important.
It is evident from Equation (2.1.7) that the estimate f̂KM inherits its smoothness from K. Hence, if there
is good reason to believe that the true density is not analytic, it makes sense not to use an analytic kernel.
Additionally, convolving with the kernel will broaden the support, as

supp(K ∗ f) ⊂ suppK + supp f,

so that K ∗ f will typically not be the PDF of lifetime data. It might therefore be advantageous to use a
kernel with small, or even strictly positive [37], support. We will, however, use Gaussian kernels which
are analytic and have unbounded support6, because this will allow us to make use of the convolution
tools implemented in the popular package SciPy [40].

Finally, we need to take care when choosing how wide the kernel is, as the two approximations in
Equation (2.1.6) will vary differently with the width of the kernel. In essence, we can decrease the

6In practice we will convolve with discretised Gaussian kernels that have compact support and certainly are not analytic.
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approximation error (I) – manifesting itself as bias – by using a narrow kernel, since then K ∗ f will
obviously be closer to f , while we can decrease the estimation error (II) – corresponding to the variance
– by using a broad kernel, since then the estimator will be less sensitive to small perturbations in the
observations. There will consequently be some optimum kernel width [41]. It is possible to select a good
kernel width in practice using Leave-One-Out Cross-Validation (LOOCV) to minimise an estimate of
the total error [41]; we will forego this and choose a kernel width by eye.

The number of surviving timers decreases over time, which can make the PDF somewhat difficult to
interpret. Consider for instance a situation in which timers run out at a uniform rate 1 until some time
t∗, i.e. in every interval in [0, t∗] of fixed width the number of events is roughly constant, after which
the timers run out at twice that rate. Evidently, there is some interesting additional process going on
beyond t∗. However, if t∗ is large, there will be few timers left anyway, so that the density of events will
be small. It therefore makes sense to also look at the instantaneous rate at which timers run out, i.e.

λ(t) := lim
h↓0

1

h
P(T ≤ t+ h |T ≥ t) = lim

h↓0
P(t ≤ T ≤ t+ h)

hP(T ≥ t)
=

f(t)

S(t)
. (2.1.8)

λ is called the hazard function [29, Def. 1.5]. Figure 2.3 shows the (a) survival functions, (b) PDFs, and
(c) hazard functions for our example for a small and a large t∗. For the small t∗, we can easily spot the
change in the PDF; for the large t∗ this is not so easy. Another nice property of the hazard function
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Figure 2.3: Example showing how the hazard function can make it easier to identify when the processes
underlying the life of a timer change at long timescales.
is that it immediately reveals whether the lifetime is exponentially distributed, since the exponential
distribution has constant hazard: if T ∼Exp(τ), then

λ(t) =
1
τ exp

(
− t

τ

)
exp
(
− t

τ

) =
1

τ
. (2.1.9)

The exponential distribution is the prototypical lifetime distribution, with numerous desirable attributes.
For instance, the exponential distribution is the only continuous lifetime distribution that is memoryless,
see Appendix A.3, and the counting process with exponential interarrival times is the well-known Poisson
process [42, Thm. 6.8(10)]. It is therefore quite valuable to be able to assess to what degree it is
reasonable to model the lifetimes with an exponential distribution. We can also easily tell from the
hazard function whether the lifetime data has a Weibull distribution, which is a common extension of
the exponential distribution. The Weibull(α, β) distribution is characterised by the survival function [33,
Def. 4.4(9)]

S(t) := exp

(
−
(
t

α

)β
)
, so that f(t) = − d

dt
S(t) =

β

α

(
t

α

)β−1

exp

(
−
(
t

α

)β
)
.

Note that Weibull(τ, 1) = Exp(τ), so that the Weibull distribution indeed generalises the exponential
distribution.

λ(t) =

β
α

(
t
α

)β−1
exp
(
−
(
t
α

)β)
exp
(
−
(
t
α

)β) =
β

α

(
t

α

)β−1

. (2.1.10)
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As we would expect, we recover Equation (2.1.9)7 when β = 1.

We could compute an estimate of the hazard function by dividing an estimate for the PDF by an estimate
for the survival function. Such an estimate will perform poorly, however, since the KM estimate is not
smooth. To get a better estimator, we first rewrite the hazard function in terms of the survival function
only:

Lemma 2.1.5 (Hazard as a Function of Survival). Let T be a lifetime random variable with survival
function S and hazard function λ. Then for all t ∈ suppS it holds that

λ(t) = − d

dt
log(S(t)). (2.1.11)

Proof. Let f be the PDF of T , so that by Equation (2.1.8) on suppS it holds that

λ(t) =
f(t)

S(t)
= −S′(t)

S(t)
.

By applying the chain rule, we can find that

− d

dt
log(S(t)) = − 1

S(t)

d

dt
S(t) = −S′(t)

S(t)
,

proving the result.

Note that f(t) = − d
dtS(t): this suggests that we can reuse the idea for the KDE, simply replacing S(t)

by log(S(t)).

Definition 2.1.6 (Kaplan-Meier Kernel Hazard Estimator). Let {T ′
i}ni=1 be the unique ordered

observed times of some lifetime data and ŜKM the corresponding KM estimate of the survival
function. Next, define

∆ log(ŜKM(t)) = lim
x↑t

log(ŜKM(x))− lim
x↓t

log(ŜKM(t)),

which gives the size of the jump discontinuities of log ŜKM. Finally, let K be a kernel, so that´∞
−∞ K(t)dt. Then, we define the Kernel Hazard Estimator (KHE) by

λ̂KM(t) :=

n∑
i=1

K(t− T ′
i )∆ log(ŜKM(T ′

i )), (2.1.12)

for t ∈ R.

Typically, a slightly different KHE is used, which makes use of the so-called Nelson-Aalen (NA) estimator
of the cumulative hazard function (e.g. [35]), which can be derived from the KM with a first order Taylor
series approximation.8 For the sake of simplicity, we only make use of the KM estimator in this project;
fortunately, the two estimators are asymptotically equivalent [43].9 Notably, the previously discussed
issues of the KDE carry over to the KHE; we will again use Gaussian kernels with hand-picked width
for the KHE.

In short, local information about distributions can be very valuable, and we have ways to estimate it
from data. Unfortunately, local information is intrinsically much more difficult to estimate than global
information. Consider, for instance, that the value of ŜKM at any point is depends on all data points,
while the value of f̂KM or λ̂KM at a point is determined by only those data points that are sufficiently
close. The hazard function is particularly difficult to estimate in the right tail, because the logarithm

7now with mean α.
8− log(ŜKM(t)) = −

∑
i:T ′

i≤t log
(
1− di

ri

)
≈

∑
i:T ′

i≤t
di
ri

=: Λ̂NA(t) [43, Eq. (2)].
9The NA estimator is more commonly used as it is less sensitive to noise in the tail of the distribution [43]; since we

have a large amount of data, this is not problematic in our case.
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explodes as its argument tends to zero; λ̂KM will therefore be sensitive to small variations on long
timescales. We therefore must take care when drawing conclusions from f̂KM and λ̂KM.

While having (an estimate of) the entire survival, density, and hazard function is nice, it would be
convenient to be able to boil it down to a single number such as the mean. It turns out to be possible
to compute the mean from the survival function: if we do this with our KM estimate, we can get an
estimate for the expected swap time that takes censoring into account.

Theorem 2.1.7 (Mean of Lifetime Data). Let T ≥ 0 continuous with density f and survival function
S, with E[T ] < ∞. Then,

E[T ] =
ˆ ∞

0

S(t)dt. (2.1.13)

Proof. Note that dS
dt (t) = −f(t) for t ≥ 0. We can then use integration by parts to see that
ˆ ∞

0

S(t)dt = [tS(t)]∞0 −
ˆ ∞

0

tdS(t) = [tS(t)]∞0 +

ˆ ∞

0

tf(t)dt︸ ︷︷ ︸
=E[T ]

.

Clearly tS(t)|t=0 = 0 · 1 = 0. Now, consider that for all t ≥ 0 it holds that

0 ≤ tS(t) = t

ˆ ∞

t

f(u)du =

ˆ ∞

t

tf(u)du ≤
ˆ ∞

t

uf(u)du.

Note that
´∞
0

uf(u)du = E[T ] < ∞; since this is a converging improper Riemann integral, we know by
Lemma A.1.1 that the tail tends to zero. It follows, by applying the Squeeze Theorem [44, Thm. 2.2.6],
that

lim
t→∞

tS(t) = 0,

as
0 ≤ tS(t) ≤

ˆ ∞

t

uf(u)du, and lim
t→∞

0 = 0 = lim
t→∞

ˆ ∞

t

uf(u)du.

We may then conclude that
ˆ ∞

0

S(t)dt = [tS(t)]∞0 + E[T ] = 0− 0 + E[T ] = E[T ],

as required.

Hence, it seemingly makes sense to estimate the mean of the lifetime distribution using the KM estimate
of the survival function.

Definition 2.1.8 (Kaplan-Meier Estimator of Mean). Let ŜKM be the KM estimate of the survival
function of some lifetime data. Then, we define the KM estimate of the mean as

µ̂KM :=

ˆ ∞

0

ŜKM(t)dt. (2.1.14)

We must be careful, however: as noted before, the KM estimate fails to go to zero when the last
observation is censored, so that the area under the empirical survival curve will be infinite. To remedy
this, we can truncate the survival function, so that we may compare the expected lifetime up to some
given time [45].

Definition 2.1.9 (Truncated Kaplan-Meier Estimator and Restricted Mean Lifetime). Let ŜKM be
the KM estimate of the survival function of some lifetime data. Furthermore, let t∗ > 0. Then, we
define the (t∗-) truncated KM estimate of the survival function as

ŜKM,truncated(t; t
∗) =

{
ŜKM(t), t ≤ t∗,

0, t > t∗,
(2.1.15)

11
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and we define the (t∗-) restricted mean lifetime as [45]

µ̂KM,restricted(t
∗) =

ˆ ∞

0

ŜKM,truncated(t, t
∗)dt =

ˆ t∗

0

ŜKM(t)dt. (2.1.16)

Since ŜKM,truncated(; , t
∗) is a bounded function with bounded support supp ŜKM,truncated(·; t∗) ⊂ [0, t∗],

it holds that µ̂KM,restricted(t
∗) ≤ t∗ < ∞ for any finite t∗. Moreover,

lim
t∗→∞

µ̂KM,restricted(t
∗) = µ̂KM.

It is important that the point of truncation t∗ is chosen a priori [46]; in our case it makes sense to set t∗
to be the length of a simulation. Fortunately, since we gather our data from simulations,10 we can gather
data over such long timescales that truncating ŜKM is not problematic. For legibility, we will suppress
the fact that we truncate the KM estimator in our notation from now on.

We have implemented all of the statistical tools in this subsection in analysers.py in Hoomd Polymer
Tools.

2.2 Linear Viscoelasticity
We can assess the quality of self-healing over time by investigating how the rigidity of the vitrimer
material improves as it is allowed to heal for longer. To quantify the rigidity, we look to the theory of
linear viscoelasticity. By measuring how the stress in the material relaxes after a step strain, it is i.a.
possible to assess to what degree the material is solid or liquid [47, Fig. 7.22]. To apply a shear strain γ
to a block of material with height h, we must deform it with a perpendicular displacement ∆x = γh, so
that [47, Eq. (7.97)]

γ :=
h

∆x
. (2.2.1)

Upon applying this strain, the stress σ in the material will jump up, after which it will start to decay
over time. By dividing the stress by the strain, we obtain the so-called stress relaxation [47, Eq. (7.98)]
or shear modulus [48, Eq. (6.9)]:

G(t) :=
σ(t)

γ
. (2.2.2)

This is a sensible thing to do, since for sufficiently small strains the stress will depend linearly on the
strain, and so G will not depend on γ [47, p. 282]. As the material relaxes, G will decay towards the
equilibrium shear modulus [47, Eq. (7.105)]:

G∞ = lim
t→∞

G(t). (2.2.3)

Using a so-called Maxwell model, which represents a viscoelastic material as a damper and spring – for
the viscous and elastic response, respectively – in series, we can moreover predict that this decay will
be exponential for viscoelastic liquids [47, Eq. (7.111)]. The equilibrium shear modulus is a measure
for the rigidity of the material, and we can use it to classify our material: if G∞ = 0, we say it is a
(viscoelastic) liquid, while we say it is a (viscoelastic) solid if G∞ > 0. Of course, there are many other
relevant mechanical properties beside rigidity, such as solvent resistance [49]; we have limited our scope
to just the equilibrium shear modulus since this will allow us to compare the self-healing of a comb
polymer vitrimer network with that of the star polymer network investigated by Ciarella and Ellenbroek
[1].

2.2.1 Affine Network Model
The elastic properties of a polymer material will depend in part on what its network looks like on a
microscopic scale. Figure 2.4 schematically depicts such a network. The black dots represent nodes in
the network. Each node has a number of dangling arms with reactive groups at their ends, represented
by red and blue dots. Red and blue dots can bond together, forming so-called ‘crosslinks’.

10in contrast with data gathered from clinical trials, for which the tools discussed in this subsection were developed.
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Figure 2.4: Schematic depiction of a polymer network. Black dots represent nodes in the network, blue
and red dots are reactive particles that can form crosslinks.

Many simple models have been developed to describe how polymer networks will behave when stressed.
We will apply the affine network model, which means that we assume that deformations of the
macroscopic material are achieved by equal and uniform relative deformations on the microscopic scale.
In other words, if we apply an affine transformation11 to the bulk, the position of each node undergoes
the same affine transformation. In the affine network model it is possible to predict the shear modulus
[47, Sec. 7.2]: the shear modulus will then be given by [47, Eq. (7.31)]

G = νkBT ∝ ν, (2.2.4)

where ν is the number density of the chains connecting nodes in the polymer network, kB is the Boltzmann
constant, and T is the temperature. Since we can choose the building blocks of the vitrimer network, we
can control ν. We will be able to use Equation (2.2.4) to relate the number of bonds that have formed
across damage in our network to the shear modulus, and thereby to the healing quality.
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Figure 2.5: Eight particle chain length density
for uniformly distributed links compared to
corresponding ideal chain length density.

There are some additional implicit assumptions in
the affine network model. For one, the forces in
the network are derived by differentiating the free
energy [47, Eq. (7.28)]. The entropy term herein
is valid for an ideal chain that is sufficiently long
that its end-to-end length may be well-modelled as
being normally distributed [50, Eq. (2.92)]. The
chains in the network we will be working with are
typically only about eight particles long, however,
so this assumption may not be reasonable. In
Appendix A.2 we therefore computed the exact
density of the chain length assuming that the length
of each bond is uniformly distributed Figure 2.5;
even for such small chains the normal density
does not look to bad. Finally, the network is
assumed to be entanglement free, whereas we will be
investigating comb polymer vitrimer networks with
long backbones precisely because these backbones
can become entangled.

11i.e. x 7→ Ax+ b for some matrix A and vector b.
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2.2.2 Stress Relaxation in Vitrimers
Stress in a material is relaxed through myriad processes, each occurring at different timescales. For
instance, in crosslinked networks stress can be relaxed by chain rearrangements [23, p. 115]. Vitrimers
have an additional way to relax stress: bond exchanges. Figure 2.6 [24, Fig. 2] shows a typical example of
how the shear modulus of a vitrimer network evolves over time after a step strain has been applied. Here,
β∆E is the energy associated with a swap: when β∆E > 0, exchanges are inhibited; in our simulations
it always holds that β∆E = 0. When swaps are possible, we see two relaxations [24, Fig. 2]:

Figure 2.6: Typical example of evolution of stress relaxation modulus after a step strain has been applied.
For β∆E > 0, exchanges are inhibited. Adapted from [24, Fig. 2].

1. For t ∈ (102 ps, 104 ps), we see the decay towards the elastic plateau, which we would also observe
in a permanently crosslinked network;

2. For t > 106 ps, we see the decay towards 0 due to the bond exchanges.

Hence, vitrimer networks are typically solid on short timescales and liquid on very long timescales [51,
p. 17]. Notably, for small times the modulus does not depend on the exchange energy; for these timescales
we can reasonably assume the network is fixed when probing the shear modulus.

The dashed curve in Figure 2.6 corresponds to Defect-Allowing Mixture (DAM) samples, while the solid
curves correspond to Defect-Free Mixture (DFM) samples; their building blocks are shown in Figure 2.7.
The mixtures have been designed such that the total fraction of A1 moieties is the same in both types
of mixtures, namely roughly 63%. It is evident from Figure 2.6 that DAM samples become liquid on
the order of ten times faster than DFM samples [24]. We are interested in designing a material that in

Figure 2.7: Comparison of the building blocks of DAM and DFM. Generated with OVITO [26].
addition to being capable of self-healing is also mechanically strong: the material should not become
liquid (on practical timescales). In 2019, Ciarella and Ellenbroek observed that the relaxation of their
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vitrimers based on star polymers takes roughly three orders of magnitudes longer than the self-healing [1];
ideally, we would make this gap larger. Despite this, in this report we have exclusively considered comb
polymer equivalents of DAM samples, in order to remain consistent with Ciarella and Ellenbroek.

2.3 Polymer Morphology
It is almost self-evident that the morphology of the building blocks of the vitrimer network will be of
importance to the mechanical properties of the network. In particular, we believe that comb polymers
can improve the separation between the healing time and timescales on which the network behaves like
a liquid compared to the previously studied [1] star polymers, since the backbones of the combs can
become entangled and may thereby delay stress relaxation.

We are able to encode the shapes of these combs and stars using just a few parameters. Figure 2.8 shows
a star polymer with eight arms, each consisting of four beads, and a comb polymer with sixteen arms,
each consisting of four beads, separated by three beads on the backbone. From now on, we will denote
the number of arms by Narms, the number of beads in each arm by narm, and (for combs) the number of
beads separating each arm by nsep; collectively, we will call them ‘shape parameters’.

Figure 2.8: Star polymer with Narms = 8 and narm = 4 and comb polymer with Narms = 16, narm = 4,
and nsep = 3. Generated with OVITO [26].

We will work with stars with Narms = 8 and narm = 4, so that we may compare our results to those of
Ciarella and Ellenbroek [1], as well as combs with a various shape parameters.
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Chapter 3

Simulation Protocol

In this chapter, we will discuss how we can model vitrimer networks using simulations. There are, in
essence, two classes of approaches, with some overlap, to simulate molecular systems: Monte Carlo (MC)
and Molecular Dynamics (MD). MC methods sample (indirectly) from the distribution of the system.
Note that this implicitly assumes the system of interest to be in equilibrium, for else the distribution
function would be ill-defined1. This allows one to calculate estimates for ensemble averaged properties
by employing the law of large numbers.

Conversely, MD methods integrate Newton’s equations of motion. As a consequence, MD can be used
to investigate out-of-equilibrium systems2. In equilibrium, assuming the system is moreover ergodic,
time averages and ensemble averages coincide, so that we may estimate ensemble averaged properties by
measuring them over time and taking the sample average. At the intersection of these two techniques
are hybrid MD-MC methods, which use MD to model the motion of particles in the system and use
MC to model events such as bond swaps (e.g. [49, 54]). It would be beneficial if we could use a fully
MD approach, however, for instance due to the various discontinuities introduced by the MC events [55].
Fortunately, such an approach turns out to be possible; the exact method will depend on the desired
‘resolution’ of the simulation.

We will now briefly go over the basics of simulation ‘resolution’. On the one hand there are atomistic
approaches, in which all the atoms, or at least all sufficiently small groups, are modelled. Furthermore,
experimental data is often used to derive the interactions between these groups, and simulation outcomes
may be compared with physical experimental results [56]. On the other hand we have coarse-grained
approaches, which, as the name would suggest, are much more coarse: we model larger groups, say on
the order of Kuhn segments [56], and the potentials are typically quite simple. These differences mean
that an atomistic approach will allow one to investigate properties of polymer networks quantitatively,
at the cost of being significantly more computationally expensive, whereas a coarse-grained approach
will be cheaper but are unable to resolve the details of specific molecules. Fortunately, however, it is
often still possible to examine generic properties using coarse-grained simulations both qualitatively and
quantitatively [23, Sec. 3.1].

There have been atomistic MD investigations into vitrimers (e.g. [57, 58, 59]). We will, however, make
use of coarse-grained MD simulations, since we are interested in the behaviour of generic vitrimers and
would like to observe events that occur on vastly different timescales, such as the relaxation to the elastic
plateau and to liquid of vitrimers (see Section 2.2).3

Sciortino developed a way to model vitrimers with exclusively MD [55]. This approach is very appealing,
and has been used frequently since its conception in 2017 (e.g. [28, 60, 11]). We will therefore make use
of it too.

1There are MC methods to model out-of-equilibrium processes, but typical MC methods – such as the Metropolis
algorithm [52] – do not model the actual dynamics of the system; there is therefore no a priori reason to believe that
the approach to stationarity of such a MC method will be similar to the approach of equilibrium of an out-of-equilibrium
system.

2with the appropriate choice of thermostat [53, p. 156].
3For reference, [58] simulated roughly three swap times, whereas we expect transition of the vitrimer network to liquid

to certainly take on the order of one hundred swap times, but hopefully longer, see Section 4.3.
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We will start in Section 3.1 by discussing the interaction potentials used in our MD simulations and how
we choose their parameters. In Subsection 3.1.1, we will discuss how MD integrates Newton’s equations
to model molecular systems. We will then explain how we can generate a reasonably realistic initial
state for our simulations and how we evolve these systems in Section 3.2. Finally, in Section 3.3, we will
investigate some issues we encountered while performing our experiments with HOOMD-blue.

3.1 Potentials and Parameters
For our coarse-grained MD simulations, we use HOOMD-blue4, a free particle simulation tool with
a Python interface, developed by the Glotzer group at the University of Michigan [61]. Ciarella and
Ellenbroek have previously investigated the self-healing of star polymer based vitrimers [1]; since we
want to be able to compare some results, we will use the same potentials and parameters as in [1].

HOOMD-blue defines its own, self-consistent set of units, with base units [energy], [length], and [mass].
From these base unit we can derive the dimensions of all the relevant quantities, such as time, velocity,
and force, denoted [time], [velocity], and [force], respectively. Notably, we do not set the temperature
directly; instead, we fix kBT = 1 [energy]. Because we are interested in the autonomous self-healing of
vitrimer materials, which by definition should not require an external trigger to activate, we keep this
temperature constant.

As noted before, MD works by integrating Newton’s equations. The interactions between particles,
such as covalent bonds or van der Waals forces, are modelled using potentials.
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Figure 3.1: Plot of harmonic potential
Vharm(r; k, r0) (Equation (3.1.1)) against r with
k = 103 [energy] · [length]−2 and r0 = 1 [length]. The
dashed green line represents the thermal fluctuations
on the order of kBT = 1 [energy]; the red area
will typically be explored due to such thermal
fluctuations.

We can model covalent bonds between
particles with a harmonic potential:

Vharm(rij) =
1

2
k(rij − r0)

2, (3.1.1)

where k > 0 is the spring constant and r0 > 0
is the rest length. A natural choice for the rest
length is r0 := 1 [length].

It is sensible to model the covalent bonds with
a harmonic potential: the true potential will
be analytic, and in equilibrium we expect to be
in a local minimum of the potential; analytic
functions are well-approximated by parabolas
around their minima5. More complex models
for covalent bonds exist, such as Finitely
Extensible Nonlinear Elastic (FENE) bonds,
which limits the degree to which the bonds can
be stretched [23, Ch. 3].

Since covalent bonds tend to be strong, the
variance in the distance between bonded
particles due to thermal fluctuations should
be quite limited. Defining the displacement
from the rest length as ∆r = r − r0, we can
find that the typical displacement caused by
thermal fluctuations will satisfy

1

2
k∆r2 ∼ kBT, so that ∆r ∼

√
kBT

k
.

Choosing k = 103 [energy] · [length]−2, we find ∆r ∼ 3× 10−2 [length].
4github: https://github.com/glotzerlab/hoomd-blue.
5Around the minimum, the approximation error will scale with the third power of the displacement.
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Particles that are not covalently bonded still interact: at short range they strongly repel each other, such
that they do not overlap, while at longer ranges they attract via van der Waals forces [23, Ch. 3]. These
interactions are frequently modelled using a Lennard-Jones (LJ) potential:

VLJ(rij) = 4εLJ

((
σLJ

rij

)12

−
(
σLJ

rij

)6
)
, (3.1.2)

where rij is the distance between the pair of particles i and j, εWCA > 0 is the depth of the LJ potential
well, and σWCA > 0 is the LJ length. We choose σWCA := r0 := 1 [length], in accordance with [1].
Figure 3.2 shows the LJ potential and the corresponding force in red.

The attractive O(−r−6) term in Equation (3.1.2) can be theoretically justified: it has been derived
from quantum mechanical considerations that the van der Waals potential energy scales in this way [62].
Conversely, the repulsive O(r−12) term was chosen mostly for computational convenience, as it can be
computed from the O(−r−6) term by squaring. In practice, however, using a LJ potential in this form
would be intractable, since it would have to be computed for every pair of particles.
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Figure 3.2: Plot of (truncated) LJ potential (Equations (3.1.2) and (3.1.3)) with εWCA = 1 [energy],
σWCA = 1 [length], and rcut = 2

1
6σWCA, and the corresponding force.

Consequently, the LJ potential is often truncated. In particular, the LJ has frequently been truncated
at its minimum [23, Ch. 3]; it is straightforward to confirm that the LJ potential is minimised for
rcut = rmin := 2

1
6σWCA ≈ 1.12 [length]. We can then write the resulting potential as:

VLJ(rij) =

4εLJ

((
σLJ

rij

)12

−
(
σLJ

rij

)6
)
, 0 < rij ≤ rcut,

0, rij > rcut;

(3.1.3)

this potential and the corresponding force are shown in blue in Figure 3.2. Clearly, this potential is
purely repulsive and scales with distance r according to O(r−12); it is physically quite different from
the untruncated LJ potential. It is additionally discontinuous r = rcut, and so we will shift it to make
it continuous. The resulting potential is called the Weeks-Chandler-Andersen (WCA) potential [23, 1],
and is given by

VWCA(rij) =

4εWCA

((
σWCA

rij

)12

−
(
σWCA

rij

)6

+
1

4

)
, 0 < rij ≤ rcut,

0, rij > rcut.

(3.1.4)

Note that since only the force (see Figure 3.2 b)), i.e. the additive inverse of the derivative of the potential,
is relevant for the dynamics, the LJ potential truncated at rmin and WCA potential should lead to similar
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dynamics.6

Since the WCA potential is purely repulsive and scales with distance r according to O(r−12), it will be
very sharp for any εWCA > 0, ensuring that particles cannot overlap. In our simulations, we will set
εWCA = 1 [energy].

With these potentials alone we cannot yet model vitrimers: we still need to include the associative bond
swaps. This can be done using a hybrid MD-MC approach, in which most of the dynamics is modelled
using MD while the bond swapping is determined by MC sampling (e.g. [54, 49]). Another method,
which does not require any MC, would be to keep track of the distance between reactive groups and
add in bonds when the groups are sufficiently close (e.g. [59]). However, in 2017, Sciortino showed that
vitrimer bonds can also be modelled using three-body potentials made by combining a pair of two-body
potentials, which should be more computationally efficient [55].

For HOOMD-blue, Ciarella and Ellenbroek have implemented the three-body potential Reversible
Crosslinks (RevCross) specifically for this purpose [28]. It should be noted that this implementation is
symmetric in the sense that the associating particle can be of either type-A1 or -A2, in contrast with
the asymmetric nature of physical bond swap mechanisms such as transesterification in which only
moieties of one of the two types can associate (see Section 2.1). This is not a problem in practice if
NA1/NA2 is sufficiently large. RevCross makes use of the so-called Generalised Lennard-Jones (GLJ)
potential7:

VGLJ(rij ; ε, σ, n, rcut) =

4ε

((
σ

rij

)2n

−
(

σ

rij

)n
)
, 0 < rij ≤ rcut,

0, rij > rcut.

(3.1.5)

Notably, for the GLJ potential, the minimum is at r = rmin := 2
1
nσ. A pair of A1 and A2 moieties,

labelled i and j, respectively, will have a potential

VRC, pair(rij) = VGLJ(rij)|n=10 =

4ε

((
σ

rij

)20

−
(

σ

rij

)10
)
, 0 < rij ≤ rcut,

0, rij > rcut.

(3.1.6)

We choose n = 10 and ε = 102 [energy], so that the bond between a pair behaves like a covalent bond [28].
While the RevCross potential is relatively efficient, care must be taken when choosing a cutoff distance so
that it remains physically realistic yet computationally tractable; we choose rcut,RC := 2σ = 2 [length],
since we observed in tests that at this cutoff distance the maximum number of bonds is consistently
achieved and maintained.

To construct the three-body interaction potential, we first define the following two-body potential [28]:

V2b(rij) =

1, rij ≤ 2
1
10σ,

−VRC, pair(rij ; ε, σ, rcut)

ε
, rij > 2

1
10σ,

(3.1.7)

or, equivalently8

V2b(rij) =


1, 0 < rij ≤ 2

1
10σ,

−4

((
σ

rij

)20

−
(

σ

rij

)10
)
, 2

1
10σ < rij ≤ rcut,

0, rij > rcut.

The three-body potential is then finally constructed as [28]

VRC, triplet(rij , rik) = λεV2b(rij)V2b(rik). (3.1.8)

The λ in Equation (3.1.8) sets the energy barrier for a swap event: we will choose λ = 1 such that there
is no energy barrier [55, 28].

6Around the cutoff, we can imagine that the LJ potential will appear attractive if derivatives are calculated using finite
differences

7A GLJ potential is used for convenience, as it is well-known and implemented in MD tools; unlike the LJ potential, it
does not model repulsive and attractive forces between general particles.

8Note that the ε drops out.
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3.1.1 Integrators and Thermostats
We have now alluded a few times to the fact that MD models molecular dynamics by integrating Newton’s
equations. In this subsection, we will explain what we mean by this, and discuss the integrators that we
will use for our simulations.

We will start by looking at modelling isolated systems, which are described by a microcanonical Number,
Volume, Energy (NVE ) ensemble. We call it an NVE ensemble because the number of particles N ,
system volume V , and total system energy E are fixed [63, Sec. 13.9]. We denote the position, velocity,
and acceleration of particle i with ri, vi, and ai, respectively, and the vectors of all particle positions,
velocities, and accelerations r, v, and a, so that

r = (r1, . . . , rN ),v = (v1, . . . ,vN ), and a = (a1, . . . ,aN ).

If we assume that all the forces acting on the particles in the system are conservative, then there exists
a potential energy function U(r) such that [64, Eq. (4.13)]

F = −∇U(r). (3.1.9)

In our case, we choose U to be the sum of the potentials discussed above. Then Newton’s second law
tells us that [64, Eq. (1.19), Eq. (1.17)]9

F = p = ma. (3.1.10)

Consequently, we can find that the dynamics of the system are governed by the following set of differential
equations:

r̈ = − 1

m
∇U(r), (3.1.11)

furnished with appropriate initial conditions r(0) = r0 and v(0) = v0. Hence, in theory, we could solve
System (3.1.11) to find how our system evolves over time; in practice, however, doing this analytically
is not feasible. Instead, MD solves System (3.1.11) numerically. This solving is called integrating, and
the solver is therefore called the integrator. In HOOMD-blue, NVE ensembles are integrated with
the Velocity-Verlet algorithm10. The Velocity-Verlet algorithm solves for both the positions r and the
velocities v, by iterating the system [65]

rn+1 = rn +∆tvn +
∆t2

2m
Fn,

vn+1 = vn +
∆t

2m
(Fn+1 + Fn),

(3.1.12)

where ck = c(k∆t) is the kth iteration of quantity c. Note that we also must compute
Fn = − 1

m ∇U(rn) at each timestep. The Velocity-Verlet algorithm is a so-called symplectic integrator
[66]; by definition, symplectic integrators conserve phase-space volume, which in essence means that the
trajectories found by numerical integration stay close to the true trajectories even on long timescales
[67]. As a consequence, symplectic integrators typically, and Velocity-Verlet in particular [66],
approximately conserve the energy of the system [68]. Conversely, other, nonsymplectic integration
schemes such as Forward Euler and Runge-Kutta will not conserve the energy, and can hence give very
unphysical trajectories. In Figure 3.3, we show a nice example by Hairer, Lubich and Wanner of this
difference between symplectic and nonsymplectic integrators. The Kepler problem describes e.g. the
motion of a planet around the sun. We expect a closed, elliptic trajectory, which we indeed see in the
exact solution. While the numerical solution generated using a symplectic integrator does not fall
exactly on an ellipse, it stays close to the true trajectory. On the other hand, the nonsymplectic
integrator yields a trajectory that moves increasingly far away from the true solution [69,
Fig. 1.5].

It therefore makes a lot of sense to use a symplectic integrator such as Velocity-Verlet when modelling
an NVE system. However, it is not realistic to assume that the systems we want to model, i.e. polymeric
materials, are isolated. It would be more sensible to model the system as being closed, so that the
number of particles N , the volume V , and the temperature T are fixed [63, Sec. 13.9]. In other words,

9In our simulations, the mass of all particles will be fixed and equal, so that ṗ = mv̇ = F.
10See documentation. Our particles are isotropic, so we do not have any rotational degrees of freedom to integrate.
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Figure 3.3: Solutions to the Kepler problem. Dashed lines represent the exact solution, black dots the
numerical solution found using a symplectic integrator, and white boxes the numerical solution found
using a nonsymplectic integrator. Taken from [69, Fig. 1.5].

we should model our system with a canonical Number, Volume, Temperature (NVT ) ensemble. To
control the temperature of the system, a so-called thermostat is employed. In a physical system, the
thermostat corresponds to an external bath that is sufficiently large to keep its temperature constant
when exchanging heat with the system of interest. In numerical simulation, there are various approaches
to thermostat the system [70]: HOOMD-blue uses a Nosé-Hoover thermostat11. In short, the Nosé-
Hoover thermostat works by extending the Lagrangian of the system with by adding an additional
virtual particle to the system [71, Subsec. 6.1.2].

For [1] – with which we would like to compare results – Langevin dynamics was used, which effectively
models the particles as floating in a solvent, so that they experience random forces [70]. This was done
to suppress fluctuations on short timescales, making it possible to extract linear response properties
from the decay of correlations in equilibrium via the fluctuation-dissipation theorem. Notably, Langevin
dynamics does not simulate an NVT ensemble. Since we are modelling polymer melts with no solvent,
we find simulating a NVT ensemble with the Nosé-Hoover thermostat more appealing; to circumvent
the issues with short timescale fluctuations, we will measure the stress relaxation directly by applying a
strain.

3.2 Network Generation and Evolution
In this section, we will delve a little deeper into how we generate and evolve polymer networks. We will
start by tabulating the most important simulation parameters in Subsection 3.2.1. Then, in
Subsection 3.2.2, we will discuss how to create – in a computationally efficient way – an initial system
configuration that is somewhat realistic.

3.2.1 Simulation Parameters
We would like to be able to compare our results to those of Ciarella and Ellenbroek [1]; we therefore
will choose our parameters as similar to those in [1] as possible. These parameter choices have been
summarised in Table 3.1. Most of these parameters have been explained in Section 3.1; we will now go
over the new ones.

Table 3.1: Simulation parameters to evolve the vitrimer networks.

parameter value parameter value parameter value
kBT 1 [energy] σWCA 1 [length] εRC 102 [energy]
φ 0.29 εWCA 1 [energy] rcut,RC 2 [length]

r0 1 [length] rcut,WCA 2
1
6 [length] dt 10−3 [time]

k 103 [energy] · [length]−2
σRC 1 [length] τNV T 10−1 [time]

• φ fixes the volume fraction of the network, where the volume of each particle is taken to be

4π

3

(σWCA

2

)3
=

π

6
[length]

3
,

11See documentation. This is true in HOOMD-blue 3; in HOOMD-blue 4 the user may choose a different thermostat,
such as the Bussi-Donadio-Parrinello thermostat, see documentation.
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i.e. , we say the particles are spherical with radius σWCA/2 = σRC/2. It is important that the
mixture is sufficiently dense that free dangling arms can find bonds, but not so high that the
system becomes glassy, at which stage the motion of arms would be inhibited by surrounding
particles [1].

• The integrators use a timestep dt = 10−3 [time]. This seems to be sufficiently small that the
evolution of each of our configurations is stable.

• τNV T is the coupling constant of the Nosé-Hoover NVT integrator. In simulations using the Nosé-
Hoover thermostat, the temperature will fluctuate; the coupling constant sets the timescale on
which the temperature will tend to the target value that we impose. We have τNV T = 100dt as
this is the value recommended by HOOMD-blue12.

We use a variety of mixtures of polymer building blocks to make our vitrimer networks. All of our
samples are Defect-Allowing Mixture (DAM) (see Section 2.2), as in [1]. This means that we have two
species of building block, with either roughly 1/8 of the reactive particles will be type-A1 and about 7/8
will be type-A2, or the other way around. For each mixture we choose the fraction of each species such
that in total 60% of the reactive particles are A1 moieties, like in [1].

3.2.2 Network Generation
We have created Hoomd Polymer Tools13, a collection of Python scripts which reduce the amount of
boilerplate code needed to initialise and run simulations. Hoomd Polymer Tools also includes many
functions for analysing e.g. connectedness of a polymer network or the swap time distributions. Here,
we will sketch the procedures we use to simulate vitrimers.

The first step of any of our MD experiments will be to generate an initial vitrimer network. This
generated network should have a realistic configuration when we start measuring its properties; since we
want to simulate a polymer melt, we expect roughly ideal, i.e. random walk-like, chain conformations [72,
Sec. 4.5.2]. However, if we naively generate polymers with random walks, we will end up with overlapping
beads, where the distance between beads will be smaller than σ. As can be seen in Figure 3.2, LJ-like
potentials are very steep for r < σ, and consequently overlapping beads experience extremely large forces,
which can lead to numerical instabilities.

It is possible to start with a very sparse configuration of stretched polymers, such that we may be certain
that there are no overlapping beads. We must subsequently compress to the desired volume fraction.
Then, however, we must simulate a long time to get realistic, entangled chain conformations. This is
problematic since the entire premise of our hypothesis is that comb polymers would be suitable building
blocks for self-healing vitrimer networks because the entanglement makes them more rigid.

Therefore, we will generate the initial conformations using random walks. With a self-avoiding random
walk, the overlapping can be avoided, though we cannot fully control the length of polymers since they
might get terminated prematurely [23, Sec. 3.4]. We instead initialise with a non-self-avoiding random
walk, leading to a network that likely contains overlapping beads. We subsequently relax the system; this
can be done in HOOMD-blue by integrating with DisplacementCapped14, which adapts a Velocity-Verlet
NVE ensemble integrator by limiting the maximum displacement in each timestep. This relaxation is
very quick: we need only 104 integration steps of size 10−3 [time].

With this process we generate a dense, (possibly) entangled polymer network. However, it is important
to additionally introduce the RevCross potential, so that bonds can be formed. For this, we use a Nosé-
Hoover NVT integrator12, which we will also use for the network evolution. Ideally, at the end of the
equilibration, the maximum number of bonds NA2 will have formed. With the polymer building blocks
we considered, this seems to occur within 9× 104 steps of size 10−3 [time].

HOOMD-blue works with a periodic simulation box. It is important to make this box sufficiently large
to minimise periodic effects; if the box were too small, one of the building blocks could form a reversible

12See documentation.
13Hoomd Polymer Tools on GitLab.
14See documentation.
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bond with itself, for instance. To model vitrimer networks with damage, we include LJ-walls along two
opposing boundaries of the simulation box during the entire generation process, which will prevent the
formation of RevCross bonds across the corresponding boundaries. To investigate the self-healing, we
stack two damaged samples and remove the LJ-walls between them. The resulting system will then
have two healing interfaces: one at the top and bottom of the simulation cell and one in the centre.
Conversely, if we are interested in equilibrium properties of the material, we use a single undamaged
sample, which was generated without any LJ-walls.

3.2.3 Network Evolution
After the network generation, we would like to evolve the system in a physically realistic way. In a
real life situation we could reasonably control the number of particles N and the temperature T . In
chemistry it is typically assumed that also the pressure P is held constant citation. Since we are dealing
with (viscoelastic) solids, however, it makes sense to instead fix the volume V citation. Hence, we will
assume that the states of our system may be described by the canonical NVT ensemble, and we will also
use a Nosé-Hoover NVT integrator during the network evolution process.

3.3 RevCross GPU Issues
Unfortunately, we encountered issues when simulating vitrimer networks using the RevCross potential
on GPUs: we observed very different dynamics than in comparable simulations run on CPUs. We
additionally believe that the behaviour observed on GPUs is extremely nonphysical. For instance, on
the GPU we found that the typical swap times do not depend on the concentration of vitrimer particles,
contradicting the results found using CPUs (discussed in 4.1.3). The GPU swap times also appear to be
exponentially distributed, whereas the CPU swap times are quite clearly not.

The issue occurs in both NVE and NVT simulations. Moreover, we observe different trajectories each
time a simulation is run, even though the methods should be deterministic and hence should yield the
same results given the same input.

We did not have enough time to find the root cause of the issue, but we have some ideas. The fact
that the swap times are exponentially distributed, implies that swaps occur at a constant rate. This is
consistent with the behaviour we would get if at each timestep every particle has a small chance of being
switched with another particle.

Consequently, we do not trust physical results generated on GPUs making use of RevCross. However,
as we will discuss in Subsection 4.3, we do not think it is feasible to measure the relaxation of a comb
vitrimer network to liquid on CPUs, since the GPUs in the TU/e hpc cluster can execute simulations
on the order of one hundred times faster than the CPUs therein. We therefore think that it would be
valuable to fix the implementation of RevCross on the GPU.
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Chapter 4

Mathematical Model

In this chapter, we will develop and test mathematical models in order to help answer how we can design
a polymer material that is capable of healing while being mechanically strong. Many simple models
have been developed to describe polymers. The Rouse model, for instance, describes the behaviour of
unentangled chains in polymer melts [73, p. 340], while the reptation model was created to model the
dynamics of entangled chains [74, Sec. 8.3]. In 2013, Stukalin et al. came up with a simple model for the
self-healing of dissociative Covalent Adaptive Networks (CANs) [22]. However, we have not found any
model for the self-healing of vitrimers in the literature.

We will first study the self-healing properties of comb and star polymer vitrimer networks. As noted in
Subsection 2.2.1, the affine network model predicts that the number of vitrimer bonds across the healing
interface could be a good proxy for the mechanical strength of the healed wound. For this reason, we
will develop a healing model which describes how the number of interfacial bonds evolves over time in
Section 4.2. Since the swap rate will clearly play a role in how fast interfacial bonds can be formed, we
will first dedicate Section 4.1 to the typical swap time; for this, we can reuse some ideas from [22]. Not
all swaps are created equal: we will therefore look at doing and undoing swaps in Subsection 4.1.1. We
will round off Section 4.1 by performing and analysing simulations to empirically determine swap time
distributions in Subsection 4.1.3.

In Subsection 4.2.1, we will put our newfound knowledge of bond swaps to use in a model that predicts
the number of bonds across the healing interface. We will thereafter link the evolution of the number of
interfacial bonds to the equilibrium shear modulus using the affine network model in Subsection 4.2.2.
These healing models will then be tested using simulations in Subsection 4.2.3.

We will conclude by turning our attention to relaxation of stress in an undamaged comb vitrimer, to
test our hypothesis that vitrimers made of combs have better long term mechanical properties than
ones made of stars due to the entanglement of the stymieing the bond swap-mediated stress relaxation.
Ciarella, Sciortino and Ellenbroek have measured the relaxation of a star polymer vitrimer network [24],
providing a benchmark timescale on which the network should not behave like a liquid.

4.1 Swap Time
We commence our investigation of swap times by considering a single minority moiety, which we assume
starts off in a bonded state. Consequently, as bonds may not simply break due to thermal fluctuations
(see Section 2.1), at any positive time it will either be bonded to a single majority moiety, or will be
associating with two majority moieties. If there are sufficiently many unbonded majority moieties, so
NA1 ≫ NA2 , and the free dangling arms are sufficiently long, then at some stage such a free dangling
arm will encounter the bond containing our target minority moiety, and so there will be two majority
moieties associating with the target. After some time, which we call the association time Tass, one of the
majority partners will leave the association. We call the time between two subsequent associations the
interassociation time Tint. This process of alternating association and interassociation periods goes on
indefinitely: we therefore define the sets of random variables {Tass,i}∞i=1 and {Tint,i}∞i=1, where Tass,i and
Tint,i are the ith association and interassociation time of the target minority moiety, respectively.
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Suppose now that the partner just before and just after an association is the same. Then, effectively no
swap has occurred: we call this a failed swap. If instead a different majority moiety has bonded to the
target, we say that a proper swap has occurred; we are interested in the distribution of the time between
proper swaps.

Definition 4.1.1 (Swap Time). Let {Tass,i}∞i=1 and {Tint,i}∞i=1 be the association and
interassociation times, respectively, of a minority moiety, and let N be the (random) number of
associations until the first successful swap has occurred. Then, the swap time is defined as

Tsw :=

N∑
i=1

(Tass,i + Tint,i). (4.1.1)

Correspondingly, the typical swap time is defined as

τsw := E[Tsw], (4.1.2)

which is well-defined, though not necessarily finite, since Tsw is positive.

Definition 4.1.1 gives only the first swap time, but it is obvious that it may be adapted to find later swap
times too.

Specifying the entire distribution of Tsw would be rather tricky. Indeed, previous simulation studies
have concluded from the decay of the bond autocorrelation function, which corresponds to the fraction
of bonds that have survived to a certain time,1 have concluded that the swap time is not exponentially
distributed: Wu et al., who employed a hybrid MD-MC approach, found a stretched exponential fit [54],
which corresponds to a Weibull lifetime distribution; Rovigatti et al., who modelled the vitrimer bonds
with a three-body potential similar to RevCross, found conversely that the swap times are not described
by a Weibull distribution [75].

We will consequently focus on describing just the mean τsw in terms of a limited number of parameters
that we can directly link to the physical shape of the building blocks of our vitrimer networks, which will
involve evaluating the expectation in Equation (4.1.2); we will rely on simulations for the entire swap
time distributions. To proceed, we will need to think about how the random variables that make up Tsw

depend on each other. For this, the following assumption is very convenient:

Assumption 4.1.2. N , {Tass,i}∞i=1, and {Tint,i}∞i=1 are independent.

To see if this is a reasonable assumption, we define a further random variable:

Pi := partner after ith association.

Without loss of generality we may say that P0 = 0. A proper swap occurs when the partner changes
after an association. Clearly then it must hold that

N = min{n ∈ N |Pi ̸= 0 }.

A logical consequence hereof is that 1{PN ̸= 0} = 1 and that PN−1 = 0. We therefore now investigate
how the (conditional) indicator 1{Pi ̸= 0} |Pi−1 = 0 for i ∈ N might depend on {Tass,i}∞i=1 and
{Tint,i}∞i=1.

At the end of an association event, one of the majority moiety particles is randomly selected to remain
as partner. It is conceivable that the selection depends on the length of the association. For instance, if
the association is short, that might mean that there was not enough time to allow the system to locally
reconfigure to make it favourable for the new particle to remain, so that it is more likely to be ejected.
However, such a short association could also be caused by the new particle entering in such a way that

1In theory, this corresponds to the survival function. However, it is calculated in a different way than the KM estimate.
Since only the first swap of each bond contributes to the function, we believe it is less efficient than the KM estimate,
which can use every swap of every bond observed during the simulation.
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the old partner leaves quickly. Since we cannot determine any a priori preference for either possibilities,
it makes sense to simply assume that 1{Pi ̸= 0} |Pi−1 = 0 is independent of Tass,i.

The selection of the new partner occurs fully during the association; there is therefore no reason to believe
that the length of the interassociation will influence or be influenced by which partner is chosen. In other
words, it seems sensible to assume that 1{Pi ̸= 0} |Pi−1 = 0 is independent of Tint,i. There is similarly
no evidence to suggest that previous and future interassociations and associations will be correlated to
the current selection process, justifying the assumption that 1{Pi ̸= 0} |Pi−1 = 0 is independent of Tass,j

and Tint,j for j ̸= i.

Since N is fully determined {1{Pi ̸= 0} |Pi−1 = 0}∞i=1 it then seems reasonable to model N as being
independent of {Tass,i}∞i=1 and {Tint,i}∞i=1. We furthermore have no reason to believe that length of
associations will influence the time between associations or vice versa. In conclusion, we believe that
Assumption 4.1.2 is reasonable.

We will next investigate the distributions of N , {Tass,i}∞i=1, and {Tint,i}∞i=1 so that we may compute
Equation (4.1.2). Since 1{Pi ̸= 0} |Pi−1 = 0 is a binary random variable, there exists for each i ∈ N
some pi ∈ (0, 1) such that

1{Pi ̸= 0} |Pi−1 = 0∼Bern(pi),

where pi does not depend on Tass,i or Tint,i. We once again assume that our system evolves in a temporally
homogeneous way, so that there exists a p ∈ (0, 1)2 such that pi = p for i ∈ N. In other words:

Assumption 4.1.3. There is a p ∈ (0, 1) such that

1{Pi ̸= 0} |Pi−1 = 0∼Bern(p).

Assumption 4.1.3 allows us to specify the distribution of N :

Lemma 4.1.4 (Distribution of N). N ∼Geom(p), and consequently E[N ] = 1
p .

Proof. We have defined N as the number of associations until a new partner bonds. We therefore can
interpret N as counting a number of trials (associations) until the first success (new bond partner).
Assumption 4.1.3 now tells us that each trial independently either succeeds with some probability p > 0
or fails with probability 1− p. It then follows that N ∼Geom(p) [76, Def. 3.5(5)]. We may subsequently
compute that

ν := E[N ] :=

∞∑
k=1

kp(1− p)k−1 = −p

∞∑
k=1

∂(1− p)k

∂p

(I)
= −p

∂

∂p

∞∑
k=1

(1− p)k

= −p
∂

∂p

∞∑
k=0

(1− p)k
(II)
= −p

∂

∂p

1

1− (1− p)
= −p · − 1

p2
=

1

p
,

where we could exchange summation and differentiation in (I) since this is a power series [77, Thm. 8.5.15],
and in (II) we identified the geometric series [78, Thm. 7.1.14].

With the following assumption, we can greatly reduce the number of relevant random variables:

Assumption 4.1.5. There are random variables Tass and Tint such that Tass,i ∼Tass and Tint,i ∼Tint

for all i ∈ N. In other words, each Tass,i and each Tint,i is identically distributed.

As a consequence of Assumption 4.1.5, we can see that

E[Tass,i] = E[Tass] =: τass, and E[Tint,i] = E[Tint] =: τint.

2It would make sense, especially after a long association, that each majority moiety is equally likely to get ejected, so
that p = 1

2
; for the moment, however, we leave p as an unknown parameter in our model.
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In essence, Assumption 4.1.5 states that the times related to the swap process do not change as the
system evolves.3

The above results now allow us to describe the typical swap time in terms of just three parameters.

Theorem 4.1.6 (Typical Swap Time). The typical swap time defined in Definition 4.1.1 is given
by

τsw := E[Tsw] =
τass + τint

p
. (4.1.3)

Proof. Starting with the definition of the typical swap time from Equation (4.1.2), we can apply the law
of total expectation [33, Thm. 4.6(5)] to find that

τsw := E

[
N∑
i=1

(Tass,i + Tint,i)

]
= E

[
E

[
N∑
i=1

(Tass,i + Tint,i)

∣∣∣∣∣N
]]

.

Then, for any n ∈ N we can use the linearity of the expectation to see that

E

[
N∑
i=1

(Tass,i + Tint,i)

∣∣∣∣∣N = n

]
= E

[
n∑

i=1

(Tass,i + Tint,i)

∣∣∣∣∣N = n

]
=

n∑
i=1

E[(Tass,i + Tint,i) |N = n].

It then follows from Assumption 4.1.5 that

n∑
i=1

E[Tass,i + Tint,i |N = n] =

n∑
i=1

E[Tass,i + Tint,i] = n(τass + τint).

We can then apply Lemma 4.1.4 to find that

τsw = E[N(E[Tass,i] + E[Tint,i])] = E[N ](τass + τint) =
τass + τint

p
.

We may therefore conclude that the typical swap time is given by

τsw =
τass + τint

p
,

as required.

Therefore, we are left with three parameters on which the typical swap time τsw depends: the proper
swap probability p, the typical association time τass, and the typical time between associations τint. We
have no reason to believe that the association depends in any way on the shapes of the building blocks
of the vitrimers. Hence, p and τass will essentially be fit parameters in our model. Conversely, it would
make sense if the time between associations τint depended on the length and concentration of the free
dangling arms; we will therefore investigate τint in greater in the next subsection.

4.1.1 Interassociation Time
Consider again a minority moiety which has just undergone a swap. There are now exactly two
possibilities:

1. Before a new majority moiety has a chance to bond with the minority moiety, the departing
majority moiety returns and rebinds. In this case we say an undoing swap has occurred;

2. A new majority moiety binds with the minority moiety before the departing majority moiety can
rebind to it. In this case we say a doing swap has occurred.

3If the system were in equilibrium, this would certainly be true, since then the system is homogeneous in time. Note,
however, that self-healing is clearly not an equilibrium process, and certain aspects of the system – such as the number of
vitrimer bonds at the damage – will likely vary over time. It therefore stands to reason that the distributions of Tass,i and
Tint,i do in fact vary with i.
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Unfortunately, the start and finish of an association are ill-defined, which means that doing and undoing
swaps are also ill-defined. We will therefore define swaps in our model in the same way as we do in our
simulations: we will say that an association is occurring when there are two majority moieties within
the cutoff distance rcut,RC = 2σ = 2 [length] to the minority moiety. We furthermore say that a swap
has occurred when the partner changes.4 Finally, from this swap definition we can easily identify when
undoing and doing occur. Note that a swap is always either doing or undoing, so that for t ≥ 0

E[Tint] = E[Tint | doing]P(doing) + E[Tint |undoing]P(undoing) (4.1.4)

by the Law of Total Expectation [33, Thm. 4.6(5)]. We will therefore now investigate doing and undoing
swaps separately.

We will first examine undoing swaps. Intuitively, if the particle is going to reassociate, it will do so while
it is still close to the bond. In that case, it will explore a neighbourhood with radius roughly σ, so that
this neighbourhood will have a volume V such that V

1
3 ∼ σ. Notably, this volume will not depend on the

shape of the building blocks of the network. It would be convenient to be able to use an existing polymer
model to determine how long it takes for the departing moiety to explore its neighbourhood.

Assumption 4.1.7. The arms of the polymer building blocks of the network are sufficiently long
enough to be well-modelled by the Rouse model.

Using the Rouse model, we can find that the time it takes for the majority moiety to explore this
neighbourhood will be on the order of τ0 – the Kuhn monomer relaxation time – since the volume to be
explored is roughly the size of a single monomer [73, Eq. (8.44)], so that

E[Tint |undoing] = αundoingτ0, (4.1.5)

for some proportionality constant αundoing > 0. While the time it takes for the majority moiety to explore
its neighbourhood should not depend on the shape parameters, the probability that it encounters its old
bond certainly will: if it encounters a different bond first, or if its previous bond is already associating
with a different majority moiety, the undoing swap will be prevented. Note that an undoing swap is
only possible if the previous swap was a doing swap. Hence, using the Law of Total Probability [79,
Lem. 1.4(4)] we can find that

P(undoing) = P(undoing | previous doing)P(previous doing)︸ ︷︷ ︸
=P(doing)

+ P(undoing | previous undoing)︸ ︷︷ ︸
=0

P(previous undoing)

= P(undoing | previous doing)P(doing).

Rewriting this, noting that P(doing) = 1− P(undoing), we see that

P(undoing) =
P(undoing | previous doing)

1 + P(undoing | previous doing)
. (4.1.6)

Determining P(undoing | previous doing) – the probability that a different moiety is able to associate
with the bond before the departing moiety return – turns out to be rather difficult; with the following
assumption we will fortunately be able to neglect this contribution entirely.

Assumption 4.1.8. The time it takes for a departing moiety to explore its neighbourhood is much
smaller than the time it typically takes for another majority moiety to reach the vitrimer bond.

Under Assumption 4.1.8, undoing swaps are only averted by the departing moiety finding a different
bond. Clearly, as the number of vitrimer bonds in the neighbourhood grows, the chance that the
majority moiety will first find a different bond will increase. We can make this idea more concrete with
the following definitions:

4While this seems like the obvious definition, with this definition we fail to distinguish between failed swaps where an
association has occurred but the same partner remains bonded, and cases where the association was actually never really
over.
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Definition 4.1.9 (Vitrimer Concentrations). We define ρtotal as the concentration, i.e. the total
number over the total volume, of particles, ρvit as the concentration of vitrimer particles, ρbonds
as the concentration of vitrimer bonds, and ρreactive as the concentration of free reactive vitrimer
moieties.

We can hence see that the neighbourhood explored by the majority moiety contains roughly 1+V ·ρbonds
vitrimer bonds.5 Then, the majority moiety will rebind with its previous bond if it encounters that bond
first and that bond is not yet associating with a new majority moiety, so that the probability that the
majority moiety first encounters the bond it just left will be roughly (1 + V ρbonds)

−1. Hence, we can
conclude that

pundoing := P(undoing) =
P(undoing | previous doing)

1 + P(undoing | previous doing)

=
(1 + V ρbonds)

−1

1 + (1 + V ρbonds)−1
=

1

2 + V ρbonds
.

(4.1.7)

Since the neighbourhood we defined is rather vague, it makes sense to fit Equation (4.1.7) for V . Notably
pundoing ∈

[
0, 1

2

]
and

lim
ρbonds→0

pundoing =
1

2
, and lim

ρbonds→∞
pundoing = 0,

which are sensible limits: if the concentration of bonds is sufficiently low, a departing moiety will never
be able to find a different bond to associate with; if the concentration is sufficiently high, at the end of
its association the majority moiety will be so close to other vitrimer bonds that it will always associate
with another bond first. With the next lemma, we will be able to compute ρbonds in terms of the building
block shape parameters.

Lemma 4.1.10 (Vitrimer Concentrations). Let σ be the diameter, and φ be the volume fraction
of particles in a vitrimer network. Suppose that the vitrimer network is made of comb polymers
with Narms arms, each containing narm particles, separated by nsep particles on the backbone (see
Section 2.3). Then, the concentration of vitrimer particles is given by

ρvit =
6φ

πσ3

Narms

Narms(narm + nsep + 1)− nsep
. (4.1.8)

Conversely, if the vitrimer network is made of star polymers with Narms arms, each containing narm

particles. Then, the concentration of vitrimer particles is given by

ρvit =
6φ

πσ3

Narms

Narms(narm + 1)
. (4.1.9)

Proof. Consider the concentration of particles ρtotal is given by the ratio of the volume fraction φ over
the volume of a particle Vp. Since our particles are spherical and have diameter σ, we can hence find
that

ρtotal =
φ

Vp
= φ

(
4π

3

(σ
2

)3)−1

=
6φ

πσ3
.

In a comb vitrimer network, each building block has Narms vitrimer particles. There are Narms · narm

particles in the arms of each comb; the backbone consists of (Narms − 1) · nsep + 1 particles. Hence, the
fraction of vitrimer particles on each building block is given by

fvit =
Narms

Narms · narm + (Narms − 1) · (nsep + 1) + 1
=

Narms

Narms(narm + nsep + 1)− nsep
.

Therefore we have shown that indeed the concentration of vitrimer particles in a comb vitrimer network
is given by

ρvit = ρtotal · fvit =
6φ

πσ3

Narms

Narms(narm + nsep + 1)− nsep
.

5The constant 1 comes from the fact that the neighbourhood certainly contains the bond that the majority moiety just
departed from.

29



Self-Healing of Comb Polymer Vitrimers SMB | CASA

In a star vitrimer network, each building block has Narms vitrimer particles. There are Narms · narm + 1
particles in each star, so that the fraction of vitrimer particles on each building block is given by

fvit =
Narms

Narmsnarm + 1
,

as required.

As the backbone grows, the number of arms on each comb increases; in the limit we see that

lim
Narms→∞

ρvit = lim
Narms→∞

6φ

πσ3

Narms

Narms(narm + nsep + 1)− nsep

= lim
Narms→∞

6φ

πσ3

1

narm + nsep + 1− nsep

Narms

=
6φ

πσ3

1

narm + nsep + 1
.

Since we assume all the minority moieties are bonded, we know that there are exactly as many bonds as
there are minority moieties. If we now moreover assume that at any given time the number of associations
that are ongoing is negligible, we can conclude that the number of free reactive particles is the number
of majority moieties minus the number of minority moieties. Hence, the concentration of vitrimer bonds
is given by

ρbonds = ρA2
= ρvit · fA2

,

while the concentration of free reactive moieties is given by

ρreactive = ρA1
− ρA2

= ρvit · (fA1
− fA2

) = ρvit · (1− 2fA2
),

where fA1
and fA2

are the fraction of vitrimer particles that are type-A1 and -A2, respectively. By
construction, all the network we will consider have fA1

≈ 0.6 and fA2
≈ 0.4. In short, we have found

that
pundoing =

1

1 + V ρbonds
=

1

1 + V ρvitfA2

. (4.1.10)

To derive this result, we neglected the possibility that other majority moiety could associate with the bond
before the departing moiety can return. Hence, Equation (4.1.10) will overestimate the true probability
of an undoing swap. Moreover, the error won’t be uniform: as the concentration of free reactive particles
increases, the probability that another moiety will beat the departing particle to the bond will become
larger.

Next, we turn our attention to doing swaps. We can directly find the probability that the swap will be
undoing from Equation (4.1.10):

P(doing) = 1− P(undoing) = 1− 1

2 + V ρvitfA2

=
1 + V ρvitfA2

2 + V ρvitfA2

; (4.1.11)

the estimate in Equation (4.1.11) will evidently suffer the same issues as the estimate for pundoing. To
find the interassociation time for doing swaps, we look to the literature. In [22], Stukalin et al. also
investigate a self-healing polymer network, which consists of many free dangling arms fixed on one end
to a stationary background network. The ends of such free dangling arms can bind together through
dissociative, reversible bonds. One of their goals is to determine the typical renormalised bond lifetime
τrenm, which requires calculating how long it takes on average for a pair of reactive particles to encounter
each other and how many bond events it takes on average for one of the reactive particles to bond with
a different particle than before. This appears to be completely analogous to the interassociation time in
the case of a doing swap. In particular, we know that the distance of the target bond to a free majority
moiety is on the order of r := ρ

− 1
3

reactive. Such a majority moiety will move by subdiffusive Rouse motion,
since it is attached to a chain of particles [22]; the time it takes for a majority moiety to explore a ball
with radius r will then be roughly τ0

(
r
σ

)4 [22, Eq. (15)]. We can therefore find that

E[Tint | doing] = αdoingτ0

( r
σ

)4
= αdoingτ0(σ

3ρreactive)
− 4

3 , (4.1.12)

for some constant αdoing. Filling in our expressions for the conditional interassociations times,
Equations (4.1.12) and (4.1.5), and for the doing and undoing swap probability, Equations (4.1.11) and
(4.1.10), into Equation (4.1.4), we can hence conclude that

τint = E[Tint] =
τ0

2 + V ρbonds

(
αdoing(σ

3ρreactive)
− 4

3 (1 + V ρbonds) + αundoing

)
. (4.1.13)
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Figure 4.1: Model by Stukalin et al. for the healing of dissociative CANs. Taken from [22].

Recall that we assumed that the departing moiety explores its neighbourhood faster than a different
majority moiety can find the target bond (Assumption 4.1.8). Hence, it should hold that

E[Tint | doing] ≫ E[Tint | undoing], which is true when

σ−3 ≫ ρreactive.
(4.1.14)

This is a sensible requirement: there will be a significant chance that another majority moiety will beat
the departing moiety to the bond if its neighbourhood contains any other majority moiety. Furthermore,
it is straightforward to check whether this requirement is satisfied.

4.1.2 Model Fitting
We can now substitute our expression for the typical interassociation time, Equation (4.1.14), into
Equation (4.1.3) to see that

τsw =
τass
p

+
τ0

(2 + V ρbonds)p

(
αdoing(σ

3ρreactive)
− 4

3 (1 + V ρbonds) + αundoing

)
. (4.1.15)

Equation (4.1.15) contains six parameters for which we have not theoretically derived a value: the typical
association time τass, the proper swap probability p, the self-diffusion time τ06, the neighbourhood volume
V , and the proportionality constants αdoing and αundoing. The values moreover would not be directly
identifiable from a fit of the data using Equation (4.1.15). In this subsection, we will discuss how we can
extract the greatest possible amount of information from (doing and undoing) swap time data.

We start by noting that we have other equations which we can fit to derive (functions of) the parameters.
By fitting the fraction of swaps that are undoing with 4.1.10 we can determine V . Then, noting that

E[Tsw |doing] =
τass
p

+
1

p
E[Tint |doing] =

τass
p

+
αdoingτ0

p
(σ3ρreactive)

− 4
3 , (4.1.16)

we can see that we may recover
τass
p

and
αdoingτ0

p

by fitting the average doing swap times. We can similarly find that

E[Tsw | undoing] =
τass
p

+
1

p
E[Tint | undoing] =

τass
p

+
αundoingτ0

p
; (4.1.17)

by fitting the average undoing swap times, we can hence determine

τass
p

+
αundoingτ0

p
, and so also

αundoingτ0
p

.

The total swap time itself is perhaps not very interesting when studying self-healing: a material with a
higher swap rate may take longer to heal if a greater fraction of its swaps undo the previous swap. A

6It should be possible to measure the self-diffusion time τ0 in simulations, but we did not get around to this.
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more useful concept would be effective swap time, which we could define as the time it takes for moiety to
undergo one more doing than undoing swap. We may compute the mean effective swap time as follows:
we define the effectiveness e of a doing and an undoing swap to be +1 and −1 respectively, so that an
effective swap has occurred when the sum of effectiveness is 1. Using the Law of Total Expectation [33,
Thm. 4.6(5)], we can see that the expected effectiveness of a single swap is

E[e] = E[e | doing]P(doing) + E[e | undoing]P(undoing) = 1− pundoing − pundoing = 1− 2pundoing > 0.

It therefore takes on average 1
E[e] =

1
1−2pundoing

swaps to get an effective swap, of which 1−pundoing

1−2pundoing
will

be doing swaps and pundoing

1−2pundoing
will be undoing swaps.7 Therefore, we can define the expected effective

swap time as

E[τsw,eff ] =
1− pundoing
1− 2pundoing

E[Tsw | doing] +
pundoing

1− 2pundoing
E[Tsw | undoing]. (4.1.18)

4.1.3 Simulations
In this subsection we will discuss the MD simulations that we have executed and analysed to test our
swap time model. For this, we used Hoomd Polymer Tools, a collection of scripts which may be found
on GitLab:

1. The MD simulations were performed using generating_data/measure_swap_time.py;

2. From the resulting simulation trajectories we determined when swaps occurred using
processing_data/swap_finder.py;

3. The empirical swap time distributions were finally calculated using
analysing_data/empirical_swap_time_distributions.py.

Figure 4.2 shows the survival functions and densities of the swap time distributions. The legend gives
the shape (star or comb) of the building blocks of the vitrimer network, followed by the number of arms
Narms, the number of particles in each arm narm, and, for combs, the number of particles between each
arm on the backbone nsep. The configurations have been sorted according to their concentration of
vitrimer particles ρvit. The arrows likewise indicate the direction of increasing ρvit. The (estimates of)
the survival functions were computed using a KM estimator, while the densities were estimated using
KDEs8; for more details, see Subsection 2.1.1. We furthermore computed estimates of the error on the
empirical survival curves using Greenwood’s formula (Equation (2.1.4)). Since the estimated standard
deviations were all less than 10−3, it would not be possible to see the error bars; they have therefore
been omitted.

For the most part, the survival curves move up monotonically when decreasing the concentration of
reactive groups. This corresponds to the reduction of the short-time peaks and the fattening of the
tails of the density curves in Figure 4.2 b) as the concentration of reactive groups decreases. There is
one exception, however: vitrimer networks made of combs with Narms = 13, narm = 4, and nsep = 4
have significantly longer swap times than other vitrimer networks with a similar concentration of reactive
groups (e.g. Comb: 16, 5, 3). We were not able to find a satisfactory explanation for this anomaly.

As we noted in Subsection 4.1.1, we can classify swaps as being either undoing, if they undo the previous
swap, or otherwise as doing swaps. However, we have in essence a four parameter model to fit on just 33
data points. It would therefore be questionable to conclude the model is reliable based solely on it fitting
the data on which it was fitted well. To deal with this issue, we have added an additional configuration:
a vitrimer network made of comb polymers with Narms = 6, narm = 10, and nsep = 10. In this network,
the concentration of vitrimer particles is significantly lower than in all other networks we considered. We
can therefore investigate how well our model extrapolates beyond its observations.

Figure 4.3 a) shows how the fraction of undoing swaps pundoing depends on the concentration of vitrimer
particles ρvit. The solid data points were used to fit Equation (4.1.10); the unfilled data points correspond

7this derivation is somewhat shaky, because we are ignoring the dependence between the type of subsequent swaps.
8All KDEs shown in this subsection were computed with Gaussian kernels with standard deviation 1 [time] – chosen

by eye.
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Figure 4.2: KM estimates of survival curves and KDEs for swap times in vitrimer networks with various
building blocks, sorted by concentration of reactive groups.

to the network made of comb polymers with Narms = 6, narm = 10, and nsep = 10. It was found that
V = 93.3 [length]

3, so that V
1
3 = 4.5 [length] ∼ σ, as expected. The model fits the training data fairly

well, and extrapolates decently: on the ‘unseen’ data point it is off by about 7.8 × 10−3, or 2.5%. The
main outlier is the point with the highest concentration of vitrimer bonds, which corresponds to the
network made of star polymers with Narms = 8, narm = 4. This error might be caused by the geometry
of the star polymers: it would not be surprising if the way in which bonds are distributed around a
majority moiety is different in stars than in combs.

In Figure 4.3 b), the KM estimates of the mean swap times – computed according to Definition 2.1.8 – are
depicted using red circles; the green squares and blue triangles represent the KM estimates of the mean
swap times conditioned on the swaps being doing and undoing, respectively; the blue stars correspond
to the effective swap times, calculated using Equation (4.1.18). Once again, the models were fitted on
the filled data points. By fitting the doing swap times with Equation (4.1.16), we found that

τass
p

= 18.6 [time] and
αdoingτ0

p
= 8.6× 10−2 [time].

In our simulations we additionally found that the proper swap probability is p ≈ 1 for all configurations,
so that τass ∼ 101 [time], which does not appear unreasonable. The green curve passes nicely through
the data it was fitted on. It underestimates the doing swap time of the ‘unseen’ configuration by 8.6%,
which is not too bad.

On the other hand, the fit for the undoing swap times – computed using Equation (4.1.17) –
underestimates the ‘unseen’ data point by 37%. We can see that the model is oversimplified: the fitted
undoing swap times appear to decrease slightly with increasing concentration, whereas we expected
them to remain constant. This could again be related to Assumption 4.1.8. To see this, consider a
departing moiety that will return to the bond it left. The longer it takes to do so, the greater the
chance will be that a different majority moiety will associate with the bond first, preventing an undoing
swap. If ρreactive increases, more undoing swaps will be prevented, and long undoing swaps are
particularly likely to be prevented. Hence, if Assumption 4.1.8 does not hold, the mean undoing swap
time will decrease as we increase ρvit. From the fit, and the previously found value of τass

p , we could
derive that

αundoingτ0
p

= −2.9 [time].

This does not make sense, since αundoing, τ0, p ≥ 0. We found two explanations for this observation. One
possibility is that the association time τass and/or the proper swap probability p are not the same for
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Figure 4.3: The dependence of the mean swap times and the fraction of undoing swaps on the
concentration of reactive groups. Filled markers correspond to data points which were used for fitting,
while unfilled data points serve to investigate how well the models extrapolate.

doing and undoing swaps; we could not find any a priori reason why either of these would depend on
the type of swap. It is also possible that we overestimated τass

p when fitting Equation (4.1.16). Indeed,
we found in our simulations that 99.8% of the associations lasted less than 5× 10−2 [time].9 This would
notably imply that there must be an additional process that is independent of ρvit that happens for
doing swaps but not for undoing swaps; otherwise we would expect the doing and undoing swap time to
both tend to τass

p as ρvit → ∞, which does not appear to be the case.

We subsequently fitted the total swap times by combining our other fits according to the Law of Total
Expectation [33, Thm. 4.6(5)]:

τsw = E[Tsw] = E[Tsw |doing]P(doing) + E[Tsw | undoing]P(undoing)
= E[Tsw | doing](1− pundoing) + E[Tsw | undoing]pundoing.

On the fitted data, the model performs rather well, since the errors in the fits for pundoing and the undoing
swap times somewhat cancel each other out. On the other hand, since our fit for the undoing swap times
performs so poorly, the combined fit underestimates the swap time of the ‘unseen’ configuration by 15%.
We similarly fitted the effective swap times by combining our fits using Equation (4.1.18); the error in
the prediction was only 8.2%. This is again caused by the fact that the fit overestimates pundoing, while
underestimating the doing and undoing swap times.

Figure 4.3 shows only point estimates; to get a better idea of how the distributions of doing and undoing
swap times differ locally, we look at their KDEs in Figure 4.4. From Figure 4.4 a) we can see how the
increase in typical doing swap time with decreasing vitrimer particle concentration is effected through
the changing of the doing swap time PDFs: the mode shifts by about 1 [time] to the right, and, more
significantly, probability mass moves from the mode towards the tail.

We hypothesise that the shift in mode is caused by the fact that the bonds that are initially nearest
to the departing moiety will be further away when ρvit is low. As a simple check, we will consider
the configuration with the highest concentration of vitrimer particles, the network made of stars with
Narms = 8 and narm = 4, and the configuration with the lowest concentration of vitrimer particles,
the network made of combs with Narms = 16, narm = 7, and nsep = 3. The fraction of their vitrimer
concentrations is 4.64×10−1, which implies that the fraction of the distances of a departing moiety to its

9the time resolution of the analysed trajectories, corresponding to 50 simulation timesteps.
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Figure 4.4: KDEs for doing and undoing swap times in vitrimer networks with various building blocks,
sorted by concentration of reactive groups.

closest neighbouring vitrimer bonds will be 1.29. For the comb network, the mode occurs at 7.20 [time],
while for the star network the mode occurs at 5.85 [time]; the fraction of their modes is therefore 1.23.
Hence, our hypothesis seems reasonable. We can similarly attempt to explain why probability mass
moves to the tail as ρvit decreases. We can imagine that a departing moiety might ‘miss’ its nearest
neighbouring vitrimer bonds, so that it has to find a bond further away to associate with. The probability
that this will happen will clearly be greater if the concentration of bonds is lower, since then there will
be fewer close vitrimer bonds. Using the same comb and star polymer vitrimer networks as before, we
can see that any fixed neighbourhood will contain 2.16 times as many bonds in the network made of
stars than in the network made of combs, while the density at the mode is only 1.47 times as high.
Consequently, we have only found part of the explanation, and there must be some other process that
contributes significantly to shifting the probability mass from the mode to the tail.

We next look at the distributions of undoing swap times. In Subsection 4.1.1 we postulated that the
undoing swap times would not depend on the concentration of vitrimer particles, and in Figure 4.3 we
saw that this is mostly true for the mean of the distribution. Figure 4.4 b) shows that in fact the
entire distribution coincide, since the KDEs of the undoing swap times practically lie on top of each
other.

To finish off our study of swap times, we will now investigate whether the swap times may be described
by a well-known distribution, such as the Exponential distribution. Since for the most common lifetime
distributions the hazard function is very simple, it makes sense to look at the KHEs of the swap time
distributions. We must bear in mind, however, that estimating the hazard function, especially in the
tail, is hard.

We have plotted the KHEs of the doing and undoing swap times in Figure 4.5 a). The dashed curves are
the ‘fits’, given by the hazard functions of exponential random variables with the same means. Since the
fits are so poor, it is immediately evident that neither the doing nor the undoing swap times are well-
described by an exponential distribution. In particular, whereas the hazard function of an exponential
random variable is constant and so remains positive at t = 0, the true hazard functions go to zero at
small times. This corresponds physically to the fact that a majority moiety must travel some nonzero
distance at a finite10 speed.

It is therefore not surprising that the total swap times do not follow an exponential distribution either,
see Figure 4.5 b). The green dashed line, which we call the naive fit, is again the hazard function of

10even bounded.
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Figure 4.5: KHEs for total, doing, and undoing swap times, drawn as solid curves, with as fits the
hazard function of an exponential random variable with the corresponding mean, drawn as dashed curves.
Composite fit is the hazard function of the pundoing-weighted sum of the doing and undoing exponential
random variables.

an exponential random variable, this time with mean τsw: the observed hazard function is completely
different. The fact that the swap times are not exponentially distributed has been observed before, both
in pure MD simulations similar to our own [75] and in hybrid MD-MC simulations [54]. It is worth
noting that Rovigatti et al. investigated a binary system of vitrimer particles at a volume fraction of
0.38 [75], while Wu et al. studied a mixture of star and linear polymers at a volume fraction of 0.58
[54]: the nonexponential nature of the swap time distribution therefore seems to be a rather general
property of vitrimer networks, perhaps because a bond exchange involves two successive processes –
an association and an interassociation. The blue dashed curve, which we call the composite fit, was
computed using

λ(t) =
f(t)

S(t)
=

fdoing(t)(1− pundoing) + fundoing(t)pundoing
Sdoing(t)(1− pundoing) + Sundoing(t)pundoing

.

The composite fit performs slightly better than the naive fit, but still clearly misses important features of
the distribution. It is moreover clear from Figure 4.5 that Weibull distributions would not be appropriate
either: in that case we would expect the hazard functions to follow power laws – see Equation (2.1.10) –
which the true hazard functions do not. We can see this e.g. since the KHEs are not monotone functions
of t. We have been unable to find a family of distributions that can appropriately describe our swap
times.

The fact that we see that the swap times do not follow a Weibull distribution contradicts the findings of
Wu et al., who found that the bond autocorrelation function – which may be interpreted as the survival
function of the swap times – is well-fitted by a stretched exponential [54]. This contradiction could be
explained by the fact that we have simulated rather different vitrimer networks: our networks are made
of combs or stars with arms consisting of roughly four particles, while the networks investigated by Wu
et al. consist of linear chains that are five particles long and stars with four arms each containing a single
particle; it is evident that the dynamics of the reactive moieties, and therefore also the swap times, will
different in the two systems. It is also conceivable, however, that the discrepancy can be explained by the
differences in implementation of the bond exchanges. In particular, the association of reactive moieties
is determined with a MC algorithm in [54], while we model associations with a three-body potentials.
Finally, the systems we have simulated have a volume fraction of 0.29, while the volume fraction of
those considered by Wu et al. was twice as high at 0.58;11 our systems are far away from the glass

11Density ρ = 1.1/σ3 [54], volume per spherical particle 4π(σ/2)3/2, so volume fraction 1.1 · 4π/24 ≈ 0.58.
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transition, while their systems are near to the glass transition [54]. The super cooled nature of their
vitrimer networks could inhibit certain bond swap mechanisms which make the swap time distributions
more complex at lower densities.

4.1.4 Conclusions
In short, by classifying swaps as being either doing or undoing, we were able to predict that the swap times
would grow as the concentration of vitrimer particles decreases. We found simple models to calculate
the typical doing and undoing swap times, as well as the probability that a swap will be undoing. We
saw that the model for the mean doing swap times extrapolates decently beyond data that it was fitted
on. The model for the undoing swap probability performed reasonably well, although there was a sizable
error residual with the network made of star polymers, which seems to suggest that the building block
morphology plays an important additional role beyond just determining the concentration of vitrimer
particles. Conversely, the model for the undoing swap times clearly fails to reproduce key features of the
dependence on the concentration of vitrimer particles, as evidenced by its poor extrapolation properties,
perhaps in part due to Assumption 4.1.8. Since the undoing swap time is an important factor in the
total and effective swap times, we believe further development of an undoing swap time model would
be valuable. By looking at the KDEs of the doing swap times, we were able to come up with physical
mechanisms by which the typical doing swap time increases with decreasing concentration of vitrimer
particles. Finally, by analysing the KHEs of the swap time distributions we found that neither of the
two standard families of lifetime distributions, the exponential and Weibull distributions, can describe
the doing, undoing, or total swap times, in agreement with [75], but contradicting [54]; the latter conflict
may be due e.g. to differences in how the bond exchanges are modelled. It might be possible to partition
the swaps into even more classes, such that the distribution of each of these classes is comparatively
simple.

4.2 Healing Swaps
We will now develop a model to study the swaps that contribute to the healing of damage in a vitrimer
network. We will consider a section of damage with finite area A. In Figure 4.6, we show a schematic
depiction of the volume around such damage. In white, labelled ‘interface’, we have the healing interface.
On each side of the healing interface there is vitrimeric material, which we assume extends indefinitely
in each direction. In light grey, labelled ‘bulk’, we have that part of the material that is sufficiently close
to the healing interface that it may contribute to the healing through bond swaps; we then assume that
there is a pool of N0 minority moieties that could form bonds across the healing interface. Finally, we
denote the number of bonds across the healing interface at time t > 0 by Nint(t), and the number of
bonds in the bulk by Nbulk(t). Notably it therefore holds that N0 = Nint(t) +Nbulk(t) for t > 0.

Figure 4.6: Schematic depiction of the healing interface, and how bond swaps can contribute to the
healing.

We will study the number of bonds across the healing interface Nint(t) using rate equations. To make
such an analysis feasible, we make the following assumption.
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Assumption 4.2.1. The swap times of different moieties do not depend on each other.

Assumption 4.2.1 allows us to now consider the behaviour of single minority moiety. It makes sense
to quantify the evolution of the network using the effective swap time, Equation (4.1.18). Hence, our
investigation will involve effective swaps; to reduce notational clutter, we will from now on simply call
these swaps.

Suppose that such a minority moiety in the bulk undergoes a bond swap. After this swap there are then
two possibilities: either the moiety is still part of a bond in the bulk, or it is now part of a bond across
the healing interface. Similarly, a minority moiety in a bond across the healing interface can swap to
another bond across the healing interface, or a bond in the bulk. To simplify our analysis, we will now
assume that all bonds behave in an identical and time-invariant way:

Assumption 4.2.2. A bond across the healing interface gets swapped to a bond within the bulk
with probability pint ∈ (0, 1), while a bond within the bulk gets swapped to a bond across the
healing interface with probability pbulk ∈ (0, 1).

It is then easily seen that a bond across the healing interface gets swapped to another bond across the
healing interface with probability 1 − pint and a bond within the bulk gets swapped to another bond
within the bulk with probability 1− pbulk. There are no a priori obvious candidates for the values of pint
and pbulk.

4.2.1 Rate Equations
To define rate equations, we obviously need to know reaction rates. If we are dealing with processes that
are characterised by exponentially distributed times, it makes sense to speak of reaction rates, since the
hazard functions will be constant. However, if the times are not exponentially distributed, the hazard
functions will not be constant, and so the reaction rates will be ill-defined. We will therefore make the
following additional assumption:

Assumption 4.2.3. The swap times are exponentially distributed with mean τsw,eff .

We have good reason to doubt Assumption 4.2.3: we know in equilibrium that the swap times are
definitely not exponentially distributed, see Subsection 4.1.3. It is, however, a necessary assumption
to be able to properly define the rate equations. It may be possible to analyse how the number of
interfacial bonds changes over time without needing Assumption 4.2.3 if we use a different approach. For
instance, we could perform a simple MC experiment, in which we keep track of the state of each bond,
and randomly sample swap times from any distribution we would like. It would be interesting to analyse
how strongly the evolution of the expected number of bonds across the healing interface depends on the
shape of the swap time distribution. We will, however, content ourselves with solving rate equations set
up under Assumption 4.2.3.

Lemma 4.2.4 (Rate Equation for Bonds Across Healing Interface). The evolution of the number
of bonds across the interface Nint over time is governed by the rate equation

dNint

dt
(t) =

pbulk
τsw,eff

N0 −
pbulk + pint

τsw,eff
Nint(t), (4.2.1)

with the initial condition
Nint(0) = 0. (4.2.2)

Proof. Equation (4.2.2) defines the natural initial condition since there will be no bonds across the
healing interface at time t = 0.

There are N0 minority moieties that can participate in bond swaps. Since each moiety does so
independently at rate τ−1

sw,eff , in total swaps occur at rate N0τ
−1
sw,eff . We now fix time t, and consider

what the next swap will be. Since all of the bonds have i.i.d. exponential swap times, we can apply the
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‘exponential splitting property’ – Theorem A.3.3 – to see that the swap involves a minority moiety in
the healing interface with probability (w.p.) Nint(t)

N0
. Such a swap will decrease the number of bonds

across the healing interface w.p. pint. It clearly follows that the next swap involves a minority moiety
in the bulk w.p. Nbulk(t)

N0
, and increases the number of bonds across the healing interface w.p. pbulk. We

can therefore compose the following simple rate equation:

dNint

dt
(t) =

N0

τsw,eff

(
−1 · Nint(t)

N0
· pint + 1 · Nbulk(t)

N0
· pbulk

)
=

pbulk
τsw,eff

Nbulk(t)−
pint
τsw,eff

Nint(t)

=
pbulk
τsw,eff

(N0 −Nint(t))−
pint
τsw,eff

Nint(t) =
pbulk
τsw,eff

N0 −
pbulk + pint

τsw,eff
Nint(t),

which gives us exactly Equation (4.2.1).

We finally extract the time evolution of Nint from Rate Equation (4.2.1) in the following theorem.

Theorem 4.2.5 (Evolution of Number of Bonds Across Healing Interface). The number of bonds
across the healing interface at time t > 0 is given by

Nint(t) =
pint

pbulk + pint
N0

(
1− exp

(
−(pbulk + pint)

t

τsw,eff

))
. (4.2.3)

Proof. According to Lemma 4.2.4, the number of bonds across the healing interface is governed by

dNint

dt
(t) =

pbulk
τsw,eff

N0 −
pbulk + pint

τsw,eff
Nint(t),

with the initial condition
Nint(0) = 0.

We can easily solve Rate Equation (4.2.1) as follows:

ˆ t

0

dt =

ˆ Nint(t)

Nint(0)

dNint(s)
pbulk

τsw,eff
N0 − pbulk+pint

τsw,eff
Nint(s)

= − τsw,eff

pbulk + pint

ˆ Nint(t)

Nint(0)

dNint(s)

Nint(s)− pint

pbulk+pint
N0

.

Substituting u = Nint(t)− pint

pbulk+pint
N0, noting that Nint(0) = 0, we find that

−(pbulk + pint)
t

τsw,eff
=

ˆ Nint(t)

Nint(0)

dNint(s)

Nint(s)− pint

pbulk+pint
N0

=

ˆ Nint(t)− pint
pbulk+pint

N0

− pint
pbulk+pint

N0

du

u

= [log|u|]Nint(t)− pint
pbulk+pint

N0

− pint
pbulk+pint

N0
= log

(
1− pbulk + pint

pint

Nint(t)

N0

)
.

Taking the exponential on both sides and rewriting gives us

Nint(t) =
pint

pbulk + pint
N0

(
1− exp

(
−(pbulk + pint)

t

τsw,eff

))
,

as required.

It is not hard to derive from Equation (4.2.3) that Nint tends to a horizontal asymptote:

Corollary 4.2.6 (Asymptotic Number of Bonds Across Healing Interface). The number of bonds
across the healing interface over time tends to

Nint(∞) := lim
t→∞

Nint(t) =
pint

pbulk + pint
N0. (4.2.4)
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Theorem 4.2.5 tells us how Nint will evolve over time. If we define the typical healing time τh to be
the time it takes until a certain fraction (say 1− 1/e) of Nint(∞) is reached, then we may identify from
Equation (4.2.3) that

τh =
τsw,eff

pbulk + pint
. (4.2.5)

Hence, we can speed up self-healing by increasing the swap rate; from Section 4.1 we know that we can
do this by increasing the concentration of vitrimer particles.

Equation (4.2.3) contains two fit parameters:

pint
pbulk + pint

N0 and
τsw,eff

pbulk + pint
. (4.2.6)

We have already determined τsw,eff independently in Section 4.1. On the other hand, N0, pint, and pbulk
are somewhat ill-defined. The most concrete definition of N0 would be the number of minority moiety
that can form bonds across the healing interface. Clearly, a minority moiety within the ‘bulk’ that is
far away from the healing interface is less likely swap into an interfacial bond than a minority moiety
that is closer to the healing interface. Hence, we should view pbulk and pint as being averaged over the
volume defined by N0. Determining N0 a priori in an exact way seems impossible: we can either look
a posteriori at which minority moieties have been part of interfacial bonds, or estimate the size of the
‘bulk’ – the volume which contains minority moieties that are sufficiently close to the healing interface.
Here, we will estimate N0 using the second approach.

First, note that a minority moiety can be a part of an interfacial bond if it can be reached by a majority
moiety from the other side of the healing interface. Since we assume the backbones of the vitrimer
network are stationary, this is the case if the spherical volume traced by the minority moiety overlapping
with that of some majority moiety across the healing interface. The radius R of the volume will evidently
depend on the bond length σ and the number of bonds in the chain narm. It is well-established in polymer
theory that an ideal chain with narm ≫ 1 will have length R ∼ √

narmσ [50, Eq. (2.168)]. However, we are
dealing with chains with narm = O(1); there will therefore be a nonnegligible amount of probability mass
beyond

√
narmσ in the chain length distribution. Hence, we will choose R = narmσ, so that a minority

moiety belongs to the ‘bulk’ if it is at a distance of at most 2R = 2narmσ to the healing interface. We
can then find that the volume of the ‘bulk’ is 4Anarmσ, from which it directly follows that

N0 = Vbulk · ρbonds = 4AnarmσρvitfA2
. (4.2.7)

In theory we can now extract pint and pbulk from the fit parameters equation (4.2.6), since

pint =
1

N0

pint
pbulk + pint

N0 · τsw,eff
pbulk + pint

τsw,eff
, and

pbulk = τsw,eff
pbulk + pint

τsw,eff
− pint,

and we know all the terms on the right hand side of these expressions.

4.2.2 Equilibrium Shear Modulus
Up to now, we have attempted to assess the healing of a vitrimer material by counting the number of
bonds across the healing interface. It is, however, not directly clear how the mechanical strength of the
material depends on this number of bonds. Moreover, we cannot yet choose some benchmark number
above which we can say that the material is sufficiently healed. As noted in Section 2.2, mechanical
strength can be quantified using the equilibrium value of the shear modulus. Hence, we will now develop
a simple model for the shear modulus of our system in terms of the number of bonds across the healing
interface. Our model will contain two healing interfaces, to align with the simulations we will perform
in Subsection 4.2.3, in which our sample vitrimer will be in a periodic box with two healing interfaces in
the unit cell.

Figure 4.7 a) schematically depicts a unit cell in our simulations, with in light grey the healing interfaces
and in dark grey the bulk. We assume that the healing interfaces and bulk are homogeneous; each has
a well-defined equilibrium shear modulus, Gint and Gbulk, respectively. As a consequence, the total unit
cell will have an effective equilibrium shear modulus Geff ∈ [Gint, Gbulk]. Additionally, we assume that
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the healing interfaces each have a thickness of 2δ, while the entire unit cell has a thickness of h. Finally,
we freeze the network topology: the associative bonds are replaced by normal covalent bonds. This is
reasonable as long as we look at sufficiently short timescales, since stress relaxation by bond exchanges
is much slower than the relaxation towards the elastic plateau, and indeed much slower than healing [1].
To simplify the analysis, we will now work with the mechanically equivalent unit cell shown in Figure 4.7
b); we have fused the healing interfaces and bulks, so that the unit cell consists of now two contiguous,
homogeneous blocks. Finally, Figure 4.7 c) shows how this equivalent unit cell will have deformed once

Figure 4.7: (a) Schematic depiction of unit cell, consisting of bulk areas (dark) with equilibrium shear
modulus Gbulk, and interfacial areas (light) with equilibrium shear modulus Gint. (b) Mechanically
equivalent cell, where the areas of bulk and interface have been combined into two areas, respectively.
(c) Upon shearing, the bulk and interface areas deform with different strains.
it has reached the elastic plateau after a step strain γtotal =

dtotal

h has been applied. By assumption, the
system is in (mechanical) equilibrium in the elastic plateau, so that in particular the stress is uniform in
the unit cell [80, p. 7]. Recall from Equation (2.2.2) that by definition it holds that γ = G

σ . Consequently,
when the entire unit cell is sheared with strain γtotal, the bulk and the healing interface will shear with
strains

γbulk =
σ

Gbulk
̸= γtotal and γint =

σ

Gint
̸= γtotal,

respectively. It can then easily be seen that

Gbulkγbulk = Gintγint,

so that
γbulk =

Gint

Gbulk
γint. (4.2.8)

Now note that the total deformation is the sum of the deformations of the constituent parts, i.e.

dtotal = dbulk + dint.

We can also relate the deformations to the strains through Equation (2.2.1):

dtotal = γtotalh, dbulk = (h− 4δ)γbulk, and dint = 4δγint,

which implies that
γtotalh = (h− 4δ)γbulk + 4δγint.

We can then apply Equation (4.2.8) to see that

γtotalh =

(
(h− 4δ)

Gint

Gbulk
+ 4δ

)
γint.

It finally follows that

γint =
h

(h− 4δ) Gint

Gbulk
+ 4δ

γtotal. (4.2.9)
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As a sanity check, we now look at what happens to the strain of the healing interface as its shear modulus
is varied. When no healing has occurred, there will be no bonds across the healing interface, and we
expect Gint = 0. We then predict a strain

lim
Gint→0

γint = lim
Gint→0

h

(h− 4δ) Gint

Gbulk
+ 4δ

γtotal =
h

4δ
γtotal.

This makes sense, since it implies that dint = dtotal and dbulk = 0: the entire deformation occurs in the
healing interface. On the other hand, when the material is fully healed, the healing interface will be
indistinguishable from the bulk, so we expect Gint = Gbulk. We then predict a strain

lim
Gint→Gbulk

γint = lim
Gint→Gbulk

h

(h− 4δ) Gint

Gbulk
+ 4δ

γtotal =
h

h
γtotal = γtotal,

which makes sense as now both the healing interface and the bulk strain equally.

It is easier to measure Geff in simulations: we therefore fill in Equation (4.2.9) in Equation (2.2.1) to
find

σ = Gintγint =
hGbulk

(h− 4δ) + 4δGbulk

Gint

γtotal,

so that the effective equilibrium shear modulus of the entire unit cell is

Geff =
σ

γtotal
=

hGbulk

h− 4δ + 4δGbulk

Gint

. (4.2.10)

Here too we perform some sanity checks. When no healing has occurred, and Gint = 0, we see that

lim
Gint→0

Geff = lim
Gint→0

hGbulk

h− 4δ + 4δGbulk

Gint

= 0,

so that the bulk pieces can freely flow across each other. Conversely, when the material is fully healed,
and Gint = Gbulk, we see that

lim
Gint→Gbulk

Geff = lim
Gint→Gbulk

hGbulk

h− 4δ + 4δGbulk

Gint

=
hGbulk

h
= Gbulk,

as expected. It now seems reasonable to use

Geff ≥ αGbulk, (4.2.11)

as a mechanical self-healing criterion, where α ∈ (0, 1): we can then say that the macroscopic material
has recovered a fraction of α of its original stiffness. Hence, we can keep track of Geff as a function of the
amount of time the system has been allowed to self-healing to find the mechanical healing time.

One advantage of Equation (4.2.11) is that it is comparatively straightforward to verify whether the
threshold has been reached: we can measure Geff after some fixed healing time by shearing the samples
in directions parallel to the healing interfaces, while we can find Gbulk by shearing in the perpendicular
direction. It is additionally very much in line with the approach used by Ciarella and Ellenbroek, which
uses compares Gxz and Gyz to Gxy after various healing times [1, Fig. 4.3].

This definition of mechanical recovery does have some downsides, however. First, the influence of Gint

on Geff depends on the size of the unit cell: if we move the healing interfaces further apart, Geff will
become closer to Gbulk. Hence, we have to keep the system size constant to be able to compare
different networks fairly. This issue could be circumvented by slightly adapting the mechanical
self-healing criterion to

Gint ≥ αGbulk.

However, we cannot measure Gint directly in simulations, and would instead have to infer it from Geff

using

Gint =
4δGbulk

hGbulk − (h− 4δ)Geff
,
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which is rather sensitive to δ. Conversely, Equation (4.2.11) does not rely on our simple model to
the same degree. Another potential shortcoming of Equation (4.2.11) is that it classifies samples as
being healed in a manner that is relative to the initial mechanical properties; in practical applications it
perhaps makes more sense to use an absolute threshold, to penalise configurations with poor mechanical
properties, such as viscoelastic liquids, which have Gbulk = 0 by definition. Notably, such an absolute
threshold would necessarily depend on the application, and could be checked in exactly the same way as
our relative threshold.

While the procedure to determine the mechanical healing time described above is straightforward, it is
rather computationally expensive. To track the mechanical recovery over time we must:

1. heal the sample;

2. take snapshots during the healing;

3. shear the snapshots and study their stress response.

However, during the self-healing process we can already keep observe the evolution of the number of
interfacial bonds, which should give a good idea of the mechanical properties of the sample: recall that
in the affine network model the equilibrium shear modulus is proportional to the number density of
chains connecting nodes in the network, see Equation (2.2.4). Hence, we expect that Gint ∝ Nint. Since
Gint → Gbulk for long healing times, and Nint(t) → Nint(∞), we can therefore conclude that

Gint(t) =
Nint(t)

Nint(∞)
Gbulk, (4.2.12)

so that
Geff(t) =

hGbulk

h− 4δ + 4δ Gbulk
Nint(t)

Nint(∞)
Gbulk

=
hNint(t)Gbulk

(h− 4δ)Nint(t) + 4δNint(∞)
. (4.2.13)

Consequently

Geff(t) > αGbulk ⇐⇒ hNint(t)

(h− 4δ)Nint(t) + 4δNint(∞)
> α. (4.2.14)

Hence, we are able to skip the second and – more significantly – third step when tracking the mechanical
recovery. This makes analysing the self-healing much cheaper, so that we may experiment with a greater
variety of vitrimer network building blocks with the same computational budget.

4.2.3 Simulations
We will now discuss the MD simulations that we have executed and analysed to test our healing model.
The scripts we used for this may again be found on Hoomd Polymer Tools:

1. The self-healing simulations were performed using generating_data/heal_sample.py;

2. The evolution of the number of the number of interfacial bonds was tracked using
processing_data/bonds_between_samples.py;

3. The equilibrium shear moduli were found by shearing the partially healed samples in
processing_data/measure_stress_relaxation.py, and analysing the resulting trajectories in
analysing_data/compute_shear_moduli.py;

4. The shear profiles were finally computed using analysing_data/shear_throughout_sample.py.

We will first turn our attention to how the number of bonds across the healing interface changes over
time; Figure 4.8 a) shows this evolution eleven distinct vitrimer networks. Each curve is accompanied by
a filled region corresponding to approximate 95% confidence intervals determined using 45 independent
samples.12 At first sight, the evolution appears to follow some exponential decay, as we anticipated in
Subsection 4.2.1. It is quite evident from Figure 4.8 a) that theal = 300 [time] is not enough time for
the samples to fully heal; we therefore cannot simply read off Nint(∞) from the curves. Our model,

12We assume the noise is roughly normally distributed; then the standard deviation of the mean may be estimated with
the standard error. The shaded regions have a width of two standard errors on each side of their corresponding curve.
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Figure 4.8: Evolution of the number of interfacial bonds over time for vitrimer networks made of
various polymer building blocks. In b), the x-axis has been normalised for each sample with the effective
swap times τsw,eff measured in Subsection 4.1.3, while the y-axis has been normalised by the number of
interfacial bonds at fixed time 3τsw,eff .

described in Equation (4.2.3), predicts that the form of this evolution does not depend on the shape of
the building blocks of the network, since

Nint(t)

N0
=

pint
pbulk + pint

(
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,

0 1 2 3 4 5 6 7 8

narm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
in

t
(3
τ s

w
,e

ff
)/

(ρ
b

o
n
d
s
L

2
)

[l
en

gt
h

]−
1

Linear Fit

Square Root Fit

Power Law Fit

Observed
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as a function of the number of particles in the arms
narm of the building blocks of the vitrimer network.
Data fitted with anarm (Linear), a

√
narm (Square

Root), and anβ
arm (Power Law).

in which only the number of sufficiently close
vitrimer bonds N0 and the effective swap
time τsw,eff depend on the polymer shapes.
In Figure 4.8 b) we therefore normalise the
time axis by the τsw,eff – determined in
Subsection 4.1.3 – for each sample. Since
we do not have values for Nint(∞) or N0,
we normalise the y-axis by the number of
interfacial bonds at theal = 3τsw,eff ; if the
curves are truly similar all these normalisations
are equivalent up to scalar multiplication.
Figure 4.8 b) indeed shows that the form of
the evolution does not depend on the shape of
polymer building blocks.

It would be interesting to know whether
our expression for N0, Equation (4.2.7), is
reasonable. As we alluded to previously, in
theory Nint(3τsw,eff) gives us N0 up to a scalar
multiple. Hence, we can fit our expression
on Nint(3τsw,eff). In our simulations, narm

is the only relevant parameter that is varied;
Figure 4.9 shows how Nint(3τsw,eff) depends on
narm. We can clearly see that our model is too
simple, even for configurations with the same
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number of particles in each arm the values do not coincide. We moreover see that the linear fit predicted
by Equation (4.2.7) is terrible. We have therefore also fitted the curve a

√
narm, which we would expect

in long chains (narm ≫ 1); this fit performs only slightly better than the linear fit, and moreover does
not make physical sense. Finally, we fitted the power law anβ

arm. Clearly, our data cannot be described
by such a power law either.

We can hence conclude that some of our modelling assumptions were too naive. To derive
Equation (4.2.7), we assumed that the attachment points of the arms are stationary. Indeed, if the
backbones of the comb polymers are entangled we expect them to remain roughly fixed in space.
However, a segment between two points of entanglement will be able to move around.

As a consequence, the arms will be able to reach farther than we predicted. Since of the lengths of these
segments will depend i.a. on the number of particles separating two arms nsep, it is not so strange that
configurations with the same value for narm can have ‘bulks’ of different sizes. We moreover assumed
that pbulk and pint do not depend on the shape parameters. This is clearly not true however: we already
noted in Subsection 4.2.1 that in essence pbulk and pint are averaged over the ‘bulk’. It might be possible
to improve the model by working with the chain length distribution of the arms instead a single point
estimate. In this way, minority moiety which are further away will give a smaller contribution.

We next fit our self-healing model described Equation (4.2.3) by in Figure 4.10. It turns out that the
evolution does not follow some simple exponential decay: for both the comb vitrimer network a) and the
star vitrimer network the fit of the healing model, represented as a dashed blue curve, underestimates
the observed number of interfacial bonds, shown as the solid red curve, at short and long timescales,
while overestimating it at intermediate timescales. The model additionally underestimates the number
of bonds across the healing interface in equilibrium: by fitting we find that Nint(∞) = 137 for the comb
network and Nint(∞) = 225, while at t = 300 [time] we on average count 145 and 240 bonds across the
healing interface, respectively.
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Figure 4.10: Evolution of the number of interfacial bonds over time for vitrimer networks, fitted with
our self-healing model – Equation (4.2.3) – and a stretched exponential generalisation thereof, given by
Equation (4.2.15).
To mitigate these issues, we consider the most straightforward generalisation of our healing model: we
replace the exponential in Equation (4.2.3) with a stretched exponential:

Nint(t) =
pint

pbulk + pint
N0

(
1− exp

(
−
(
(pbulk + pint)

t

τsw,eff

)β
))

. (4.2.15)

It is important to note that stretched exponentials are usually not as easy to justify theoretically as
an exponential fit, although they are frequently used when fitting polymer relaxation processes [48,
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Eq. (6.97)]. Unfortunately, the stretched exponential fit suffers from the same issues as the exponential
fit, underestimating the number of bonds across the healing interface on short and long timescales but
overestimating them on intermediate timescales.

We can get a better understanding of why the fitting fails by investigating the healing speed, i.e. the
derivative of the number of interfacial bonds. On average, we expect Nint(t) to be a strictly increasing
function of t. Since we moreover know that

Nint(0)/Nint(∞) = 0 and lim
t→∞

Nint(t)/Nint(∞) = 1,

we can interpret S(t) := 1 − Nint(t)/Nint(∞) as a survival function. As a consequence, we can apply
the lifetime distribution machinery introduced in Subsection 2.1.1 to this problem, too. In particular,
we can compute the corresponding PDF f up to a multiplicative constant of Nint(∞), since we know
that

f(t) = − d

dt
S(t) = − d

dt

(
1− Nint(t)

Nint(∞)

)
=⇒ Nint(∞)f(t) = − d

dt
−Nint(t).
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Figure 4.11: Estimates of Nint(∞)f as a function of
healing time computed using KDEs with Gaussian
kernels with σ = 15 [time] for vitrimer networks
made of various polymer building blocks.

We can estimate the last term using a KDE
as discussed in Definition 2.1.4: Figure 4.11
shows the estimates of Nint(∞)f for all of our
vitrimer networks. We have less data now
than when we computed the swap time KDEs
in Subsection 4.1.3, and so we convolve with
Gaussians kernels with σ = 15 [time].13 As a
consequence, our estimates will be more biased
now, especially around theal = 0 [time] and
theal = 300 [time], since for the computation
of the convolution the data is extended
outside of its support with 0. Moreover, the
densities are not normalised, so we cannot
directly compare the densities for different
network configurations. Consequently, we have
to be careful drawing any conclusions from
Figure 4.11. The densities appear to contain
a kink around theal = 100 [time]: before and
after this kink the densities seem to decay
exponentially, but the decay rate is high before
the kink. This could be explained the healing
being mediated by two distinct – potentially
exponentially decaying – processes, where one
has a typical timescale smaller than 100 [time], and the other has a typical timescale much larger than
100 [time].

It would be much easier to read off the presence or absence of such processes from plots of the hazard
function. Unfortunately, since we do not know Nint(∞), we are unable to determine the hazard function,
as

λ(t) =
f(t)

S(t)
=

d
dt

Nint(t)
Nint(∞)

1− Nint(t)
Nint(∞)

=
d
dtNint(t)

Nint(∞)−Nint(t)
.

However, from the fact that Equation (4.2.3), which we can identify with the exponential distribution,
deviates significantly from the data, we may conclude that the true hazard function is not a constant.
Similarly, since Equation (4.2.15) does not fit our observations, we know the hazard function does not
follow a power law, as the stretched exponential corresponds to a Weibull distribution.

Finally, we will attempt to determine the typical mechanical healing times by looking at the equilibrium
shear moduli, as described in Subsection 4.2.2. We took numerous snapshots during the healing process.
Each of these snapshots was subjected to shears γ = 0.25 in the xy-, xz-, and yz-directions, and allowed
to relax to the elastic plateau,14 after which we determined the average value of the corresponding
component of the stress tensor.

13We again chose the kernel width by eye.
14Different samples relaxed at different speeds: the most healed samples relaxed after roughly 103 [time], while the least

healed samples took 9× 103 [time].
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Figure 4.12: Smoothed shear profiles fitted with
Equation (4.2.16) for samples that have healed for
varying amounts of time. ∆x is the displacement in
the x-direction in the elastic plateau compared to the
initial position and Lx ≈ 45 [length] is the width of
the unit cell in the x-direction.

We start off by checking whether our model
of the unit cell, depicted schematically in
Figure 4.7 is reasonable. To do so, we
measure how particles throughout the sample
have moved compared to their initial position
once the sample has reached mechanical
equilibrium. In this way, we can get an idea
of the ‘shear profile’, as seen in Figure 4.7 c).
If our model is realistic, we expect that after
short healing times the sample will shear more
extremely at the healing interfaces than in the
bulk. Moreover, we expect the shear within
the bulk and within the healing interfaces to
be uniform. Around a single healing interface
centred at z = 0 [length] we can state this
mathematically using the following fit:

∆x =


−γintδ + γbulk(z + δ), z < −δ,

γintz, −δ ≤ z ≤ δ,

γintδ + γbulk(z − δ), z > δ.
(4.2.16)

For a single sample, we have plotted the shear
profiles after various amounts of healing time –
fitted with Equation (4.2.16) – in Figure 4.12.
To smooth the profiles, we organised the 9.9×
104 particles by their z-position, and applied
a Gaussian filter with σ = 5× 102 particles.15
Since we do not expect the with of the healing interface δ to depend on the amount of time that the
sample has healed for, we fitted all profiles simultaneously for δ; in this way we found δ = 0.53 [length],
which seems sensible since it is on the order of a single particle diameter. The observed profiles are
well-described by Equation (4.2.16); we therefore believe our model is appropriate. Next, we will see
whether the model we Equation (4.2.13), which we derived from this model, can accurately describe the
dependence of the equilibrium shear modulus on the number of interfacial bonds.

In Figure 4.13 we have plotted the equilibrium shear modulus averaged over 45 samples after various
amounts of healing time; the error bars correspond to two standard errors of the mean. For the vitrimer
network made of combs, we can see in Figure 4.13 a) that for theal ≥ 200 [time] the equilibrium shear
modulus in the directions parallel to the healing interfaces significantly exceeds the modulus in the
perpendicular direction. This may be an artefact caused by the samples having insufficient time to relax
to the elastic plateau. Notably, we do not see this in the star polymer network shown in Figure 4.13
b).

We have fitted Equation (4.2.13) for δ, Nint(∞), and Gbulk; the fitted curves were subsequently
computed by filling in the mean number of interfacial bonds shown in Figure 4.10. This fitting problem
is somewhat ill-posed, in the sense that many wildly different combinations of parameters will lead to
roughly the same fit: there therefore is no unique solution. By determining some of these parameters
independently and filling their values in, we could remove this degeneracy. For instance, Nint(∞) can
be found independently by healing the samples sufficiently long that the number of interfacial bonds
plateaus, and Gbulk can be estimated from the equilibrium shear moduli in the direction perpendicular
to the healing interface. Additionally, Equation (4.2.13) does not seem to be able to properly fit the
shear moduli observed after long healing times. This may in part be due to the affine network
assumption, which neglects entanglements, as noted in Subsection 2.2.1: we expect that there has not
been enough time for entanglements to be formed across the healing interface.

We have computed the equilibrium shear modulus of the bulk by averaging the shear moduli in the
direction perpendicular to the healing interface, and (arbitrarily) chosen as mechanical healing threshold
0.9Gbulk. We find that the comb vitrimer network passes this threshold at τh = 22.8 [time], while the

15The fit was performed on the raw, unsmoothed data.
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Figure 4.13: Equilibrium shear moduli in the xy-, xz-, and yz-directions as a function of healing time.
Fits were computed using Equation (4.2.13). The blue dashed line represents the shear modulus of the
bulk computed by averaging the shear moduli in the xy-direction, while the dotted line is a mechanical
healing threshold.

star network vitrimer does so at τh = 11.4 [time]. These healing times are much shorter than the effective
swap times of 60.7 [time] and 40.8 [time], respectively.

Despite the limitations of our model, we see that there is decent agreement between the fits and the
observed shear moduli, which suggests that we can deduce mechanical healing directly from the number
of interfacial bonds.

4.2.4 Conclusions
In conclusion, we have seen that the evolution of the number of interfacial bonds is not quite exponential,
in contradiction with our model (Equation (4.2.3)). However, we do see that the curves collapse when
we normalise the number of bonds by some factor that should proportional to the number of bonds in
equilibrium, and normalise the times by the mean effective swap times for each network. Consequently,
we can still use the effective swap time as a typical timescale for the recovery of the number of interfacial
bonds.

We have also predicted the evolution of the equilibrium shear modulus as a function of the evolution of the
number of bonds across the healing interface using the affine network model. On short times scales, our
prediction, Equation (4.2.13), performs well. Conversely, on long timescales, Equation (4.2.13) does not
fit the data. Fortunately, most of the mechanical healing occurs on short timescales. We can therefore use
our model to find the typical healing time. For the networks we have investigated, the typical mechanical
healing time is less than the effective swap time, which is incredibly fast.

4.3 Vitrimer Relaxation
We have now seen how comb polymer vitrimer networks heal. In particular, we have seen that the
self-healing happens on timescales on the order of the swap time or smaller. Hence, comb vitrimer
networks indeed seem suitable candidates for autonomously healing materials. However, a practical
self-healing material must have additional mechanical properties. For instance, water clearly would
not be an appropriate self-healing material, even though it will almost instantly autonomously recover
if you ‘damage’ it. It therefore seems sensible to require that the material behaves like a solid on

48



Self-Healing of Comb Polymer Vitrimers SMB | CASA

relevant timescales. Fortunately, on sufficiently short timescales vitrimers behave like viscoelastic solids,
as evidenced by their creep resistance [10], only relaxing to a liquid when each minority moiety has
undergone many swaps (see Subsection 2.2.2).

In 2019, Ciarella and Ellenbroek observed that the self-healing in a vitrimer network made of star
polymers happens about three orders of magnitude faster than the relaxation to liquid [1]; we posited
that this can be improved by using a vitrimer made of comb polymers, since the entanglement of the
backbones will frustrate the stress relaxation. Indeed, in a melt of linear chains the relaxation will
certainly take longer than the reptation time, which – at fixed entanglement length – scales with the
cube of the chain length [25, Eq. (9.8)]. In a comb polymer melt, the relaxation will take even longer if
the arms are sufficiently long [81]. It stands to reason that a vitrimer network made of comb polymers
will relax even more slowly, since the existence of crosslinks between arms will inhibit the reptation of
the backbones.

In this section, we will discuss the experiments we have performed to test this hypothesis. Since we need
to measure the evolution of the stress tensors on both short and long time scales, which is computationally
expensive, we only considered the networks made of comb polymers with Narms = 16, narm = 4, and
nsep = 3.
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Figure 4.14: Evolution of the shear modulus in a
comb polymer network, with fixed topology, after the
application of a γ = 0.25 step shear. The dashed
green curve has been fitted using Equation (4.3.1),
which describes the expected decay to the elastic
plateau; the dashed blue line is the equilibrium shear
modulus.

First, we look at the stress relaxation when
we fix the network topology by replacing
the exchangeable bonds with simple harmonic
bonds; on short timescales we should observe
the same relaxation for networks with frozen
and dynamic topologies. For this, we used the
stress tensors we found in Subsection 4.2.3 for
the xy shears, since we are now interested in
the properties of the undamaged material. In
total, we simulated 495 of such shears. The
evolution of the shear modulus is shown in
Figure 4.14; the shaded region corresponds
again to two standard errors in the mean. As
discussed in Subsection 2.2.1, we expect an
exponential decay towards a plateau, which
could be described as

G(t) = G∞ + a · exp
(
− t− τshift

τscale

)
, (4.3.1)

for some G∞, a, τshift, τscale > 0. In fact, we
clearly do not observe exponential decay; this
discrepancy may be caused by the fact that
shear is only approximately a step, occurring
over 1 [time]: some of the stress can already
be relaxed before the entire shear has been
applied.

We subsequently looked at the stress relaxation of the dynamic vitrimer network. Ciarella, Sciortino and
Ellenbroek found that it takes about 106 [time] for a vitrimer network made of stars to become liquid
[24]; since we expect our network based on combs to relax more slowly, we should consequently certainly
simulate until 106 [time], which corresponds to 109 timesteps. To make such simulations feasible, we
had to reduce the size of the unit cell from 9.9× 104 to just 2× 104 particles; even with this reduction,
a single simulation takes roughly two days to complete on a GPU.16 As a consequence, the noise on
the stress tensor will be larger: we observed standard deviations across independent samples around
5 × 10−1 [energy] · [length]−3. We performed 105 independent stress relaxation simulations on such
systems. We therefore expect a standard error in the mean of 5 × 10−2 [energy] · [length]−3, which is
on the order of the elastic plateau shear modulus we measured before: this does not bode well for
our ability extract a signal from the noise. By contrast, in Figure 4.14 the standard error is typically

16We estimate that it would take about a year on a single CPU core.
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10−2 [energy] · [length]−3, a factor 5 lower, which makes sense because there we had roughly 25 times as
much data.17.
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Figure 4.15: Evolution of the shear modulus in a
dynamic comb vitrimer network after the application
of a γ = 0.25 step shear. The blue and green curves
were computed by convolving with a Gaussian kernel
with the corresponding standard deviation.

The blue curve Figure 4.15 shows the evolution
of the shear modulus; the noise is quite
extreme. There are numerous approaches
that can be taken to improve the chances of
extracting the signal from the noise. The
most obvious approach is to perform more
simulations; to reduce the noise to the same
level as we saw in the stress relaxation of the
frozen vitrimer networks we would need about
400 more simulations.18 It would perhaps
be more sensible to instead try to filter out
the noise. The noise appears to have a very
high frequency compared to the timescales
that are relevant for stress relaxation; hence
a low pass filter such as a Gaussian filter
might help. However, if we use a Gaussian
kernel, we will not be able to resolve the
signal on short timescales. Hence, it might
be interesting to use a kernel with a time
dependent width.

Perhaps a more significant issue with the
observed stress relaxation is that it decays to 0
in about the same amount of time that it takes
for the networks with fixed topology to relax
to the elastic plateau, whereas it should take much longer. The fact that we see only a single relaxation
process implies that the building blocks of the network are not actually crosslinked. The only explanation
we could find for this is that there is an issue with RevCross on the GPU. Indeed, we already noted in
Section 3.3 that different swap times are observed on the GPU than on the CPU; the swap times found
using the GPU moreover did not appear to depend on e.g. the concentration of reactive particles, which
does not make physical sense.

In conclusion, with the currently gathered simulation data we are unable to determine how long it takes
for a comb vitrimer network to relax into liquid.

17Namely about 5 times as many samples which were each about 5 times as large
18Using all GPUs in the hpc cluster of the TU/e Physics department continuously this would take about half a year.

50



Chapter 5

Discussion

In this work, we have strived to find materials with good mechanical properties that can self-heal.
Previous research indicates that CANs are suitable candidates: the covalent nature of their bonds makes
them rigid, while their ability to reconfigure their topology allows them to heal damage [22]. In particular,
in 2019, Ciarella and Ellenbroek found that vitrimer networks made of star polymers can mechanically
heal roughly three orders of magnitude sooner than they start to flow like a liquid [1]. We have therefore
investigated how the self-healing properties of vitrimer networks made of comb polymers compare with
those of networks consisting of star polymers, since we hypothesised that the possibility for entanglement
of the backbones of the comb polymers would increase the timescales on which the material remains rigid.
We have also looked into the influence of i.a. the length of the arms of the comb polymers on the self-
healing.

For our investigation, we have first developed and tested a simple model to describe the dependence of
typical swap times on the shape of the building blocks of the network. We have subsequently studied the
evolution over time of the number of vitrimer bonds across some damage, making use of the previously
found swap times. This is interesting since we can predict the mechanical rigidity of the network using
the number of such bonds; we may therefore map the growth of this microscopic quantity onto the
recovery of mechanical properties on the macroscopic scale. Finally, we have attempted to measure how
the stress in the network is relaxed after the application of a step shear, in order to identify on what
timescale the comb polymer vitrimer becomes liquid.

In this chapter, we will first summarise the main conclusions we can draw from our mathematical models
and simulations, as well as the limitations of our work, in Section 5.1. We will thereafter conclude this
thesis by going over some of the most promising avenues for future research into self-healing vitrimers
materials in Section 5.2.

5.1 Conclusions and Limitations
Our first result is a simple polymer model that describes how the typical swap times in a comb or
star vitrimer network depend on the shape of the combs or stars. Central to deriving this model is the
classification of swaps into two categories: ‘undoing’ if they undo the previous swap and ‘doing’ otherwise.
The model predicts that the typical swap time depends on the shape only via the concentration of reactive
particles, see Equation (4.1.15). We have verified this model using simulations. From these simulations,
we have additionally computed local estimates of the entire swap time distributions, namely Kernel
Density Estimators and Kernel Hazard Estimators; we have been unable to find similar results in the
literature. We should note that the model has been derived assuming the system is in equilibrium,
and the simulations have been performed in equilibrium. However, we believe that it is possible to
identify the key mechanisms that determine the swap times by investigating e.g. the corresponding PDF
or hazard function. We believe that understanding these mechanisms will allow us to make predictions
about typical swap times even in out-of-equilibrium systems by then considering how these mechanisms
change when the system is not in equilibrium. Say we want to estimate the typical swap time in a
network that is being stretched, for example. Then, we can imagine that the probability that a swap is
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undoing is lower than in an equilibrium system, since the neighbourhoods of minority moieties changes
over time. By adjusting the corresponding parameter in the model, we may be able to apply it even in
this out-of-equilibrium situation.

We have also derived a model based on rate equations to describe how the number of vitrimer bonds across
damage evolves over time: we predicted an exponential decay towards a plateau, see Equation (4.2.4).
In simulations, however, we have observed a decay that cannot be described by either a simple or
stretched exponential. Careful consideration of the derivative of the evolution suggests that there are
two independent processes with different timescales going on. Although the exponential nature of the
model is not reflected in the data, we do see that the curves describing the evolution for vitrimer networks
made with various types of comb polymers collapse when we normalise the number of bonds and divide
the times by the mean effective swap times for each network. Consequently, the effective swap time
is a good proxy for the time it takes for a certain fraction of the equilibrium number of bonds to be
reached.

We have furthermore predicted the evolution of the equilibrium shear modulus of such vitrimer networks
from the evolution of the number of bonds across the damage using the affine network model. For
this prediction, we assumed that we can decompose the shear of the entire network into a simple shear
of the healing interfaces and one of the bulk, so that the strain in the healing interfaces and bulk is
constant but different from each other; by looking at the equilibrium shear profiles in simulations we have
confirmed that this is indeed the case. Our prediction for the equilibrium shear modulus – described by
Equation (4.2.13) – performs well on short timescales. Conversely, at long timescales, Equation (4.2.13)
does not fit the data. Fortunately, most of the mechanical healing occurs on short timescales. Hence, we
can use our model to find the typical healing time. For the networks we have investigated, the typical
mechanical healing time is less than the effective swap time, which is incredibly fast. These results imply
that we do not need to perform expensive stress relaxation experiments to determine the self-healing
times, which means we can explore more network topologies with the same computational budget.

Finally, we have tried to look how long it takes for a comb vitrimer network to become liquid. We
have done this by applying step shears and measuring the evolution of the stress tensor. Since this
process is computationally expensive, our data contains a lot of noise. More importantly, we have seen
in the simulations that the network liquefies in about the same amount of time that a corresponding
comb polymer network with fixed crosslinks takes to reach the elastic plateau: the absence of two
relaxation processes, which are well-established in vitrimers [24], suggests that there are issues in the
software implementation of the reversible crosslinks for simulations run on GPUs. As a consequence, we
have not been able to determine on what timescales the network becomes liquid, and so we are unable
to fully compare the performance of vitrimer networks made of combs to those made of stars at the
moment.

5.2 Outlook
This work has raised numerous questions that are, in our opinion, worth investigating further. For
instance, we believe that it should be possible to improve the swap time model, since the hazard functions
indicate that we can divide swaps into more fine categories than just ‘doing’ and ‘undoing’. Such an
improvement would be valuable, since our results indicate that the effective swap time is closely related
to the mechanical healing time. By using a non-Gaussian kernel, e.g. one with positive support [37], with
a width chosen in a data-driven way, e.g. using LOOCV, one could reduce the bias and variance of the
hazard estimators, making it easier to identify the timescales of mechanisms that determine the bond
exchanges.

The self-diffusion time of a single particle is a fit parameter in our swap time model. It should be possible
to measure self-diffusion time independently in simulations; we unfortunately did not get around to doing
this in our project. We believe such an independent measurement would be valuable, since filling in
the value of the self-diffusion time would alleviate the degeneracy and the identifiability issues of our
model.

A particularly straightforward follow-up research would involve healing the samples for more time, so
that we can measure the number of bonds across the healing interface in equilibrium. This would reduce
the degeneracy in Equation (4.2.13), so that we can better predict the equilibrium shear modulus from
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the number of interfacial bonds. Additionally, it would make it possible to estimate the hazard function
of the evolution, which might make it easier to find why our model for the number of interfacial bonds
does not fit the data.

In this study, we considered networks where the fraction of vitrimer moieties of type-A2 was fixed at
fA2 = 0.4. We think it would be interesting to investigate the influence of fA2 on the self-healing
properties. We expect fA2 to affect both the healing rate and the mechanical properties of the vitrimer
network. For instance, we derived that the swap time, and so also the healing time, depends on fA2

via
concentration of vitrimer bonds and the concentration of free vitrimer particles, see Equation (4.1.13).
Additionally, since fA2

is proportional to the number of crosslinks in the network, we expect that the
rubber plateau to rise and that the network will take longer to relax to liquid with increasing fA2 .

Finally, to check our hypothesis it will be necessary to measure the stress relaxation of a comb vitrimer
network again. Since we believe the issues in our results are caused by an issue in the implementation
of the reversible crosslinks on the GPU, we see two options: simulations can be performed on the CPU,
or the software issue can be patched. The latter option would have our preference, since the relaxation
simulations are very expensive, and so would take extremely long on CPUs. It would additionally open
up the option to use the GPU for other purposes, such as determining swap time distributions.
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Appendix A

Supplementary Proofs

A.1 Tails of Improper Riemann Integrals
The following lemma will allow us to prove the correctness of Formula 2.1.13 for computing the mean
from the survival function.

Lemma A.1.1 (Tails of Improper Riemann Integrals). Let f : [a,∞) → R be improperly Riemann
integrable, i.e. f is Riemann integrable on [a, b] for b ∈ R>0 and limb→∞

´ b
a
f(x)dx = A < ∞ [34,

Def. 6.5.1]. Then, the tail of the improper integral tends to zero, i.e.

lim
t→∞

ˆ ∞

t

f(x)dx = 0. (A.1.1)

Proof. We start by noting that when f is Riemann integrable on [a, b], f is also integrable on [a, t] and
[t, b] for a < t < b:

´ b
t
f(x)dx is well-defined for such t and b, and is given by [34, Thm. 6.3.3]

ˆ b

t

f(x)dx =

ˆ b

a

f(x)dx−
ˆ t

a

f(x)dx.

It then follows that
ˆ ∞

t

f(x)dx = lim
b→∞

ˆ b

t

f(x)dx = lim
b→∞

ˆ b

a

f(x)dx−
ˆ t

a

f(x)dx = A−
ˆ t

a

f(x)dx,

and from this we may find that

lim
t→∞

ˆ ∞

t

f(x)dx = A− lim
t→∞

ˆ t

a

f(x)dx = A−A = 0,

as required.

A.2 Chain Length Distributions
In this appendix, we derive an expression for the exact PDF of the length of a chain of particles each
separated by a uniformly distributed distance. To compute this PDF, we will need to convolve functions.
The following lemma shows that the convolution will be well-behaved.

Lemma A.2.1 (Convolutions on Lp-Spaces). Let f ∈ L1(R), with f ≥ 0 almost everywhere (a.e.)
and ∥f∥1 = 1, and let g ∈ Lp(R) for some p ∈ [1,∞). Then f ∗ g ∈ Lp(R) and

∥f ∗ g∥p ≤ ∥f∥1∥g∥p ≤ ∥g∥p. (A.2.1)
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Proof. Let f ∈ L1(R), with f ≥ 0 a.e. and ∥f∥1 = 1, and let g ∈ Lp(R) for some p ∈ [1,∞). Define
p′ ∈ (1,∞] such that 1

p + 1
p′ = 1. Clearly it then holds that f = f

1
p f

1
p′ . Furthermore, we may find thatˆ

R

ˆ
R
f(x− y)|g(y)|pdxdy =

ˆ
R

ˆ
R
f(x− y)dx︸ ︷︷ ︸
=∥f∥1=1

|g(y)|pdy =

ˆ
R
|g(y)|pdy = ∥g∥pp < ∞.

Then, Fubini’s Theorem [82, Thm. 11.2.2] implies that y 7→ f(x − y)|g(y)|p ∈ LR(1), or, equivalently,
that y 7→ f(x− y)

1
p ∗ |g(y)| ∈ LR(p). Next, we can apply Hölder’s inequality to see thatˆ

R
f(x− y)|g(y)|dy =

ˆ
R
f(x− y)

1
p |g(y)|︸ ︷︷ ︸

∈Lp(R)

f(x− y)
1
p′︸ ︷︷ ︸

∈Lp′ (R)

dy

≤
(ˆ

R
f(x− y)|g(y)|pdy

) 1
p

1
p′(ˆ

R
f(x− y)dy

)
︸ ︷︷ ︸

∥f∥1=1

=

(ˆ
R
f(x− y)|g(y)|pdy

) 1
p

= ∥y 7→ f(x− y)|g(y)|p∥
1
p

1 < ∞,

Hence, f ∗ g is a well-defined function. We can now confirm that

∥f ∗ g∥pp =

ˆ
R

∣∣∣∣ˆ
R
f(x− y)g(y)dy

∣∣∣∣pdx ≤
ˆ
R

∣∣∣∣∣
(ˆ

R
f(x− y)|g(y)|pdy

) 1
p

∣∣∣∣∣
p

dx

=

ˆ
R

ˆ
R
f(x− y)|g(y)|pdx = ∥g∥pp.

We may finally conclude that f ∗ g ∈ LR(p) and ∥f ∗ g∥p ≤ ∥f∥1∥g∥p ≤ ∥g∥p, as required.

We are now ready to discuss the main result of this appendix:

Theorem A.2.2 (Density of Sum of Uniform Random Variables). Let Xi ∼Uni[0, 1] i.i.d. for
i = 1, . . . , n. Then the density of

∑n
i=1 Xi is given by

f∑n
i=1 Xi

(x) =
1

(n− 1)!

n−1∑
k=0

(−1)k
(
n

k

)
(x− k)n−11{x ∈ [k, n]}. (A.2.2)

Proof. We will prove Equation (A.2.2) using induction.

base Consider that
∑1

i=1 Xi = X1, so that

f∑1
i=1 Xi

(x) = fX(x) = 1{x ∈ [0, 1]},
the density of a random variable uniformly distributed on [0, 1]. We next note that

1

(n− 1)!

n−1∑
k=0

(−1)k
(
n

k

)
(x− k)n−11{x ∈ [k, n]}

∣∣∣∣∣
n=1

=
1

0!

0∑
k=0

(−1)k
(
1

k

)
(x− k)01{x ∈ [k, 1]}

= 1{x ∈ [0, 1]},
so that indeed Equation (A.2.2) holds for n = 1.

step Suppose that there is some N ∈ N such that Equation (A.2.2) holds for n = 1, . . . , N . Then,
consider that by the Law of Total Probability

f∑N+1
i=1 Xi

(x) =
d

dx
P

(
N+1∑
i=1

Xi ≤ x

)
=

d

dx

ˆ ∞

−∞
P

(
N+1∑
i=1

Xi ≤ x

∣∣∣∣∣XN+1 = y

)
fX(y)dy

=
d

dx

ˆ ∞

−∞
P

(
N∑
i=1

Xi ≤ x− y

)
fX(y)dy

(I)
=

ˆ ∞

−∞

d

dx
P

(
N∑
i=1

Xi ≤ x− y

)
fX(y)dy

=

ˆ ∞

−∞
f∑N

i=1 Xi
(x− y)fX(y)dy = (f∑N

i=1 Xi
∗ fX)(x).
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Note that P
(∑N

i=1 Xi ≤ ·
)

∈ L∞(R) and fX ∈ L1(R), so that the integral on the left of (I) is
convergent by Hölder’s inequality, while f∑N

i=1 Xi
∈ L1(R), so that the convolution on the right (I)

is convergent by Lemma A.2.1. Since differentiation d
dx is a closed operator1, it then follows that

we are able to exchange integration and differentiation in (I)2.

By assumption we know that

f∑N
i=1 Xi

(x) =
1

(N − 1)!

N−1∑
k=0

(−1)k
(
N

k

)
(x− k)N−11{x ∈ [k,N ]},

and fX(x) = 1{x ∈ [0, 1]}, so that

f∑N+1
i=1 Xi

(x) = (f∑N
i=1 Xi

∗ fX)(x) =

ˆ ∞

−∞
f∑N

i=1 Xi
(x− y)fX(y)dy

=
1

(N − 1)!

N−1∑
k=0

(−1)k
(
N

k

)ˆ ∞

−∞
(x− y − k)N−11{x− y ∈ [k,N ]}1{y ∈ [0, 1]}dy

=
1

(N − 1)!

N−1∑
k=0

(−1)k
(
N

k

)ˆ 1

0

(x− y − k)N−11{x− y ∈ [k,N ]}dy.

We next consider the above integral for a fixed k ∈ {0, . . . , N}. We substitute u = x − y, to see
that
ˆ 1

0

(x− y − k)N−11{x− y ∈ [k,N ]}dy = −
ˆ x−1

x

(u− k)N−11{u ∈ [k,N ]}du

=

ˆ x

x−1

(u− k)N−11{u ∈ [k,N ]}du

=

ˆ min {x,N}

max{x−1,k}
(u− k)N−1du

=
1

N



0, x < k,

(x− k)N , k ≤ x < k + 1

(x− k)N − (x− (k + 1))N , k + 1 ≤ x < N

(N − k)N − (x− (k + 1))N , N ≤ x ≤ N + 1

0, x > N + 1.

Now, let k′ ∈ {0, . . . , N − 1}, and x ∈ [k′, k′ + 1). Then we may find that

f∑N+1
i=1 Xi

(x) =
1

N !

(−1)k
′
(
N

k′

)
(x− k′)N +

k′−1∑
k=0

(−1)k
(
N

k

)(
(x− k)N − (x− (k + 1))N

).

1on the Sobolev space H1 [83, Ex. 8.29].
2as a consequence of [83, Lem. 8.26], since the integral may be seen as the limit of a sequence.
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Note that

k′−1∑
k=0

(−1)k
(
N

k

)(
(x− k)N − (x− (k + 1))N

)
=

k′−1∑
k=0

(−1)k
(
N

k

)
(x− k)N

−
k′−1∑
k=0

(−1)k
(
N

k

)
(x− (k + 1))N

=

k′−1∑
k=0

(−1)k
(
N

k

)
(x− k)N

+

k′∑
k=1

(−1)k
(

N

k − 1

)
(x− k)N

= xN +

k′−1∑
k=1

(−1)k
((

N

k

)
+

(
N

k − 1

))
(x− k)N

+ (−1)k
′
(

N

k′ − 1

)
(k′ − k)N ,

and (
N

k − 1

)
=

N !

(k − 1)!(N − k + 1)!
=

kN !

k!(N − k)!(N − k + 1)
=

(
N

k

)
k

N − k + 1
,(

N

k − 1

)
+

(
N

k

)
=

(
N

k

)
N + 1

N − k + 1
=

(
N + 1

k

)
,

so that

k′−1∑
k=0

(−1)k
(
N

k

)(
(x− k)N − (x− (k + 1))N

)
= xN +

k′−1∑
k=1

(−1)k
(
N

k

)
N + 1

N − k + 1
(x− k)N

+ (−1)k
′
(

N

k′ − 1

)
(k′ − k)N

=

k′−1∑
k=0

(−1)k
(
N + 1

k

)
(x− k)N

+ (−1)k
′
(

N

k′ − 1

)
(k′ − k)N .

Similarly,

(−1)k
′
(
N

k′

)
(x− k′)N + (−1)k

′
(

N

k′ − 1

)
(k′ − k)N = (−1)k

′
(
N + 1

k′

)
(x− k′)N

We can plug this into our expression for the density to find that

f∑N+1
i=1 Xi

(x) =
1

N !

k′∑
k=0

(−1)k
(
N + 1

k

)
(x− k)N

=
1

N !

N∑
k=0

(−1)k
(
N + 1

k

)
(x− k)N1{x ∈ [k,N + 1]},

so that Equation (A.2.2) holds also for n = N + 1.

We may finally conclude by induction that Equation (A.2.2) holds for n ∈ N, as required.

To find the density of a sum of Uni[−1, 1], we can use the following approach. Let Xi ∼Uni[−1, 1]
i.i.d. for i = 1, . . . , n, and define X̃i =

Xi+1
2 , so that X̃i ∼Uni[0, 1] i.i.d. for i = 1, . . . , n. We can use
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Theorem A.2.2 to compute the density f∑n
i=1 X̃i

; from this we may find the density of
∑n

i=1 Xi as

f∑n
i=1 Xi

(x) =
d

dx
P

(
n∑

i=1

Xi ≤ x

)
=

d

dx
P

(
n∑

i=1

(2X̃i − 1) ≤ x

)

=
d

dx
P

(
n∑

i=1

X̃i ≤
x+ n

2

)
=

1

2
f∑n

i=1 X̃i

(
x+ n

2

)
.

A.3 Exponential Splitting
In Subsection 4.2.1, we want to setup rate equations to describe how the number of vitrimer bonds across
the healing interface changes over time. For this, we need to know how to properly combine the rates of
a number of different species. Hence, in this appendix we will discuss a nice property of the exponential
distribution, which we will call the ‘exponential splitting property’, since it is somewhat related to the
splitting of Poisson processes.

The splitting property is made possible by the memorylessness of the exponential distribution. We will
therefore now discuss what the memoryless property is, and prove that the exponential distribution is
indeed the only possible distribution for a positive continuous random variable with the memoryless
property.

Definition A.3.1 (Memoryless Continuous Distribution). Let T be a continuous random variable.
Then, we say that T is memoryless if for all t ∈ suppT and s > 0 with t+ s ∈ suppT we have that
[33, p. 140]

P(T > t+ s |T > t) = P(T > s). (A.3.1)

It is not so hard to see that a distribution with the memoryless property will have a constant hazard
function, as

P(T > t+ s |T > t) = P(T > s) =⇒ lim
s↓0

1

s
P(T ≤ t+ s |T > t)︸ ︷︷ ︸

=λ(t)

= lim
s↓0

1

s
P(T ≤ s)︸ ︷︷ ︸
=f(0)

,

by the definition of the hazard function (Equation (2.1.8)). It turns out that the converse is also true:
every distribution with constant hazard function is memoryless. Moreover, we can show that the
exponential distribution is the only memoryless lifetime distribution.

Lemma A.3.2 (Exponential Only Memoryless Positive Continuous Distribution). Let T be a
continuous random variable with the memoryless property and suppT = (0,∞). Then T must be
exponentially distributed, i.e. there exists a τ > 0 such that T ∼Exp(τ).

Proof. Let T be a continuous random variable with the memoryless property and suppT = (0,∞).
Furthermore, let t ∈ (0,∞) and s > 0. We can now apply the definition of conditional probabilities [79,
Def. 1.4.(1)] to see that

P(T > t+ s |T > t) :=
P(T > t+ s ∩ T > t)

P(T > t)
.

Then, Definition A.3.1 tells us that

P(T > t+ s ∩ T > t)

P(T > t)
= P(T > s), so that P(T > t+ s ∩ T > t) = P(T > t+ s)P(T > t).

Now, choose p
q ∈ Q>0, where without loss of generality p, q ∈ N. Then, we may apply the result above p

times to find

P
(
T >

p

q

)
= P

(
T >

p∑
i=1

1

q

)
=

p∏
i=1

P
(
T >

1

q

)
= P

(
T >

1

q

)p

,
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and note furthermore,

P(T > 1) = P

(
T >

q∑
i=1

1

q

)
= P

(
T >

1

q

)q

, so that P
(
T >

1

q

)
= P(T > 1)

1
q .

Consequently, it holds that

P
(
T >

p

q

)
=
(
P(T > 1)

1
q

)p
= P(T > 1)

p
q . (A.3.2)

Since T is a continuous random variable by assumption, we know that P(T > x) is a continuous function
of x on (0,∞). As moreover Equation (A.3.2) holds for any arbitrary p

q ∈ Q>0, and Q>0 is dense in
R>0 = (0,∞) [84, p. 46], we may conclude that in fact Equation (A.3.2) holds on all of (0,∞), i.e.

P(T > x) = P(T > 1)
x for all x ∈ (0,∞).

Now, consider that necessarily P(T > 1) > 0, as suppT = (0,∞), so that

P(T > 1)
x
= exp(log(P(T > 1))x).

Hence, it holds that the Cumulative Distribution Function (CDF) of T is given by

FT (x) := P(T ≤ x) = 1− P(T > x) = 1− exp(log(P(T > 1))x) for all x ∈ (0,∞).

We can now identify that FT is the CDF of an exponential random variable with parameter
τ = − log(P(T > 1))−1 ∈ (0,∞) [33, p. 95], as required.

We can now finally get to the main result of this appendix: the exponential splitting property.

Theorem A.3.3 (Exponential Splitting). Let N ∈ N, let {Ti}Ni=1 i.i.d. exponentially distributed.
Suppose we have {ti}Ni=1 such that we know that Ti ≥ ti for i = 1, . . . , N . Then,

P
(
argmin
i=1,...,N

{Ti − ti}Ni=1 = 1

∣∣∣∣Ti ≥ ti, i = 1, . . . , N

)
=

1

N
. (A.3.3)

Proof. Fix i ∈ {1, . . . , N}. Then, we can see for t > 0 that

P(Ti − ti < t |Ti ≥ ti) = P(Ti < t+ ti |Ti ≥ ti).

By Lemma A.3.2 we know that the exponential distribution is memoryless, so that

P(Ti < t+ ti |Ti ≥ ti) = P(Ti < t).

Hence, if we define Ui := Ti − ti |Ti ≥ ti for i = 1, . . . , N , we can see that

P(Ui < t) = P(Ti < t).

Consequently, we may find that

P
(
argmin
i=1,...,N

{Ti − ti}Ni=1 = 1

∣∣∣∣Ti ≥ ti, i = 1, . . . , N

)
= P

(
argmin
i=1,...,N

{Ui}Ni=1 = 1

)
.

Since {Ui}Ni=1 i.i.d., we can conclude that each i is equally likely to minimise Ui. Since {Ui}Ni=1 contains
N i.i.d. copies, we can then conclude that

P
(
argmin
i=1,...,N

{Ui}Ni=1 = 1

)
=

1

N
,

as required.

We may apply Theorem A.3.3 in the following way: we fix some time t > 0. Then, we know that we
have N0 vitrimer bonds, which have each last swapped some known time ago. The time between two
successive swaps of a bond is i.i.d. for all bonds. Hence, we can conclude that each bond is equally likely
to be the next to swap after time t; each bond has a probability of N0 of being the ‘chosen one’.
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Glossary
doing property that swap does not undo the previous swap, so that the new partner is not the same as

the one before last.. 24, 27, 28, 30–37, 51, 52

healing interface interface between two pieces of vitrimeric material across which healing can take
place. 23, 24, 37–43, 45–48, 52, 63

HOOMD-blue particle simulation tool [61]. 17, 19–22

memoryless property that distribution of random variable has no memory, see Definition A.3.1. 63, 64

moiety part of a molecule. 5, 6, 14, 19, 22, 24–40, 45, 49, 52, 53

OVITO Open VIsualization TOol, software for visualising molecular simulations [26]. 6, 14, 15

self-healing property of material that can autonomously recover mechanical properties after damage.
1, 3, 4, 12, 14, 15, 17, 23, 24, 27, 30, 31, 40, 42, 43, 45, 48, 49, 51–53

thermoplastic polymer material held together by weak intramolecular forces. 3, 4

thermoset polymer material held together by irreversible crosslinks. 3, 4

undoing property that swap undoes the previous swap, so that the new partner is the same as the one
before last.. 24, 27, 28, 30–37, 51, 52

vitrimer polymer material with exchangeable crosslinks. 1, 4–6, 12–17, 19, 21–25, 27–30, 32–37, 40,
43–53, 63, 64

Acronyms
NVE Number, Volume, Energy. 20, 22, 23

NVT Number, Volume, Temperature. 21–23

a.e. almost everywhere. 59, 60

CAN Covalent Adaptive Network. 4, 24, 31, 51

CDF Cumulative Distribution Function. 64

DAM Defect-Allowing Mixture. 14, 15, 22

DFM Defect-Free Mixture. 14

EU European Union. 1, 3

FENE Finitely Extensible Nonlinear Elastic. 17
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GLJ Generalised Lennard-Jones. 19

i.i.d. independent and identically distributed. 7, 38, 60, 62, 64

KDE Kernel Density Estimator. 8, 10, 32–35, 37, 46, 51

KHE Kernel Hazard Estimator. 10, 35–37, 51

KM Kaplan-Meier. 7, 8, 10–12, 25, 32, 33

LJ Lennard-Jones. 18, 19, 22, 23

LOOCV Leave-One-Out Cross-Validation. 9, 52

MC Monte Carlo. 16, 19, 25, 36, 38

MD Molecular Dynamics. 1, 16, 17, 19, 20, 22, 25, 32, 36, 43

NA Nelson-Aalen. 10

PDF Probability Density Function. 7–10, 34, 46, 51, 59

RevCross Reversible Crosslinks. 19, 22, 23, 25, 50

w.p. with probability. 39

WCA Weeks-Chandler-Andersen. 18, 19
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