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Summary

This thesis focuses on the study of electronic excitations in complex disordered
materials. The primary objectives include the development of a multi-scale mod-
eling approach that combines classical and quantum mechanics to accurately de-
scribe electronic excitations, the exploration of specific materials with intriguing
characteristics to validate the computational methods, and the advancement of
theoretical and computational tools for studying electronic excitations in mater-
ials. The theoretical background is presented, covering quantum mechanics, the
many-electron problem, and mean-field theories like Hartree-Fock and Density
Functional Theory. Furthermore, this work provides an introduction to Green’s
Functions and the theoretical discussion on ab-initio methods (GW -BSE) for com-
puting excited state properties. Description of the multiscale approach involving
classical-quantum embedding (QM/MM) is described. Implementation within
localized basis-expansion methods and their application in computational tools
like VOTCA-XTP is also explained extensively in the thesis. Various results
are presented, where the computational methods are used to interpret experi-
mental spectroscopy data and study the dynamic interactions between localized
and charge-transfer excitations in solar cell materials. The thesis concludes with
a summary of the contributions and implications of the research.
In summary, this thesis provides valuable insights into electronic excitations in
complex materials and presents innovative computational methods for studying
these phenomena. The research and the developed methodologies advance the
understanding of material properties alongside their quantitative estimation. It
paves the way for new methodologies that might be of help for new applications
in opto-electronic devices and energy-efficient materials.
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Preliminaries

In this thesis atomic units are used in all equations unless stated otherwise. Fre-
quently used constants are set equal to one: me = ~ = e = c = 4πε0 = 1. The
constants are the mass of an electron me, the elementary charge e, which is the
charge of a proton or the absolute of the charge of an electron, the reduced Planck
constant ~, that connects the frequency of a photon to its energy, and the in-
verse Coulomb constant 4πε0. To clarify the dimensions of certain quantities the
constants can be reintroduced later.
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“What do we mean by ‘understanding’ something? We can imagine
that this complicated array of moving things which constitutes ‘the
world’ is something like a great chess game being played by the gods,
and we are observers of the game. We do not know what the rules
of the game are; all we are allowed to do is to watch the playing. Of
course, if we watch long enough, we may eventually catch on to a few
of the rules. The rules of the game are what we mean by fundamental
physics. Even if we knew every rule, however, we might not be able
to understand why a particular move is made in the game, merely
because it is too complicated and our minds are limited. If you play
chess you must know that it is easy to learn all the rules, and yet it is
often very hard to select the best move or to understand why a player
moves as he does. So it is in nature, only much more so; but we may
be able at least to find all the rules. Actually, we do not have all the
rules now. (Every once in a while something like castling is going on
that we still do not understand.) Aside from not knowing all of the
rules, what we really can explain in terms of those rules is very limited,
because almost all situations are so enormously complicated that we
cannot follow the plays of the game using the rules, much less tell
what is going to happen next. We must, therefore, limit ourselves to
the more basic question of the rules of the game. If we know the rules,
we consider that we ‘understand’ the world” - Richard Feynman [1]
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Chapter 1

Introduction

1.1 Electronic excitations in materials

When an incident photon is absorbed by a material, an electron is excited from the
valence to the conduction band and leaves behind a positively charged vacancy,
a hole. The attractive Coulomb interaction between the excited electron and the
hole binds them together to form a bound neutral compound system of the two
charge carriers, reminiscent of a hydrogen atom. This coupled excited electron-
hole pair is called an exciton. An exciton can also be formed by different processes,
e.g., from the injection of free electrons and holes into the material. Excitons play
a pivotal role in many different phenomena in materials. They determine their
optical properties, such as absorption but also emission via fluorescence or phos-
phorescence [2]. Strongly or weakly coupled electron-hole pairs are not only static
objects: they can diffuse through a material, thereby transporting energy with
zero net charge [3, 4, 5]. Excitons can also play a role in chemical reactions [6], be
intermediates to the generation of free charges in devices [7], and drive biological
processes [8], such as photosynthesis. The initial step in these processes of provid-
ing chemical energy for plants, algae, and bacteria involves the capture of energy
from sunlight. Specialized pigment-protein complexes, called light-harvesting an-
tenna complexes, consist of light-absorbing chromophores, typically attached to a
protein structure that holds them in place. Before the molecule can relax, the elec-
tronic excitation must be harvested. That is, the excitation is transferred through
space among the chromophores until it eventually reaches a reaction center where
it initiates charge separation.

1



1.1. ELECTRONIC EXCITATIONS IN MATERIALS

Technological applications often exploit the static and dynamic properties of ex-
citons in a similar fashion. Considerable effort is directed at designing either pure
or composite materials with target properties to enhance device characteristics,
such as optimizing the color of emitted light and increasing stability in organic
light-emitting diodes (OLEDs) [9, 10, 11], or boosting the power conversion effi-
ciency in solar cells, to name only a few. A rational design of materials fulfilling
these goals relies on the understanding of how the excitonic properties are related
to material attributes, e.g., composition, chemical bonding, structural order, etc.

Beside the neutral excitations formed by the electron-hole pair, charged excita-
tions can arise when excited electrons interact with the surrounding medium. For
example, in OLEDs, charged excitations play a crucial role in the process of light
emission. To optimize light emission and efficiency, OLEDs typically consist of
multiple layers, including an emissive layer where the exciton formation and radi-
ative recombination occur. The layers can include charge transport layers, which
facilitate the movement of electrons and holes to the emissive layer, as well as
electrode layers to apply the necessary voltage. When a voltage is applied across
the OLED structure, an electric current flows through the device. This current
causes electrons to move from a lower-energy level (called the highest occupied
molecular orbital or HOMO) to a higher-energy level (lowest unoccupied molecu-
lar orbital or LUMO) in the organic material. This excited state can be intuitively
interpreted by looking at the difference with the initial configuration, known as
ground-state. In this picture, promotion of an electron to higher energy state
can be described as an electron-like excitation, lacking of electrons in a lower en-
ergy state as a hole-like excitation whereas the Coulomb interaction between these
two charged excitations is the aforementioned exciton. The interplay of the ex-
cited electrons and the surrounding is thus embedded in the charged excitation
properties. Alongside their application in opto-electronic devices (e.g., charge car-
rier diffusion or extraction, more on this later), charged single-particle excitations
measured in photoelectron spectroscopy (PS). In PS, electrons are ejected from a
material upon irradiation with light (technical details explained in later sections,
see Section 3.1, Section 5 and Section 6). Which electronic states are probed ex-
actly, depends on the wavelength of the incident radiation. The most common
ones use ultraviolet light (UPS) for valence states or X-rays (XPS) for core-level
states. These experiments can help to reconstruct the energy profile of occupied
states. An important quantity probed with this experiment is the first Ionization
Potential (IP), defined as the energy needed to remove an electron from a bound
state in a neutral sample. A complementary technique, known as inverse photo-
electron spectroscopy, where an incident electron is scattered towards a sample,

2



1.1. ELECTRONIC EXCITATIONS IN MATERIALS

Figure 1.1: Energy diagram of useful quantities in the area of organic semi-
conductors: Eopt is the energy of the first exciton state. Egap is the differ-
ence between the Ionization Potential (IP) and the Electron Affinity (EA).
The difference between Egap and Eopt is the exciton binding energy, Eexc,b.

help deducing the spectrum of unoccupied states. In particular, the Electron Af-
finity (EA), defined as the energy needed to detach an electron from a negatively
charged molecule, is often probed with this technique. Summarizing these different
excitation energies, as it is often done in opto-electronic devices, it is interesting
to look at a single molecule energy diagram depicted in Figure 1.1.
The nature of the excited electronic states is of great interest as it is directly
related to processes such as light absorption and emission, photoconductivity, and
electroluminescence. Among all the possible key parameters describing the physics
of electronic devices such as OLEDs and OPVs, the exciton binding energy plays
a pivotal role (as described later in Section 6). Exciton binding energy is defined
as

Eexc,b = Egap − Eopt = IP− EA− Eopt, (1.1)

with Egap being the HOMO-LUMO (or IP-EA) transport gap and Eopt the optical

3



1.1. ELECTRONIC EXCITATIONS IN MATERIALS

gap. The optical gap can be seen as the energy threshold for photons to be
absorbed (or the energy of the first excitonic state), while the transport gap is the
threshold for creating an electron-hole pair that is not bound together.

The exciton binding energy can be determined only if a correct description and
measurement of both neutral- and charged-excitations is provided. This is sought,
for example, by combining both computational and laboratory experiments. Un-
derstanding the binding properties of excitons in materials and eventually manip-
ulating them could lead to new applications or to better engineering of already-
existing technologies. However, directly or indirectly measuring the required prop-
erties is hard to achieve as physical properties like size, shape, composition and
arrangement of the molecules in materials under investigation strongly influence
the nature and dynamics of the electronic excitation. This makes hard to draw
general conclusions or unique interpretation about the behavior of electronic ex-
citations in different materials. For this reason, ab-initio modeling has become
appealing to infer information about the excited states when experimental inter-
pretation is hindered by above factors. Computational experiments can be seen as
complementary to the experimental ones when in need of quantitative and accurate
predictions.

Beside the interest in understanding the underlying physics governing these ex-
citations, quantitative predictions of properties of the different components that
constitute the device can serve as input to large-scale simulation where the beha-
vior of devices is reproduced (see [12, 13]). These models, used in lieu of experi-
mental setups by researchers and industries, can help speeding up the engineering
and tailoring of new opto-electronic devices. Several parameter-free models have
demonstrated notable success in the prediction of crucial device properties such
as current-voltage characteristics, charge density, and current density distribu-
tion [14, 15, 16]. A simplified example of a multiscale approach, encompassing
both spatial and temporal dimensions, can be discerned in Figure 1.2. Starting
at the molecular level, denoted as step (a) in the figure, pivotal parameters can
be calculated. These parameters encompass the ground-state and excited-state
geometries, polarizabilities, multipoles representation of the molecule, force-field
parameters, reorganization energies, IP, EA, and Eexc,b. These quantities con-
stitute a fundamental basis for subsequent stages of the workflow. In the next
step of the workflow (b), these computed parameters are employed to construct
a microscopic-scale system. This system enables the computation of additional
critical quantities, including the microscopic morphology, site energies, electronic
coupling elements, and transfer rates. Advancing to an elevated scale in step (c),
macroscopic models are employed. These models solve the master equation, allow-

4



1.1. ELECTRONIC EXCITATIONS IN MATERIALS

ing for the determination of excitation mobility and the diffusion tensor. These
quantities provide valuable insights into the transport of excitations within the
system, which is pivotal for understanding charge and energy transfer processes.
Finally, in step (d), the knowledge gained from the previous stages is harnessed to
develop realistic device models. These models are instrumental in assessing and
predicting the device properties mentioned earlier, such as current-voltage char-
acteristics, charge density, and current density distribution. The accuracy of each

S0

S1

T1
Flu.

Phos.

ISC

25% 75%

Anode

Cathode

HTL
EML

ETL

(a) (b) (c) (d)

Single molecule Thin film Device Application

~1 nm ~10 nm ~100 nm ~1 μm

Figure 1.2: Example of multiscale workflow for parameter-less computation
of macroscopic properties (a), passing through microscopic models (b) and
macroscopic

step affects the goodness of estimate of the next one. Uncertainties trickle up to
the next step in the workflow affecting the predictive power. For example, it has
been shown [17] that the exciton binding energy must be known accurately when
performing OLED simulations (equivalent of step (c) mentioned before) of the ef-
ficiency and its roll-off, which are highly sensitive to the input value for exciton
binding energy use. Anticipating one of the objective of this thesis, estimate of the
input parameters of macroscopic models, must not overlook where a molecule is
in the system (bulk or surface) and its environment (i.e., distribution of surround-
ing molecules). Furthermore, accurate and correct methods must be employed to
reduce uncertainties. This thesis aims at providing a reliable framework where in-
puts for macroscopic models can be computed with high accuracy at a reasonable
computational cost.

5



1.2. MATERIALS AND EXCITONS CHARACTERISTICS

1.2 Relation between materials properties and
characteristics of electronic excitations

Details of the static and dynamic properties of electronic excitations depend on
the material in which they form. Materials are in broad terms classified as either
inorganic or organic as they differ in their chemical bonding and electronic charac-
teristics. Focusing on excitons as an example, we illustrate the different materials
and types of excitons schematically in Figure 1.3. Inorganic materials are often
well-ordered systems with atoms arranged in regular crystal structures, with either
covalent or ionic bonds. As a result, they are structurally rigid and allow very little
room for modifications. Traditional inorganic semiconductors such as silicon, ger-
manium, and Gallium arsenide (GaAs) have low band gaps (0.67 eV, 1.11 eV, and
1.43 eV respectively [18]). The dielectric constant in these materials can be large
(εr > 10 ) so that Coulomb effects between electrons and holes are small due
to dielectric screening, with exciton binding energies of only several meV. The
excitonic wave function typically extends over several lattice spacings, as indic-
ated in Figure 1.3(a). This is known as a Wannier–Mott exciton [19]. For larger
bandgap and/or lower dielectric constant, the screening effects become smaller,
the exciton binding energy increases to the order of 0.1-1 eV as the excitonic wave
function becomes more localized in space, e.g., in alkali halide crystals. Typic-
ally, such small-radius excitons are referred to as Frenkel excitons [20]. It should
be noted, however, that in many situations, the distinction between Wannier–
Mott and Frenkel excitons, or Frenkel excitons of different localization lengths,
is not sharp, in particular in disordered materials without any clear lattice spa-
cing. Organic materials are formed from molecular building blocks and can host
Frenkel excitons of vastly varying localization character [21]. While the intra-
molecular bonding is determined by covalent and ionic interactions, weak cohesive
electrostatic and van-der-Waals interactions are responsible for the inter-molecular
structure formation. As a result, there is in general a plethora of different material
structures, ranging from well-ordered organic crystals (mostly at low temperature)
to statically and/or thermally disordered structures with varying dimensionality.
Often, there are even multiple phases present in the same organic material or
material composite as technologically relevant materials are often created from
solution processing [22, 23]. Organic materials combine chemical and mechan-
ical benefits of organic compounds, such as tailoring of electronic properties by a
modification by chemical synthesis, their light-weight, and flexibility with peculiar
properties of semiconductor materials, e.g., the absorption/emission of light in the
visible spectral range and conductivity that is sufficient for the operation of devices

6



1.2. MATERIALS AND EXCITONS CHARACTERISTICS

(a) (b)(b)

(d)(d)(d)(c)

Figure 1.3: Illustration of different kind of excitons in different materials:
(a) Small and large circles indicate the positions of atoms on a regular lattice
as, e.g., in an MgO bulk crystal, and blue and red show the extension of a
weakly bound Wannier–Mott exciton, typical for inorganic semiconductors.
(b) Highly ordered molecular crystal structure where each oval represents
a molecular unit. The exciton is delocalized over several molecules due
to strong inter-molecular excitonic coupling. (c) Disordered (amorphous)
molecular material, with Frenkel excitons strongly localized on single mo-
lecules. (d) Interface of a donor-acceptor heterostructure of two disordered
molecular materials with bimolecular charge-transfer excitons.

such as light-emitting diodes (LEDs), solar cells, and field-effect-transistors. As
a consequence of the intrinsically weak inter-molecular interactions and resulting

7



1.2. MATERIALS AND EXCITONS CHARACTERISTICS

disorder, electronic states are typically localized on one or several molecular build-
ing blocks, leading to low values of the dielectric constant usually in the region
of εr = 3 − 4 . In Solar cells and OLEDs, absorption and emission take place
mostly in the range of 2 − 3 eV, hindering any significant charge-carrier concen-
tration by thermal excitation at room temperature. As mentioned above, the low
dielectric constant implies large exciton binding energies and small exciton radii.
How small depends on the structural details of the material. Figure 1.3(b) schem-
atically depicts a highly ordered molecular crystal. Tight and regular packing
motifs can lead to high π-orbital overlap and strong excitonic coupling between
the molecules and as a result, the exciton can extend over several units. With
increasing disorder in the system as depicted in Figure 1.3(c), the inter-molecular
coupling is weak, and typically single-molecule Frenkel excitons can be observed.
In multicomponent materials, as shown in Figure 1.3(d), one can often find an-
other type of exciton that extends over two molecules. Unlike an extended Frenkel
exciton in ordered organic morphologies as in Figure 1.3(b), where both electron
and hole part delocalize similarly over the molecular building blocks, the so-called
charge-transfer (CT) exciton [21] is characterized by separation of the two charges
on donor and acceptor parts. Due to the increased distance between electron and
hole, the exciton binding energy is reduced compared to the Frenkel excitons in the
bulk phase. As we will discuss in Section 1.3, the details of the conversion process
between localized Frenkel and these bi-molecular CT excitons is a significant step,
e.g., in the generation of free charges in organic solar cells. We emphasize that
the above distinction between inorganic and organic materials, as well as between
Wannier–Mott, Frenkel, and charge-transfer excitons is simplified for the sake of
a compact presentation and therefore far from exhaustive. In fact, there are many
examples of materials with mixed characteristics. These include perovskites or
perovskite-like structures with embedded molecules, such as CH3NH3PbX3 with
X= I, Br, Cl, in which a CH3NH+

3 is surrounded by PbX6 octahedra [24]. Other
examples are organic-inorganic hybrids like metal or semiconductor nanoparticles
functionalized by organic ligands, or dye-sensitized solar cell materials (e.g., TiO2

with perylene-based dyes [25]). Furthermore, in soft conjugated polymers, elec-
tronic states and thereby also excitons can be subject to changes in localization due
to dynamical or static variations in conformations of the π-conjugated backbone,
such as torsion angles between repeat units [26, 27, 28].
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Figure 1.4: Examples for two applications driven by excitons in organic
heterostructures: (a) Layer schematics of an organic light-emitting diode
(OLED). Holes (electrons) are injected from the anode (cathode) in hole
(electron) transport layers (HTL/ETL) 1○, and drift-diffuse into the emis-
sion layer (EML) 2○. There they form an exciton on one of the emitter
molecules 3○, which can emit light either by fluorescence of phosphorescence
depending on the mechanism. (b) Illustration of the cascade of processes in
charge generation at the donor-acceptor interface in an organic photovoltaic
cell. Upon excitation by light, a strongly bound Frenkel exciton is formed
in the donor phase, which then needs to diffuse toward the interface, where
it converts into an intermediate bi-molecular charge transfer exciton. From
here separated charges can drift-diffuse to the electrodes.

1.3 Role of electronic excitations in devices

The nature of the different electronic excitations as determined from material
properties also has immediate consequences for dynamical processes involving the
electron-hole pairs, and their exploitation in device applications [29]. While the
binding energy of Wannier–Mott excitons in, e.g., silicon is comparable to the
thermal energy, and it is hence possible to generate free charge carriers after photon
absorption in silicon solar cells, more complex processes need to be considered in
disordered, organic materials. Figure 1.4 illustrates two examples for the vital
role involving both single-particle excitations and excitons play in opto-electronic
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device applications based on organic heterostructures: organic light-emitting di-
odes (OLEDs, Figure 1.4(a)) and organic solar cells (Figure 1.4(b)). An OLED
device typically consists of several layers, each of which contributes a specific task
to the overall device functionality. The schematic in Figure 1.4(a) shows a simple
case, in which an emission layer is sandwiched between hole and electron trans-
porting layers, respectively, both contacted to electrodes. The electronic processes
needed for actual light emission to occur comprise injection of charge carriers from
the electrodes into the transport layers, their drift-diffusion through the trans-
port into the emission layer. Careful tuning of electron and hole transport level,
as well as the energies of singlet and triplet excitons is required to ensure that
the excitons are formed, and they efficiently emit light via fluorescence or phos-
phorescence. Significant effort is currently directed at optimizing materials for
thermally activated delayed fluorescence, a process in which a molecule is ini-
tially in a non-emitting excited state before thermal energy of the surrounding
allows it to change to an emissive state, or exciplex emission, i.e., emission from
a bi-molecular charge-transfer exciton. The active layer of an organic solar cell is
usually a mix of donor and acceptor materials, and the interface between them,
as depicted in Figure 1.4(b), plays a prominent role in the charge generation pro-
cess. As mentioned before, the excitons created upon light absorption in either of
the two layers are strongly bound with an exciton binding energy on the order of
several tens of eV. Thermal energy alone is therefore not sufficient to separate the
excited electron and hole. Instead, the Frenkel excitons diffuse towards the inter-
face at which they can, ideally, undergo a conversion process to a bi-molecular CT
exciton with reduced binding energy. This conversion combined with electrostatic
energy profiles near the interface, eventually allow the charges to separate and to
transfer through the bulk material to the electrodes. In both application examples,
the device functionality is directly linked to the static (absorption/emission, re-
combination) or dynamic (diffusion, conversion, separation) processes involving
electronic excitations of various types. Also in more general cases, optimizing the
device performance therefore targets to a significant extent the design of materials
and material combinations with tailored and well-controlled electronic properties.

1.4 Multi-scale modelling approach at microscopic
scale

Controlled use of electronic excitations within materials has paved the way for tech-
nological advancements, from the design of cutting-edge opto-electronic devices to
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the development of energy-efficient materials. A comprehensive understanding of
electronic excitations is hence required for harnessing the full potential of materials.
As mentioned above, modeling can be a very powerful tool in this rational design
of materials. At the microscopic scale, electron-electron correlations and localized
excitations influence the fundamental electronic structure and energy levels of the
material. Ab initio methods ideally provide some insight into these quantum-level
processes without any experimental input. Different theories and computational
methods are available nowadays, each with its pros, cons and range of suitable
application cases. However, as materials grow in complexity, encompassing thou-
sands or millions of atoms, and real-world conditions arise, the computational
burden of simulating such systems with high accuracy becomes overwhelming.

Macroscopic phenomena including optical absorption, luminescence, electrical con-
ductivity, and other bulk or surface material properties cannot be captured with
microscale models alone because of the interplay of numerous interactions across
large length and time scales. As a consequence, the study of electronic excita-
tions in complex disordered systems remains a challenge for ab-initio computa-
tional methods. A solution towards a methodology that bridges the gap between
microscopic and macroscopic realms, unlocking new insights into electron excit-
ations with materials, is thus required. In the specific, an important realization
revolved around the fact that electronic excitations strongly localize on single mo-
lecules (or a limited number of molecules) due to the disorder of the large-scale
morphology, and thus the interaction of this active exciton with the surrounding
can be described with lower-level (i.e, less expensive) methods. Multiscale mod-
elling has provided a mitigating solution to this conundrum, offering a coherent
framework to reconcile the microscopic and macroscopic perspectives. By com-
bining different quantum mechanical approaches (with different levels of accuracy
and computational costs) or quantum mechanical approaches with classical and
semi-classical methods, multiscale modelling enables the exploration of electron
excitations across a wide range of length and time scales.

Various strategies have been proposed throughout the years to split the system into
an ‘active’ portion of space, where the highest desired level of Quantum Mechan-
ical (QM) treatment is performed, and an ‘environmental’ surrounding medium
(a solvent, a metallic nanoparticle, a disordered (polymeric phase), etc.) that is
considered at a lower level of theory. This lower level can be either a simplified QM
model (QM/QM’) (Dvorak et al. [30] explored embedding of wave function theor-
ies with Green’s functions as Manby et al. [31] proposed a generalized and flexible
QM-in-QM embedding scheme used to explore excited states [32, 33]), a molecular
mechanics (MM) approach (QM/MM) [34, 35, 36, 37], or a continuum model [38]
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representing the environment as a structure-less material having realistic macro-
scopic dielectric properties. The combination of high-level quantum mechanical
calculations and accurate MM electrostatics enables the study of complex sys-
tems where electronic excitations and solvent effects are critical. What set the
QM/MM method apart is its ability to provide accurate descriptions of electronic
excitations, account for complex interactions with the environment, and balance
computational efficiency and accuracy. This makes it well-suited for investigat-
ing systems with challenging electronic structures, solvent effects, and intricate
molecular arrangements, ultimately leading to a deeper understanding of a wide
range of chemical and biochemical processes. Nevertheless, challenges and limit-
ations stay and different approaches must be tailored to answer specific scientific
objectives.

One of the objective of this thesis is the potential for predictive insights with
a reasonable computational cost: the integration of multiple advanced computa-
tional techniques provides a platform for generating predictive insights into various
chemical and physical phenomena. In other words, the aim of this work was not
only understanding qualitatively the dynamics of a process influenced by environ-
mental effects but also the ability to give accurate prediction that can help, for
example, accurate extrapolation of quantity of interest from experimental meas-
urements and provide reliable input quantities to be used in higher scale models
(e.g., kinetic models). Whether it is predicting spectroscopic properties, or mater-
ial behavior, the method proposed in this thesis allows to gain a comprehensive
understanding of complex systems and phenomena keeping the computational cost
on budget.

In this specific work, this objective is sought by combining high-level quantum
mechanical treatment of the active zone by the GW-BSE method (based on the
many-body perturbation theory) with the treatment of the environmental effects
treated via a multipole representation. The GW-BSE method is a sophistic-
ated and computationally intensive approach that goes beyond the limitations
of standard density functional theory (DFT) methods (see Section 2.5 and Sec-
tion 3). It provides a more accurate description of electronic excited states, which
are crucial for studying properties like emission spectroscopy, optical absorption,
charge transfer, and excited-state dynamics. The environment is instead described
via a multipole representation: Molecular mechanics (MM) force fields often use
atom-centered point charges to represent electrostatic interactions. However, these
charges might not adequately capture long-range interactions and polarization ef-
fects. By using a multipole representation, which considers higher-order moments
of charge distributions, more accurate treatment of electrostatics becomes pos-
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sible. This is particularly valuable in cases where electrostatic interactions play
a significant role, such as in studying solvent effects. Furthermore, developing
and implementing an effective QM/MM approach (see Section 4.2) that incorpor-
ates GW-BSE calculations and a multipole MM representation requires innovation
in both theoretical methodologies and computational software. Working on this
integration contribute to the advancement of computational chemistry methods,
expanding the capabilities of the field.

1.5 Thesis objectives and addressed questions

This thesis aims to address the multifaceted challenges in the field of electronic
excitations in complex materials, with three distinct objectives:

1. Method Objective:
The primary methodological objective of this research is to explore the feas-
ibility of combining classical and quantum mechanics to get comprehensive
insights into the behavior of realistic organic materials. Traditional classical
mechanics offers efficient and computationally inexpensive tools for simulat-
ing large-scale systems, while quantum mechanics provides the necessary ac-
curacy to describe the intricate electronic interactions at the atomic/molecu-
lar level. By devising a hybrid approach that seamlessly integrates these two
realms, we seek to develop a powerful framework that can accurately capture
both the macroscopic properties of materials and the microscopic intricacies
of their electronic excitations. Quantum Mechanics/Molecular Mechanics
(QM/MM) simulations are a powerful class of computational methods used
to study complex molecular systems that involve both quantum mechanical
and classical mechanical interactions. The basic idea behind QM/MM is
to treat a part of the system (usually the active region of interest) using
accurate quantum mechanical methods, while treating the remaining part
with a faster and less computationally demanding classical force field. The
use of GW-BSE calculations in the QM region allows for a highly accurate
description of electronic excitations, such as optical transitions and charge
transfer processes. Many traditional methods, including standard DFT,
struggle to provide reliable predictions for these excited states. Thus, the
inclusion of GW-BSE within a QM/MM framework is advantageous when
studying systems where excited-state properties are crucial. The MM treat-
ment should adequately capture long-range interactions and polarization
effects. By using a multipole representation, which considers higher-order
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moments of charge distributions, more accurate treatment of electrostatics
becomes possible. This is particularly valuable in cases where electrostatic
interactions play a significant role. The successful realization of this ob-
jective will improve our ability to study complex materials under realistic
conditions for innovative advancements in material science and device en-
gineering.

2. Material Objective:
Localized and delocalized (in the sense of bi-molecular) electronic excit-
ations are addressed in this thesis. We selectively choose materials that
have already demonstrated intriguing characteristics and properties, making
them an ideal playground to test and validate our computational techniques.
In the specific, for the former type of excitation, we focus on breaking down
the underlying process governing photoelectron spectroscopy measurements
of molecular thin films. As prototypical systems, we study the UPS spec-
trum for thin films of the α and β isomers of 2-methyl-9,10-bis(naphthalen-
2-yl)anthracene (MADN). MADN is a morphologically stable amorphous
wide-gap semiconductor that is used extensively as an ambipolar host ma-
terial in OLEDs containing deep blue fluorescent emitter molecule. The
interest for these materials lies in the fact that the measured spectra for
these two materials show that the peak full width at half maximum is signi-
ficantly smaller than for many other often-used hole transporting and emit-
ting materials in OLEDs. Furthermore, the HOMO state is well-separated
from the deeper levels. The selection of the two isomers enables us to study
the effects of morphology differences and the related effects on energy level
shifts due to the small molecular dipole moments. The success of a quant-
itative reproduction of the HOMO spectrum (UPS) motivate us to invest-
igate the possible application of our technique also for unoccupied state
(IPS) and absorption spectra. For bi-molecular excitations, we study an
amorphous morphology with low-donor content composed of fullerene (C60)
and 5,6,11,12-tetraphenyltetracene (rubrene). Because of the low-donor con-
tent, a C60 cluster will surround the donor molecule, making the interaction
between the single donor molecule with a close shell of neighboring C60 ac-
ceptors representative of the properties of the system as a whole. These
complexes are therefore meaningful candidates for a computational analysis
of the influence of donor-acceptor conformations and environment polar-
ization effects. A GW -BSE based non-adiabatic coupling description has
been employed to produce a rate-based model that describes the conversion
dynamic between localized and charge transfer excitations. These selected
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materials serve as excellent testbeds for our innovative methods, allowing us
to rigorously assess the efficacy and accuracy of our computational models.

3. Theoretical and Computational Objective:
The third objective of this thesis centers on contributing to the field of
computational materials’ science by implementing multi-scale methods and
other innovative techniques into an open-source code. As mentioned be-
fore, computational tools play an increasingly pivotal role in studying elec-
tronic excitations, but their efficacy largely depends on the efficiency and
scalability of the underlying algorithms. By integrating multiscale methods,
such as quantum-mechanical simulations, molecular dynamics, and other
approaches, we aim to create a versatile computational platform that can
accurately model diverse materials and phenomena. Additionally, ensuring
the code’s open-source nature will foster collaboration, transparency, and
wider dissemination of our findings within the scientific community. By
achieving this computational objective, we aim to provide researchers with
an accessible and efficient tool that empowers the exploration of electronic
excitations in materials and accelerates the discovery of new materials with
tailored properties.

These objectives can be summarized into questions that have been addressed
throughout the thesis, namely:

1. How to combine GW-BSE with classical methods, taking into account thin-
film and bulk morphologies?

2. Is it possible to provide quantitative predictions of experimental spectra
(UPS, IPS and Absorption)? Can device models be informed from such
first-principle analyses?

3. Is it possible to compute GW -BSE/MM based non-adiabatic coupling ele-
ments to be used in rate-based model to describe conversion dynamic between
localized and charged transfer excitations?

Multiscale simulation approaches, in which the transport of excitations across
a material is modeled as a series of bi-molecular transfer events, each of them
described by an effective transfer rate.
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1.6 Thesis outline

This work is structured in the following way: In Ch. 2 an overview of the theor-
etical background underlying the work of this thesis is presented. A brief intro-
duction to quantum mechanics and the description of the many-electron problem
is presented. An overview of the most common mean-field theories Hartree-Fock
and Density Functional theory respectively, are illustrated. A short summary
of wavefunction-based methods is also presented. In Ch. 3 a really brief intro-
duction to Green’s Functions including some definitions useful to understand the
theoretical discussion about ab-initio mehtods to compute excited state proper-
ties of materials. In Ch. 4 details of the implementation of the aforementioned
techniques are presented. A broad introduction to localized basis-expansion is
given followed by a detailed description of its implementation in VOTCA-XTP.
It follows an overview of some applications and results using the theory and the
computational methods described in the previous part is presented. Ch. 5 and
Ch. 6 chapters show how ab-initio many-particles theories, with the inclusion of
a classical polarizable embedding and their computational implementations help
bridging the gap with experimental spectroscopy and the underlying physics of
these experiments. Spectroscopy experiments are used to measure quantities like
ionization potential, electron affinity and optical gap. These are useful ingredi-
ents to get another meaningful quantity that cannot be measured directly, like the
exciton binding energies. The computational methods that we developed helped
deconvolving the uncertainty behind the interpretation of experimental spectra,
becoming a useful tool towards a more controlled engineering of opto-electronic
devices. The same theoretical and computational methods are not only useful
in understanding single particle excitations but also two-particles excitations. In
Ch. 7, the dynamic between localized and charge-transfer excitations are studied
for a prototypical solar cell material in which there is a low-donor content, an
ideal experimental setup where to prove the methods described above. Other than
the computation of localized and charge-transfer excitons in a polarizable environ-
ment, non-adiabatic coupling has been studied comparing different diabatization
methodologies providing qualitative and quantitative predictions. A minimal kin-
etic model of the conversion from localized excitation and charge-transfer state
population stability based on Marcus rates is presented. The thesis is wrapped up
in the conlclusion chapter (Ch. 8).
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Chapter 2

Electronic Structure Theory

All models are wrong. Some of
them are useful

George Box

In this chapter an overview of the theoretical background underlying the work of
this thesis is presented. The scope is to give a comprehensive summary to guide
the reader throughout the rest of the thesis, in particular towards the description
of excited state calculation presented in the next chapter. A brief introduction to
quantum mechanics and the description of the many-electron problem is presented.
An overview of the most common mean-field theories, Hartree-Fock and Density
Functional theory respectively, are illustrated. A short summary of wavefunction-
based methods is also presented. In the following the Dirac notation will be used,
whenever comes handy, interchangeably with the real space representation of wave-
functions and operators.

2.1 Quantum Mechanics Theory

2.1.1 Classical Hamiltonian Dynamics

Any real physical system can be reduced, in its essence, to the study of the dynam-
ics of interacting particles. Classically, a system of N particles can be described
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using Hamiltonian mechanics [39]. For the purpose of this work the non-relativistc
Hamiltonian function for a system of N particles is considered.
The time-dependent Hamiltonian depends on the spatial coordinates (q(t)) of the
N particles and their momenta (p(t)). Labeling the mass of the i-th particle with
mi moving in a potential V (q(t), t), the Hamiltonian reads as

H(q(t),p(t), t) =

N∑

i=1

pi(t) · pi(t)
2mi

+ V (q(t), t) (2.1)

with
q(t) = (q1(t), . . . ,qi(t), . . . ,qN (t)),

p(t) = (p1(t), . . . ,pi(t), . . . ,pN (t)).
(2.2)

Eq. (2.1) states that the total energy of the system is given by the sum of the
kinetic contribution and the potential energy. The interplay between these two
contributions is what drives the system over time.
In classical mechanics the state of a system is given by a point (q,p) in the N
dimensional space of coordinates and momenta. Choosing the initial positions and
momenta of a collection of particles allows to describe the evolution of the system
at any given time. q(t) and p(t) evolve following the equations of motion known
as Hamilton’s equations. For a system made of a single particle, the Hamilton’s
equation reads

dqα
dt

=
∂H
∂pα

,

dpα
dt

= − ∂H
∂qα

.

(2.3)

with α a generic component of position and momentum vectors.

2.1.2 Quantum Mechanics and the Schrödinger Equation

In the realm of quantum mechanics, the position-momentum uncertainty prin-
ciple [40] prevents from precisely predicting a system’s dynamics using specific
position and momentum values. Indistinguishable particles and experimental evid-
ences [1] also challenge determinism. Quantum mechanics1 introduces a paradigm
shift with the wavefunction concept, replacing the classical q and p description.
The state of a system is described by an object called wavefunction Φ(t). There is

1For a detailed understanding on the basic principles of quantum mechanics, refer to
Appendix C.
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no physical interpretation for this function. However, its squared absolute value,
|Φ(t)|2, is interpreted as the probability amplitude of finding the system in that
state. Measurements of physical observables, such as energy, position, and mo-
mentum, are described by operators that act on the wavefunction. The wavefunc-
tion Φ(t) provides probabilities for various measurement outcomes by encapsulat-
ing the potential results of an experiment. After measurement, Φ(t) transforms
into a probability distribution for specific outcomes. This measurement process
introduces non-deterministic effects, yet these effects are statistically predictable.
The time evolution of the wavefunction is determined via the Schrödinger equation.
The non-relativistic Schrödinger equation reads:

ĤΦ(t) = i
∂

∂t
Φ(t). (2.4)

Ĥ is the Hamiltonian operator of the system corresponding to the total energy of
that system, including both kinetic energy and potential energy. Its spectrum, the
system’s energy spectrum or its set of energy eigenvalues, is the set of possible
outcomes obtainable from a measurement of the system’s total energy. Once Ĥ is
known, the evolution of the system is in principle known by solving Eq. (2.4).

2.2 The many-electron problem

Atoms, molecules and solid are systems composed of charged atomic cores (nuclei)
and electrons that mutually interact.
The Hamiltonian in this case is defined as

Ĥ = −1

2

N∑

i=1

∇2
i −

1

2

K∑

I=1

∇2
I

MI
+

K∑

I=1

K∑

J>I

ZIZJ
|RI −RJ |

−
N∑

i=1

K∑

I=1

ZI
|ri −RI |

(2.5)

where the first two terms are kinetic energy contributions for electrons and nuclei
respectively (from now on called K̂e and K̂nucl). The remaining terms origin-
ate from the electron-electron (Ĥe−e),nuclei-nuclei (Ĥnucl−nucl) and electron-nuclei
Coulomb interaction (Ĥe−nucl), respectively. For these systems, the stationary
(time-independent) Schrödinger equation is

ĤΨ(x,R) = EΨ(x,R). (2.6)

This equation stems from Eq. (2.4) assuming that the Hamiltonian Ĥ does not ex-
plicitly depend on time and expressing its solution as Ψ(x,R, t) = exp{−iEt}Ψ(x,R).
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In this context Ψ(x,R) is the many-body wavefunction with energy E. This energy
depends on the spatial coordinates R = {R1, . . . ,RK} of K nuclei with nuclear
charges {Z1, . . . , ZK}. The electronic spatial coordinates r = (r1, . . . , rN ) and
their spin coordinates {si} of the N electrons are conveniently condensed in one
generalized coordinate x.

Having set the problem in Eq. (2.6), with the Hamiltonian defined Eq. (2.5), is
far from being the end of the story. The complexity of the interaction terms in
Eq. (2.5) does not allow for analytic solutions in most of the problems of interest.
The formulation’s historical success enabled solving Hydrogen-like systems ana-
lytically, e.g., one electron with one nucleus. These, along with the particle in a
box and harmonic oscillator, are explicit in quantum mechanics [41]. On the other
hands, systems like helium, with two electrons, lacks an analytical solution due to
the unsolvable three-body problem in both classical and quantum mechanics [41].
This is due to the electron-electron Coulomb interaction term in Eq. (2.8) is a
two-particle operator, correlating the motion of the electrons.

With no analytic solution available, a possible alternative might be to solve the
Schrödinger equation numerically. This has proven to be impractical as well. When
looking at a system of N particles (both electrons and nuclei), the wave function
Φ depends on 3N coordinate, ignoring the spin and time for the sake of simplicity.
A naive attempt could involve the discretization of the wavefunction on a spatial
grid. Even when choosing a very coarse grid, let us say of 10 grid points in
each spatial direction, 103N values are needed to be stored in order to describe
the wave function on the grid. As a proxy one might consider a water molecule.
This molecule has 10 electrons and 3 nuclei. Therefore, 1039 values need to be
stored. This corresponds to a memory occupation of 1030 Gb. This memory
requirement is just to store the wavefunction: the operations involved in applying
the Hamiltonian and solving Eq. (2.6) make de facto this approach unfeasible,
even for the most powerful computers. These difficulties motivate the search of
alternative approaches with more favorable scaling properties.

2.3 Born-Oppenheimer Approximation

A first step towards the solution of the many-body problem relies on the Born-
Oppenheimer approximation [42]. Within this approximation the motion of nuclei
and electrons can be decoupled. Since the typical mass M of nuclei is larger than
the electronic mass me (me

M ∼ 10−3 − 10−4), the velocity of the nuclei is much
smaller and one supposes that electrons adjust instantly to changes in the nuclei
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positions. Electrons during their dynamics ’see’ the nuclei fixed in their position.
In the Born-Oppenheimer approximation the total wavefunction Ψ in Eq. (2.6)
and Eq. (2.5) is expressed as the product of an electronic wavefunction and a
nuclear one (Ψel(x; R) and Φ(R) respectively). This enables a separation of the
Hamiltonian operator into electronic and nuclear terms, where cross-terms between
electrons and nuclei are neglected. In this way it is possible to define a simpler
coupled system of equations:

Ĥel(R) ≡ K̂el + Ĥe−e(R) + Ĥe−nucl(R) (2.7)

Ĥel(R) Ψel(x; R) = Eel(R)Ψel(x; R) (2.8)
[
K̂nucl + Eel(R)

]
Φ(R) = E Φ(R) (2.9)

In other words, any electronic rearrangement happens in an environment of fixed
nuclei in the position R. Once electrons are relaxed (Eq. (2.8)), nuclei move in an
effective electronic potential (Eq. (2.9)). Nuclei position enters in Eq. (2.8) only as
parameters. The parametric dependence of Ψel and Eel on R means that for dif-
ferent sets of fixed nuclear coordinates R we have different electronic Schrödinger
equations with different solutions Ψel and Eel, or, in other words, that the elec-
tronic Schrödinger equation written above is a family of equations parametrized
by R, rather then one equation. This approximation is just the first step towards
a computational affordable solution of a many-electron problem. The numerical
solution is still too expensive for the same argument used in the previous para-
graph. Analytical solutions are not possible as well because the electron-electron
Coulomb interaction term in Eq. (2.8).
In Section 7.1.3 we will discuss how to go further the Born-Approximation and
its importance in applications. This is important for those cases in which the
adiabatic approximation breaks down. Figure 2.1 shows a ficticious example of
two adiabatic potential energy surfaces for the ground state and first excited state
of a two coordinate molecular system. As long as the nuclei moves away from the
close-contact point the adiabatic approximation is valid. Close to the contact-point
the adiabatic approximation breaks down. To alleviate the computational demand
mean-field theories can be beneficial. In these theories the many-body system is
reduced to the problem of independent electrons moving in an effective potential
that includes all the correlations coming from the remaining electrons. The two
most important ones are the Hartree-Fock (HF) Theory and Density Functional
Theory (DFT).
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R1

R2

U1(R1,R2)

U0(R1,R2)

Figure 2.1: Adiabatic potential energy surface for the ground state and
first excited state of a two coordinate molecular system. In the point where
they approach each other, the adiabatic approximation is not longer valid
to describe the dynamics.

2.4 Hartree-Fock Theory

2.4.1 Variational principle

Solving fully Eq. (2.8) is unfeasible for a realistic system, such as small molecules
or crystal structure. Nevertheless, one can adopt strategies to compute at least
the ground state (state of minimal energy) wave function Ψ0 and energy E0. To
this end, one might use the so-called variational principle [43]. Let us choose an
arbitrary trial many-body wave function Ψtrial as ansatz for the the ground-state
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wavefunction. The variational principle states that the corresponding energy is
always larger than the ground state energy except when Ψtrial equals the real
ground state. In math,

Etrial = 〈Ψtrial| Ĥel |Ψtrial〉 , (2.10)

E0 = 〈Ψ0| Ĥel |Ψ0〉 , (2.11)

Etrial ≥ E0 (2.12)

The ground-state energy and wavefunctions can be systematically found searching
all the admissible trial many-body wave functions such that

E0 = min
Ψtrial

E[Ψtrial]. (2.13)

Varying over the entire Hilbert space is usually too complicated, and a subspace
of it is chosen. This is achieved by parametrizing the trial wavefunction by some
(real) differentiable parameters αi with i = 1, . . . , n. The choice of the subspace
is called the ansätz. Some choices of ansatzes lead to better approximations than
others, therefore the choice of ansatz is important.
There is no general rules to chose the ansatz. However, since we are dealing with
a system of many electrons, there are some physical constraints to be satisfied.
One of those is the Pauli exclusion principle. Briefly this principle states that N
electrons are forbidden to occupy the same quantum state. This reflects in the
following mathematical property.

Ψ(x1, . . . ,xi,xj , . . . ,xN ) = −Ψ(x1, . . . , ,xj ,xi, . . . ,xN ) (2.14)

In other words, the many-electrons wavefunction must be antisymmetric under
exchange of electronic coordinates. This allows the system wavefunction to be
zero in case two particles share the same quantum state properties.
The second physical constraint concerns the number of electrons in the system.
Assuming the many-electron wavefunction to be known, it is possible to define a
charge density n(r) as

n(r) = N
∑

s1

· · ·
∑

sN

∫
· · ·
∫
|Ψ(x1, . . . ,xN )|2

N∑

i=1

δ(r− ri) dr1 . . . drN . (2.15)

Integrating the density over a volume encompassing the whole system we obtain
the number of electrons in the system. In formula,

∫
n(r) dr = N. (2.16)
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Good ansätze must satisfy this condition. In the following some possible ansätze
are presented.

Example of variational principle: the Helium atom

The electronic Hamiltonian for the Helium atom (1 nucleus of charge Z = 2 and
2 electrons) is defined as (leaving the spin variables aside for simplicity) [41]

[
−∇

2
1

2
− ∇

2
2

2
− Z

r1
− Z

r2
+

1

|r1 − r2|

]
ψ(r) = Eψ(r) (2.17)

The five terms in the Hamiltonian represent, respectively, the kinetic energies of
electrons 1 and 2, the nuclear attractions of electrons 1 and 2, and the repulsive
interaction between the two electrons. The last contribution of Eq. (2.17) makes
this problem analytically unsolvable. Let us assume for a moment that this term
is not there. In this case the resulting Hamiltonian is fully solvable, and the two
electron coordinates can be separated, reducing the problem to two independent
hydrogen-like systems. The solution for the ground state (gs) in this special case
is the product of two hydrogen-like system ground state system wavefunctions
ψgs(r1, r2) ∝ exp{−Z|r1 − r2|} [44]. This would correspond to a ground-state
energy of −4 Hartree. This value is very different form the experimental value of
−2.90372 Hartree. This is not surprising since no correlation/interaction among
electrons was considered. Guided by this result, the variational principle can be
used. If a trial ground-state wavefunction is used ψtrial(r1, r2) ∝ exp{−α|r1 − r2|},
with α a parameter to be tuned. If this ansätz is used in Eq. (2.10), a parametric
equation for the ground state energy is found. In the specific

E(α) = α2 − 2Zα+
5

8
α (2.18)

minimizing respect to α, the lowest ground-state energy given the ansatz is ob-
tained for α = Z− 5

16 . A physical interpretation can be given, noting that the para-
meter α in the approximate wavefunction represents an effective nuclear charge.
Each electron partially shields the other electron from the positively-charged nuc-
leus by an amount equivalent to 5

16 of an electron charge. This provides an en-
ergy of −2.84765 Hartee, differing from the experimental value of about 2%. This
example shows how Eq. (2.11) holds, as expected by the variational principle.
All in all this simple example showed the power of the variational principle as
a tool to overcome the difficulties of the Schrödinger equation. Furthermore, the
independent-electrons ansatz worked to be a successful starting point for the quest
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Figure 2.2: (Schematic representation of the single-electron occupation of
molecular energy levels. As explained in the main text electrons occupy,
starting from the bottom, all the energy levels until no more electrons are
available. Only two electrons, with opposite spin, can share the same energy
level (Pauli’s exclusion principle). In (a) the ground-state configuration is
depicted. Here is possible to define the HOMO and LUMO energies. In (b)
the electron removal case is depicted, in (c) the electron addition as in (d)
the case of electron promotion. All these scenarios are described within the
independent-particle picture.

of an approximate solution inspiring powerful methods like the Hartree, Hartree-
Fock and Density Functional Theory as we are about to show in the coming sec-
tions.

2.4.2 Independent particles approximation

As shown in the previous example, the simplest possible approximation that one
can make is the limit of vanishing Coulomb interactions, or non-interacting single-
particles. Despite this being a very crude approximation, this approach allows
for a simple intuition of some complex concepts of pivotal importance for under-
standing material properties. It also allows a simple way to introduce the proper
terminology that will be used throughout the whole manuscript.
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TheN non-interacting electrons Hamiltonian can be expressed as the sum of single-
electron Hamiltonians ĥi

Ĥel(R) ≈ K̂el + Ĥe−nucl(R) =

N∑

i=1

ĥi (2.19)

and the corresponding N electron wave function Φ0(r; R) is simply a product of
single-particle functions

Φ0(r; R) =

N∏

i=1

φ0
νi(ri). (2.20)

These single-particle functions are solutions to the single-particle Schrödinger
equation

ĥiφ
0
νi(ri) = ε0

νiφ
0
νi(ri) (2.21)

where ε0
νi is a single-particle energy. The total energy of the non-interacting

particle system is given by

E0
ν =

N∑

i=1

ε0νi , (2.22)

i.e., a sum of the respective single-particle energies. Note that νi denotes a set of
single-particle quantum-numbers.
The configuration of minimal E0

ν = E0
0 , i.e. the ground state energy can be

obtained by sorting all ενi according to their value and the filling up each energy
level starting from the bottom with two electrons of opposite spin (as consequence
of the Pauli’s exclusion principle). This picture, is a useful visual tool when
dealing with addition/removal of electron or promotion of an electron to higher
energy levels, as shown in Figure 2.2.
It is often convenient to stress the importance of two distinctive orbitals. The
single-particle function φ0(ri) of the last filled energy level is called the highest
occupied molecular orbital (HOMO), the one of the first empty level the lowest
unoccupied molecular orbital (LUMO). These frontier orbitals are relevant when
designing an opto-electronic device. When an organic molecule is excited by a light
beam, it may absorb a photon. By the absorption of a photon, an electron-hole
pair forms. Such an excitation represents the passage of an electron from the base
state (HOMO) to a higher-energy orbital (LUMO). The interaction between an
electron of the LUMO and a hole of the HOMO leads to the formation of what is
known as an exciton. HOMO and LUMO are also crucial in the design of Organic
LED (OLED). Applying a voltage across the OLED, a current of electrons begins
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to flow through the device from the cathode to the anode. During this process,
electrons are injected into the LUMO of the cathode and ejected to the HOMO
of the anode (holes are injected). The ejected electron from the anode is now an
electron-hole. Afterward, electrostatic forces within the OLED bring the electrons
and the electron holes together to form an exciton near the so-called emissive layer.
The decay of the singlet state exciton produces light. In other words, tuning the
HOMO-LUMO gap between two material is fundamental for a the rational design
of new opto-electronic devices.
Far from being the final solution, the non-interacting single-particle pictures can
be useful to show qualitatively the nature of these frontier orbitals. If we remove
the l−th electron, the energy of the n− 1l electron system is

E0(n− 1l) =

n∑

i=1

ε0i − εl = E0(n)− εl (2.23)

⇒ E0(n− 1l)− E0(n) = −εl = IPl (2.24)

The occupied single-particle energies are therefore the negative of the respective
ionization energy IPl. If an electron is added to the k−th energy level, the energy
of the n+ 1k electron system is

E0(n+ 1k) =

n∑

i=1

ε0i + εk = E0(n) + εk (2.25)

⇒ E0(n+ 1k)− E0(n) = εk = −EAk (2.26)

The unoccupied single-particle energies are therefore the negative of the respective
electron affinities, although the definition of the sign may differ. For the electron
promotion, if an electron is promoted from an occupied level l to the previously
empty k-th energy level (e.g. by optical excitation), the total energy of is

E0(n− 1l + 1k) = E0(n) + εk − εl
So the, e.g. energy of absorption, is equal to the difference in single-particle
energies.
Often, basic details of the electronic structure of molecules related to charge and
energy transfer processes are discussed in terms of this single-particle picture. How-
ever, the downside is that, of course, the electrons of realistic molecular systems
do interact. Still, one can stay within this framework taking the interactions of
the electrons into account by transforming the full-interacting problem into what
is called an effective (mean-field) single-particle problem, as will be shown in the
following.
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2.4.3 Hartree approximation

As in the case of the Helium atom, a possible ansatz for the many-electron wave-
function could be the product of orthonormal single-orbitals:

Ψ(x1, . . . ,xN ) ≈ φ1(x1) . . . φN (xN ) (2.27)

Despite this not being anti-symmetric (and thus not a perfect candidate for the
right wavefunction) the simplicity of the approximation allows for the application
of the mentioned minimization scheme. The varying degrees of freedom are the
N single-electron orbitals, with the orthonormality constraint. Using Lagrange
multipliers εi, the result is

[
Ĥ0 + V̂H[ni]

]
φi(r) = εiφi(r) (2.28)

with Ĥ0 = K̂ + Vext and the so-called Hartree operator

V̂H[ni](r) =

∫
ni(r

′)

|r− r′|dr′ (2.29)

which is a state-dependent operator corresponding to the classical electrostatic
potential at point r generated by density ni(r

′) =
∑nocc

j 6=i |φj(r′)|2, with nocc = N/2
being the number of occupied electronic states. The total energy of the ground-
state is defined as

E0 =

N∑

i

εi −
N∑

i

∫
φ∗i (r)V̂H[ni]φi(r) dr (2.30)

Despite its simplicity and lack of physical interpretation, the Hartree approxima-
tion leads to two important aspects of mean-field theory. The first one is that the
many-body problem can be reduced, with the right ansatz for the wavefunction,
to subproblems in which a single particle moves in an effective field. The other
aspect is that the solution must be sought self-consistently. The Hartree potential
is unknown a priori because VH depends on ni, hence the orbital φi. This problem
must be solved self-consistently: starting with an initial guess for the orbitals,
solve Eq. (2.28), calculate ni, update VH[ni] and repeat till convergence.

2.4.4 Hartree-Fock approximation

In order to enforce the wavefunction to be antisymmetric, we can define (with an
abuse of ntation) the new ansätz as a determinant of orthonormal single-orbitals
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wavefunctions, known as Slater determinant (SD). This is mathematically defined
as

Ψ(x1, . . . ,xN ) ≈ ΨSD(x1, · · · ,xN ) =
1√
N !

∣∣∣∣∣∣∣

φ1(x1) · · · φN (x1)
...

. . .
...

φ1(xN ) · · · φN (xN )

∣∣∣∣∣∣∣
. (2.31)

This is the Hartree-Fock ansatz. This is an improvement upon the Hartree ansatz
since the Pauli exclusion principle is satisfied. The drawback lies in the complexity
of the mean-field operators. Using the variational principle with this ansatz one
obtains a set of equations, one for each single-orbital wavefunction


ĥ0 + V̂H[n(r)] +

N∑

j=1

V̂F[φj ]


φi(x) = εiφi(x). (2.32)

with the electron density being

n(r1) = N

∫
|ΨSD(x1, · · · ,xN )|2dx2 . . . dxN =

N∑

j=1

|φj(r1)|2 (2.33)

and with V̂H[n] and V̂F[φj ] the Hartree and Fock potential contribution defined
as

V̂H[n](r) =

∫ N∑

j=1

|φj(r′)|2
|r− r′| dr =

∫
n(r′)

|r− r′|dr , (2.34)

V̂F[φj ]φi(r) =

∫
φ∗j (r

′)φi(r
′)

1

|r− r′|dr′ φj(r) (2.35)

The first term is the Hartree potential which represents the classical potential
felt by one electron due to repulsion of the electron density. The second one is
called exchange contribution with no classical analogue being a peculiarity of the
fermionic nature of electrons.
Once Eq. (2.32) are solved, the ground state energy can be written as

EHF =

N∑

i=1

〈φi| ĥ0 |φi〉+

N∑

i=1

N∑

j=1

[Jij −Kij ] (2.36)
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with

Jij =
1

2
(ii|jj) =

1

2

∫ ∫ |φi(x)|2|φj(x′)|2
|r− r′| dr dr′ (2.37)

Kij =
1

2
(ij|ji) =

1

2

∫ ∫
φi(x)φ∗j (x)φj(x

′)φ∗i (x
′)

|r− r′| dr dr′ . (2.38)

The first term in Eq. (2.36) is the contribution from the kinetic energy and the
external potential. The second term, Jij = 1

2 (ii|jj) is known as Hartree energy and
stands for the classical averaged electrostatic repulsion energy of all the particles in
the system. The last term Kij = 1

2 (ij|ji) is known as Fock energy term or exchange
term. This term has no classical analogue since it stems from the fermionic nature
of electrons. When i = j, the Hartree and exchange terms cancel out since (ii|jj) =
(ij|ji). In this way the HF theory avoids unphysical self-interaction (i.e an electron
cannot interact with itself).

2.4.5 Beyond HF approximation: Electronic correlation

As we already discussed, a single Slater determinant is only an approximation of
the real many-body wavefunction. In literature HF failures are called correlation
effects. We can formally define the correlation energy as the difference between
the exact ground state energy and the Hartree-Fock energy

Ecorr = Eexact
GS − EHF (2.39)

Deviations from the exact solution of the Schrödinger equation stem from the
so-called static and dynamical correlation effects. The former reflects the inad-
equacy of a single determinant in describing a given molecular state, and is due
to nearly degenerate states or rearrangement of electrons within partially filled
shells. In layman’s terms, there are situations in which the ground state is well
described only with more than one (nearly-)degenerate determinant. In this case
the Hartree–Fock wavefunction (single determinant) is qualitatively wrong. The
latter, on the other hand, arise because Hartree-Fock replaces the instantaneous
electron-electron repulsion with the repulsion of each electron with an average
electron charge cloud of the remaining electrons. What is unphysical about this
is that it does not take into account the fact that the electron will push away the
other electrons as it moves around. This tendency for the electrons to stay apart
diminishes the repulsion energy
In order to account for correlation effects beyond the exchange interaction, an
approach based on a single ground-state Slater determinant is not sufficient. To
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cope with this, an infinite sum of Slater determinants, including determinants
describing one, two, three, etc. electrons excitations is required.

Ψ(x1, . . . ,xN ) =

∞∑

i=1

ΨSD
i (2.40)

this method is known as Full Configuration Interaction Method (Full CI). Upon
this idea other methods have been developed. For a brief overview we redirect the
reader to Appendix F.

2.5 Density Functional Theory

Density Functional Theory (DFT) is considered one of the most important and
successful developments in theoretical physics in the last 100 years. In this method
the main character is the electron density n(r) instead of the wavefunction. This
brings the advantage of condensing the many-body information, usually stored in
the complicated many-body wavefunction depending on 3N spatial variables into
a simple 3-dimensional object.

2.5.1 The Hohenberg-Kohn theorems

The theoretical basis of DFT has been set by Hohenberg and Kohn [45] in two
theorems. The first theorem states that the external potential Vext(r), which is
the only system-specific ingredient to form the electronic Hamiltonian, is uniquely
defined within an additive constant by the ground state density n0(r). In other
words, two external potential differing by more than a constant cannot give the
same ground state density. Accordingly, the ground-state density uniquely de-
termines the full many-body Hamiltonian and hence the exact total ground state
energy

n0(r)→ Vext(r)→ Ĥ → E0 (2.41)

A pictorial description of the first Hohenberg-Kohn theorem is given in Figure 2.3
to help the reader understand this theorem. The usual way of solving the Schrödinger
equation would require selecting an external potential (and thus fully determine
the system Hamiltonian), then solve the equation calculating the system wave-
function and eventually get the electron density. The Hohenberg-Kohn theorem
shift all the attention on the electron density first. The ground state energy is
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DFT

Figure 2.3: Pictorial description of the Hohenberg-Kohn theorem. Follow-
ing the Schrödinger approach once an external potential Vext is defined a
wavefunction can be computed and thus the electron density is uniquely
defined. According to the H-K theorem for the ground-state there is a cor-
respondence between the electron density and the external potential (V).
Therefore, the electron density uniquely define the Hamiltonian of the sys-
tem (the Hamiltonian is a functional of the ground-state density) making
the wavefunctions functionally dependent on the density as well.

thus a functional of the ground-state density and can be expressed as

E[n0] = FHK[n0] +

∫
Vext(r)n0(r)dr (2.42)

FHK[n0] = T[n0] + Ee−e[n0]. (2.43)

with FHK[n0(r)] the so-called Hohenberg-Kohn functional, independent from the
system under analysis, T[n0] the kinetic energy functional and Ee−e[n0] is the
electron-electron interaction functional. The latter can be further split into an
electrostatic contribution, usually called Hartree term EH, and a non-classical
contribution accounting for exchange and correlation (xc) effects

Ee−e[n0] =
1

2

∫
n0(r)n0(r′)

|r− r′| dr dr′ + Exc (2.44)

The explicit form of the non-classical term, and thus the Hohenberg-Kohn func-
tional, is not known.
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The second Hohenberg-Kohn theorem introduces the variational principle for the
energy functional with respect to the charge density. It states that E[n] has its
minimum at the ground state equilibrium density n0(r),

E0 = min
n

E[n]
.
= E[n0] (2.45)

This theorem provides a systematic way to obtain the ground state energy from
trial densities. As in the case of the variational principle for wavefunctions, also
in this case it would be impossible to span the whole space of densities and select
the one to minimize the ground-state energy functional. Despite their pivotal
importance, these theorems do not provide any practical recipe to calculate the
density and no information about the Hohenberg-Kohn function FHK is given as
well.

2.5.2 Kohn-Sham equations

The big breakthrough for DFT came with the so-called Kohn-Sham ansatz [46].
The idea is to introduce an auxiliary reference system of N independent (i.e.,
non-interacting) electrons whose density ns(r) equals the density n(r) of the cor-
responding interacting system.
Since for a non-interacting system of electrons the many-body wavefunction is a
single Slater determinant, the density ns(r) is completely determined by single-
electron orbitals, from now on called Kohn-Sham functions φKS

i (r)

ns(r) =

N∑

i

|φKS
i (r)|2 ≡ n(r), (2.46)

their kinetic energy reads as

K̂s[n] = −
N∑

i

∫
φKS∗
i (r)

∇2

2
φKS
i (r)dr (2.47)

These two definitions can help with the unknown Hohenberg-Kohn functional. We
can define FHK as

FHK = K̂s[n] + EH[n] + Exc[n] (2.48)

with

Exc = (K̂[n]− K̂s[n]) + (Eel−el − EH). (2.49)
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We call this the exchange-correlation functional. It contains all the unknown
contributions coming from the residual part of the kinetic energy stemming from
using Eq. (2.47) in lieu of the many-body counterpart, the repulsive exchange
interactions due to Pauli’s exclusion principle and correlation effects. This new
definition is nothing but shuffling terms around and coalescing all our ignorance
about the many-body system on to the exchange-correlation term. This term is
unknown though approximations can be found. Finding a universal and silver-
bullet exchange-functional is a vivid research field still to be explored. Let’s put
aside for a moment the exact form of Exc and go back to how the Kohn-Sham
functional might lead to a practical way of solving DFT.
We can minimize the energy functional Eq. (2.43) with respect to the density leads
to a density-only Euler eigenvalue equation

δF[n]

δn(r)
+ Vext(r) = µ (2.50)

with µ the chemical potential. If, instead, the one-particle Kohn-Sham orbitals
φKS
i is used as variational parameters gives the Kohn-Sham (KS) equations:

[
−1

2
∇2 + Veff(r)

]
φKS
i (r) = εKS

i φKS
i (r), (2.51)

with the effective potential defined as

Veff(r) = VH(r) + Vext(r) + Vxc(r) with Vxc(r) =
δExc[n]

δn(r)
(2.52)

Equation (2.51) is a single-particle problem in which electrons move in an effective
(mean-field) potential Veff . This potential depends on the density and so on the
solution of the problem itself. A self-consistent field scheme starting from an initial
guess density ought to be use in order to solve KS eigenvalue problem.
At first glance KS Eq. (2.51) and HF Eq. (2.32) look similar. It is important at this
point drawing the differences between the two. Hartree-Fock theory is based on the
goal of looking for the best approximation for the many-electrons wavefunction.
DFT, on the other hand, is an exact ab-initio theory (i.e. no assumption about
the many-electron wavefunction) provided the exchange-correlation potential. The
effective potential in the DFT-KS is local in space, compared to the non-local Fock
exchange term in the HF equations. This simplicity is however cancelled in some
sense by the fact that the exact form of this potential is not known and that it is
supposed to show a very complicated non-local dependence on the electron density.
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2.5.3 Exchange correlation potential approximation

The exchange-correlation energy
is the name we give to the part
of the energy functional that we
do not know how to calculate
otherwise. For this reason, it
has been named the stupidity
energy by Feynman (1972).

Baroni et al. [47]

As mentioned before there is no exact form for the exchange-correlation functional.
For this reason a number of approximations are available and new ones are de-
veloped. In fact the reliability of the Kohn–Sham method depends on the validity
of this approximated functional. Different criteria must be fulfilled such as sat-
isfying physical limits and properties, simplicity (i.e., few parameters should be
involved, ideally none) and universality (i.e the functional should reproduce the
correct properties accessible with DFT for numerous large number of materials,
ideally for all of them). In the following the reader is guided through the most
common types of functionals used in quantum chemistry. A thorough discussion
is beyond the scope of this work, but it is suggested to read [48] for a technical
and historical journey through different families of functionals.

Local Density Approximation (LDA)

The simplest of these approximations is the local density approximation (LDA).
The assumption behind this approximation is that the charge density of the system,
not homogeneous overall, is locally similar to the one of the homogeneous electron
gas (HEG), whose exchange-correlation energy is known. The functional can be
written as

ELDA
xc [n(r)] =

∫
n(r) εHEG

xc [n(r)]dr (2.53)

the exchange and correlation contribution can be split into εHEG
xc = εHEG

x + εHEG
c .

The exchange part have an analytical form of the kind:

εHEG
x [n(r)] = −3

4

(
3

π

)1/3 ∫
n(r)1/3dr . (2.54)
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The correlation part, on the other hand, is known only in the high- and low-density
limit. In formula,

εHEG
c [n(r)] =

{
A ln (rs) +B + rs(C ln (rs) +D) in the High-density limit
1
2

(
g0

rs
+ g1

r
3/2
s

+ · · ·
)

in the Low-density limit

(2.55)
with rs the dimensionless Wigner-Seitz parameter defined as the radius of a sphere
which encompasses exactly one electron, divided by the Bohr radius. The Wigner-
Seitz parameter is related to the density as

4π

3
r3
s =

1

n(r)
. (2.56)

The intermediate values for the correlation energy density are computed using
accurate quantum Monte Carlo simulations for the energy of the HEG. These have
been performed for several intermediate values of the density, in turn providing
accurate values of the correlation energy density.

Generalized gradient approximation (GGA)

The uniform electron gas is intuitively not such a great model for those systems
whose electron density can vary rapidly over a small region of space, such as in
the case of molecules. An improvement upon the LDA can hence be obtained by
Generalized Gradient Approximation (GGA) functionals. These depend not just
on the value of the density at a point (as in the LDA case) but also on its gradient.
This should account for truly non-local density dependencies. These functionals
are formally defined as

EGGA
xc [n(r)] =

∫
n(r) εGGA

xc [n(r), |∇n(r)|]dr . (2.57)

Unlike LDA, there is no single universal form. Most GGA functionals are con-
structed in the form of a correction term which is added to the LDA functional

εGGA
xc [n(r), |∇n(r)|] = εHEG

xc [n(r)] + ∆xc

[ ∇n(r)

n(r)4/3

]
(2.58)

Although various forms of GGA exchange functionals have been developed, the
differences in the best-known functionals are found only in the dependence on the

dimensionless parameter ∇n(r)
n(r)4/3 . In particular GGA functionals are characterized
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by their differences in the region of low electron density and/or high density gradi-
ent. This is attributed to the lack of fundamental physical conditions for exchange
energy in the low density/high density gradient region. The exchange functional
forms in these regions have been determined to improve the reproducibility of
properties. Popular GGAs include PBE [49] and BLYP [50, 51].

Hybrid Functionals

Hybrid functionals mix the Hartree–Fock exchange integral with GGA exchange
functionals at a constant ratio, based on the concept of the adiabatic connection,
which makes the Kohn–Sham energies of the independent electron model link to
those of the fully interacting electron one. Hybrid functionals are based on the
ansatz that the exact exchange energy is situated between the GGA exchange
energy functional and the Hartree–Fock exchange integral. De facto, they include
fractions of exact Hartree-Fock exchange energy, calculated as a functional of the
Kohn-Sham molecular orbitals

EHF
x [{φKS

i }] =

∫∫
φKS
i (x)φKS,∗

j (x)φKS
j (x′)φKS,∗

i (x′)

|r− r′| dr dr′ . (2.59)

These functionals have the following general form

Exc = (1− a)EGGA
x + aEHF

x + EGGA
c (2.60)

Different hybrid functionals differ in the choice of the mixing parameters and the
terms to be mixed. The most popular functionals of this family are the B3LYP
hybrid functional [52], the PBE0 hybrid functional [53], and the Heyd–Scuseria–
Ernzerhof (HSE) hybrid functional [54].

2.5.4 Physical interpretation of DFT-KS orbitals and ener-
gies and their application beyond ground-state prop-
erties

It is often debated what is the physical meaning of the DFT-KS energies [55].
By construction, these are the energies of independent electrons in the fictitious
system with the same density as the original interacting electrons system in its
ground state. The entailed question could be ”Do these energies are the real elec-
tron energies?”. The answer to this question is important since DFT is a relative
cheap tool to infer material properties. Having access not only to ground-state
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properties but also excited state properties it is of pivotal importance in under-
standing exotic material properties that potentially could lead to a new generation
of optoelectronic devices, aside with the intellectual challenge leading to this dis-
covery. Kohn-Sham eigenvalues enter the equation as Lagrange multipliers to
ensure orthogonality of the Kohn-Sham wavefunctions in the energy functional
minimization. This is equivalent to the HF scheme in which HF eigenvalues allows
the single-particle HF wavefunctions to be orthogonal among each other. In HF,
it is possible to give a physical interpretation to these energies. We cannot say
the same about the DFT-KS ones. Because of the similarities between HF and
DFT-KS, one would be tempted to extend the Koopman’s theorem in the DFT-KS
realm. In DFT-KS, however, because of the exchange-correlation potential there
is no mapping between excitation energies and KS eigenvalues. One could say that
KS orbitals are nothing but a mathematical tool to obtain the correct ground-state
density, thus the correct ground-state properties. Whatever is outside this frame
doesn’t have a clear interpretation. It is possible to extend upon this subject,
showing that the problem roots in the approximation of the exchange-correlation
potential [56]. In the DFT realm there is a theorem called Janak’s theorem. This
theorem connects DFT-KS eigenvalues to the derivative of the total energy with
respect to the fractional occupation number fi ∈ [0, 1]. In math

εKS
i =

∂EN0

KS

∂fi

∣∣∣∣∣
fi=1

(2.61)

Moreover it can be shown that the ground-state energy for a system of fractional
number of electrons (N = N0 + α) with α ∈ [0, 1] is a linear combination of the
ground state energies at the closest integer values [56]

E(N) = (1− α)E(N0) + αE(N0 + 1) (2.62)

this implies that the total energy E(N) is piecewise linear. For the exact KS-DFT,
this piecewise linearity must be fulfilled. Only if this property is fulfilled, the KS
eigenvalues can be interpreted as excitation energy. This property is stronger
than the Koopman’s theorem because relaxation effects (i.e., rearranging of elec-
trons due to addition/removal of electrons) are included. This theoretical results,
crumble down when actual calculation are performed. At the moment, a sub-
stantial group of approximations for the exchange-correlation potential does not
satisfy the piecewise linearity aforementioned and thus one cannot interpret the
KS-DFT eigenvalues as excitation energies. Nevertheless, many efforts and at-
tempts to reconciliate KS-DFT eigenvalues with their interpretation as excitation
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energies have been published [57, 58, 59, 60]. Despite many works ignores this
fact (whether with awareness or not it depends on the specific work) and use na-
ively the DFT-KS to estimate the excitation energies, this shows the need to be
careful when interpreting results. Another option is pursuing a different approach
to better embrace the excitation properties of a material. In the following the
many-body Green’s function perturbation theory is described to this end. The
reader should keep in mind that there are other successful approaches as TDDFT
and Koopman’s compliant methods [61]. An overview of these methods is beyond
the scope of this thesis.
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Chapter 3

Many-body Perturbation
Theory (GW-BSE)

All properties of materials can, in principle, be calculated from the many-body
wavefunction of the interacting many-particle system as introduced in Ch. 2. In
practice, this is not possible for most systems due to the large number of particles.
Most physical properties, however, do not require the full information of the many-
particle wave function anyway, but can be described by response functions that
involve the physics of only a few (effective) particles instead of all particles in the
system. The key idea of many-body perturbation theory (MBPT) is to transform
the many-particle problem into an effective equation of motion for such response
functions, which then has the form of a few-particle problem. In the following we
will give a really brief introduction to Green’s Functions including some definitions
useful to understand the theoretical discussion about ab-initio mehtods to compute
excited state properties of materials.

3.1 Interpretation of spectroscopy experiments: a
genuine many-body problem

Spectroscopy techniques are the most established and used experimental meth-
ods for probing the electronic structure of materials. Different techniques share
the common aspect of perturbing and thus promoting the system into an excited
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3.1. INTERPRETATION OF SPECTROSCOPY EXPERIMENTS: A
GENUINE MANY-BODY PROBLEM

Figure 3.1: A schematic of different photoelectron spectroscopy. In (a) the
direct Photoelectron Spectroscopy (PS) is presented. In this case a beam of
light of energy ~ω hitting a specimen (1), promotes an electron from some
occupied state density of state (2). If the energy of the electron is bigger
than the work function the electron is released in the vacuum (3) with some
kinetic energy Ekin. Probing the distribution of the kinetic energy of outing
electrons allows to have information about the initial occupied density of
state (DOS). In (b) the inverse of the process described in (a), usually de-
noted as Inverse Photoelectron Spectroscopy (IPS). In this case unoccupied
levels are probed filling these states with electrons of fixed kinetic energy.
This excited state relaxes with the emission of some photon allowing for
retrieving info about the unoccupied state.
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GENUINE MANY-BODY PROBLEM

state. The system’s response is proportional to its electronic structure. Access
to the electronic structure is not interesting only per se, but it paves the way to
measure quantities and understand fundamental processes of great importance in
solid-state physics, chemistry, and material science. In this context, the most used
techniques are the Photoelectron spectroscopy (PES) [62, 63, 64] and its comple-
mentary, the Inverse Photoelectron spectroscopy (IPES) or Bremsstrahlung Iso-
chromat Spectroscopy (BIS) [65, 66]. In the former, electrons are ejected from
a sample upon irradiation with visible or ultraviolet light (UPS) or with X-rays
(XPS). In the latter, electrons are injected into the system measuring the out-
ward photons are eventually detected. The relation between PES and IPES with
electronic structure is often explained within a single-particle picture in which we
assume that only a single electron is involved in the PES and IPES processes. A
schematic of the process is depicted in Figure 3.1. Furthermore, the electronic
structure of the initial N-particle ground state and the final (ionized) system are
the same. In other words, the ejection (injection) of the electron and the related
creation of a positive (negative) potential is assumed to have no influence on the
remaning electrons.
Regarding the PES, the measured kinetic energy Ekin of the photoelectron and the
orbital energy εi are related, according to energy conservation

− εi + Ekin = ~ω (3.1)

this is also known as frozen-orbital approximation. We can thus define the bind-
ing energy, i.e the energy needed to eject and electron from the system as Eb =
~ω − Ekin = −εi. Since in this approximation the ground and excites states are
equal, the binding energy is given by a single-particle ground-state property. Des-
pite performing qualitatively good, this approach has been proved to be quantitat-
ively poor in many cases since the interaction among the electrons plays a crucial
role in these kind of processes. In other words, ground-state properties cannot be
used to describe excited states of a system as microscopic processes underlying
spectroscopy experiments constitute a manifold of complicated many-particle in-
teractions. All the N particles are involved and coupled through interactions. In
the PES, the created positive hole potential influences the ionized (N−1) electron
system leading to differences between the initial and the final state. Reorganiza-
tion of electronic levels, formation of neutral excitations (electron-hole pairs also
known as excitons), collective electronic oscillations (plasmons) or atomic vibra-
tions (phonons) are responsible for these differences. In a general and thus formally
correct framework, PES accesses the energy difference between the total energy of
a system of N interacting electrons in the ground state (with energy EN

0 ) and the

42
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GENUINE MANY-BODY PROBLEM

total energy of a (N − 1) electrons system in which an electron has been ejected
from state i (with energy EN−1

i )). Accordin to energy conservation,

~ω + EN
0 = Ekin + EN−1

i , (3.2)

Eb = ~ω − Ekin = EN−1
i − EN

0 (3.3)

The binding energy for occupied states is the energy needed to extract an electron
from a system of N interacting electrons in which the creation of a hole (i.e abs-
cence of an electron) and its influence on the electronic structure of the remaining
electrons is taken into account. It is not difficult to apply the same reasoning for
unoccupied states and hence the IPES spectrum. In IPES and electron with fixed
kinetic energy Ekin is inserted into the i-th unoccupied state of the N electron sys-
tem, which relaxes to a charged (N+1) ground state after emitting a photon. The
energy needed to insert this electron in the i-th state of a system of N interacting
electrons is according to energy conservation,

Ekin + EN
0 = ~ω + EN+1

i , (3.4)

Eb = ~ω − Ekin = EN
0 − EN+1

i . (3.5)

In view of these consideration, two important experimental quantities can be ex-
trapolated from the system’s response: the Ionization Potential and the Electron
Affinity. The former is defined as the energy needed to eject and electron from the
highest occupied (HO) state as the latter is the energy to fill the lowest unoccupied
(LU) state of the system. In formula,

IP = EN−1
HO − EN

0 (3.6)

EA = EN
0 − EN+1

LU . (3.7)

Anticipating a bit the discussion of Section 5, it is sometimes hard to interpret
experimental results and thus extrapolating IP and EA from the data. This is
because of the interplay of different phenomena that in some cases hinder the in-
terpretation of the experimental evidences. Excitation processes in organic semi-
conductors, because their localized nature, give rise to strong structural reorgan-
ization (polaron formation) and electron-vibration coupling, which leads to shifts,
broadening and additional features that make a direct extrapolation of IP and EA
from spectra not straightforward.
Computational methods that allows for an easier interpretation of these spectra
cannot rely on DFT only. As already stated Section 2.5.4, DFT is not the right

43
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theory to describe excited states. Therefore in the next sections an overview of
MBPT is presented. This theory is perfectly built to take into account excited
states.

3.2 Green’s Functions as time-evolution propag-
ators

For the sake of simplicity, we consider for the moment a single particle in free space
(quantum vacuum) described by a single particle Hamiltonian Ĥ1. Its stationary
eigenstates and eigenenergies are given by

Ĥ1 |ψn〉 = εn |ψn〉 (3.8)

Imagine now to prepare the system in an arbitrary trial state instead and then
follow its time evolution. If the trial state |ψtr〉 is created at time t = 0, the
wavefunction at a later time t is given by

|ψ(t)〉 = exp
(
−iĤ1t

)
|ψtr〉 =

∑

n

|ψn〉 exp(−iεnt) 〈ψn|ψtr〉 . (3.9)

Knowledge of the Ĥ1 spectrum is thus necessary to calculate the time evolution
of a trial state. Eventually, at time t, we want to know the probability amplitude
that a measurement would find the particle at position r

〈r|ψ(t)〉 = 〈r| exp
(
−iĤ1t

)
|ψtr〉 =

∫
dr′ 〈r| exp

(
−iĤ1t

)
|r′〉 〈r′|ψtr〉 (3.10)

using the completeness of the eigenstates {|ψn〉}

〈r|ψ(t)〉 =

∫
dr′
∑

n

〈r|ψn〉 exp(−iεnt) 〈ψn|r′〉 〈r′|ψtr〉 =

∫
dr′Gfree(r, r′, t) 〈r′|ψtr〉

(3.11)

where we have introduced the free particle propagator

Gfree(r, r′, t) =
∑

n

〈r|ψn〉 exp(−iεnt) 〈ψn|r′〉 . (3.12)
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Transforming Gfree(r, r′, t) from the time to the energy domain one obtains

Gfree(r, r′, E) =
∑

n

〈r|ψn〉 〈ψn|r′〉
E − εn + iη

= 〈r|Gfree(E) |r′〉 (3.13)

with η = 0+ as Gfree(E) =
∑
n
|ψn〉〈ψn|
E−εn+iη being the Green’s function operator for

the free particle problem. This can be made more clear rewriting it as

(H1 − E + iη)Gfree(r, r′, E) = −δ(r, r′). (3.14)

In other words, propagators and Green’s functions are strictly correlated. The
interesting thing is that there is more information in the propagator than the
possibility of calculating the evolution of any initial state but it can be seen as a
gateway to the Hamiltonian spectrum. In fact it can be shown that the density of
state (DOS) can be computed as

∑

n

δ(E − εn) = − 1

π
Im{Tr{Gfree(E)}}, (3.15)

with Tr{Gfree(E)} =
∑
m 〈ψm|Gfree(E) |ψm〉. On top of that, Gfree(r, r′, E) is a

function with poles at the particle excitation energies (in this case the particle
spectrum) as the residues are the excitation amplitudes. In other words, the
propagator contains the information of both the spectrum and the eigenfunctions
of the problem under analysis. In the quest of reducing the computational cost
for the excitation problem the Green’s function works as a good trade-off between
information load and reduced degrees of freedom.
This analysis does not apply only to the free-particle case. The same idea and
framework can be applied to see what one can learn by either addition or removal
of a particle in an environment when many others are present. This information is
vital in many physical application and in the specific of this work for the study of
electronic excitation in complex materials. The only difference can be in the role
played by the physical vacuum showed in the above example. For a system of many
particles the vacuum state should be replaced by a many-body state, usually its
ground state. Only in this way this formalism helps understanding how to probe
the system by adding/removing particles or creating neutral excitations.

3.3 One- and two-particles Green’s function

Before discussing the one- and the two-particles Green’s function, it is important
to introduce some quantities and notations useful for the following discussion.
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These belong to the so-called field operator and second quantization formalism.
A comprehensive summary and a link between these two descriptions is given in
Appendix D. What it is important to know at this stage is how to describe the
creation of particles at time t at position r. This is achievable in the Heisenberg
picture (see Appendix E) via the definition of the creation field operator

ψ†(r, t) = exp(iHt)ψ†(r) exp(−iHt). (3.16)

Its equivalent in the second quantization formalism reads as

c†α(t) = exp(iHt)c†α(t) exp(−iHt). (3.17)

For the annihilation it is sufficient to take the adjoint of the previous expressions.
For the sake of simplicity we dropped the ·̂ symbol for indicating operators.
As the chapter title suggests, many-body perturbation theory deals with the per-
turbation of a known, solvable Hamiltonian. Given any Hamiltonian H, it is in
principle possible to split it into two parts: A solvable part H0 (for solvable we
mean that we can find eigenvalues and eigenvectors) and the remaining part that
is defined as a perturbation V.

H = H0 + V. (3.18)

Let us define the N-body wavefunction that solves H with
∣∣ΨN

n

〉
while the wave-

function that solves H0 (the unperturbed system wavefunction) with
∣∣ΦNn

〉
. In

formula,
H
∣∣ΨN

n

〉
= En(N)

∣∣ΨN
n

〉

H0

∣∣ΦNn
〉

= E0
n(N)

∣∣ΦNn
〉 (3.19)

The definitions given in the following are general and do not depend on the type
of interaction used. Thus, most properties of Green’s functions result from general
principles of quantum mechanics and are valid for any system.

3.3.1 One-particle Green’s function

The one-body (often called the two-points) Green’s function is defined as

G(r, t; r′, t′) = −i
〈
ΨN

0

∣∣T
(
ψ(r, t)ψ†(r′, t′)

) ∣∣ΨN
0

〉
, (3.20)

with ΨN
0 the N-body ground-state and with T (. . . ) being the time-ordering oper-

ator that imposes a change of sign for each exchange of two fermion field operators

T
(
ψ(r, t)ψ†(r′, t′)

)
=

{
ψ(r, t)ψ†(r′, t′), t > t′

±ψ†(r′, t′)ψ(r, t), t < t′
(3.21)
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where the upper (lower) sign is for bosons (fermions). G describes the propagation
of one particle or one hole on top of the ground state for different space-time points.
A similar definition can be given for the non interacting state ΦNn where the Heis-
enberg operators must evolve according to H0 only. This Green’s function is called
G0.
If the Hamiltonian does not depend explicitly on time, we can just consider the
time difference t− t′. The propagator Eq. 3.20 will read

G(r, r′; t− t′) = −iθ(t− t′)
〈
ΨN

0

∣∣ψ(r)e−i(H−E0)(t−t′)ψ†(r′)
∣∣ΨN

0

〉
+

∓ iθ(t′ − t)
〈
ΨN

0

∣∣ψ†(r′)e−i(H−E0)(t−t′)ψ(r)
∣∣ΨN

0

〉
(3.22)

if we Fourier transform this expression we obtain

G(r, r′;ω) = Gparticle(r, r′;ω) +Ghole(r, r′;ω) =

=
〈
ΨN

0

∣∣ψ(r)(ω − (H − E0) + iη)−1ψ†(r′)
∣∣ΨN

0

〉
+

∓
〈
ΨN

0

∣∣ψ†(r′)(ω + (H − E0)− iη)−1ψ(r)
∣∣ΨN

0

〉
(3.23)

Gparticle propagates a particle from r to r′. On the contrary Ghole propagates a
hole from r′ to r. Note that the interpretation is that a particle is added at r
, and later on some (indistiguishable) particle is removed from r′ (and similarly
for holes). In the mean time, it is the fully correlated (N ± 1)-body system that
propagates.
Of course the same definitions hold for any orthonormal single-particle basis

Gαβ(t, t′) = −i
〈
ΨN

0

∣∣T
(
cα(t)c†β(t′)

) ∣∣ΨN
0

〉
(3.24)

where
G(r, t; r′, t′) =

∑

αβ

uα(r)Gαβ(t, t′)u∗β(r′) (3.25)

and

Gαβ(ω) =
〈
ΨN

0

∣∣ cα(ω − (H − E0) + iη)−1c†β
∣∣ΨN

0

〉

∓
〈
ΨN

0

∣∣ c†β(ω + (H − E0)− iη)−1cα
∣∣ΨN

0

〉
(3.26)

Despite the abstract look of these expressions, the second quantization formalism
allows for a generic definition regardless of any orthonormal basis, i.e., without
restricting oneself to coordindate space.
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(a) (b)

Figure 3.2: Schematic of single particle/hole dynamic represented by single
particle Green’s functions. (a) Gparticle holds for t > t′, time at which
an electron is created at (r, t), it propagates until annihilation at (r,′ t′)
occour. (b) Ghole holds for t′ > t, time at which an hole is created at (r, t),
it propagates until annihilation at (r′, t′) occours ‘.

3.3.2 Lehmann representation

Let us insert a completeness for the intermediate states
∣∣ΨN±1

n

〉
in Eq. 3.26

Gαβ(ω) =
∑

n

〈
ΨN

0

∣∣ cα
∣∣ΨN+1

n

〉 〈
ΨN+1
n

∣∣ c†β
∣∣ΨN

0

〉

ω − (EN+1
n − EN0 ) + iη

∓
∑

k

〈
ΨN

0

∣∣ c†β
∣∣ΨN−1

k

〉 〈
ΨN−1
k

∣∣ cα
∣∣ΨN

0

〉

ω + (EN−1
k − EN0 )− iη

(3.27)

known as the Lehmann repressentation of a many-body Green’s function. Here,
the first and second terms on the left hand side describe the propagation of a
(quasi)particle and a (quasi)hole excitation. The poles are the energies relatives
to the

∣∣ΨN
0

〉
ground state. Hence they give the energies actually released in a

capture reaction experiment to a bound state of
∣∣ΨN+1

n

〉
. The residues are trans-

ition amplitudes for the addition of a particle and take the name of spectroscopic
amplitudes. In fact these energies and amplitudes are solutions of a Schrödinger-
like equation: the Dyson equation. The hole part of the propagator gives instead
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xx xx xx xxxx
xx xx xx xxxx

Figure 3.3: Schematic representation of the location of the poles of the
one-particle Green’s function. The difference between IP and EA is usually
called transport or fundamental gap.

information on the process of particle emission, the poles being the exact energy
absorbed in the process. The location of the poles, as reported in Figure 3.3, of the
Green’s function in the complex plane provides the information needed to interpret
those processes measured in experiments in which a single electron is inserted to
or removed from the system.

3.3.3 Spectral function and dispersion relations

By using the relation

1

x± iη = P

(
1

x

)
∓ iπδ(x) (3.28)

it is possible to derive the one-body spectral function from Eq. 3.24. In math,

Sαβ(ω) = Sparticle
αβ (ω) + Shole

αβ (ω), (3.29)

where the particle and hole components are

Sparticle
αβ (ω) = − 1

π
Im
{
Gparticle
αβ (ω)

}
=

=
∑

n

〈
ΨN

0

∣∣ cα
∣∣ΨN+1

n

〉 〈
ΨN+1
n

∣∣ c†β
∣∣ΨN

0

〉
δ(ω − (EN+1

n − EN0 )) (3.30)
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Shole
αβ (ω) = − 1

π
Im
{
Ghole
αβ (ω)

}
=

=
∑

k

〈
ΨN

0

∣∣ c†β
∣∣ΨN−1

k

〉 〈
ΨN−1
k

∣∣ cα
∣∣ΨN

0

〉
δ(ω + (EN−1

k − EN0 )) (3.31)

The diagonal part of the spectral function is interpreted as the probability one
particle in the state α leaving or removing of adding the residual system in a state
of energy ω.

3.3.4 Two particle Green’s function

The Green’s function definition can be extended to Green’s functions for the
propagation of more than one particle. In general, for each additional particle
it will be necessary to introduce one additional creation and one annihilation op-
erator. The two-particle L(2) (also called four-points propagator) Green’s function
is

L
(2)
αβγδ(t1, t2, t

′
1, t
′
2) = −i

〈
ΨN

0

∣∣T
(
cβ(t2)cα(t1)c†γ(t′1)c†δ(t

′
2)
) ∣∣ΨN

0

〉
(3.32)

It should be noted that the actual number of particles that are propagated by these
objects depends on the ordering of the time variables. Therefore the information
on transitions between eigenstates of the systems with N , N±1 and N±2 bodies
are all encoded in the previous equation. Obviously, the presence of so many time
variables makes the use of these functions extremely difficult (and even impossible,
in many cases). However, it is still useful to consider only certain time orderings
which allow to extract the information not included in the one-body propagator.
The two-particle correlation is defined [67] as

L(12; 1′, 2′) = G(1, 1′)G(2, 2′)− L(2)(1, 2; 1′, 2′). (3.33)

If one imagines to apply a one-particle potential

u(x1, t1; x2, t2) = u(x1,x2; t2)δ(t1 − t2), (3.34)

it is possible to show [68] that

L(12; 1′2′) =
δG(1, 1′)

δu(2, 2′)
. (3.35)

Massaging this expression, one can arrive to the important result

L(12; 1′2′) = −
∫
G(1, 3)

δG−1(3, 3′)

δu(2′, 2)
G(3′, 1)d(3, 3′). (3.36)

50



3.4. HEDIN’S EQUATIONS AND GW APPROXIMATION

This formula is central for the evaluation of electron-hole interaction. It requires
information about the single-particle Green’s function in an interacting system.
The next section is devoted to the computation of this quantity.

3.4 Hedin’s equations and GW approximation

With the help of the definition given above, it is possible to discuss the theoretical
framework to evaluate single particle charged excitations.
The system Hamiltonian can be written in second quantization as

H =

∫
ψ̂†(x)H0(r)ψ̂(x)dr +

1

2

∫
ψ̂†(x)ψ̂†(x′)vc(r, r

′)ψ̂(x)ψ̂(x′)dx dx′ (3.37)

with H0 the single particle Hamiltonian operator in real space and vc(r, r
′) =

|r− r′|−1 the Coulomb potential.
In the Heisenberg picture, the equation of motion for the field operators is

i
∂

∂t
ψ̂(x, t) = [ψ̂(x, t), H] (3.38)

with [·, ·] a commutator.
From this it is possible to derive an equation of motion for the single-particle
Green’s function
(
∂

∂t
−H0

)
G(x, t; x′, t′) + i

∫
vc(r, r

′′)L(2)(x′′, t; x′, t′; x′, t′; x, t)dx′′ =

δ(x− x′)δ(t− t′) (3.39)

This expression shows that solving for the single-particle Green’s function requires
the knowledge of the two-particle Green’s function. It is not hard to understand
that the same situation holds for the two-particle Green’s function, whose solution
depends on the knowledge on the three-particle Green’s function and so on for a
system of infinite number of equations. In order to find a closed system of equations
it can be useful introducing the Self-Energy Σ(r, t; r′, t′). This is formally defined
as

i

∫
vc(x,x

′′)L(2)(x′′, t; x′, t′; x′, t′; x, t)dx′′ =

−
∫

Σ(x, t; x′, t′)G(x′′, t′′; x, t)dx′′ dt′′ . (3.40)
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this simplifies Eq. (3.39) as

(
∂

∂t
−H0

)
G(x, t; x′, t′)−

∫
Σ(x, t; x′, t′)G(x′′, t′′; x, t)dx′′ dt′′ =

δ(x− x′)δ(t− t′) (3.41)

reducing the solution of the problem to find the self-energy operator. This oper-
ator is a not-so-nice object, being non-local and non-hermitian. The self-energy
operator is part of a closed set of coupled equations. Solving this set allows to
find the self-energy and thus solving the many-body problem for the one particle
excitation. This set of equation is called Hedin’s equations. A derivation can be
found in[69]. Introducing the set of variables (i) = (xi, ti) = (ri, si, ti) for the
collecting variables for position, spin and time the Hedin’s equation have the form

G(1, 2) = G0(1, 2) +

∫
G0(1, 3)Σ(3, 4)G(4, 2) d(3, 4) (3.42)

Σ(1, 2) = i

∫
G(1, 3)W (1, 4)Γ(4, 2, 3) d(3, 4) (3.43)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(5, 7)Γ(6, 7, 3) d(4, 5, 6, 7) (3.44)

P (1, 2) = −i
∫
G(1, 3)G(4, 1)Γ(3, 4, 2) d(3, 4) (3.45)

W (1, 2) = v(1, 2) +

∫
v(1, 3)P (3, 4)W (4, 2) d(3, 4) (3.46)

Here Γ is the vertex correction, P the polarization, W the screened Coulomb
interaction and ν the bare Coulomb interaction.

Evaluating this system of coupled equations poses severe computational problems,
especially the calculation of the functional derivative in Eq. (3.44). In order to
simplify the problem some approximation is needed. If one imposes the condition
on the vertex correction

Γ(1, 2, 3) ≈ δ(1, 2)δ(1, 3) (3.47)

the final set of equations simplify in the so-called GW approximation. Before
writing the new set of equations is useful to rewrite Eq. (3.46) in terms of the
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microscopic dielectric function ε using the following definitions

ε(1, 2) = δ(1, 2)−
∫
v(1, 3)P (3, 2)d(3) (3.48)

δ(1, 2) =

∫
ε(1, 3)ε−1(3, 2)d(3) (3.49)

W (1, 2) =

∫
ε−1(1, 3)v(3, 2) d(3) (3.50)

This set of equations show the physical meaning of the screened Coulomb inter-
action. It is common knowledge that electrostatic interaction is not the same
in vacuum as in a dielectric medium. At a macroscopic level this difference is
measured by the dielectric constant of the medium. Eq. (3.50) is the equivalent
definition on a microscopic scale. Electrons act as a dielectric medium that reduces
the interaction between any pair. The effective interaction between electrons is
thus decreased from vc. Another aspect of the screened Coulomb interaction is
dynamical nature. The screening effect is more effective for some frequencies than
for others. The frequency dependence of W is what allows the system to relax and
screen the quasiparticle. How to treat this frequency dependence will be discussed
in Section 4.2.3.
The GW approximation thus reads as

G(1, 2) = G0(1, 2) +

∫
G0(1, 3)Σ(3, 4)G(4, 2) d(3, 4) (3.51)

Σ(1, 2) = iG(1, 2)W (1, 2) (3.52)

P (1, 2) = −iG(1, 2)G(2, 1) (3.53)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) (3.54)

W (1, 2) =

∫
ε−1(1, 3)v(3, 2) d(3) (3.55)

The GW self-energy is similar to the bare exchange in Eq. (2.38) in Hartree-Fock
theory . Given the similarity between the GW self-energy and bare exchange, GW
can be thought of as a dynamically screened version of Hartree-Fock. Eq. (3.53)
shows that the irreducible polarizability is just a simple product of two Green’s
functions. This is the well known Random-Phase Approximation (RPA) to the
dielectric matrix.
The GW equations must be solved self-consistently since all four quantities are
coupled to each other. As with other nonlinear equations, including the equations
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of mean-field theories like Kohn-Sham DFT or Hartree-Fock theory, the GW equa-
tions can be solved by iteration. The algorithm is the following: starting from a
given G0 and iterate to self-consistency as can be shown in Figure 3.4. To proceed
we express G in its spectral representation, with E a complex number

Figure 3.4: Pictorial description of the Hedin’s equations, often called
Hedin’s pentagon. All the linked quantities are depicted as the vertexes
of a pentagon. Each side of the pentagon represents one of the Hedin’s
equation. Starting from an initial guess for one of the quantities, e.g. G, it
is possible to ”solve the pentagon” self-consistently. The GW approxima-
tion can also be depicted using this pentagon, skipping the Γ vertex.

3.4.1 Solving for quasiparticle excitations

Using DFT, the ground state |N, 0〉 is determined from the solutions of the Kohn–
Sham (KS) equations in Eq. (2.51). Charged excitation can be found as stated
before using the GW approximation, in which the self-energy takes the form

Σ(x,x′, ω) =
i

2π

∫
dω′G1 (x,x′, ω + ω′)W (x,x′, ω) , (3.56)

i.e., it is a convolution of G1 with the screened Coulomb interaction W = ε−1vc,
where vc(r, r′) = |r − r′|−1 is the bare Coulomb interaction and ε−1(r, r′, ω) is
the inverse dielectric function calculated in the Random-Phase Approximation
(RPA) [70]. A pictorial example of this approximation is depicted in Figure 3.5.
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(a)

(b)

Figure 3.5: In (a) a schematic of an interacting many-particles system with
electrostatic interaction v. The two particles depicted with bigger red dots,
experience the interaction among each other plus the interaction with all
the other surrounding particles. In (b) the electrostatic interaction between
the bigger red dots is substituted with the screened interaction W = ε−1v.
This is called quasiparticle approximation. The screening includes the ef-
fect of the interaction with the surrounding particles. The Random-Pahse-
Approximation (RPA) screening is obtained when the interaction depicted
in (a) with dashed line is neglected.

Using this approximation, Eq. (2.51) is converted into a Dyson-type equation of
motion for the quasiparticles (i.e., the QP electron and hole states) [71, 72]:

[
Ĥ0 + Σ̂(εQP

i )
] ∣∣∣φQP

i

〉
= εQP

i

∣∣∣φQP
i

〉
, (3.57)

where εQP
i are the one-particle excitation energies of the system, and

∣∣∣φQP
i

〉
are

the QP wave functions.
In practice, the QP wave functions are expressed in a basis of KS states, i.e.,

∣∣∣φQP
i

〉
=
∑

j

aij
∣∣φKS
j

〉
. (3.58)
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With Ĥ0 = ĤKS − V̂xc, diagonalizing the energy-dependent QP Hamiltonian in
this basis as

HQP
ij (E) = εKS

i δij +
〈
φKS
i

∣∣ Σ̂(E)− V̂xc

∣∣φKS
j

〉
s (3.59)

yields the QP states and energies.

If the off-diagonal elements of Eq. (3.59) are small, i.e.
∣∣∣φQP
i

〉
≈
∣∣φKS
i

〉
, the

quasiparticle energies can be evaluated perturbatively according to

εQP
i = εKS

i + ∆εGWi = εKS
i +

〈
φKS
i

∣∣ Σ̂(εQP
i )− V̂xc

∣∣φKS
i

〉
. (3.60)

Computing εQP
i requires determination of ∆εGWi , which consequently leads to self-

consistently solving Eq. (3.60). This can be achieved by first identifying an interval
containing a solution on a grid and then refining this using a bisection (graphical
solution). As an alternative, Newton fixed-point iterations can be performed.
Conventionally this is referred to as the G0W0 approximation. To improve upon
this one-shot approach, the evGW procedure can be used instead: QP energies
are updated both in the calculation of the non-local, energy-dependent microscopic
dielectric function determined within the RPA and in the Green’s function until
eigenvalue (ev) self-consistency is reached.

3.5 Electron-Hole excitations with Bethe-Salpeter
equation

Neutral excitations with a conserved number of electrons and a change in their
configuration S (|N, 0〉 → |N,S〉) rely instead on the two-particle Green’s func-
tion [73]. This can be obtained from another Dyson-like equation of motion, known
as the Bethe–Salpeter Equation (BSE) [74]. The 2-bodies correlation function of
Eq. (3.33), with the help of Eq. (3.36) and Eq. (3.51), satisfy the following Dyson-
like equation

L(1, 2, 1′, 2′) = L0(1, 2, 1′, 2′)+

+

∫
L0(1, 4, 1′, 3)Ξ(3, 5, 4, 6)L(6, 2, 5, 2′)d(3, 4, 5, 6) (3.61)

with the interaction kernel being

Ξ(3, 2, 3′, 2′) = −iδ(3, 3′)δ(2′, 2)vc(3, 2) +
δΣ(3, 3′)

δG(2′, 2)
. (3.62)
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The uncorrelated L0(1, 2, 1′, 2′) = G(1, 2′)G(2, 1′) contains the Green function G,
solution of Eq. (3.51).
L depends on four time variables, related to two creation processes (electron and
hole) and two annihilation processes. We restrict ourselves to simultaneous cre-
ation and to simultaneous annihilation, so only two of the four time variables are
independent. Due to time homogeneity in the absence of external fields, only the
difference of these two time variables is relevant for Eq. (3.61) and is used to carry
out a one-dimensional time-energy Fourier transform into L(1, 2, 1′, 2′, ω), where
(1), (2), etc. now contain only position and spin degrees-of-freedom.
If the self-energy is determined within the GW approximation the electron-hole
kernel is written as:

ΞGW (3, 2, 3′, 2′) ≈ −iδ(3, 3′)δ(2′, 2)vc(3, 2) + δ(3, 2′)δ(3′, 2)W (3, 2). (3.63)

In principle, having a form for the interaction kernel, the Bethe-Salpeter equation
can be solved. Now we will use a non rigorous argument to show one possible way
to solve it. The idea is transform the Bethe-Salpeter equation into an effective
two-particle Hamiltonian that is then diagonalized. To this end we can write the
equation in the basis of the orthonormal orbitals that diagonalize G0. L0 can be
written as

L0(1, 2, 1′, 2′, ω) = i
∑

v,c

[φc(x1)φv(x
′
1)φv(x2)φc(x

′
2)

ω − (Ec − Ev)
−

φv(x1)φc(x
′
1)φc(x2)φv(x

′
2)

ω − (Ec + Ev)

]
(3.64)

with v running over the occupied and c over the empty states.
Eq. (3.61) can be rewritten as

L(ω) =
[
L−1

0 + Ξ
]−1

=
[
HBSE − 1ω

]−1
. (3.65)

Assuming that the electron-hole excitations are long-lived (the excitations corres-
pond to peaks in L) we can write L similarly to the one-particle Green’s function
in Eq. (3.27). In other words electron-hole excitations can be sought solving a
Green’s function problem of the kind (abusing the notation) [HBSE − ω]χS = −δ.
The electron-hole Green’s function can be expressed as

L(1, 2, 1′, 2′, ω) = i
∑

S

[
χS(x1,x

′
1)χS(x′2,x2)

ω − ΩS
− χS(x2,x

′
2)χS(x′1,x1)

ω + ΩS

]
. (3.66)
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S denotes the correlated electron-hole excitations of the system with corresponding
excitation energies ΩS . The electron-hole amplitudes are given by

χS(x,x′) = −〈N, 0| ψ̂†(x′)ψ̂(x) |N,S〉 . (3.67)

In the specific case of optical excitations, one can employ a product basis of QP
wave functions for coupled electron-hole amplitudes, i.e.,

χS(re, rh) =

occ∑

v

unocc∑

c

∑

σσ′

ASvc,σσ′φc,σ′(re)φ∗v,σ(rh)

+BSvc,σσ′φv,σ′(re)φ∗c,σ(rh),

(3.68)

where re (rh) is for the electron (hole) coordinate, and we drop the label QP
for clarity. Here, Avc,σσ′ (Bvc,σσ′) are the expansion coefficients of the excited
state wave function in terms of resonant (anti-resonant) transitions between QP
occupied (occ.) states v and unoccupied (unocc.) c with spin σ and σ′, respectively.
So the effective two-particle Hamiltonian HBSE is of the form

(
Hres K
−K −Hres

)(
AS

BS

)
= ΩS

(
AS

BS

)
. (3.69)

Assuming that spin-orbit coupling is negligible, this Hamiltonian has block struc-
ture in terms of the spin combinations [75]. It can be decoupled into singlet and
triplet Hamiltonians, allowing us to drop the explicit spin variables. Then, the
matrix elements of Hres and K are calculated as

Hres
vc,v′c′ = Dvc,v′c′ + κKx

vc,v′c′ +Kd
vc,v′c′ (3.70)

Kcv,v′c′ = κKx
cv,v′c′ +Kd

cv,v′c′ , (3.71)

where κ = 2 (0) for spin singlet (triplet) excitations, and

Dvc,v′c′ = (εc − εv)δvv′δcc′ (3.72)

Kx
vc,v′c′ =

∫
d3re d3rh φ

∗
c(re)φv(re)vc(re, rh)φc′(rh)φ∗v′(rh) (3.73)

Kd
vc,v′c′ = −

∫∫
d3re d3rh dω φ

∗
c(re)φc′(reφv(rh)φ∗v′(rh))

×W (re, rh, ω)f(ω,ΩS) (3.74)

f(ω,ΩS) =
i

2π

1

ΩS − ω − (Ec′ − Ev′ + i0+)
− 1

ΩS + ω − (Ec − Ev + i0+)
(3.75)
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The exchange interaction Kx originates from the bare interaction vc, and is re-
sponsible for the singlet-triplet splitting. The direct interaction Kd contains the
attractive, but screened, interaction W between electron and hole. This interac-
tion is responsible for the binding of the electron-hole pair. Furthermore, it is
assumed here that the dynamic properties of W (ω) are negligible, and the com-
putationally less demanding static approximation ω = 0 is sufficient. This is true
when in Kd

vc,v′c′ the excitonic binding energies ΩS − ω − (Ec′ − Ev′) are much
smaller than the characteristic screeening frequencies of W (ω). This approxim-
ation is often valid in many case since the binding energy is very large (several
eV). For this reason in molecular application the static approximation is enforced
simplyfing notably the implementation of the BSE. It is worth mentioning that in
those case in which this approximation might not hold the possibility of going bey-
ond the static approximation can be achievied computing a dynamical correction
of the electron–hole screening thanks to a renormalized first-order perturbative
correction to the static BSE excitation energies [76].
In systems for which the elements of the off-diagonal blocks K in Eq. (3.69) are
negligible, it is legitimate to use the Tamm–Dancoff Approximation (TDA) [77],
in which the electron-hole amplitude is expressed as

χTDA
S (re, rh) =

occ∑

v

unocc∑

c

ASTDA,vcφc(re)φ∗v(rh), (3.76)

i.e., by resonant transitions from occupied v to unoccupied c states only. The
effective Hamiltonian reduces to the upper diagonal block of Eq. (3.69):

HresASTDA = ΩTDA
S ASTDA. (3.77)

The TDA is known to reduce triplet instabilities [78, 79]. On the other hand, the
coupling between resonant and anti-resonant parts is significant, and its neglect can
cause deviations of several 0.1 eV from results obtained with the full approach [80],
in particular for small molecules.

3.6 QM/MM embedding schemes for QP and ex-
citons

When dealing with electronic excitations in complex molecular systems, proper-
ties of the individual molecules forming the system, are often not sufficient for
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a complete and exhaustive description of these phenomena. The nature of ex-
cited states is in general a result of a convoluted interplay between the intrinsic
quantum-mechanical properties of the basic units, i.e. isolated molecules, and the
local and global morphology of the large-scale molecular system. As it would be
clear in Ch. 4, a full quantum-mechanical treatment of such a complex system it
is practically impossible. The O(N4) scaling and overall cost of canonical GW -
BSE implementations restrict the tractable system size and prohibit the study of
many systems that are relevant in the chemistry and physics community, such
as solid-liquid interfaces, molecules in solution, complex alloys, nanostructures or
hybrid interfaces, that require large simulation cells with hundreds to thousands
of atoms. A different approach capable of combining the predictive power of QM
methods whilst keeping a reasonable computational scaling must be sought. Em-
bedding strategies currently provide the best compromise between accuracy and
computational cost in modeling properties and processes of large and complex
molecular systems. In embedding theories a subsystem of interest is treated at a
higher level of accuracy whilst the rest of the system is accounted for with a lower
accuracy method. In this framework, different methods have been proposed all
over the years, from the continuum embedding models [81, 82, 83, 84], the popular
QM/MM approach [85, 36] to the more recent and very promising density mat-
rix [86] and density functional embedding techniques [33, 87, 81, 38, 88, 89]. It
is important to stress that a successful embedding method used for excited state
evaluations must be able to model the polarization response of the environment
to a charge fluctuation in the embedded region. For the sake of brevity in the fol-
lowing only the QM/MM approach, used to get results in this thesis, is discussed.
It is important to stress in order to avoid any misunderstanding that in this thesis
the QM/MM method has been employed only to evaluate the effect of the envir-
onment on the density of states of a system. Despite the fact that QM/MM could
be employed to evaluate forces on molecules and trajectories of complex systems
in solution, these things are beyond the scope of the thesis.

3.6.1 Hybrid quantum-classical embedding method (QM/MM)

The QM/MM framework is defined as the framework in which the quantum (ex-
cited) state is linked to a polarizable atomistic model for the environment. As-
suming a weak coupling between the classical and the quantum region, the former
affects the latter (and vice versa) via electrostatic interactions only. Static local-
fields are associated with the distribution of static multipoles in the MM region.
In addition to these static local-fields, the electron density of the QM region re-

60



3.6. QM/MM EMBEDDING SCHEMES FOR QP AND EXCITONS

arrange upon excitation and accordingly its electrostatic potential affecting the
MM region is modified. These effects are called polarization effects. These are
stronger in the region close to the active QM region and they are crucial in those
cases involving charged excitations or larger modification of molecular dipole mo-
ments. QM/MM approaches can use either subtractive or additive schemes. To
explain the difference, let us take into account a system split in two subregions,
labeled with the indeces 1 and 2. In a subtractive scheme, three separate calcula-
tions are performed: One QM calculation with the QM region (subsystem 1) and
two MM calculations, one for the entire system (subsystems 1 and 2) and one for
the QM region (subsysem 1). The total QM/MM energy is then obtained as:

Esub
QM/MM = EQM

1 + EMM
12 − EMM

1 (3.78)

The advantage with this approach is the simplicity: It automatically ensures that
no interactions are double-counted and it can be set up for any QM and MM soft-
ware. It is also easily extendable to those systems that require a special treatment
of long-range effects, usually sought using Ewald summation techniques [90] et
similia. The main drawback is the requirment for the MM parametrization of the
QM region to evaluate EMM

12 . This can be a limiting aspect when dealing with
excited states in terms of accuracy and predictiveness.
On the other hand, the additive scheme total energy reads

Eadd
QM/MM = EQM

1 + EMM
2 + V

QM/MM
12 . (3.79)

where the QM system is embedded within the larger MM system, and the energy
of the whole system is the sum of QM, MM, and QM/MM coupling terms. The

interaction between the two regions is explicity evaluated via the term V
QM/MM
12 .

In this work only the electrostatic embedding scheme was used. This implies that
the electrostatic interactions between the two subsystems are handled during the
computation of the electronic wave function. The MM multipoles enter the QM
Hamiltonian as one-electron operators. A schematic of this approach is depicted in
Figure 3.6. The main advantage of this scheme is the avoidance of parametrization
of the QM region.

3.6.2 Multipole representation of molecules and classical en-
ergy contribution

Our scheme makes use of a distributed atomic multipole representation for mo-
lecules in the MM region, which allows treatment of both the effects of static
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QM
QM MM

MM
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Figure 3.6: Schematic representation of different QM/MM embedding
schemes. In (a) the subtractive QM/MM scheme. The QM part is replaced
by a classical counterpart, and the interaction between the inner and outer
region is treated purely classicaly. In order to avoid double counting the
energy of the classicaly-treated QM part must be subtracted from the over-
all energy. In other words in the subtractive scheme the QM region energy
is shifted with the help of the classical contribution. In (b) the additive
scheme consist of evaluating the MM and QM region energy separately.
The interaction between the QM and MM part is treated explicitly (in (b)
it is represented with a red line). Usually the MM part enters in the QM
Hamiltonian as an external field. Once the electron density of the QM re-
gion is obtained, this is let to interact with the MM part. This is repeated
until self-consistency is reached.
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electric fields and the polarization response as a self-consistent reaction field. Spe-
cifically, static atomic multipole moments [91] Qmt are employed, where t indicates
the multipole rank and m the associated atom in the molecule M . The tensor
Tmm

′

tu describes the interactions between the multipoles moments Qmt and Qm
′

u .
To model the polarization effects, each atom can additionally be assigned a polar-
izability αmm

′

tu for the creation of induced moments ∆Qmt due to the field generated
by moments u on a different atom m′.
To show how to evaluate the MM total energy contributions in Eq. (3.78) and
Eq. (3.79) we can imagine splitting a purely classical MM system S in state s into
regions R and R′ with S = R∪R′, its total energy is given by

E
(s)
class(S) = E(s)(R) + E(s)(R′) + E(s)(R,R′), (3.80)

where

E(s)(R) =
1

2

∑

M∈R

∑

M ′∈R
M ′ 6=M

E
(s)
MM ′ +

1

2

∑

M∈R
E

(s)
M (3.81)

E(s)(R,R′) =
∑

M∈R

∑

M ′∈R′
E

(s)
MM ′ (3.82)

with

E
(s)
MM ′ =

∑

m∈M

∑

m′∈M ′

∑

tu

(Q
m(s)
t + ∆Q

m(s)
t )

× Tmm′tu (Qm
′(s)

u + ∆Qm
′(s)

u ) (3.83)

and

E
(s)
M =

∑

m∈M

∑

m′∈M
m′ 6=m

∑

tu

∆Q
m(s)
t (α−1)mm

′

tu(s)∆Q
m′(s)
u . (3.84)

Eq. (3.80) follows a variational principle with respect to the induced moments, and
a preconditioned conjugate gradient method is used to find the ∆Qmt , which give
the minimum energy. Induced interactions are modified using Thole’s damping
functions [92, 93] to avoid overpolarization.

3.6.3 Interaction between the classical- and quantum-treated
subsystems

The way the interaction between the classical- and quantum-treated subsystems is
formulated hugely depends on the specific computational implementation of both
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the classical and quantum algorithms. In the following we present how this inter-
action is treated in the open-source VOTCA-XTP software [94, 37]. This software
allows for the calculation of the excited-state electronic structure of molecules
using many-body Green’s functions theory in the GW approximation with the
Bethe–Salpeter Equation (BSE). A distinctive feature of VOTCA-XTP is the cap-
ability to couple the calculation of electronic excitations to a classical polarizable
environment on atomistic level in a coupled quantum- and molecular-mechanics
(QM/MM) scheme, where a complex morphology can be imported from Molecular
Dynamics simulations.
If the additive scheme is used, the MM multipoles can interact with the QM region
as an additional external potential, while the explicit electrostatic field from the
QM density is used to polarize the MM region. In the GW -BSE framework, the
density depends on the state of interest (s). If s is a quasiparticle excitation, we
define

ρ
(s)
QP(r) = ρDFT(r) + fs|φQP

s (r)|2, (3.85)

with fs = −1 for occupied and fs = +1 for unoccupied QPs. If s is an electron-hole
excitation, its total density is evaluated as

ρ(s)(r) = ρDFT(r) + ρ(s)
e (r)− ρ(s)

h (r). (3.86)

Here the electron (hole) contribution of the exciton to the density is computed
by integrating the squared excited-state wavefunction χS with respect to the hole
(electron) coordinates, i.e.,

ρ(s)
e (r) = ρ(s)

e (re) =

∫
drh|χS(re, rh)|2

ρ
(s)
h (r) = ρ

(s)
h (rh) =

∫
dre|χS(re, rh)|2.

(3.87)

More specifically, VOTCA-XTP can partition a system into multiple active QM
regions (possibly treated at different levels of theory) and multiple classical MM
regions, in which static and polarizable multipoles of different orders can be
defined, generalizing Eq. (3.80). In order to evaluate excitation energies within
this QM/MM scheme, a self-consistent procedure is required if polarization is in-
cluded in the MM region. Within a single iteration step p, a QM level calculation
(DFT for the ground state s = n, DFT+GW -BSE for electron-hole excited s = x
states) is performed in the electric field generated by the total moments in the
MM region. The resulting QM energy then reads

E
(s),p
QM = E

(s),p
DFT + δsx ΩpS . (3.88)
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The associated total electron density is then evaluated on a grid. In VOTCA-
XTP, the default quadrature on a grid used for the numerical integration is an
Euler–MacLaurin scheme for the radial components and a Lebedev scheme for the
angular components, and the discretized density is then used to self-consistently
determine new induced dipoles in the MM region. The minimized classical energy

E
(s),p
class is used to update the total energy of the coupled QM/MM system

E
(s),p
QM/MM = E

(s),p
QM + E

(s),p
class , (3.89)

an expression equivalent to Eq. (3.79) but state specific.
The whole procedure is repeated until the change of total energy is less then a
preselected accuracy, typically 10−5 Ha. To obtain the excitation energy Ω(s) of a

GAS PHASE EMBEDDED

P-

P+

GWBSE

We-h

S1

GW/MM BSE/MM

We-h

S1

Figure 3.7: Effect of polarization on quasiparticle (treated using GW) and
exciton energies (treated using BSE) in the QM/MM procedures.

complex in the polarizable environment, total energies of the combined QM/MM
system are obtained self-consistently for both the ground and excited state, and
their difference defines

Ω(s) = E
(s)
QM/MM − E

(n)
QM/MM. (3.90)
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An equivalent formulation for quasiparticle excitation energies uses the respective
εQP instead of ΩS in Eq. (3.88). Figure 3.7 shows a schematic representation
of the effect of polarization on excitation energies (for both quasiparticles and
excitons) in the QM/MM schema. The above QM/MM procedures rely on the
representation of the molecules in the MM region by static atomic multipoles and
polarizabilities. These can be taken from standard parameterizations, available for
instance from the AMOEBA force field [95]. However, in many cases it is necessary
to make custom parameterizations. VOTCA-XTP can either read fitted partial
charges from one of the supported external DFT packages or obtain them with its
internal CHELPG [96] module. Higher order static multipoles can be taken from
the GDMA software [97]. VOTCA-XTP also provides a tool for the optimization of
atomic polarizabilities after the static moments are defined. Starting from generic
element-specific polarizabilities from AMOEBA, these are scaled atom-specific to
reproduce the polarizable volume of the molecule as obtained from DFT.
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Chapter 4

Numerical methods and
practical realization for
DFT, GW-BSE and
QM/MM methods

Sometimes one can improve the
theories in the sense of
discovering a quicker, more
efficient way of doing a given
calculation

John Pople

In this chapter we address how DFT, GW -BSE and QM/MM methods are imple-
mented for a numerical evaluation of electronic properties in the open-source code
VOTCA-XTP. In the first section a brief review of the basis set expansion and a
section on how to rewrite the equations of the previous chapter as linear algebra
problems. This is followed by a focus on the differences between different choices
of the basis set, stressing on their pros and cons. The last part is dedicated to the
actual implementation in VOTCA-XTP with a review of different technical aspect
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and computational strategies.

4.1 Basis set expansion

Computers gained popularity in theoretical physics studies and modelling due to
the possibility of turning many problems into the linear-algebra language. Com-
puters turned to be extraordinary tools for solving linear algebra. Even high di-
mensional problems can be solved in a reasonable amount of computational time
using one of the many algorithms and the libraries developed so far. The pos-
sibility that computers can solve problems unthinkable to be solved by humans
really pushed science and engineering into the computational scientific revolution
we are all experiencing. To actually solve any of the problem presented in pre-
vious sections in any practical calculation, we have to describe the wavefunctions
using a finite amount of information since we cannot describe an arbitrary con-
tinuous function on a computer. To do this, we define a finite set of functions
that serves as a basis set for an approximate expansion of the exact orbitals. For
the sake of brevity this idea is applied to Kohn-Sham equations only. The reader
should be aware that the same way of thought works for other theories such as
Hartree-Fock or GW-BSE as well. All these theories allow for the calculation of
molecular orbitals (MOs), functions that represent a region in a molecule where an
electron is likely to be found. These are often sought expanding them via Atomic
Orbitals (AOs). These are atom-centered functions. The main idea is that the
electron distribution in molecules is not so different from the electron distribution
in the component atoms. This means that the orbitals of the separate atoms is a
good starting point for the expansion of the MOs. HF and DFT are often used
to get AOs whilst MOs are obtained via GW -BSE. Let us start expanding KS
wavefunctions as

φKS
i (r) =

∑

µ

ciµ χµ(r) (4.1)

with {χµ(r)} a set of basis elements and {ciµ}, the expansion coefficients. For the
sake of generality the basis is taken to be non-orthonormal with overlap matrix
elements defined as

Sνµ =

∫
χν(r)χµ(r)dr . (4.2)

Using Eq. (4.1) allows to rewrite all orbitals derived properties. For instance, the
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electron density can be expressed as:

n(r) =

N∑

i

|φKS
i (r)|2 =

N∑

i

∑

µν

ci∗ν c
i
µ χ
∗
ν(r)χµ(r) =

∑

µν

Dνµχ
∗
ν(r)χµ(r) (4.3)

with the definition of the density matrix

Dνµ =

N∑

i

∑

µν

ci∗ν c
i
µ (4.4)

All the spatial dependent parts can be integrated leading to vector/matrix ex-
pressions solvable using standard linear algebra procedures. As an example, using
Eq. (4.1) in Eq. (2.51), followed by multiplication from the left of φj(r) and integ-
ration, we obtain a generalized eigenvalue problem

∑

µ

FKS
νµ c

i
µ =

∑

µ

Sνµc
i
µε

KS
i (4.5)

with the Fock matrix defined as:

FKS
νµ = −1

2

∫
χ∗ν(r)∇2χµ(r)dr −

∫
χ∗ν(r)Vext(r)χµ(r)dr +

+
∑

ηδ

∫
χ∗ν(r)χµ(r)χη(r′)χδ(r

′)

|r− r′| dr dr′Dηδ +

∫
χ∗ν(r)Vxc(r)χµ(r)dr . (4.6)

This implies that it is possible to determine all the integrals in this equation.
For the sake of brevity we can define the first term arising from the kinetic-energy
definition with matrix elements Tνµ as for the external potential and the exchange-
correlation one we use the labelling V ext

νµ and V xc
νµ . Eq. (4.6) are actually dependent

(via n and V xc
νµ) on yet unknown coefficients determined with Eq. (4.5).

In literature it is common to define the 4-center Coulomb integral, arising from
the Hartree term, as

(νµ|ηδ) =

∫
χν(r)χµ(r)χη(r′)χδ(r

′)

|r− r′| dr dr′ (4.7)

These kind of integrals are recurring also in GW -BSE and are by far the most
expensive type of integral to determine in practical calculation. The formal scaling
for these integrals, given N basis elements, is O(N4). How to curb the expenses
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of these integrals is discussed in Section 4.2. The homogeneous linear system
Eq. (4.5) admits non zero solutions for the unknown coefficients ciµ only if the
determinant of the matrix in square bracket is null, i.e.

det
(
FKS − εKS

i S
)

= 0 (4.8)

Therefore, the problem of solving the KS equations for each orbital is transformed
into a problem of linear algebra, which can be solved by standard diagonalization
techniques.
In principle Eq. (4.6) is exact assuming that one has access to a infinite basis and
can perform all the integrals exactly. However this is seldom the case. The first
problem reflects the fact that no exact basis can be employed. A finite basis (i.e
with a finite number of basis elements) is often employed instead. This implies
that results and predictions might be strongly dependent on the choice of the
basis set. A good practice should entails checking the convergence towards the
exact complete basis set (CBS) limit. Nevertheless, this is not always possible, in
particular in those situations in which calculations are prohibitively expensive and
convergence checks can be hard to test. Attempts to address the CBS limit problem
have led to the emergence of a wide variety of the extrapolation schemes [98, 99,
100, 101, 102, 103, 104] where the infinite basis set calculations are realized by
extrapolation to the CBS limit. These extrapolations are often based on formulas
for the asymptotic convergence of energies and other properties to their CBS limit.
A very simple example of this procedure is in Figure 4.2. Any particular choice of a
basis set affects the way integrals are computed in Eq. (4.6). Sometimes the choice
is made base on how fast integrals can be computed, even with the possibility of
getting analytical results, e.g. the choice of localized gaussian basis set. There are
other times in which is nature of the problem that requires a privileged choice,
e.g. plane waves expansion for crystal systems. Another cumbersome aspect deals
with the exchange-correlation term of Eq. (4.6) which is usually known only on
a discrete spatial grid. A numerical integration should be performed leading to
potential efficiency and accuracy issues. All these examples warn the reader about
the importance of following some guidelines when selecting a basis set. We will
discuss some common basis set used in computational chemistry in the following
section.

4.1.1 Atomic Orbitals

The choice of the basis set to employ in the calculation highly depends on the
problem under study. In computational chemistry and in the specific of the study
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of molecular systems atomic orbitals (AOs) are often employed. These kind of
orbitals are centered on the nuclei, and can be represented in terms of basis func-
tion with different functional forms, or can be given numerically on a grid. A
suitable basis set should allow for a systematic improvement of its quality when
the number of basis functions are required to achieve a reasonable accuracy in
the electronic distribution. In the case of analytic expressions, the basis functions
should be simple enough that the Hamiltonian matrix elements can be easily evalu-
ated, preferably also analytically. For molecular system using linear combinations
of solutions to the hydrogen atom, so called Slater Type Orbitals or STOs are
useful. They, as the real wave function, decay as ≈ exp(−|r|) and have a cusps at
the atomic nuclei. Their functional form is

χ(r) = Nl,αYlm(ν, θ)|r|l exp{−α|r|} (4.9)

with normalization constant Nl,α and spherical harmonic Ylm(ν, θ). Due to their
similarity to the orbitals of the hydrogen atom, these functions are also named as
s,p,d,f . . . depending on the value of l (0,1,2,3,. . . ). All functions with the same
l and α are collectively referred to as a shell. The exponential form does not
lead to easy evaluation of integrals, in particular the computation of four-center
Coulomb integrals in Eq. (4.7) and the three-center Coulomb integrals in Eq. (4.17)
that will be presented in Section 4.2. STO basis is only practical for atoms and
linear molecules [105]. An alternative to STOs that is both atom-centered and
that allows for tractable integrals evaluation Gaussian Type Orbitals or GTOs.
Their functional form in polar coordinates is

χ(r) = Nl,αYlm(ν, θ)|r|l exp
{
−α|r|2

}
. (4.10)

This form allows for a massivly faster way to evaluate matrix elements of Eq. (4.5),
except for the exchange-correlation part. Sometimes it is convenient to employ for
the computation of the Hamiltonian matrix elements the Cartesian GTOs, given
by

φijk(r) = χi(x)χi(y)χi(z) (4.11)

with
χi(x) = Miαx

i exp
{
−αx2

}
(4.12)

and analogous expressions for the y and z components. The main advantage of
Cartesian GTOs is that the molecular integrals factorize into the three Cartesian
variables [105].
As they do not really resemble real atomic orbitals, linear combination of GTOs
are used to approximate STOs. A single GTO basis function has significant errors
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when compared to a STO (see Figure 4.1), especially near the nucleus. These
linear combinations are referred to as contractions. Their functional form is

χ(r) =
∑

i

ci Nl,αiYlm(ν, θ)|r|l exp
{
−αi|r|2

}
(4.13)

with ci being one contraction coefficient. Due to the contractions, GTOs imple-
mentations have to evaluate many more integrals than STO codes but even then
GTO evaluation is still much faster than numerical integration over positions.
GTOs are not able to reproduce the cusp at the nuclei positions nor the correct
exponential asymptotic decay of the wavefunction, as shown in Figure 4.1. To
show an example how this contraction works, one can consider a basis set named
def2-svp [106], which for carbon has 3 contracted s-shells, 2 contracted p-shells and
1 simple d -shell for a total of 14 variables coefficients for carbon. The functions of
the d -shell are referred to as polarization functions, as they are not needed for the
isolated atom, but add more degrees of freedom to allow the electron cloud to be
polarized in a molecular environment. For a better understanding of how integ-
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Figure 4.1: Example for the difference between STOs and GTOs. In the
specific the picture report the 1s orbital in the two cases. The functional
form is reported in the insight. It is clear how these two basis sets are
different in terms of tails and peak cusps.

rals are performed and other kind of basis sets the reader can go through work of
Kohanoff [110]. A disadvantage of basis set methods is that, although the basis set
(chosen by physical motivation) often yields acceptable results for a small number
of basis functions, precise calculations can be rather costly because they may re-
quire a large number of basis functions. Due to these limitations, in recent years
purely numerical methods have been developed to solve the Kohn-Sham equation,
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Figure 4.2: DFT@PBE/cc-pVnZ energies [in Hartree] for water as a func-
tion of basis set size. The basis sets employed [107, 108, 109] it is commonly
abbreviated as cc-pVnZ, where n = D,T,Q, 5, 6, . . . is the cardinal number.
The higher the cardinal number the higher the basis set. The dotted line
marks the Etot(DFT/CBS) energy predicted through limit extrapolation.
The red curve represents Etot(DFT) as a continous function of cardinal
number n.

for instance by using numerical orbitals [111, 112, 113], finite differences and finite
elements [114, 115, 116], multigrid [117, 118] or wavelet methods [119, 120].

4.2 Technical implementation of DFT and GW-
BSE in VOTCA-XTP

An open-source implementation of GW -BSE can be the one of the VOTCA-
XTP package [94, 37] that expresses the electronic states using atom-centered
Gaussian-type orbitals (GTOs). VOTCA-XTP is part of the VOTCA software
suite [121, 122, 123], written in C++, and freely available on GitHub. It contains
an internal module for calculating the DFT ground state mostly for development
purposes, and additionally provides extensible interfaces to the standard package
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Orca [124]. One distinct feature of the GW -BSE implementation in VOTCA-
XTP is that it comes in two modes. The standalone mode operates like any
common quantum-chemistry software, and requires only the atom coordinates of
the molecule and calculation parameters as input. In the second mode, a complex
molecular morphology of, e.g., a solute-solvent mixture or a donor-acceptor blend,
is first simulated by Molecular Dynamics (MD) or similar techniques, and then
translated as a whole into an internal data structure. This morphology mode fa-
cilitates the evaluation of the excited-state electronic structure in a complex envir-
onment [87, 125, 123, 36, 126] in a hybrid quantum- and molecular-mechanics GW -
BSE/MM scheme [123], and is linked to a multiscale framework for the determ-
ination of dynamical electronic properties. Additional features of this framework
include, i.a., the calculation of electronic [127] and excitonic [128] intermolecular
coupling elements (transfer integrals), the prediction of ultraviolet photoelectron
spectra including carrier-vibration coupling [126], the simulation of optical absorp-
tion and emission spectra from coupled solute-solvent relaxation [129], and the
determination of charge-carrier mobilities [122] and exciton diffusion lengths [130]
via kinetic Monte Carlo.

4.2.1 DFT implementation computational cost

The overview on the basis set expansion of Sec. 4.1 already shows the main ideas
for a standard DFT implementation as the one present in VOTCA-XTP. What
is important stress is estimating to which extent the computational cost of DFT
scales with respect to the number of atoms N of the system under investigation. If
we analyze the cost for each step leading to the solution of the eigenvalue problem
Eq. (4.5)

• Formation of FKS: O(N3)

• Formation of S: O(N3)

• Formation of (µν|ηδ): O(N4)

• Formation of K (Hybrid only): O(N4)

• Eigendecomposition: O(N3)

The overall scaling for a standard implementation of DFT is O(N4). Despite
this being a better scaling behaviour when compared to other methods as the
wavefunctions ones briefly described in Appendix F the computational cost is still
high.
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If it is possible to state that ground-state properties are feasible to compute due
to improvements in DFT implementations for almost all the implementations, the
same cannot be said about excited state. Calculating the excited state requires
special treatments that typically add extra costs when compared to DFT. In the
following an overview of the implementation of GW -BSE in VOTCA-XTP is given.

4.2.2 GW-BSE with Gaussian orbitals

VOTCA-XTP uses Gaussian-type orbitals (GTOs)

χα(r) = χ{l,m`,γ,I}(r) = NlγYlml |r−RI |l exp
(
−γ|r−RI |2

)
(4.14)

with decay constant γ centered around atom position RI , where Ylml are spherical
harmonics with angular momentum number l and magnetic quantum numbers ml,
and Nlγ is a normalization constant, to expand the one- and two-point quantities
involved in both DFT and GW -BSE steps. Specifically, the KS states in Eq. (2.51)
are expressed using these basis functions in real space turning Eqs. 2.51, 3.59,
and 3.69 into (generalized) eigenvalue problems in matrix form. See also the
discussion about efficient solvers for the BSE in Sec. 4.3.2. VOTCA-XTP evaluates
the integrals of the respective operators over the Gaussian basis functions using
the modified recursive algorithms by Obara and Saika [131, 132] for contracted
Gaussian basis functions with l ≤ 4.

Of particular importance is the computation of 4-center repulsion integrals of
Eq. (4.7) over the GTOs. This computation scales with N4

b (with Nb the num-

ber of basis functions) and occurs in the KS Hamiltonian term V̂H and in the
self-energy of GW . The set of N2

b unique product functions χα(r)χβ(r) can be
approximated by a smaller auxiliary basis containing only Naux = 3Nb to 5Nb

functions ξµ. This reduces the scaling from N4
b to N3

b by rewriting the 4-center
integrals as a combination of 3-center and 2-center repulsion integrals [133]:

(αβ|α′β′) ≈
∑

µ,ν

(αβ|µ)(µ|ν)−1(ν|α′β′), (4.15)

where (µ|ν)−1 is an element of the inverse of the 2-center repulsion matrix

(µ|ν) =

∫∫
d3r d3r′ ξµ(r)

1

|r− r′|ξν(r′) (4.16)
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and (αβ|µ) is an element of the 3-center repulsion tensor

(αβ|µ) =

∫∫
d3r d3r′ χα(r)χβ(r)

1

|r− r′|ξµ(r′). (4.17)

The expression in Eq. (4.15) appears formally as the insertion of a resolution-of-
identity (RI) with metric (ν|µ)−1.
Within the RI approximation, the elements of the QP Hamiltonian in the basis
of KS states contain Σmn(E) =

〈
φKS
m

∣∣ Σ̂(E)
∣∣φKS
n

〉
(Eqs. 3.59 and 3.60), which are

determined as

Σmn(E) =
∑

µ,ν

∑

l

Imlµ Inlν
i

2π

∫
dω

eiωθε−1
µν (ω)

E + ω − εl ± iη
, (4.18)

where the factor with θ → 0+ ensures convergence of the integral, and the imagin-
ary perturbations ±η avoid singularities on the real axis, where the plus (minus)
is taken when l is occupied (unoccupied). Further,

Imlµ =
∑

ν

(µ|ν)−1/2
∑

α,β

cmα c
l
β(αβ|ν) =

∑

ν

(µ|ν)−1/2Mml
ν (4.19)

and

εµν(ω) = δµν − 2

occ∑

m

unocc∑

l

Imlµ Imlν

[
1

ω − (εm − εl) + 2iη
−

− 1

ω + (εm − εl)− 2iη

]
. (4.20)

is called the dielectric matrix. As described in Section 3.4.1, in the G0W0 approach,
we take the KS energies εi = εKS

i , whereas in the evGW approach, we take the

QP energies εi = εQP
i . Currently, VOTCA-XTP pre-calculates all integrals at the

start of the calculation and keeps Imlµ in memory.

4.2.3 Frequency dependence of the self-energy

The frequency integration, in Eq. (3.56), is one of the major difficulties in a GW
calculation. Although it is possible to perform a numerical integration, this is
likely unstable, since the integrand needs to be evaluated in regions in which it is
ill-behaved. VOTCA-XTP offers different alternatives for an approximate or exact
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integration, summarized in the following. We present three methods: one that is
exact yet takes too much computational effort, one that is exact and is reduced in
scaling, and one that is approximate yet very well-scaled. In the GW approach,
it is customary to separate the self-energy Σ = iGW into its bare exchange part
Σx = iGvc and its correlation part Σc = iGW̃ , where W̃ = W − vc. In the
following, several approaches to determine the correlation part of Eq. (4.18) are
presented.

Fully Analytical Approach (FAA)

The integral in Eq. (4.18) can be evaluated analytically, yielding an exact expres-
sion of the correlation part of the self-energy. Its evaluation requires the calcula-
tion of the reducible polarizability P̂ . We can express it in terms of an eigenvalue
decomposition of the RPA Hamiltonian ĤRPA

P̂ (ω) = [ĤRPA − ω]−1 =
∑

S

|χS〉 〈χS |
ΩS − ω

, (4.21)

where the RPA Hamiltonian obeys a BSE as in Eq. (3.69) with κ = −1 and Kd = 0
in Eqs. 3.70 and 3.71.

We can apply analytic continuation to the complex plane and contour deformation
techniques to the convolution Eq. (3.56) [134, 135]. The resulting matrix entries
of the correlation part of the self-energy are given by

Σc,mn(E) = 2
∑

l,S

RSmlR
S
nl

E − εl ± (ΩS − iη)
, (4.22)

where ± denotes + (−) for l occupied (unoccupied), and the factor 2 accounts for
spin degeneracy. The residues RSmn are calculated as

RSmn =
∑

µ,ν

occ∑

v

unocc∑

c

Imnµ Ivcν (ASvc +BSvc). (4.23)

While this approach is analytically exact, it is not feasible for large systems as the
diagonalization of ĤRPA scales as N6 in computational effort and N4 in memory
required [136].
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Figure 4.3: Schematic for the contour deformation technique. In read the
integration paths in the complex plane to evaluate Σc(E). Γ+ and Γ− are
the integration contours. These are chosen to include only the poles of G,
but not the poles of W .

Contour Deformation Approach (CDA)

To avoid the computational bottleneck due to the scaling of the FAA, an alternative
approach, also involving analytic continuation of the integral over the real axis
from Eq. (4.18) to the complex plane and contour deformation techniques, can be
employed. It yields a different rewriting, containing an integral over the imaginary
axis and residual contributions. The contour deformation and the poles of G and
W is shown in Figure 4.3. Since the new integral is very peaked around the
origin when E ≈ ε` for some `, we add a Gaussian function inside the integral
and subtract its integral value on the outside. We then can calculate the matrix
entries Σc,mn = Σint

c,mn(E) + Σres
c,mn(E), with the integral term

Σint
c,mn(E) =

1

π

∑

µ,ν,l

Imlµ Inlν

∫
dω

E − εl
ω2 + (E − εl)2

×

×
[
κµν(0)e−α

2ω2 − κµν(iω)

]
,

(4.24)
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which can be numerically evaluated using a Gauss–Laguerre quadrature method,
and the residual term

Σres
c,mn(E) =

∑

µ,ν,l

Imlµ Inlν

[
κµν(E − εl ± iη)Θl(E)−

− 1

2
κµν(0)eα

2(E−εl)2

sgn(E − εl)erfc(α|E − εl|)
]
.

(4.25)

Here, κ = ε−1−I, and α is a Gaussian scaling parameter adaptive to the numerical
model to be used. [137, 138] Furthermore, for l occupied Θl(E) is −1 if E < εl and
−1/2 if E = εl; for l unoccupied it is 1 if E > εl and 1/2 if E = εl. By design, the
FAA is in principle the most exact one, since it is parameter-free except for the
dependence on the basis set. However, the same results can already be achieved
with the CDA using a moderately-sized numerical integration grid for the Gauss–
Laguerre quadrature, which reduces the scaling.

Plasmon-Pole Model (PPM)

Instead of a formally exact treatment of the frequency dependence, it can be
approximated within a generalized plasmon-pole model (PPM) [139, 140]. The
dielectric matrix can be expressed in terms of its eigenvalues λµ′ and eigenvectors
Φµ′ as

εµν(ω) =
∑

µ′

Φµµ′(ω)λµ′(ω) Φνµ′(ω), (4.26)

In the PPM, eigenvectors are assumed to be frequency-independent, so only the
eigenvalues λµ′ depend on ω. In particular, this approximate dependence reads

λ−1
µ′ (ω) ≈ 1 +

zµ′ωµ′

2

[
1

ω − (ωµ′ − iη)
− 1

ω + (ωµ′ − iη)

]
. (4.27)

Here, zµ′ denotes the plasmon-pole weight and ωµ′ denotes the plasmon-pole fre-
quency. These two model parameters are found by fitting the plasmon-pole model
to the exact dielectric function [141], as shown in Eq. (4.20), for the frequencies
ω = 0 and ω = iE0, with E0 an additional model parameter, typically E0 = 0.5 Ha.
The correlation part of the self-energy results from the second term of Eq. (4.27),
and its matrix entries are obtained as

Σc,mn(E) = 2
∑

l,µ′

1

4

zµ′ωµ′I
ml
µ′ I

nl
µ′

E − εl ± ωµ′
, (4.28)
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where ± denotes + (−) for l occupied (unoccupied), and the factor 2 accounts for
spin.
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Figure 4.4: Comparison of the QP corrections εQP − εKS vs the KS en-
ergies for ethene (left) and adenine (right), obtained with the frequency
integration of Eq. (3.56) using the FAA (triangles) and the PPM (circles),
respectively.

Comparison of FAA and PPM for QP excitations of ethene and
adenine

Figure 4.4 illustrates the influence of the choice of technique for the frequency
integration on the obtained QP corrections to the KS state energies for two small
molecules: ethene and adenine. In both cases, the calculations have been per-
formed using the aug-cc-pVTZ basis [142], an optimized RI basis [143] and the
PBE0 [53] functional for the DFT ground-state calculation, with the whole range
of states (121 for ethene, 399 of adenine) included in the RPA and QP steps.
The corrections for all occupied levels and the same number of unoccupied levels
is shown. Clearly, the QP corrections obtained with the PPM are slightly more
positive (about 0.3 eV) than with the exact method for the occupied and lowest
unoccupied levels in both cases, whereas there is hardly any deviation for unoc-
cupied levels at higher energy. It should be noted that, due to the nature of the
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deviations, energy differences near the gap are very similar for both methods. In
particular, the QP gap between HOMO and LUMO levels as predicted by the
PPM and the exact method differs by only 0.05 eV for the two molecules con-
sidered here. It is also visible that the corrections, e.g., to the DFT LUMO level
in ethene, are larger than for higher unoccupied states, leading to level switching
in GW (LUMO+3). This behavior is the same for FAA and PPM. However, this
close agreement is paralleled by a significant difference in computational cost: 1

while the use of Eq. (4.22) increases the computation time from 4 min to 12 min
compared to the PPM in ethene, we find that for adenine the same causes an
increase from 174 min to 2566 min.

Considering the above, we find that the PPM appears to be a suitable “low-cost”
approximation to the exact frequency dependence of the self-energy when the main
interest is in near-gap excitations such as HOMO and LUMO energies or HOMO-
LUMO transitions in larger molecular systems. More significant deviations can be
expected when mixed transitions involving other orbitals are investigated.

4.3 Software Development Strategies

VOTCA-XTP is written in C++ and mostly adheres to the C++14 standard [144].
It can be obtained on github.com/votca/xtp. We use the Git feature branch
workflow combined with code review and continuous integration, which executes
code formatting, static analyzers, debug and release builds and the test-suite.
We use CMake as the build system, which also resolves the inclusion of external
dependencies. The linear algebra is handled by Eigen [145], which can be acceler-
ated by internally calling the Intel Math Kernel Library [146]. For serialization,
the HDF5 format is used via the canonical libraries [147]. Exchange-correlation
functionals are provided by the LIBXC package [148]. Various boost packages [149]
are used for file system operations, file parsing and string operations. Doxy-
gen is used to document the APIs of VOTCA-XTP and automatically deploys
to http://doc.votca.org.

VOTCA-XTP is designed as a library, which is linked into very thin executables,
which can execute a variety of calculators by adding keywords on the command
line. Virtual interfaces and factory patterns make the addition of new calculators
simple. The same architecture is used for external DFT and MD codes, making
VOTCA-XTP easily extensible.

1Measured on a single thread of an Intel(R) Xeon(R) CPU E7-4830 v4 @ 2.00GHz
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Time (s)
Molecule Nb Naux CPU GPU

Benzene 174 774 21 9
Naphthalene 274 1228 68 28
Phenanthrene 374 1682 216 44
Coronene 600 2724 1421 266

Table 4.1: Comparison of calculation times for the convolution of the 3-
center repulsion tensor with the molecular orbital coefficients on CPU
(single thread of Intel(R) Xeon(R) Gold 5120) and GPU (Nvidia Titan
Xp), respectively, for four polycyclic aromatic hydrocarbons with different
numbers of functions in the basis (Nb) and auxiliary basis (Naux).

4.3.1 GPU acceleration

The computation of the Mml
ν =

∑
α,β c

m
α c

l
β(αβ|ν) term in Eq. (4.19) requires

the convolution of the 3-center repulsion tensor from Eq. (4.17) with the mo-
lecular orbital coefficients. These convolutions involve a large number of matrix-
matrix multiplications that take a significant fraction of the computation time. In
VOTCA-XTP, we have accelerated these operations by offloading them to a GPU,
using the highly optimized CuBLAS library [150]. Moreover, due to the typically
limited memory of the GPU and the latency required to copy the matrices back
and forth from the device, there are limitations to the theoretical speedup for a
given system size.

Tab. 4.1 illustrates the time trend for the 3-center integrals calculation on GPU
(Nvidia Titan Xp) and single CPU thread (Intel(R) Xeon(R) Gold 5120) as the mo-
lecular size increases. For systems smaller than benzene the acceleration achieved
by the GPU does not compensate for much of the communication latency, and
consequently the reduction of calculation time is limited, albeit on an already
overall low level. For benzene and naphthalene, we observe a GPU speedup of
about 60 % compared to the respective single CPU thread values, while for the
larger systems (phenanthrene and coronene) it increases to 80 %. For even larger
systems, the speedup increases until it eventually plateaus due to limits in the
GPU memory and hardware bandwidth. Even though the observed quantitative
speedups depend on the given GPU/CPU hardware combination, a qualitatively
similar behavior is expected in a general setting. Note that overall, best perform-
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ance is obtained by combining all CPU threads and the GPU in a mixed hybrid
OpenMP/Cuda mode, which is also implemented in VOTCA-XTP.

4.3.2 Iterative matrix-free eigensolvers for the BSE

The size of the BSE matrix in Eq. (3.69) increases rapidly with the number of oc-
cupied (Nocc) and unoccupied (Nunocc) states included in the product basis, with
its dimension being 2NBSE × 2NBSE, where NBSE = Nocc × Nunocc. Even if the
TDA (Eq. (3.77)) is used, the dimension of Hres is still NBSE ×NBSE. This leads
to a computational as well as a memory bottleneck for GW -BSE calculations. The
Davidson algorithms [151, 152] form a family of subspace-iterative diagonalization
schemes that are extensively used in large-scale quantum chemistry applications
[153, 154]. These methods allow rapid computation of a selected numbers of ei-
genvalues of large matrices, while reducing memory requirements when compared
to other methods.

For an eigenproblem HX = ΩX, the Davidson method starts from a set of N
guess eigenvectors V = {v1,v2, . . . ,vN}, where each vi is a column vector. These
vectors are used to obtain a small eigenvalue problem:

(VTH V)x = ωx. (4.29)

The Ritz eigenpairs of this problem (ωi,yi = Vxi) are approximate solutions of
the large eigenvalue problem. The residues of the Ritz eigenpairs, ri = H yi −
ωiyi, are then used to construct additional basis vectors, ti, that are appended
to the projector: V = {v1,v2, . . . ,vN , t1, t2, . . . tn}. This new projector is then
orthogonalized, using either a Gram-Schmidt or a QR approach, and used to obtain
a better approximation of the large eigenpairs. This is repeated until the residues
of all Ritz eigenpairs respect the condition ||ri|| ≤ ε, where ε is a fixed threshold
parameter. When the size of the projector V becomes too large, it is reset to N
Ritz eigenvectors.

In addition to considerably accelerating the diagonalization of the BSE matrix,
these methods do not require the matrix to be stored in memory and only the
action of this matrix on vectors is required. This matrix-free approach naturally
decreases the memory requirement of the calculation. Different methods based
on the general idea behind the Davidson algorithm have been developed. These
methods differ in the way the correction vectors ti are calculated and on which part
of the spectrum is targeted. We briefly present the solutions we have implemented
in VOTCA-XTP to solve the BSE equation using the TDA or the full matrix.
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Time (s) Memory (GB)
Molecule NBSE DSYVEX DPR DPR-MF DSYVEX DPR DPR-MF

Uracil 7743 83.44 1.33 32.63 1.08 1.20 0.71
Cytosine 8149 98.68 1.52 33.16 1.21 1.31 0.79
Thymine 10593 217.85 2.03 61.99 1.88 2.02 1.16
Adenine 11725 293.49 2.39 75.48 2.18 2.38 1.28

Table 4.2: Performance benchmark (computation time and memory re-
quirements) of different diagonalization schemes implemented in VOTCA-
XTP during the calculation of the 25 lowest singlet excitations of the
NBSE ×NBSE BSE matrices using the TDA on a single thread.

If the TDA is used, the Davidson method allows rapid computation of the lowest
N eigenvalues and eigenvectors of the Hermitian matrix Hres. The initial projector
V is then set to select the N transitions with the lowest energy difference. We
have implemented different methods to compute the correction vectors. Following
Davidson’s original idea [151], the correction vectors can be obtained via

ti = −(Dres − ωiI)−1ri, (4.30)

where Dres is the diagonal of the matrix Hres. Note that (Dres−ωiI) is a diagonal
matrix and that therefore it is not necessary to explicitly diagonalize it. It is
important to mention that the method outlined above requires only one evaluation
of HresV per iteration. This product can be calculated without having to form
the complete Hres matrix, decreasing the memory requirement at the expense of
a slight increase in computational time.
If the TDA is not used, the lowest transitions correspond to the interior eigen-
values of the non-Hermitian matrix in Eq. (3.69), as all its eigenvalues come in
pairs (−ΩS ,ΩS). The procedure outlined above is optimal for exterior eigenvalues
but often leads to spurious eigenvalues when applied to the calculation of interior
eigenvalues. Following Morgan [155], the original Rayleigh–Ritz approach is mod-
ified to map the interior eigenvalues to the exterior of the spectrum of an inverted
matrix. To this end, the small eigenvalue problem Eq. (4.29) is replaced by the
generalized eigenvalue problem

(VTHV)x = ω(VTH2V)x. (4.31)

Solving Eq. (4.31) gives the harmonic Ritz eigenpairs (ωi,yi = V xi) with ωi =
xTi VTHVxi. As before, the residues of these eigenpairs are used to construct
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correction vectors using Eq. (4.30), which are then appended to the projector
matrix V. It is worth noting that the generalized eigenvalue problem Eq. (4.31)
requires two matrix-vector products per iteration to evaluate H V and H2V, which
significantly increases the computational cost of the method.

To illustrate the performance of our implementation of the Davidson algorithm,
we show in Tab. 4.2 the computation time and the memory requirement of the BSE
calculations of 4 nucleobases. Here, the Davidson method (Diagonal-Preconditioned-
Residue, DPR) using Eq. (4.30) to obtain the correction vectors, as well as its
matrix-free implementation (DPR-MF), are compared to the highly-optimized
Lapack routine DSYVEX, which also allows the calculation of the lowest part of
the spectrum. As seen in Tab. 4.2, the DPR method is up to 2 orders of magnitude
faster than DSYVEX, while having similar memory requirements. The matrix-free
approach is faster than DSYVEX, but significantly reduces the memory require-
ment, hence enabling BSE calculations on much larger systems. The speed-up
offered by the Davidson method over DSYVEX is most apparent when only a
small number of eigenvalues are required. For example in the case of the adenine
molecule, the calculations of the lowest 1000 eigenvalues of the BSE matrix re-
quired approximately the same amount of time using the DPR or DSYVEX meth-
ods while the DPR-MF was twice as slow. Note that the full diagonalization of
the BSE matrix is not supported by VOTCA-XTP due to the high computational
cost and memory load that it would require. As a consequence VOTCA-XTP is
not suitable for computing the absorption spectrum of large systems far from the
band-edge.

4.3.3 Conclusions

All in all, the design of VOTCA-XTP aims at striking a balance between perform-
ance, accuracy and implementation complexity. For instance, the RI approxima-
tion simplifies the implementation and speeds up the calculations. In particular,
the N3

b scaling of the memory requirements of the RPA makes keeping the three-
center integrals in memory feasible for moderate-sized molecules described by up
to approximately 1500 basis functions, thus allowing GW -BSE calculations even
on desktop hardware. As VOTCA-XTP is built with shared memory paralleliza-
tion, large memory hardware is required for the treatment of larger systems. This
could, in principle, be overcome either by calculating the necessary terms on the
fly or by efficiently storing them on disk. Both would come with a noticeable drop
in performance, and are currently not actively pursued. Instead, we consider as
an alternative the inclusion of a framework for Density Functional Perturbation
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Theory [47] (DFPT) into VOTCA-XTP. It has been shown before [156] that the
explicit summation over unoccupied states in the RPA can be omitted, if the whole
GW is rephrased in terms of a Sternheimer equation. In the same spirit, DFPT
can also yield beneficial improvements in terms of speed and memory consumption
for the BSE [157].
Besides the above limitations, the GW -BSE implementation in VOTCA-XTP cur-
rently supports only closed-shell calculations and thus systems with explicit spin,
e.g., for the optical spectra of cations or anions cannot be treated. This restric-
tion is planned to be lifted in future versions. Furthermore, VOTCA-XTP can
only determine excited-state response properties such as atomic forces, excited-
state vibrational modes, or polarization tensors via numerical derivatives due to
the lack of analytic gradient expressions [158]. It is also known that while the
GTO-based implementation is adequate for the representation of bound electronic
states, it is less effective in describing delocalized electronic states close to or above
the vacuum level. As a consequence, Rydberg excitations are not as reliably ac-
counted for. Such states typically require the addition of very diffuse atomic basis
functions, causing significant linear dependencies in the molecular basis set which
require careful treatment [159].
In the GW -BSE/MM framework, classical polarization effects of the environment
are currently modeled via atomic induced dipoles as described in Section 3.6.
This model cannot be expected to yield an accurate description of the response,
if the environment is strongly polarizable to the extent that charge flow effects
are present. Furthermore, our GW -BSE/MM framework relies on the assumption
that the environment response is single-reference in character, allowing for an
unambiguous identification of the excited states in the self-consistent procedure
required to evaluate Eq. (3.88). This can be achieved by analyzing excited-state
characteristics, such as oscillator strengths for optical transitions or the amount
of transferred charge between two molecules, or directly the density matrix of
the excitation. Any of these state-tracking methods are not straightforwardly
applicable, e.g., at or close to intersections where at least two states mix strongly.
The inclusion of automatic solutions to this problem [160, 161] is left for future
developments.
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Results

It is the peculiar and perpetual
error of the human
understanding to be more and
excited by affirmatives than
negative

Francis Bacon

In this part an overview of some applications and results using the theory and
the computational methods described in the previous part is presented. The ma-
jority of the results presented has been published and a reference to the original
paper is set on the beginning of the chapter. To make a coherent story, con-
tent of these papers have been condensed in three chapters. For those results
without any reference the reader must be aware that they are not yet published
and thus are still work in progress results. The first (Section 5) and the second
(Section 6) chapters show how ab-initio many-particles theories, with the inclu-
sion of a classical polarizable embedding and their computational implementations
help bridging the gap with experimental spectroscopy and the underlying phys-
ics of these experiments. Spectroscopy experiments are used to measure quantities
like ionization potential, electron affinity and optical gap. These are useful ingredi-
ents to get another meaningful quantity that cannot be measured directly, like the
exciton binding energies. The computational methods that we developed helped
deconvolving the uncertainty behind the interpretation of experimental spectra,
becoming a useful tool towards a more controlled engineering of opto-electronic
devices. The same theoretical and computational methods are not only useful
in understanding single particle excitations but also two-particles excitations. In
Section 7, the dynamic between localized and charge-transfer excitations are stud-
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ied for a prototypical solar cell material in which there is a low-donor content,
an ideal experimental setup where to prove the methods described above. Other
than the computation of localized and charge-transfer excitons in a polarizable
environment, non-adiabatic coupling has been studied comparing different diabat-
ization methodologies providing qualitative and quantitive predictions. A minimal
kinetic model of the conversion from localized excitation and charge-transfer state
population stability based on Marcus rates is presented.
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Chapter 5

Quantitative Predictions of
Photoelectron Spectra in
Amorphous Molecular Solids
from Multiscale
Quasiparticle Embedding

Adapted from the paper of
Tirimbó e al. [126]

In this chapter we present a first-principles-based multiscale simulation framework
for quantitative predictions of the high-energy part of the ultraviolet photoelec-
tron spectroscopy (UPS) spectra of amorphous molecular solids. The approach
combines a deposition simulation, many-body Green’s function theory, polariz-
able film embedding, and multimode electron-vibrational coupling and provides a
molecular-level view on the interactions and processes giving rise to spectral fea-
tures. This insight helps bridging the current gap between experimental UPS and
theoretical models as accurate analyses are hampered by the energetic disorder,
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surface sensitivity of the measurement, and the complexity of excitation processes.
In particular, this is relevant for the unambiguous determination the highest occu-
pied molecular orbital energy (HOMO) of organic semiconductors, a key quantity
for tailoring and engineering new optoelectronic devices. We demonstrate the
capabilities of the simulation approach studying the spectrum of two isomers of
2-methyl-9,10-bis(naphthalen-2-yl)anthracene as archetypical materials showing a
clearly separated HOMO peak in experiment. The agreement with experiment
is excellent, suggesting that our approach provides a route for determining the
HOMO energy with an accuracy better than 0.1 eV.

5.1 Introduction

Amorphous organic semiconductors are intensively applied in opto-electronic devices
such as organic light-emitting diodes (OLEDs) [162, 163, 164, 165], photovoltaic
cells [166, 167, 168] and photodetectors [169, 170, 171]. Device properties can be
tuned by varying the chemical building blocks or the material processing condi-
tions, and by combining different molecular materials in complex blends or layer
stacks. A key parameter determining the functioning of a material in a device is the
ionization energy, often termed the highest occupied molecular orbital (HOMO)
energy, εHOMO. Relative changes of εHOMO on the order of 0.1 eV can already
significantly alter the charge transport through host-guest materials or across in-
ternal interfaces between layers. However, even when using the perhaps most direct
method for measuring εHOMO, Ultraviolet Photoelectron Spectroscopy (UPS), this
level of accuracy has so far not been accomplished.

Excitation processes in organic semiconductors are complex because their local-
ized nature gives rise to strong structural reorganization (polaron formation) and
electron-vibration coupling, which leads to shifts, broadening and additional fea-
tures in the UPS spectrum [172, 173, 174, 175]. Combined with the energetic dis-
order originating from the amorphous structure and the surface-sensitivity of the
measurement, this obstructs the unambiguous analysis of the spectra. As a result,
the method used for deducing εHOMO from the spectra (from the first peak energy
or from an effective onset energy?) is a subject of debate [176, 177, 178]. This
uncertainty hampers the use of UPS studies for the rational design of new devices,
and the combined use of high-resolution UPS, inverse UPS and photoluminescence
spectra for obtaining accurate exciton binding energies [179]. Qualitative under-
standing of the spectra is often sought via gas-phase single-molecule calculations
based on density functional theory (DFT). However, the obtained energy levels
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need to be artificially shifted and broadened due to the well-known underestima-
tion of the single-particle energy gap by DFT [180, 181] and due to the effects of
intermolecular interactions [182]. Those calculations lack an explicit link to the
molecular morphology, cannot resolve surface and bulk contributions to the density
of states (DOS), and do not account for the spectral consequences of the molecular
ionization process resulting from the excitation of molecular vibrations. This lack
of predictive power combined with the ambiguity in extracting the DOS from the
experimental data is a big obstacle for the development of layer stacks for organic
photovoltaics or next-generation OLEDs, for which the functioning and ultimate
performance is already sensitive to energy level variations of only 100 meV.
In this work, we present a first-principles-based multiscale simulation approach
that bridges the current gap between experimental UPS and theoretical models
by providing a quantitative prediction of the high-energy part of the UPS spec-
trum from which the ionization potential is derived. It consists of an accurate
evaluation of (i) quasiparticle energy levels within the GW approximation and
(ii) thin-film embedding effects, using a hybrid quantum-mechanics/molecular-
mechanics (QM/MM) approach that takes the molecular polarizabilities and the
long-range interactions due to partially ordered static multipole moments into ac-
count, (iii) the inclusion of surface sensitivity via the electron attenuation length
(EAL), Λ, and (iv) a full-quantum treatment of electron-vibration coupling. We
focus here on only one type of initial state (frontier orbital), and simulate the UPS
spectrum for perpendicular emission as a weighted sum of individual molecular
environment-dependent densities of states according to

SUPS(E) =
1

Nm

Nm∑

j=1

Sel-vib(E; εj) exp

(
−z0(x, y)− zj

Λ

)
, (5.1)

with εj the frontier orbital energy level of molecule j, zj the distance of the mo-
lecule’s center-of-mass (COM) to the corrugated surface at z0(x, y) [183], and
Sel-vib(E; εj) the energy-dependent spectral shape due to electron-vibration coup-
ling. Nm is the total number of molecules included in the summation, which is
equal to the number of molecules for which from a vapour deposition simulation
the atomistic morphology is obtained (see Sec. 5.2). In view of the large optical
absorption depth, we neglect optical matrix element effects.
As prototypical systems, we study the UPS spectrum for thin films of the α
and β isomers of 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN), whose
chemical structures are shown as insets in Fig. 5.1. MADN is a morphologic-
ally stable amorphous wide-gap semiconductor [184] that is used extensively as
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an ambipolar host material in OLEDs containing deep blue fluorescent emitter
molecules [185, 186, 187, 188, 189, 190]. The methyl substituent disrupts the sym-
metry and stabilizes the material against crystallization. The type of coupling of
the anthracene core and the naphtyl substituents (α or β) affects the planarity
of the molecules, and thereby the frontier orbital energies and their distribution
in a thin film. We regard MADN as particularly suitable for this study because
it exhibits a HOMO peak that originates from a single non-degenerate state, loc-
ated predominantly on the anthracene core. Experimental high resolution (low
instrumental broadening) UPS measurements (see Fig. 5.1) were done in a multi-
chamber VG EscaLab II system with a base pressure of the deposition and the
analyzer chamber in the upper 10−6 and the lower 10−8 Pa range respectively.
α- and β-MADN (Lumtec) were deposited by high-vacuum (8 · 10−6 Pa) thermal
evaporation onto in situ sputter-cleaned Au-coated Si-substrates at a rate of about
1 nm/min. The deposited films were transferred under ultra high vacuum (UHV)
between the deposition and the analyzer chamber. The UPS spectra were recor-
ded at a -6 V bias voltage using HeI radiation, generated in a differentially-pumped
discharge lamp.
Figure 5.1 show that the peak full width at half maximum (∼ 0.4 eV) is significantly
smaller than for many other often-used hole transporting and emitting materials
in OLEDs. It is furthermore advantageous that the HOMO state is well-separated
from the deeper levels. The selection of the two isomers enables us to study the
effects of morphology differences and the related effects on energy level shifts due
to the small molecular dipole moments.
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Figure 5.1: Experimental UPS spectra obtained using He-I radiation
(21.2 eV) for (a) α-MADN and (b) β-MADN, respectively. For both sys-
tems, the peak associated to the HOMO, at about -6.1 eV, is clearly separ-
ated from the deeper levels. Experiments from C.H.L. Weijtens in collab-
oration with Prof. R. Coehoorn and his research team [191].
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5.2 Atomistic thin-film morphologies

As a first step, realistic thin-film morphologies are obtained using the Metropolis
Monte Carlo-based simulated annealing protocol DEPOSIT [192]. It mimics the
vapor deposition (PVD) process and provides molecular morphologies that exhibit
commonly observed PVD characteristic features [193, 194]. Each molecule was de-
posited using 32 simulated annealing cycles with 120000 Monte-Carlo steps each,
with annealing temperatures decreasing from 4000 K to 300 K. Periodic boundary
conditions were applied in the directions perpendicular to the growth direction
with a side length equal to 10 nm. The deposition substrate is represented by a
fixed dense layer of MADN. The energy at each simulation step was computed
using customized force-fields generated using the Parametrizer module of the DE-
POSIT code. These force-fields comprise Coulomb electrostatics based on partial
charges obtained from an electrostatic potential fit [195], Lennard-Jones poten-
tials to account for the van-der-Waals interaction and the Pauli repulsion, and
compound-specific dihedral force-fields with quantum chemistry accuracy gener-
ated by the Dihedral Parametrizer of the DEPOSIT code. The final deposited
morphologies contain 1000 molecules and are about 10 nm thick. For the following
analysis, we remove the bottom 2 nm of the film to avoid spurious effects from the
artificial substrate.

5.3 Quasiparticle Energies in the GW Approxim-
ation

The internal contributions to the HOMO energy of all individual molecules are
calculated including quasiparticle corrections within the GW approximation of
many-body Green’s Functions theory [196, 197]. At this level, the calculations
already include the effects of molecular deformations, obtained from the morpho-
logy simulations, but not yet the effects of embedding in the polarizable thin-film
environment. These will be discussed in Section 5.4. The properties of a closed
shell system of N electrons with spin singlet ground state can be calculated us-
ing DFT by solving the Kohn–Sham (KS) equation of Eq. (2.51) As described in
Section 3.4.1, particle-like excitations, known as quasiparticles (QP), in which one
electron is added to or removed from the N -electron ground state, are described
by the one-body Green’s function, in particular in the form of the GW approxim-
ation. As already described, the main ingredient of the GW approximation is the
self-energy operator. As the self-energy is energy-dependent, and thus depends on
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εQP
i , the solution to Eq. (3.59) or Eq. (3.60) need to be found self-consistently.

Both the correction term ∆εGWi and the non-local, energy-dependent microscopic

dielectric function calculated within the RPA depend on εQP
i [198, 199]. Within

the GW method employed in this work, we iteratively solve the Hamiltonian by
updating as well the energy-dependent non-local dielectric function, until self-
consistency of the eigenvalues (ev) is obtained. In literature this is often referred
to as evGW [200, 37, 136].

We have performed the KS-DFT and the GW steps using the ORCA [201] and
VOTCA-XTP [200, 37] software packages, respectively.

All results reported in this chapter, are obtained using the PBE functional and
the cc-pVTZ basis [202] with its optimized auxiliary basis set [203] for resolution-
of-identity techniques.

The KS-DFT eigenvalues, and thus the quasiparticle energies, may depend strongly
on the exchange-correlation functional used. However, for both MADN isomers,
the final GW results show a negligible starting-point dependence. A comparison
using the PBE functional [204] and the hybrid PBEh [205, 206] is given in the
following.

In Tab. 5.1 we show a comparison of the calculated gas-phase energy levels for
α-MADN and β-MADN, obtained using the PBE and PBEh exchange-correlation
functionals with the cc-pVTZ basis (see the discussion and references above). In
each case, the table gives the Kohn-Sham (KS) energy εKS, the perturbatively
calculated GW energy εQP,pert, and the exact GW energy, εQP.

Note the difference in the results obtained for εKS, e.g., in the HOMO energy
of α-MADN: -4.79 eV (PBE) and -5.55 eV (PBEh). This is a consequence of the
spurious self-interaction in the functionals and the inadequacy of DFT to describe
electronically excited states. Figure 5.2 shows the errors made by using the two
different functionals to calculate the KS energies, as judged by comparing these
energies with the perturbatively calculated or exact GW energies. The correc-
tion to the KS-levels is not constant, and is quite different for the occupied and
unoccupied states. We can see that for the PBE functional the quasi-particle
correction is more pronounced than for hybrid PBEh functional, which already
contains part of the exchange contributions to the self-energy operator. In spite
of the different energy-dependent corrections, the final quasi-particle energies (see
Table 5.1) do not show a significant dependence on the exchange-correlation func-
tional used. The exact GW HOMO energies, as obtained from both functionals,
differ for α-MADN (β-MADN) only by about 0.01 eV (0.02 eV).

The numerical accuracy of the calculations depends on the convergence limit used,
the number of levels included and the method for carrying out the frequency in-
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Table 5.1: Comparison of the calculated gas-phase energy levels (in eV)
for α-MADN and β-MADN, obtained using the PBE and PBEh exchange-
correlation functionals with the cc-pVTZ basis set, within KS-DFT (εKS),
including perturbative quasiparticle corrections (εQP,pert), and after diagon-
alization of the quasiparticle Hamiltonian (εQP), respectively. All energies
are given in units eV.

α-MADN

εKS εQP,pert εQP

PBE
HOMO-2 -5.412 -7.538 -7.597
HOMO-1 -5.396 -7.524 -7.595
HOMO -4.786 -6.610 -6.689
LUMO -2.468 -0.245 -0.348
LUMO+1 -2.011 0.536 0.424
LUMO+2 -2.000 0.550 0.435

PBEh
HOMO-2 -6.270 -7.570 -7.611
HOMO-1 -6.256 -7.559 -7.606
HOMO -5.548 -6.645 -6.702
LUMO -1.755 -0.218 -0.313
LUMO+1 -1.200 0.544 0.444
LUMO+2 -1.189 0.561 0.457

β-MADN

εKS εQP,pert εQP

PBE
HOMO-2 -5.459 -7.616 -7.690
HOMO-1 -5.456 -7.614 -7.682
HOMO -4.762 -6.574 -6.650
LUMO -2.457 -0.231 -0.335
LUMO+1 -2.030 0.514 0.384
LUMO+2 -2.027 0.520 0.414

PBEh
HOMO-2 -6.324 -7.652 -7.701
HOMO-1 -6.321 -7.652 -7.693
HOMO -5.521 -6.615 -6.670
LUMO -1.744 -0.204 -0.297
LUMO+1 -1.230 0.514 0.411
LUMO+2 -1.219 0.533 0.438

tegration in Eq. (3.56). The convergence limit for the self-consistent GW -cycles in
the evGW scheme was set to 10−5 Hartree (0.27 meV). The number of occupied
and unoccupied levels taken into account for the QP calculations is 327, while for
the calculation of the RPA dielectric function the full spectrum of the KS states
(1385 levels) is used. The frequency integration in Eq. (3.56) can be performed in
VOTCA-XTP using the Fully Analytical Approach [207] (FAA) or a generalized
plasmon-pole model (PPM) [199]. The FAA expresses the frequency dependence
of the self-energy in the eigenbasis of the full RPA Hamiltonian, which is in turn
evaluated in the basis of KS product states. This approach is in principle exact.
However, disadvantageously, the N6

b scaling of the FAA [207] makes its applica-
tion to molecules of the size of MADN computationally extremely demanding. As
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Figure 5.2: Calculated quasiparticle corrections as a function of the Kohn-
Sham energy for (a) α-MADN and (b) β-MADN, obtained using the PBE
and PBEh DFT functionals. The blue and red symbols give the perturb-
atively calculated quasiparticle corrections (εQP,pert), and the corrections
obtained after diagonalization of the quasiparticle Hamiltonian (εQP), re-
spectively.

an alternative, the PPM allows for a fast evaluation of the self-energy. For inor-
ganic semiconductors, the quasiparticle energy obtained using the PPM can show
deviations of several tenths of eV from the exact result [207, 208]. However, for
geometry-optimized α-MADN and β-MADN, we find a difference of only 0.02 eV
between the HOMO energies obtained using the FAA and PPM approaches. All
things considered, the results reported in this work have been obtained using the
PPM.
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5.4 QM/MM quasiparticle embedding schemes

Intermolecular interactions in the thin-film environment give rise to additional
non-uniform modifications of the quasiparticle energies. We determine the respect-
ive corrections to the intramolecular GW energies in a coupled quantum-classical
(QM/MM) procedure (“quasiparticle embedding”) [209, 210, 211, 212, 213, 200].
Within the MM model, we employ a classical representation of the molecular elec-
trostatic potential based on static and induced multipole moments, located on each
of the atoms in the system. A region treated on QM (here GW ) level is coupled
to suitably defined MM regions with a special scheme, which properly includes the
long-range character of electrostatic interactions among the excited and neutral
MADN molecules. The math employed is the same describe in Section 3.6. Static
atomic partial charges from a CHELPG fit to the neutral molecule’s electrostatic
potential [214] are used for the classical representation of molecules, and atomic
polarizabilities, optimized to reproduce the polarizable volume of the molecule
obtained from DFT, account for polarization effects via the induction of atomic
dipoles (Thole model [215]). Various schemes for coupling a QM-treated inner
region to a MM-treated outer region have been described in the literature. Within
an additive scheme [216] (here termed GW/aMM and depicted in Figure 3.6), the
potential of the MM environment is explicitly included in the GW calculation as
an additional external potential to the Hamiltonian. The QM region is directly
polarized by the multipole distribution (and vice versa) and coupled solutions are
found self-consistently [200]. Within a subtractive scheme (GW/sMM), the QM
region is replaced by a MM representation of the different states and a purely

classical energy correction E
(n)
MM − E

(qp)
MM is added to the GW vacuum energies.

When applying this scheme, we approximate the state of the MADN molecules
after the creation of an hole by that of the cation. In both cases, the MM envir-
onment includes all molecules inside a region within a cutoff distance rc around
the QM molecule. However, both cutoff-based techniques rely on the assumption
that only short-ranged local interactions affect the energies of the QM region. In
the thin-films of MADN, this is not the case as the deposition simulations reveal
a weak net ordering of the small molecular dipole moment (0.59 D and 0.56 D for
the α and β isomers). For the simulated morphologies considered, the cumulat-
ive calculated electric dipole moment parallel to the surface normal (z-direction)
of in total 65.6 D (α-MADN) and 35.7 D (β-MADN). Figure 5.3(a) and (e) show
the distributions of the absolute dipole moment for α- and β-MADN thin films,
respectively, calculated based on the classical atomic point charge distributions
of the constituent molecules. Both distributions are narrow and centered around
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the single-molecule values of 0.59 D and 0.56 D. From the distribution of the di-
pole moment’s z-component (i.e., its component parallel to the surface normal)
in Fig. 5.3(b) and (f) one can clearly see that there are more molecular dipoles
aligned in positive z-direction. This gives rise to the observed net overall dipole
moment of the thin film. Due to interactions among the molecular dipole mo-
ments as obtained from single-molecule data, it can be assumed that a more real-
istic description of the thin films’ electrostatic properties should include mutual
polarization effects. In our framework, we therefore first treat the total polar-
ization of the film within the pMM approach described in Section 3.6.1. After
application of this background pMM, the induced moments primarily lead to a
broadening of the distribution of the absolute molecular dipole moments, as can
be seen in Fig. 5.3(c) and (g). Similar observations can be made for the respect-
ive z-component distributions in Fig. 5.3(d) and (h). The partial screening due
to the polarizability of the neighbouring molecules reduces the total accumulated
dipole moment in the film by 3.5 D (α-MADN) and 2.8 D (β-MADN). In spite
of the small effective reduction of the accumulated thin film dipole moment, the
distributions in Fig. 5.3 suggest that the electrostatic potential inside the film and
its surfaces shows strong local variations. These manifest themselves directly in
a substantial amount of disorder in the calculated excitation energies within the
GW/pMM approach. Layer-averaged profiles of the obtained HOMO energies are
shown in Fig. 4 of the main text. Figure 5.4 shows the individual HOMO ener-
gies as a function of the z-coordinate of the molecule’s center-of-mass, as well as
their total distributions. The two aforementioned cutoff-based approaches can-
not account for long-range electrostatic effects [217] that result as a combination
of the thin-film geometry and cumulative electrostatics. Our final calculations are
therefore based on a third scheme, here termed GW/pMM. This is an extension
of the GW/sMM, in which the long-range electrostatic interaction effects are in-
cluded via an infinite periodic embedding based on the traditional classical Ewald
summation method [218]. We show in Section 5.6 that this scheme allows us to
include electrostatic interactions up to an arbitrarily large cutoff distance. When
only the static point charges are considered in both regions, we call this the ”static
GW/pMM scheme”. The final results are obtained by also including polarizable
(polar) interactions up to a cut-off distance rpc of 3 nm (”polarizable GW/pMM
scheme”). Outside that radius, αaa

′

tt = 0. Including these polarizable interactions
reveals that the molecular dipole moments are slightly screened, so that the total
accumulated dipole moment in the film is reduced by 3.5 D (α-MADN) and 2.8 D
(β-MADN).
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Figure 5.3: Distributions of the absolute value and z-component of molecu-
lar dipoles for both α-MADN and β-MADN inside the amorphous films.
Without the pre-polarization of the periodic neutral background (back-
ground pMM off, (a) and (b) for α-MADN and (e) and (f) for β-MADN)
both distributions are quite narrow. When background pMM is on ((c) and
(d) for α-MADN, (g) and (h) for β-MADN) induction effects tend to smear
out the dipoles’ orientation and strength. See text for further discussion.
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Figure 5.4: Energies of the HOMO as obtained by static and polar
GW/pMM simulations for the thin films of α-MADN and β-MADN, re-
spectively. The upper panels show the energies resolved according to the
z-component of the individual molecule’s center-of-mass, while the lower
panels show the total energy distribution (or the total density-of-states) in
the respective films.
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cation

neutral

Figure 5.5: Schematic representation of the potential energy surfaces for the
neutral (blue) and the cation (red) states, respectively, for a specific vibra-
tional mode k, as a function of the (dimensionless) vibrational coordinate
qk. Adiabatic transitions are the results of coupling of particle-like excita-
tions (vertical transition) with molecular vibrations, observed as the total
reorganization energy λtot =

∑
k λk. Within the full-quantum treatment of

carrier-vibrational mode coupling, employed in this chapter, the detailed
mode-specific coupling strengths λk are included in the expression for the
spectral shape shift and broadening function SFQ

el-vib

(
∆E

)
(Eq. (5.10)).
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5.5 Surface Density of States and Carrier-Vibration
Coupling

As a final step, we calculate from quasiparticle energies the HOMO contribution
to the UPS spectrum, using Eq. (5.1), by taking the surface-sensitivity of the
experiment and the carrier-vibration coupling into account. In the absence of
the carrier-vibration coupling, the spectrum would be proportional to the surface
density-of-states (SDOS). This is obtained by weighting the z-dependent frontier
orbital energy with the exponential function from Eq. (5.1), i.e.

SDOS(E) =
1

Nm

∑

j

δ(E − εj(zj)) exp

(
−z0(x, y)− zj

Λ

)
. (5.2)

We will adopt a value of Λ = 1 nm as suggested from experiment. It is compatible
with estimates of the inelastic mean free path of the electrons within the random-
phase approximation using GW energies, which we consider an upper limit to the
electron attenuation length [191].

In the following we focus on estimates of the IMFP within the modeling framework
established in this work. Throughout this section, atomic (Hartree) units are used
(~ = 1, me = 1, and e2/(4πε0) = 1, with me the electron mass, e the elementary
charge, and ε0 the vacuum permittivity).

The IMFP is the mean distance between successive inelastic collisions experienced
by an electron in a material. Its energy dependence can be estimated with the
help of the Energy Loss Function (ELF),

YELF(q, ω) ≡ Im

[ −1

ε(q, ω)

]
=

ε2(q, ω)

ε1(q, ω)2 + ε2(q, ω)2
, (5.3)

where ε1(q, ω) and ε2(q, ω) are the real and the imaginary parts of the dielectric
function, respectively. The ELF represents the probability of a material to absorb
energy ~ω and momentum ~q from an energetic incoming particle, such as a photon
or an electron with kinetic energy Ek. The IMFP is related to the ELF via

λ−1
in (Ek) =

1

πEk

∫ ωmax

ωmin

∫ q+

q−

1

q
YELF(q, ω) dq dω, (5.4)

where ωmin = Egap, ωmax = (Ek + Egap)/2, and q± =
√

2Ek ±
√

2(Ek − ω).
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The first step is to compute the ELF. To this end we firstly evaluate ε2(0, ω)
according to the non-interacting electron-hole picture in the Random-Phase Ap-
proximation (RPA) as

ε2(0, ω) = 16π2
∑

v,c

|
〈
φQP
v

∣∣ D̂
∣∣φQP
c

〉
|2δ(ω − εc + εv), (5.5)

where the sum runs over the occupied (v) and unoccupied states (c) and D̂ is
the dipole moment operator. The real part of the full dielectric function is then
obtained using the Kramers-Kronig relation. From this one can straightforwardly
obtain the ELF in the optical limit (q → 0) using Eq. (5.3).
Extending the ELF into the finite-q region is achieved using a model in which the
dielectric response of the system is given by a summation of non-interacting com-
ponent oscillators. In the RPA, valence electrons in the material are approximated
by a non-interacting homogeneous gas where the plasmon energy is expanded to
the second order in q

YELF,DL(q, ω, ωp) =
γ ωp ω

(ω2 − (ωp + ω(q))2)2 + (γ ω)2
, (5.6)

where ω(q) = Egap + αq2 and γ is the damping coefficient. The above optical
Drude-Lorentz (DL) ELF in the form of Eq. (5.6) has a singularity at the plasma
frequency ωp.
To extend this approach from a non-interacting to an interacting medium, we
consider the optical ELF as composed of DL-ELF terms with closely-spaced plasma
frequencies ωi such that

YELF(0, ω) =
∑

i

Ai YELF,DL(0, ω, ωp = ωi). (5.7)

Once we have found the amplitude parameters Ai via a fitting procedure to our
calculated ELF, we can build a momentum-dependent ELF according to

YELF(q, ω) =
∑

i

Ai YELF,DL(q, ω, ωp = ωi), (5.8)

with the extension to finite q as in Eq. (5.6). Entering Eq. (5.8) into Eq. (5.4),
we perform the integration over q and ω numerically to obtain λin(Ek). For He-I
UPS (photon energy 21.2 eV) and with εi in the range of -7.0 to -5.8 eV (see Fig. 4
of the main text), the kinetic energy of interest is approximately 14.2 − 15.4 eV.
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Figure 5.6 shows the kinetic energy dependence of the IMFP as obtained with
vacuum quasiparticle energies. For Ek = 15.0 eV we obtain IMFPs of 1.69 nm for
α-MADN and 2.14 nm for β-MADN.
These values should be considered as upper limits to the real IMFP, and hence
also the EAL, due to the neglect of, e.g., changes in the full quasiparticle spectrum
due to morphology effects, intermolecular excitations in the RPA, or excitonic
effects. Furthermore, elastic processes can additionally reduce the electrons’ mean
free path and hence the attenuation length. Explicit inclusion of these additional
scattering mechanisms in our estimates is beyond the scope of this work.
From coverage-dependent studies of the He-I (21.2 eV) UPS spectrum of MADN
on Au, we find (1) that the Au-contribution to the spectrum has not yet decreased
significantly for a coverage of 0.6 nm (α-MADN), (2) that this contribution has
decreased to about 10% for a coverage of 1.2 nm (β-MADN), and (3) that this con-
tribution has almost vanished for a coverage above 1.6 nm (α-MADN). Given the
uncertainties in obtaining the attenuation length from theory, detailed above, and
based on these experimental observations, we regard the value of the attenuation
of 1 nm, adopted in the main text for both isomers, as a fair estimate. The SDOS
does not include the effect of the intramolecular reorganization process upon charge
removal and the associated shift and lineshape broadening via carrier-vibration
coupling. Figure 5.7 shows schematically the effect of intramolecular reorganiza-
tion process on the density of states of a molecule. Conventionally, the effect of
the intramolecular reorganization process upon charge removal and the associated
shift and lineshape broadening via carrier-vibration coupling is described using
semi-classical Marcus theory [219, 220]. The spectral shape due to the coupling of
the photoelectrons with vibrational modes is then given by

SMarcus
el-vib

(
∆E

)
=

1√
4πλtotkBT

exp

(
− (∆E − λtot)

2

4λtotkBT

)
, (5.9)

with λtot total reorganization energy, kB the Boltzmann constant and T the tem-
perature. The energy difference is defined relative to the adiabatic excitation
energy, εad

HOMO = εvert
HOMO + λtot (see the schematic representation in Fig. 5.5).

However, significant coupling with vibrational modes with energies well above
kBT , such as the C-C stretch vibrations of the phenyl rings in the 0.1 – 0.2 eV
range, makes the semiclassical approach for most organic semiconductor materials
invalid. This has been demonstrated for the related problems of the rates of elec-
tron or hole hopping and exciton transfer [221, 222]. Analogous to the full-quantum
(FQ) approach for inter-molecular charge transfer [221], which approximates the
potential energy surface of the excited molecule in the independent mode displaced
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Figure 5.6: Kinetic energy dependence of the inelastic mean free path in
α-MADN and β-MADN, obtained using the RPA with vacuum GW qua-
siparticle energies. The gray shaded area indicates the range of interest
(14.2 eV - 15.4 eV).

harmonic oscillator model [223], we find that the spectral shape due to coupling of
the photoelectrons with vibrational modes k with an energy ~ωk and a coupling
energy λk is given by

SFQ
el-vib

(
∆E

)
=

1

2π~

∫ +∞

−∞
ei

∆E
~ te−F (0)eF (t) dt, (5.10)

where

F (t) =
∑

k

λk
~ωk

(
coth

(
~ωk

2kBT

)
cos(ωkt) + i sin(ωkt)

)
. (5.11)

Evaluating the needed parameters (vibrational modes ωk and coupling energy λk)
can be simplified under the assumptions that (i) the ground- and excited-state
potential energy surfaces are harmonic and (ii) no vibrational frequency alteration
or normal mode rotation occurs in the excited state. With these two assumptions,
equivalent to the premise of a linear electron-phonon coupling, only the ground-
state vibrational modes frequencies ωk and the gradient of the total energy for
the charged (excited) system in the ground state geometry with respect to the
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Figure 5.7: Effect of intramolecular reorganization process on the density
of states of a molecule. Each excitation is always followed by structural
reorganization (relaxation). This reorganization is associated with a shift
and lineshape broadening via carrier-vibration coupling.

phonon mode coordinates qk, ∂E
∂qk

, need to be evaluated as indicated in Fig. 5.5.

The mode-specific coupling energies are then determined as λk = 1
2
∂E
∂qk

.

5.6 Results and discussion

5.6.1 Quasiparticle embedding and long-range interactions

To assess the influence of long-range electrostatic interactions on the quasiparticle
energies of the two MADN thin films, we analyze the results obtained with the
different embedding schemes introduced in Sec. 5.4. First, we consider the effects of
the dependence of the cutoff radius in the additive GW/aMM scheme. All results
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Figure 5.8: Comparison of the quasiparticle HOMO energies εHOMO ob-
tained using different molecular mechanics embedding schemes, as a func-
tion of the cutoff radius rc up to which electrostatic effects are included,
for (a) a surface and (b) a bulk molecule in the β-MADN thin film. For the
cutoff-based GW/aMM (blue line) and GW/sMM (red line) methods, the
cutoff length rc is varied showing only a slow convergence. The value at
rc =∞ indicates the result after periodic embedding (GW/pMM scheme).
In all cases, only the quasiparticle state is considered polarizable while the
molecules in the MM region are described by static point charges.

given in this subsection are obtained using only a static embedding approach,
within which the polarizability of the molecules is switched off. We show in Fig. 5.8
(blue curve) the calculated εHOMO as a function of rc for a molecule at the surface
and in the bulk-like region of the β-MADN film, respectively. The slow decrease
of the energy with size of the embedding region indicates, in particular for the
surface molecule, that even at a cutoff of 20 nm no converged result is obtained.
Repeating the same analysis for the computationally less demanding subtractive
GW/sMM scheme, in which we now allow the classical substitute of the QM
molecule to be polarizable as it automatically is in GW/aMM, yields a cutoff
dependence given by the red lines in Fig. 5.8. Comparison to the GW/aMM
data reveals deviations smaller than 0.02 eV. Based on this good agreement, we
then use this parametrization and embed the classically represented QM molecule
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Figure 5.9: Layer-resolved energy levels of (a) α-MADN and (b) β-MADN
obtained from vacuum KS (0), vacuum GW (1), static (2) and polarizable
(3) GW/pMM calculations, respectively. The error bars correspond to the
range of ± one standard deviation.

in a periodically repeated background in the GW/pMM setup. The results for
both the surface and the bulk molecule are shown as data points for rc = ∞
in Fig. 5.8. For the surface molecule, the periodically embedded HOMO energy
is 0.07 eV lower than as obtained from the GW/sMM calculation with the largest
cutoff considered. In the bulk, the difference is slightly smaller, viz. 0.03 eV. We
adopt the GW/pMM scheme for the following analysis for thin-film energy levels,
the SDOS and the UPS spectrum.
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5.6.2 Layer-resolved energy levels and DOS

Figure 5.9 shows the laterally-averaged depth dependence of the HOMO ener-
gies as resulting from various levels of refinement, labeled ”0” to ”3”. It shows
that GW corrections (”level 1”) to the vacuum KS levels (”level 0”) lower the
energies by up to 1.9 eV, nearly uniformly for both isomers. The gas-phase
simulations include the molecular deformations in the thin-film morphology, but
these cause only a small broadening of the DOS. It is mainly due to disorder
in the anthracene-naphthalene torsion angle, which is largest for β-MADN. When
long-range electrostatic interactions are included (static GW/pMM, level “2”, blue
squares in Fig. 5.9), we find for both isomers a nearly linear z-dependence of the
mean HOMO energy, which is symmetric with respect to the mean vacuum GW
energy εGW . This is due to accumulating net dipole moment contributions par-
allel to the surface normal during film growth. Even though the dipole moments
of the individual molecules are small (0.59 D and 0.56 D for the α and β isomers)
and their average net components parallel to the growth axis are only 0.065 D
and 0.040 D, respectively, the resulting energy gradients are a few hundredths of
an eV/nm. Adding polarization effects (polar GW/pMM, level “3”, red circles in
Fig. 5.9) leads to a shift of the mean of the distributions to lower binding ener-
gies. The effect is stronger in the bulk-like center of the film (0.7 eV (0.6 eV) for
α-MADN (β-MADN)) than at the vacuum surface (0.5 eV).
Differences between the surface and bulk energy level structure of organic materi-
als are well-known from UPS studies. For crystalline anthracene, e.g., the experi-
mental binding energy difference for the first and second monolayer was found to
be 0.3 ± 0.15 eV [224]. A similar effect is seen in Fig. 5.9 for the first molecular
layer near the vacuum surface, which after subtracting the energy gradient due to
dipole orientation shows an increase of the binding energy of about 0.15 eV. Since
we simulate freestanding thin films, we also note modifications from the bulk-like
behavior at the bottom surface with z = 0. In view of our interest in analyzing
the UPS spectrum after irradiation from the positive z direction, which is only
sensitive to the energy level structure in a thin zone near the top vacuum surface,
we focus on that region.

5.6.3 Vertical and Adiabatic Surface Density of States

Fig. 5.10(a,b) show the SDOS for the two isomers (light-red shaded), obtained us-
ing Eq. (5.2). The SDOS is based on the vertical excitation energies. These include
the effect of the electronic polarization of the environment but do not include the
effect of the intramolecular structural reorganization process upon charge removal.
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Figure 5.10: Frontier orbital surface density-of-states before (SDOS) and
after adiabatic correction (ad-SDOS), as well as the simulated UPS spec-
tra within the full-quantum model (ad-SDOS+FQ) for both α-MADN (a)
and β-MADN (b) as obtained from the polarizable GW/pMM calculations.
Panel (c) shows for β-MADN the shift of single-molecule vertical HOMO
level to the adiabatic one at lower binding energies, and the subsequent
application of the lineshape function SFQ

el-vib(∆E) (Eq. (5.10)) which leads
to a pronounced broadening (FWHM: 0.25 eV) and shift to higher binding
energies with respect to εadHOMO.

The ad-SDOS curves in Figure 5.10 (a,b) (dark-red shaded) show the adiabatic
SDOS, obtained from the SDOS by adding an energy shift equal to the total reor-
ganization energy, which is 0.21 eV for both isomers. The actual excitation process
is not adiabatic, but is accompanied by the excitation of vibrational modes. Fig-
ure 5.10(c) shows, for a single β-MADN molecule, the resulting shift of the DOS to
a more negative HOMO energy and the resulting broadening to a full-width at half
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maximum of approximately 0.25 eV. For α-MADN, the effect is very similar. The
absence of multiple satellite peaks, as usually seen for gas-phase spectra of struc-
turally more simple molecules such as pentacene, is due to coupling of multiple
modes, which smears out the structure. The peak of the function SFQ

el-vib is almost
equal to the vertical HOMO energy. Including vibrational effects thus induces
for these systems almost no peak shift with respect to the vertical (polarizable
GW/pMM) energies, but only a spectral broadening. The resulting calculated
UPS spectral intensity function, given by Eq. (5.1), is shown in Figure 5.10(a) and
Figure 5.10(b) by the curves labeled “ad-SDOS+FQ”.

It is interesting to compare the full-quantum vibrational response function SFQ
el-vib to

the classical Marcus function. According to Eq. (5.9), the peak energy is shifted to
lower energies relative to the adiabatic excitation energy by the total reorganization
energy of 0.21 eV and the function has a Gaussian shape with a full-width at half
maximum of 4

√
ln(2)λtotkBT ∼= 0.24 eV. A comparison with Fig. 5.10(c) shows

that in this case the full-quantum result differs only weakly from the classical
Marcus response function. Apparently, the coupling of the photo-electrons to
high-energy vibrational modes is for these systems relatively weak.

5.6.4 Simulated UPS including Carrier-Vibration Coupling

Figure 5.11 shows the final UPS spectra of the frontier orbital of α- and β-MADN
thin films, simulated for the four different levels of theory, together with the ex-
perimental data. Characteristics of the signals (maximum position, onset, and
FWHM) are listed in Tab. 5.2. Following the conventional approach, the onset
energy is defined by extrapolating the tangent through the low-binding-energy in-
flection point of the HOMO peak to zero intensity. The energetic position of the
simulated peaks for the different methods reflects the variations discussed for the
layer-averages in Fig. 5.9. Comparison to the reference experimental spectrum
now allows assessment of the quality of the various methods and the importance
of the individual processes for the analysis of the experiment.

Simulations based on vacuum energies which exclude the effects of inhomogeneous
local electric fields and environment polarization either over- (KS) or underestim-
ate (GW ) the energy of the peak maximum by up to 1.3 eV. The FWHM is nearly
exclusively determined by the single-molecule spectral function and results about
a third smaller than measured. Inclusion of static local field effects in GW/pMM
does not noticeably affect the peak maximum but the additional disorder contrib-
utes to further broaden the signal. Accounting for the polarization response of the
material upon quasiparticle excitation in GW/pMM we obtain a simulated UPS
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signal in excellent agreement with the measurement: the largest deviation is found
for the peak maximum of β-MADN and amounts to only 50 meV, which is also
the experimental resolution. Most importantly, the comparison emphasizes that
it is possible to achieve a predictive modeling of frontier orbital energies at the
accuracy needed for an accurate understanding and prediction of device perform-
ance. The fact that we achieve the same accuracy by studying two isomers, with
different molecular structures and thin film morphologies, supports the robustness
of our approach.
In device simulations, the bulk adiabatic ionization energy, εad

HOMO,bulk, is needed.
This energy may be obtained from a linear extrapolation of the bulk polariz-
able GW/pMM energies shown in Fig. 5.9 to the surface plane at z = z0, plus
the reorganization energy λtot of 0.21 eV. The resulting values, εad

HOMO,bulk =
−5.91(−5.89) ± 0.05 eV for α(β)-MADN, are located in between the UPS peak
and onset energies (see Tab. 5.2). Using either the peak or the onset value would,
in this case, thus introduce an error of about 0.1 eV or more. Our refined protocol
for the analysis of UPS measurements provides a methodology for avoiding such
an error. One may see from Fig. 5.10(c) that when carrying out a measurement for
a single molecule, the onset energy would provide an excellent approximation to
εad

HOMO,bulk. However, that coincidence is fortuitous, as the peak shape and onset
energies depend on the mode-resolved reorganization energies and the temperat-
ure. That may already be seen when considering the peak shape obtained within
the semiclassical Marcus-theory (Eq. (5.9)). The difference between the onset en-
ergy and the adiabatic ionization energy is then equal to (−λtot +

√
8λtotkBT ). For

a system with λtot = 0.2 eV (close to the value for MADN) and for kBT = 0.025 eV
(close to room temperature), the onset and adiabatic ionization energies then in-
deed coincide. However, the electron-vibrational mode coupling shows a significant
dependence on the molecules considered. The total reorganization energies vary
from less than 0.1 eV to more than 0.3 eV, with a tendency to decrease with in-
creasing molecular size [225, 226, 175]. Furthermore, in thin films the spectral
broadening due to energetic disorder leads to a shift of the onset value to a smaller
binding energy, whereas the reduced screening at the thin film surface leads to
shift to a larger binding energy. For the two isomers of MADN, the former effect
is largest, so that the absolute value of the onset energy is slightly smaller than
|εad

HOMO,bulk|.
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Table 5.2: Characteristics of the predicted UPS spectrum (see the caption
of Fig. 5.11) for α-MADN and β-MADN at the four different levels (0 −
3) of the multiscale quasiparticle embedding procedure. The HOMO peak
position, onset, and the full width at half maximum (FWHM) (all in eV)
are compared to the respective experimental results. The table also gives
the calculated bulk adiabatic ionization energy εadHOMO,bulk.

vacuum GW/pMM
KS GW Static Polar. Exp.

α-MADN

εadHOMO,bulk -5.91

UPS peak -4.92 -6.78 -6.76 -6.10 -6.12
UPS onset -4.71 -6.57 -6.44 -5.79 -5.79
UPS FWHM 0.25 0.25 0.39 0.39 0.37

β-MADN

εadHOMO,bulk -5.89

UPS peak -4.80 -6.70 -6.67 -6.09 -6.14
UPS onset -4.58 -6.48 -6.37 -5.75 -5.73
UPS FWHM 0.25 0.26 0.36 0.41 0.42
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Figure 5.11: UPS spectra for α-MADN (a) and β-MADN (b). Curves 0−3
give the UPS as depth weighted DOS with vrtical-to-adiabatic shift and
vibrational broadening via Eq. (5.10) predicted from vacuum KS (0), GW
(1), static (2) and polarizable GW/pMM (3) calculations, respectively. The
closed circles give the experimental spectra, obtained using He-I radiation
(21.2 eV). The experimental resolution is σ = 0.05 eV, and has no significant
effect on the final spectral width.
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5.7 Conclusions

In summary, we have developed a multiscale approach that provides a prediction
of the frontier orbital UPS spectrum of amorphous molecular thin films. The ap-
proach includes (i) first-principles calculations of a realistic thin-film morphology,
(ii) the electronic properties at a state-of-the-art (many-body Green’s functions)
level of quantum chemistry, (iii) embedding in a polarizable molecular mechan-
ics environment, and (iv) the effects of the vibrational modes that are excited
in the experiment. We have focused on two isomers of MADN, for which the
non-degeneracy of the HOMO state leads to an exceptionally narrow width of the
HOMO orbital UPS spectrum. Our work shows how the spectrum is related to
the disorder-induced energy level distribution in the bulk of the organic semicon-
ductor and near the surface. The good agreement between the calculated and
experimental peak positions and widths of the UPS spectra indicates that our ap-
proach provides a route towards accurately predicting the bulk adiabatic ionization
energy εad

HOMO,bulk, which is the HOMO energy needed in device simulations.
We find that neither the HOMO energy that would follow from the UPS peak
energy nor the onset energy coincide with εad

HOMO,bulk. For the MADN films stud-
ied, both assumptions would introduce an error of about 0.1 eV or more. Instead,
the actual value of εad

HOMO,bulk is in this case intermediate between the onset and

peak values. The error made by taking εad
HOMO,bulk equal to the UPS onset en-

ergy is determined by the balance between the effects of energetic disorder and
reduced screening at the thin film surface. For device applications, the relative
error between different materials is most important. From our study, we expect
that the relative error when taking the onset energy is largest for the case of two
materials with strongly dissimilar energetic disorder energies or strongly dissimilar
molecular polarizabilities.
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Chapter 6

Electron affinity and binding
energy of excitons in
disordered organic
semiconductors: First
principles predictions using
the GW-BSE method and
multiscale quasiparticle
embedding

This chapter deals with the computation of the Electron Affinity, Optical gap and
Exciton Binding Energy in amorphous molecular systems. After a brief intro-
duction about the importance of determining the Exciton binding energy and an
overview of the difficulties behind its estimate, a multiscale embedding approach
has been used to this end. A comparison between computations and experiments
closes the chapter. We present a first-principles-based multiscale simulation study
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of the low-energy unoccupied electronic structure, optical absorption and exciton
binding energies in thin films of two isomers of 2-methyl-9,10-bis(naphthalen-2-
yl)anthracene (MADN), a prototypical material used as an ambipolar host mater-
ial in organic light emitting diodes. The approach combines many-body Green’s
Function Theory, polarizable film-embedding, and multimode electron-vibrational
coupling calculations. It both allows to access excited states in the film at molecu-
lar resolution and provides a molecular-level view on the interactions and processes
giving rise to features in inverse photoemisson and absorption spectroscopy on an
equal footing. We gain insight into how energetic disorder, surface sensitivity and
vibrational coupling in the excitations contribute to the relevant energy levels and
spectral features. This is particularly relevant for the unambiguous determination
the electron affinity, optical gap, and exciton binding energy of organic semicon-
ductors, all key quantities for tailoring and engineering new opto-electronic devices.
The simulated spectra are in excellent agreement with experiment. From extrac-
ted excited state energies, we determine exciton binding energies of about 1.0 eV
for both isomers of MADN.

6.1 Introduction

Organic semiconductors offer a wide range of potential applications in novel elec-
tronic or optoelectronic devices, such as organic light-emitting diodes (OLEDs) or
organic solar cells (OPVs). A detailed understanding and optimization of the ob-
served phenomena and the device operation require knowledge of the fundamental
electronic properties of the systems. For instance, the nature of the excited elec-
tronic states is of great interest as it is directly related to processes such as light
absorption and emission, photo-conductivity, and electroluminescence.
Nevertheless, measuring properties like the exciton binding energy is hard to
achieve. Physical properties like size, shape, composition and arrangement of
the molecules in materials under investigation strongly influence the nature and
dynamics of the electronic excitation. This makes hard to draw general conclusions
or unique interpretation about the behavior of excitons in different materials.
In this work, we present a first-principles-based multiscale simulation approach
from which the electron affinity, the optical gap, and the exciton binding energy
are derived. The method consists of an accurate evaluation of (i) quasiparticle
and exciton energy levels within the GW approximation with the Bethe–Salpeter
equation(BSE) and (ii) thin-film embedding effects, using a hybrid quantum-
mechanics/molecular-mechanics (QM/MM) approach that takes the molecular po-
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larizabilities and the long-range interactions due to partially ordered static multi-
pole moments into account, and (iv) a full-quantum treatment of electron-vibration
coupling. As prototypical material system, we investigate thin-films of the α and
β isomers of 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN) (see insets of
Fig. 6.1), materials used extensively as an ambipolar host material in OLEDs con-
taining deep blue fluorescent emitter molecules [227, 228, 229, 230, 231]. In our
previous work [232], we have studied the occupied electronic structure of these
films, and demonstrated that our multiscale simulation approach allows for a pre-
diction of ultraviolet photoemission spectra (UPS) showing an excellent agree-
ment with experiment. Unoccupied levels can be measured experimentally by
low-energy inverse-photoemission spectroscopy (LEIPS) [233]. The technique has
recently been used to study the electron affinity in organic solids, alongside UPS
measures for the ionization potential [234, 235]. Experimental LEIPS spectra for
both α-MADN and β-MADN are shown in Figure 6.1 (see Appendix A for details
on the experimental setup). While the UPS signal showed a clear HOMO peak
well-separated from the lower-energy parts, the LEIPS signal near the spectral
onset and up to the vacuum is featureless. It is not immediately obvious if the
reason for the lack of features can be attributed to the small separations between
LUMO and higher levels in MADN, strong vibrational broadening, surface effects,
experimental conditions, or a combination (of some) of these. It is also unclear
how one can relate this measured spectrum to the electron affinity of the material
in the bulk. In contrast to this, optical absorption spectra (see Appendix A for de-
tails on the experimental setup) exhibit clear vibrational structures (see Figure 6.2
and Figure 6.3), which also hampers an unambiguous determination of the optical
gap, here understood as the adiabatic transition energy of the first electron-hole
excitation. Combined with the ambiguities of determining the electron affinity,
this also severely hampers the determination of the exciton binding energy. To
remedy this situation and to remove these ambiguities in the determination of the
electron affinity and exciton binding energy in particular, we refine our previous
model [232] to account for several GW quasiparticle states (LUMO and higher)
and extend it to include also electron-hole excitations from the BSE.
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(a)

(b)

α-MADN

β-MADN

Figure 6.1: Experimental LEIPS for α-MADN and β-MADN at 285 nm.
Experiments performed by Prof. Yoshida and his research team [236].
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Figure 6.2: α-MADN experimental absorption spectrum. Experiments per-
formed by Prof. R. Coehoorn and his research team [237].

2.5 3.0 3.5 4.0
Energy (eV)

0.0

0.5

1.0

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Figure 6.3: β-MADN experimental absorption spectrum. Experiments per-
formed by Prof. R. Coehoorn and his research team [237].
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6.2 Methodology

The methodology used in this work contains concepts and formulas already de-
scribed in Section 2.5, Section 3.4.1 and Section 3.6. In the following only the the-
ory of the QM/MM polarizable embedding with long-range interactions is presen-
ted again given some slightly different notational choices. This help the read to
get acquainted with notation and theoretical concepts before showing results in
Section 6.3.

6.2.1 QM/MM polarizable embedding with long-range in-
teractions

In a material such as the thin-films of the two MADN derivatives, the single-
molecule (gas-phase) quasiparticle and electron-hole excitation energies as de-
termined in the previous section are modified due to intermolecular interactions.
In an embedding scheme, the associated corrections to the intramolecular GW -
BSE energies are evaluated in a coupled quantum-classical (QM/MM) proced-
ure [210, 238, 239, 232]. The MM model consists of atomic static and induced
multipole moments to form a classical representation of the molecular electrostatic
potential. Within a subtractive scheme for coupling a QM- to an MM-region, the
same type of classical representation is also used for the molecules in the QM-
region with specific parametrizations for the ground (s = n) and excited (s = x)

states of interest, and a purely classical energy correction E
(x)
MM − E

(n)
MM is added

to the GW -BSE gas-phase energies. Specifically, this classical energy for the total
system S in state s is evaluated as

E
(s)
MM =

1

2

∑

A,B∈S
A 6=B

∑

a∈A

∑

b∈B

∑

tu

(Q
a(s)
t + ∆Q

a(s)
t )T abtuQ

b(s)
u , (6.1)

where A and B indicate individual molecules in the system, a and b atoms in
the respective molecules, Qat are the static atomic multipole moments of rank t
associated to atom a, and T abtu is the tensor describing the interactions between the
multipoles moments Qat and Qbu [240]. The induced moments ∆Qat are generated
by the electric field created by moments t′ of atom a′ 6= a in molecule A and the
one generated by the moment u of atom b in molecule B:

∆Qat = −
∑

A,B∈S
A6=B

∑

b∈B

∑

a′∈A
a′ 6=a

∑

tt′u

αaa
′

tt′ T
a′b
t′u (Qbu + ∆Qbu), (6.2)
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with αaa
′

tt′ the atomic polarizability on each site. To avoid effects of spurious
overpolarization, a damped version of the interaction tensor (Thole damping [240])
is used.
When selecting the specific QM and MM-regions, the QM-region includes only
an individual molecule of interest, for which the classical energy corrected to the
gas phase excitation energy needs to be computed. For the MM-regions, different
choices can be made, and often plain cutoff-based schemes are considered, which
assume that only short-ranged local interactions are relevant. For thin-film system
like α-MADN and β-MADN structures in this work, such schemes cannot properly
account for the spatially inhomogeneous interaction (ranges) due to the structural
anisotropy perpendicular and parallel to the film growth direction [241]. Therefore,
we use a scheme labeled as GW/pMM or GW-BSE/pMM depending on the type
of excitation, in which long-range electrostatic interaction effects are included via
an infinite periodic embedding based on the traditional classical Ewald summation
method [242]. In this scheme (1) the 2D periodic neutral system is polarized, (2)
against this periodic, polarized background a localized, non-periodic excitation is
treated within a polarizable cutoff region around the QM region of interest [232].
To parametrize the models, we limit the static moments to partial charges which
are obtained from a CHELPG fit to the neutral an excited molecule’s electrostatic
potential [243], respectively. Atomic polarizabilities, optimized to reproduce the
polarizable volume of the molecule obtained from DFT+GW -BSE, account for
polarization effects via the induction of atomic dipoles (Thole model) [244]. When
only the static point charges are considered in both regions, we call this the ”static
GW/pMM (GW-BSE/pMM) scheme”. The final results are obtained by also in-
cluding polarizable interactions up to a cut-off distance rpc of 6 nm (”polarizable
GW/pMM (GW-BSE/pMM) scheme”). Outside that radius, αaa

′

tt = 0.

6.3 Results

6.3.1 Single Molecule GW Calculations

Ground state calculations including geometry optimizations on KS-DFT level are
performed with the ORCA [245] package using the PBE0 functional [246] and
the cc-pVTZ basis [202]. The VOTCA-XTP [239, 247] software is used for GW
steps employing Gaussian-type orbitals as basis functions. An optimized auxiliary
basis set [248] is used for resolution-of-identity techniques to efficiently express
terms involving four-center Coulomb integrals. The convergence limit for the self-
consistent GW -cycles in the evGW scheme was set to 10−5 Hartree (0.27 meV).
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The number of occupied and unoccupied levels taken into account for the QP
calculations is 327. Calculation of the RPA dielectric function requires the full
spectrum of the KS states (1385 levels).

Table 6.1: Comparison of the calculated gas-phase energy levels (in eV)
for LUMO (L), LUMO+1 (L+1), and LUMO+2 (L+2) of α-MADN and
β-MADN, obtained using the PBE0 exchange-correlation functional with
the cc-pVTZ basis set, within KS-DFT (KS) and including perturbative
quasiparticle corrections from FAA and PPM quasiparticle calculations,
respectively. The difference between the latter two is given by ∆PPM

FAA .

α-MADN β-MADN
L L+1 L+2 L L+1 L+2

KS -1.75 -1.20 -1.19 -1.74 -1.23 -1.23
FAA -0.38 +0.39 +0.41 -0.36 +0.37 +0.36
PPM -0.23 +0.53 +0.55 -0.21 +0.51 +0.51
∆PPM

FAA -0.15 -0.14 -0.14 -0.15 -0.14 -0.15

We first compare the results for the three lowest unoccupied energy levels as ob-
tained with a Fully Analytical Approach [249] (FAA) or a generalized plasmon-pole
model (PPM) [199] for the frequency integration in Eq. (3.56). The FAA is an in
principle exact form, in which the frequency dependence of the self-energy is ex-
pressed in the eigenbasis of the full RPA Hamiltonian in a KS product state basis.
Its application to molecules of the size of MADN is computationally extremely de-
manding, due to the N6

b scaling, where N6
b is the number of basis functions [249].

Use of a PPM, on the other hand, allows for a comparatively fast evaluation of
self-energy even for larger systems but can yield deviations of several eV from
the exact result [249, 250]. From the results given in Tab. 6.1, we note a nearly
constant shift of ∆PPM

FAA = −0.15 eV for the three lowest unoccupied energy levels
of geometry-optimized α-MADN and β-MADN, respectively. To perform the GW
calculations on the 770 molecules with conformational disorder, we therefore resort
to calculations with the PPM and apply ∆PPM

FAA for the respective levels from the
geometry-optimized structures. Previous studies on anthracene have shown that
the inclusion of zero point vibrational energy (ZPVE) effects influences its elec-
tron affinity on the order of one tenth of an eV [251]. As both MADN derivatives
contain an anthracene core, similar effects on the LUMO energies can be expected
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here. We therefore determine ZVPEs for neutral and anionic molecules based on
DFT, and find a reduction of the LUMO energy of ∆ZPVE = −0.11 eV [252].

6.3.2 Layer-resolved unoccupied electronic structure in mo-
lecular thin-films

We now turn to determining the unoccupied electronic structure of amorphous
thin films of α-MADN and β-MADN. The thin film geometries were generated
using a simulated deposition protocol based on classical force fields, see [232] for
details. The final freestanding morphologies contain 770 molecules, are periodic in
x and y directions with box lengths of approximately 10 nm, and after removal of
an artificially dense fixed bottom layer representing a substrate for the deposition
extend about 8 nm in z-direction. Evaluating now the unoccupied quasiparticle
energies of level ` in these thin film morphologies consists of two steps: first, the
intramolecular contributions for each molecule M , εintra

`,M needs to be determined.
For this, based on the results discussed in the previous section, we perform GW
calculations with the PPM and correct for the effects of the FAA and the ZPVE,
according to

εintra
`,M = εintra,PPM

`,M + ∆PPM
FAA + ∆ZPVE. (6.3)

In a second step, the intermolecular modifications are evaluated via the GW/pMM
technique outlined in Sec. 6.2.1. To this end, we first need to parametrize the
classical embedding model for all states of interest. This includes calculating
CHELPG partial charges for neutral (s = n) and the unoccupied states of interest
(s = `), and determining the atomic polarizabilities from the molecular polarizab-
ility tensors in these states. For the GW states, the latter need to be calculated
numerically from the second derivative of the total energy with respect to extern-

ally applied electric fields, α
(`)
ij = ∂2E(`)

∂Fi∂Fj
, where E(`) = EDFT + εQP

` . With the

parametrized classical forms, we proceed in evaluating Eq. (6.1) for neutral and
quasiparticle states, including polarization effects within a cutoff region of 6 nm.
To accommodate such a large cutoff (larger than half of the box size in x and y
directions), we first construct a 2 × 2 supercell. Finally, the embedded QM/MM
quasiparticle energies are determined as

ε
QM/MM
`,M = εintra

`,M + εinter
`,M = εintra,PPM

`,M + ∆PPM
FAA + ∆ZPVE +E

(`,M)
MM −E(n,M)

MM . (6.4)

Figure 6.4 shows the resulting z-layer averaged dependence of the LUMO ener-
gies from gas phase GW (green), static (blue) and polarizable (red) GW/pMM
calculations, respectively. Each layer contains 77 molecules and the distributions
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(b)

(a)

GW/pMM static GW/pMM polar
gas phase GW

Figure 6.4: Layer-resolved distributions of vertical quasiparticle LUMO
energies (in eV) as obtained from gas phase GW (green), static (blue) and
polarizable (red) GW/pMM calculations for thin films of (a) α-MADN and
(b) β-MADN, respectively.
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of the energies in a single layer are represented by violin plots, with the white dot
indicating their median. Not shown are the results obtained without embedding,
i.e., distributions of εintra

`,M , as conformational disorder in the molecules only adds a
negligibly small broadening of about 0.01 eV (0.03 eV) to the vacuum quasiparticle
energies of α-MADN (β-MADN). The observed disorder in the static and polar
GW/pMM LUMO energies as in Fig. 6.4 is therefore dominated by effects from
intermolecular interactions. With 0.16-0.20 eV (0.11-0.17 ) in the polar (static)
case, disorder is slightly larger for β-MADN compared to α-MADN (0.12-0.17 eV
and 0.11-0.17 eV, respectively). More importantly, there are also clear differences
in the mean/median energies and their dispersion/band shape along the z direc-
tion perpendicular to the film. Within static GW/pMM, there is an almost linear
band shape due to the interactions with a net dipole moment in the films formed
during the deposition process [232]. The band slope is stronger in α-MADN due
to a higher dipole moment compared to β-MADN (62.1 D vs. 32.9 D). Including
polarizable interactions in polar GW/pMM lowers the LUMO energies by nearly
an eV in the center of the films, e.g., to -1.52 eV for α-MADN and -1.45 eV for
β-MADN in the z = 6.2 nm layer. Near the interfaces with the vacuum at the top
and the bottom of the freestanding films, the effects of polarization are smaller as
there is fewer polarizable material. As a consequence, the z-dispersion resembles
a U shape, with bending of the bands towards less negative energies at the inter-
faces. Note that this shape is not completely symmetric due to the morphological
details and structural disorder. Also a slight ”tilt” is visible from the interactions
with the net dipole moment as in the static case.

6.3.3 Surface Density of States

We now turn to how the spatially resolved unoccupied electronic structure as dis-
cussed above is related to a spectroscopic measurement with (low-energy) inverse
photoemission. An important quantity is the density of states at the surface that
is accessible to the measurement. Such a surface density of states (SDOS), ζ(E),
can in general terms be defined as

ζ(E) =
∑

M

∑

`

∫
fM (r)δ(E − εQM/MM

`,M (r)) d3r =
∑

M

∑

`

ζ`,M (E) (6.5)

with ε`,M the `-th energy level for the M -th molecule in the system, as calculated
from GW/pMM. The weighting function fM (r) takes into account how likely it is
that electrons are involved in the experiment given their position in the sample.
This likelihood is, in turn, related to the electron attenuation length (EAL), Λ,
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which is known to possess a sensitive energy-dependence. For instance, at energies
of direct photoemission, Λ is approximately 1 nm based on experimental evidence
for the MADN derivatives [247]. The relevant SDOS is then modeled with an
exponential extinction function fM (r) = δ(rM ) exp{(−|zM − z0(x, y)|/Λ)}, where
z0(x, y) is the surface profile. At low electron energies as used in the inverse
photoemission experiments (< 5 eV), there are indications for the relevant EAL to
be significantly larger. Universal curves [253] suggest that Λ can be in the range
of 10-100 nm, which is also supported by upper limit estimates specific for MADN
based on the random-phase approximation using GW energies (see Supplemental
Material of Ref. [232]). The latter does not include, among others, contributions of
inelastic scattering with longitudinal optical phonons to the macroscopic dielectric
function, which has been argued to reduce the EAL at small electron energies [254].
We therefore follow Ref. [255] and estimate the vibrational contributions ∆εr,vib

from a combination of DFT calculations of the vibrational-mode (wave number
νj) resolved infrared band areas Ψj with a film-embedding based on the Clausius-
Mosotti relation as

∆εr,vib =

[
(n2 + 2)2

9− (n2 + 2)Nαvib

ε0

]
Nαvib

ε0
, (6.6)

where

αvib =
ε0

π2NA

∑

j

nΨj

ν2
j

. (6.7)

Here, ε0 is the vacuum dielectric permittivity, NA the Avogadro number, n the real
part of the refractive index, and N the molecular volume density of a homogen-
eous film. Specifically, we employ n = 1.7 and a volume density of 2.55 mol/l and
2.82 mol/l for α-MADN and β-MADN, respectively. Figure 6.5 shows that inelastic
scattering as a result of the creation of IR-active (optical) vibrations is weak in
both MADN isomers compared to other often-used organic semiconductors [255].
Consequently, the total ∆εr,vib of 0.19 for α-MADN and 0.22 for β-MADN, re-
spectively, are small. Combined with the expectations from the universal curve,
this corroborates the notion that indeed Λ > 1 nm. For the analysis of the SDOS
in our simulated systems we also need to account for the thickness of 5 nm of the
MADN films in the experiment. Instead of using an exponential decay for fM (r),
we consider all molecules with z0 > 4 nm in the SDOS, approximating an effective
film thickness as in the experiment, i.e., using fM (r) = δ(rM )H(z−z0) in Eq. (6.5).
This choice also removes the effects of the band bending at the bottom vacuum
interface in our simulation.
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(a)

(b)

α-MADN

β-MADN

Figure 6.5: Cumulative value of the vibrational contribution to the relative
dielectric constant, ∆εr,vib, calculated for α-MADN (a) and β-MADN (b).

6.3.4 Inverse photoelectron spectra

With the SDOS, the simulated energy-dependent intensity I(E) of an inverse pho-
toemission experiment can be written as

I(E) ∝
∑

`

∑

M

∫
ζ`,M (E + ω)Sel-vib

`,M (ω) dω =
∑

`

I`(E). (6.8)

Here, Sel-vib
`,M (ω) is a state- and molecule-dependent function, which includes the

effect of the intramolecular reorganization process upon charge removal and the
associated shift and lineshape broadening due to electron-vibration coupling. It is
obtained using the full-quantum (FQ) approach for inter-molecular charge trans-
fer [256], which approximates the potential energy surface of the excited molecule
in the independent mode displaced harmonic oscillator model [257]. Specifically,
the spectral shape due to coupling of the photoelectrons with vibrational modes k
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with an energy ~ωk and a coupling energy λk is given by

Sel-vib,FQ
`,M

(
ω) =

1

2π~

∫ +∞

−∞
ei
ω
~ te−F`,M (0)eF`,M (t) dt, (6.9)

where

F`,M (t) =
∑

k

λ`,Mk
~ωk

[
coth

(
~ωk

2kBT

)
cos(ωkt) + i sin(ωkt)

]
, (6.10)

with the Boltzmann constant kB and temperature T . The underlying assumptions
are that (i) the ground- and excited-state potential energy surfaces are harmonic
and (ii) no vibrational frequency alteration or normal mode rotation occurs in
the excited state. Only the ground-state vibrational mode frequencies ωk and the
gradient of the total energy for the excited system in the ground state geometry
with respect to the phonon mode coordinates qk, ∂E(`,M)/∂qk, need to be evalu-

ated. The mode-specific couplings are then determined as λ`,Mk = 1
2∂E

(`,M)/∂qk.

The sum λ`,Mtot =
∑
k λ

`,M
k is the total reorganization energy of state `, which

can be used to approximate the adiabatic excitation energies as ε
QM/MM, ad
`,M =

ε
QM/MM
`,M − λ`,Mtot . Note that the use of the function Sel-vib,FQ

`,M

(
ω) from Eq. (6.9)

in Eq. (6.8) implies that the respective adiabatic DOS is used, or equivalently that

its argument is shifted accordingly, i.e., Sel-vib,FQ
`,M

(
ω) → Sel-vib,FQ

`,M

(
ω + λ`,Mtot ). In

practical calculations, we determine the gradients with numerical differences for
` = LUMO, LUMO+1, LUMO+2 in the optimized ground state geometry, and
employ the same Sel-vib,FQ

`

(
ω) for all molecules M . Finally, instrumental broad-

ening can additionally be accounted for by convolving the simulated spectra with
a Gaussian function of width σinst. The resulting simulated I`(E) signals for

Table 6.2: Simulated LUMO peak position and LEIPS spectral onsets (all
in eV) with and without instrumental broadening, as well as the bulk elec-
tron transport level εadLUMO,bulk for α-MADN and β-MADN, respectively,
compared to the experimental spectral onset.

Peak Onset(σinst)
LUMO 0.0 eV 0.3 eV Exp. εadLUMO,bulk

α-MADN -1.53 -1.95 -2.19 -2.18 -1.87±0.13
β-MADN -1.56 -1.97 -2.25 -2.20 -1.88±0.14
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(a)

(b)

α-MADN

β-MADN

LUMO+1,2LUMO >LUMO+2
σinst=0.0eV σinst=0.3eV experiment

Figure 6.6: Simulated LEIPS spectra for (a) α-MADN (b) and β-MADN.
Red and green lines indicate the state-dependent contributions I`(E) for
LUMO and the nearly degenerate LUMO+1 and LUMO+2, respectively.
Solid black lines indicate approximated signal contributions for levels above
LUMO+2 (see text). The total simulated LEIPS signal (σinst = 0.0 eV) is
depicted by the grey line, while the blue line represents the respective sig-
nal with additional instrumental Gaussian broadening of σinst = 0.3 eV.
Dashed black lines indicate extrapolations of the spectral onsets from the
two simulated spectra, and blue dots are the low-energy part of the exper-
imental spectra as in Fig. 6.1.
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α-MADN and β-MADN are shown in Figure 6.6. We first focus on the individual
contributions of the LUMO (red), LUMO+1, and LUMO+2 (both green) states
without instrumental broadening (σinst = 0.0 eV). Following Eq. (6.8) the effect-
ive line shapes are a combination of the disorder in the energies (the width of the
SDOS) and the line shape function. For both MADN derivatives, we find that
the respective contributions do not have a Gaussian shape but exhibit a wider tail
towards higher energies. The full-width-at-half-maximum is about 0.5 eV for all
cases, with the β-MADN ones minimally wider by 0.03 eV. The peak positions and
onsets of the LUMO contributions to the spectrum are -1.53 eV and -1.95 eV for
α-MADN, and -1.58 eV and -2.01 eV for β-MADN, see also Tab. 6.2. In Fig. 6.6,
we also show with solid black lines contributions from states above LUMO+2.
These signals are approximated by shifting the GW/pMM SDOS by the energy

difference εQP
` − εQP

LUMO for ` > 2 from the vacuum calculation, and by using the
same lineshape function as for the LUMO. Those states are interesting for the
IPS near the vacuum energy but result sufficiently far from the low-energy part
of the spectrum to not influence it. The total simulated IPS is then shown as
the grey line. Without instrumental broadening the contributions from the indi-
vidual excitations to the spectra are clearly discernible. It is also apparent that
due to the energy separation of the two peaks (0.7 eV in both MADN materials)
the low-energy onset area is exclusively determined by the LUMO and is found
to be -1.95 eV for α-MADN and -1.97 eV for β-MADN. In the experiment, added
as blue dots to Fig. 6.6, one finds more negative energies of the spectral onsets.
There is also no clear peak structure in the recorded energy range. According to
Ref. [258], typical instrumental broadening in IPS is σinst = 0.3 eV, determined
by the resolution of photon-detector (bandwidth of the optical filter, 0.1-0.3 eV)
and the broadening of the electron kinetic energy (0.2 eV). We see that with the
additional broadening (blue lines in Fig. 6.6), the onset energy is -2.19 eV for α-
MADN and -2.25 eV for β-MADN. Furthermore, the broadened spectra exhibit a
near featureless increase up to close to the vacuum energy, as found in the LEIPS
studies. Note that in Fig. 6.6 the intensities of simulated and experimental spec-
tra have been aligned at energy -1.0 eV. In this representation, both spectra show
an excellent agreement with each other. In device simulations, the value of the
electron transport level in the bulk, the adiabatic LUMO energies εad

LUMO,bulk, is
needed. As in the case for the bulk ionization energy in Ref. [232], we extract this

from the z-dependence of ε
QM/MM,ad
LUMO to the surface plane at z = 0. The resulting

values are (−1.87 ± 0.13) eV for α-MADN and (−1.88 ± 0.14) eV for β-MADN,
respectively (see also Tab. 6.2). In contrast to the UPS measurements [232] with a
clearly discernible peak structure, the rather featureless broad IPS spectrum does
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not allow to make any statements about a relation between peak position and
bulk electron transport energy. Focusing on the experimental onsets alone, we
notice that they are 0.31 eV and 0.32 eV lower than εad

LUMO,bulk from GW/pMM.
The differences of the simulated onsets with σinst = 0.0 eV and σinst = 0.3 eV, re-
spectively, suggest that a substantial part of this difference between spectral onset
and transport level can be attributed to instrumental broadening. The remainder
likely stems from a combination of the intrinsic line width of the excitation and
the disorder in the material. As the measurement is not as surface-sensitive as
in the UPS case [232], the band bending towards the surface is not sufficient to
compensate the offset between bulk transport level and LEIPS onset, even after
correcting for instrumental broadening. In conclusion, the use of the onset of a
broad and featureless inverse photoemission spectrum as estimate for bulk electron
transport levels should at best be considered a lower-energy bound.

6.3.5 Absorption spectra and exciton binding energies

We now turn towards the calculation of electron-hole excitation energies within the
GW-BSE/pMM framework. All BSE calculations reported in the following have
been performed using transitions between all 117 occupied and the lowest 117
unoccupied molecular orbitals in Eq. (3.68). For single molecules in the optimized
geometry, the vertical excitation energies of the first excited state based on the
FAA are ΩFAA

S1
= 3.21 eV for both isomers. With the PPM as a model frequency

dependence, we obtain ΩPPM
S1

= 3.21 eV, so that ∆PPM
FAA = 0.03 eV for the S1 state.

In both cases, the excitation is formed nearly exclusively as a HOMO-LUMO
transition. In the absence of additional screening due to the environment (see
the strong modification of the LUMO energies from gas phase GW to polarizable
GW/pMM), the vertical electron-hole binding energy 〈S1| 2Kx +Kd |S1〉 is about
3.3 eV for both isomers. Analogously to theGW/pMM embedding approach for the
LUMO energies, the embedded vertical GW-BSE/pMM S1 energies are determined
as

Ω
QM/MM
S1,M

= Ωintra
S1,M + Ωinter

S1,M

= Ωintra,PPM
S1,M

+ ∆PPM
FAA + ∆ZPVE

+ E
(S1,M)
MM − E(n,M)

MM ,

(6.11)

with ∆ZPVE = −0.06 eV [259]. For the evaluation of E
(S1,M)
MM CHELPG partial

charges are fitted to the electrostatic potential of the S1 state and atomic polarizab-

ilities to the excited state polarizability α
(S1)
ij = ∂2E(S1)

∂Fi∂Fj
, with E(S1) = EDFT +ΩS1

,
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all based on the gas phase optimal geometries. They are also used to determine

the excited state gradient ∂E(S1)

∂qk
for the calculation of the mode-specific exciton-

vibration couplings λS1

k . With that, we obtain the total exciton reorganization

energy λS1
tot of 0.20 eV (0.21 eV) for α-MADN (β-MADN). In Fig. 6.7 we show the

resulting adiabatic S1 excitation energies, Ω
QM/MM,ad
S1,M

= Ω
QM/MM
S1,M

− λS1
tot, depend-

ing on the z-position in the respective thin films as blue squares. In contrast to
the behavior of the LUMO in Fig. 6.4, the energy of the optically active lowest
exciton state does not exhibit a noticeable bending near the interfaces to the va-
cuum. This is due to the fact that in the classical part of the embedding, the
dominant electrostatic potential change compared to the ground state stems from
the dipole moment instead of the total charge and is therefore less sensitive to the
environment including the long-range effects. Similarly small effects on the energy
of localized electron-hole excitations have been noted before, e.g., for embedded
push-pull polymers [210] or small-molecule donor molecules [247]. From the data,
we find a bulk adiabatic exciton energy Ωad

S1,bulk of (3.00 ± 0.04) eV for α-MADN
and (2.98±0.04) eV for β-MADN, respectively. From the lack of a z-dependence of
the exciton energies, it is possible to simulate the intensity of the optical absorption
spectrum as

IAbs(E) ∝
∑

M

∫
δ(E − Ω

QM/MM
S1,M

(r))Sel-vib
S1,M (ω) dω, (6.12)

with the respective variants of Eq. (6.9) and Eq. (6.10) with `→ S1. The resulting
spectra are shown as solid blue lines in Fig. 6.8 for the two isomers. Overall,
the calculated spectra agree very well with the experimental reference (blue dots)
and resolve particularly well the structure of the two lowest energy peaks. The
relative intensity of the vibrational contribution near 3.4 eV is a little too high,
in comparison. In addition, the GW-BSE/pMM-based spectra result at slightly
lower energies than the experimental reference. Therefore, we additionally show in
Fig. 6.8 shifted versions of the simulation results as gray dashed lines. With shifts
of 0.07 eV and 0.05 eV for α-MADN and β-MADN, respectively, the calculated
and measured spectra are practically indistinguishable up to 3.3 eV. With the
layer-resolved HOMO energies from [232], LUMO energies from Sec. 6.3.2 and
the S1 energies, we can now turn towards the analysis of the adiabatic exciton
binding energy Ead

bind, bulk in the bulk within the GW/pMM and GW-BSE/pMM
framework. In Fig. 6.7, we first consider the z-resolved adiabatic HOMO-LUMO

gap, E
GW/pMM,ad
gap,M = ε

GW/pMM,ad
LUMO,M − εGW/pMM,ad

HOMO,M , shown as green triangles. It is
noteworthy that while the z-dependence of HOMO and LUMO individually is
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Table 6.3: Summary of the adiabatic HOMO (from Ref.[232]) and LUMO
energies, the HOMO-LUMO gap, S1 exciton energy, as well as the exciton
binding energy (all in eV) in the bulk, as obtained from GW/pMM and
GW-BSE/pMM calculations either directly or by extrapolation (see text).
Value in parentheses are the respective standard errors.

α-MADN β-MADN
direct extrapolated direct extrapolated

εadHOMO,bulk −5.91(0.05) −5.89(0.05)

εadLUMO,bulk −1.87(0.13) −1.88(0.14)

Ead
gap,bulk 3.98(0.11) 4.04(0.14) 4.00(0.13) 4.01(0.15)

Ωad
S1,bulk

3.00(0.04) 3.00(0.04) 2.98(0.04) 2.98(0.04)

Ead
bind,bulk 0.98(0.11) 1.04(0.14) 1.02(0.12) 1.03(0.15)

strong, c.f. Figure 4 of [232] and Fig. 6.4, this effect cancels to a large extent when
the difference is calculated. For both α-MADN and β-MADN, Ead

gap in the bulk
region is (3.98 ± 0.11) eV and (4.00 ± 0.13) eV, respectively. Near the interfaces
to vacuum, the HOMO-LUMO gap increases by about 0.3 eV due to the reduced
screening of the charged excitations. With the nearly featureless z-dependence of
the adiabatic S1 energy, the exciton binding energy, first calculated per molecule
as

E
GW-BSE/pMM,ad
bind,M = E

GW/pMM,ad
gap,M − Ω

GW-BSE/pMM,ad
S1,M

, (6.13)

reflects the z-dependence of the gap energy in Fig. 6.7. In the bulk-like region

of the two thin films, we find that E
GW-BSE/pMM,ad
bind,bulk = (0.98 ± 0.11) eV for α-

MADN and E
GW-BSE/pMM,ad
bind,bulk = (1.02±0.12) eV, respectively. Towards the vacuum

interfaces, the binding energies are again larger by about 0.3 eV. Alternatively, the
bulk exciton binding energy can be calculated from the individual extrapolated
bulk values of HOMO, LUMO and S1. In this case one obtains a bulk binding
energy of (1.04±0.14) eV for α-MADN and (1.03±0.15) eV for β-MADN. All bulk
energies are also summarized in Tab. 6.3.
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(b)

(a)

GW-BSE/pMM S1 energy  

GW-BSE/pMM exciton binding energy
GW/pMM HOMO-LUMO gap

Figure 6.7: Layer-resolved distributions of adiabatic quasiparticle HOMO-
LUMO gaps (green triangles), S1 exciton energy (blue squares), and exciton
binding energy (red circles) from polarizable (BSE@)GW/pMM calcula-
tions for thin films of (a) α-MADN and (b) β-MADN (all in eV), respect-
ively.
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(a) (b)
α-MADN β-MADN

GW-BSE/pMM  
GW-BSE/pMM shifted  

experiment

Figure 6.8: Absorption spectra for thin films of (a) α-MADN and
(b) β-MADN. Blue solid lines indicate the spectra calculated based on
GW-BSE/pMM energies and IAbs(E) as in Eq. (6.12), while the blue dots
represent the experimental measurement. The dashed gray line shows the
simulated spectrum shifted by 0.07 eV and 0.05 eV for α-MADN and β-
MADN, respectively.
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6.4 Conclusions

In conclusion, this study presents a comprehensive multiscale approach that offers
predictions for the low-energy unoccupied electronic structure, optical absorption,
and exciton binding energies. The focus of the investigation has been on two
isomers of MADN, which serve as fundamental materials in ambipolar host ap-
plications within organic light emitting diodes. The methodology encompasses
several key elements: (i) an in-depth analysis of electronic properties utilizing
techniques such as Many-body Green’s functions and Bethe-Salpeter theory, (ii)
incorporation within a polarizable molecular mechanics framework to capture en-
vironmental effects, and (iii) accounting for the influence of vibrational modes
that become activated during experimental conditions. Through this comprehens-
ive approach, valuable insights have been gained into the role of energetic disorder,
surface interactions, and vibrational coupling on excitations, contributing signific-
antly to the understanding of relevant energy levels and spectral characteristics.
This holds particular significance in precisely determining vital parameters such
as electron affinity, optical gap, and exciton binding energy in organic semicon-
ductors. The simulated spectra remarkably align with experimental observations,
underscoring the robustness of our methodology. By extracting energies of excited
states, we have successfully determined exciton binding energies of approximately
1.0 eV for both MADN isomers. These findings not only enhance our comprehen-
sion of the intricate physics governing organic semiconductor behavior but also
provide a solid foundation for designing and optimizing future electronic devices
based on these materials.
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Chapter 7

Non-adiabatic couplings and
conversion dynamics
between localized and charge
transfer excitations from
Many-Body Green’s
Functions Theory in
rubrene-fullerene mixtures.

Adapted from the papers of
Tirimbò et al. [37, 260]

In this chapter, we determine the different excited states of molecular complexes
within the GW -BSE/MM embedding schemes. In particular, we focus on a special
type of electron-hole excitation called charge transfer (CT) state. We already
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discussed the importance of CT states in photovolatic devices in Ch. 1.1. In short,
photovoltaic devices harvest light and transform it into electric current. Their
efficiency is mainly dependent on how much electricity can be photogenerated.
Excitons form when light shines on these devices. Depending on the material
properties, the exciton can transform into another type of excitation called charge
transfer (CT) (see Figure 7.1). A CT state requires a Donor (D) and an Acceptor
(A) molecule. The electron will go on A as the hole will stay on D, keeping the
bound state typical of excitons. This CT state may eventually transform into a
charge-separation (CS) state, in which electrons and holes split. Understanding
and predicting CT states is thus pivotal for the classification and design of new
photovoltaic (in general opto-electronic devices). In complex materials, in which
many D-A pairs are available with different mutual distance and orientations,
we expect to have a substantial variation in the distribution of the CT energies.
In other words, disorder in the composition of the system can lead to different
potential excited state energies. To gauge the effect of the material disorder on
the CT energy distribution, to understand the role played by it and to measure
its influence in experimentally measured quantities, ab-initio calculation can be
exploited. In particular, embedding methods, as the additive GW -BSE/MM, can
give insights that gas-phase calculations cannot show. We also investigate the
determination of non-adiabatic couplings between localized excitations (LEs) and
charge-transfer (CT) excitations based on many-body Green’s functions theory
in the GW approximation with the Bethe–Salpeter equation (GW -BSE). Using a
small molecule dimer system, we first study the influence of different diabatization
methods, as well as different model choices within GW -BSE, such as the self-energy
models or different levels of self-consistency, and find that these choices affect
the LE-CT couplings only minimally. We then consider a large-scale low-donor
morphology formed from rubrene and fullerene and evaluate the LE-CT couplings
based on coupled GW -BSE-molecular mechanics calculations. For these disordered
systems of bulky molecules, we observe differences in the couplings based on the
Edminston–Ruedenberg compared to the more approximate Generalize Mulliken–
Hush and Fragment Charge Difference diabatization formalisms. In a kinetic model
for the conversion between LE and CT states, these differences affect the details
of state populations in an intermediate timescale but not the final populations.
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LUMO

LUMO

HOMO

DONOR ACCEPTOR

CT

Figure 7.1: A simplistic schematic representation of the formation of a
charge-transfer (CT) state. An electronic charge is transferred between
molecules, often labelled as electron donor and electron acceptor. The res-
ulting electrostatic attraction provides a stabilizing force for the molecular
complex. The resulting excited state is called CT.

7.1 Introduction

7.1.1 Rubrene-fullerene low-donor content system

Here we study an amorphous morphology with low-donor content (< 10 mol%),
composed of fullerene (C60) and 5,6,11,12-tetraphenyltetracene (rubrene) [261].
Because of the low-donor content, a C60 cluster will surround the donor mo-
lecule, making the interaction between the single donor molecule with a close
shell of neighboring C60 acceptors representative of the properties of the system
as a whole. These complexes are therefore meaningful candidates for a compu-
tational analysis of the influence of donor-acceptor conformations and environ-
ment polarization effects in the GW -BSE/MM framework introduced in Sec. 3.6.
To obtain representative structures, depicted in Figure 7.2, mixed morphologies
have been simulated with ab-initio MD based on Density Functional Tight Bind-
ing theory using linear scaling self-consistent field calculations within the CP2K
code [262]. Initial configurations have been prepared using packmol [263], target-
ing experimental values [261] for densities and mole percentages. This structure
is first equilibrated at 700 K in NpT (with velocity rescaling thermostat [264] at
atmospheric pressure [265]) for 7 ps (timestep 1 fs), then annealed to 300 K within
10 ps. A final NpT equilibration followed for 5 ps. It is worth mentioning that
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Figure 7.2: Bird’s eye view on the simulation supercell for the C60-Rubrene
system. The focus on the circled volume show the concentration of Rubrene
(ball and stick molecules) is low compared to the C60 (line molecules) one.
This effectively allows to consider only a relative small region around each
Rubrene. This should account for the average behavior of the system as a
whole.

this morphology has been used in a preliminary work [37] to study the effect of a
polarizable disordered environment on localized and charge-transfer on two differ-
ent donor-acceptor complexes excitations using the VOTCA-XTP software. This
work served as a test on how variations of the mutual orientations of rubrene and
C60 in the two complexes are expected to give rise to distinctly different charac-
teristics of electronic excitations, intermolecular charge-transfer excitations above
all. The study focus on two different donor-acceptor complexes, with a localized
and a delocalized excitation respectively. The main result of this study shows
that polarization from the environment plays a crucial role in the computation of
excitations energies and how GW -BSE/MM methods can be useful in this regard.
Results from [37] are shown in Figure 7.3.
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Figure 7.3: Excitation energies Ω (in eV) as obtained for the CTP (a) and
CTA (b) complexes from GW -BSE calculations in vacuum and embedded
in a static (GW -BSE/MMs) and polarizable (GW -BSE/MMp) environment,
respectively. Local excitations on C60 (rubrene) are marked in green (blue),
and excitations with CT character are given by varying shades of red de-
pending on the amount of charge transfer ∆Q. Isosurfaces of the electron-
hole densities with isovalue ±10−4 e/a3B are shown as insets. CTP refers to
configuration in which the fullerene is close to the phenyl ring of rubrene
whereas CTA refers to the configuration in which the fullerene is close to
the anthracene core of rubrene. Results are from [37].

7.1.2 Non-adiabatic couplings and conversion dynamics
between localized and CT excitations

Many photochemical processes, such as catalytic processes or the generation of
charges in active layer heterostructures of organic solar cells, involve the transfer
of an electron triggered by the absorption of a photon. Such photoinduced electron
transfer reactions are typically influenced by a variety of properties, ranging from
the intrinsic molecular electronic structure of the molecular building blocks of the
material, the details of the local mutual arrangement of molecules, to larger scale
morphological ordering. In many situations, the inherent disorder of the material
systems in which the electron transfer takes place suggests the use of localized
diabatic states to describe the reactions and to map the effects of the local and
global environment onto them. This idea as given rise to multiscale simulation
approaches, in which the transport of excitations across a material is modeled as
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a series of bi-molecular transfer events, each of them described by an effective
transfer rate. According to Marcus theory [266, 267], in the non-adiabatic high
temperature or activated crossing limit, the rate of electronic excitation transfer
between two states X (initial) and Y (final) is

ωXY =
2π

~
|JXY|2√

4πλXYkBT
exp

{[
− (∆EXY − λXY)2

4λXYkBT

]}
, (7.1)

where ∆EXY is the free energy difference between initial and final states, and λXY

the reorganization energy. The expression also contains the non-adiabatic coupling
element, JXY. In principle, it should be possible to evaluate all three quantities
that enter the Marcus rate from electronic structure methods. To account for the
local and global environment, however, it is typically required to embed electronic
structure methods into a classical environment model, as the size of realistic dis-
ordered systems at least on the order of several tens of nm exceeds the capabilities
of explicit quantum chemistry methods. Besides such quantum-classical embed-
ding, of the key challenges involved in the multiscale modeling approaches of this
kind is to use quantum-chemistry methods that allow for an accurate prediction
of various excited states involved in the dynamical processes. Especially for the
conversion of charge-neutral excitations, e.g., after photo absorption from localized
exciton to charge-transfer state as an example of a photoinduced electron transfer
reaction, the energetics of both LEs and CTs need to be described on an equal
footing. In this context, the use of many-body Green’s functions Theory employ-
ing the GW approximation and the Bethe–Salpeter equation (BSE) has become
attractive to model electronically excited states on top of a ground-state reference
calculation typically performed on the level of density-functional theory (DFT).
It was shown that GW -BSE provides an effective single- and two-particle picture
with accurate energies of LE and CT states without the need for any adaptations.
Previous work has also shown that the additional screening caused by the molecu-
lar environment strongly affects the energies (and also densities) of CT states, more
so than those of LEs, and that this energetic stabilization is important for finding
CT-LE energy differences ∆ELE−CT that are favorable for LE to CT conversion in
organic solar cell materials. To fully treat the dynamical process of this conversion
in the spirit of Eq. (7.1) requires also the reliable determination of the respective
non-adiabatic coupling elements λLE−CT. In this work, we present a comparat-
ive study of determining non-adiabatic coupling elements between localized and
charge-transfer excitations in the framework GW -BSE, based on three different
diabatization methods: Edminston–Ruedenberg (ER) diabatization employing ex-
plicit electronic densities and the more approximate Generalize Mulliken–Hush

144



7.1. INTRODUCTION

(GMH) and Fragment Charge Difference (FCD) formalisms. We first validate the
predicted JLE-CT in a small molecule dimer system consisting of naphthalene and
tetracyanoethylene (TCNE), for which reference calculations from coupled-cluster
and time-dependent density-functional theory are available and allow scrutinizing
the individual and combined effects of energy and (effective) wave-function pre-
dictions in the Green’s functions method. Herein, we also put particular emphasis
on how much or little the different model choices within GW -BSE, such as the
choice of self-energy models or different levels of self-consistency affect the LE-CT
couplings.
We proceed by considering a large-scale low-donor-content morphology formed
from rubrene and fullerene and evaluate the LE-CT couplings based on coupled
GW -BSE-molecular mechanics calculations.

7.1.3 Adiabatic v. Diabatic representation. Why is this
distinction needed?

In the discussion in Ch. 2.3 about the Born-Oppenheimer approximation, it was
mentioned that there are cases when the approximation does not hold. In the
following a more rigorous discussion is presented, as a preliminary step to discuss
diabatic states needed to described CT states. Going back to the Schrödinger
equation, once solutions {Ψel

i (r,R)}∞i=1 and {Eel,i}∞i=1 are found for a number
of different fixed nuclear configurations R, one solves an equation of motion for
nuclei which is obtained as follows. Since the electronic Hamiltonian is self-adjoint,
its eigenfunctions {Ψel

i (r,R)}∞i=1 form a complete orthonormal set. Moreover, a
function of two independent variables Φ(r,R) can be expanded over a complete
set of functions of one variable {Ψel

i (r,R)}∞i=1 in the following way

Φ(r,R) =

∞∑

i=1

Ψel
i (r,R)χnucl

i (R). (7.2)

Inserting the last equation into the Schrödinger equation, multiplication of both
sides by Ψel

i , and integration over electronic coordinates R only, leads to

∑

ij

(
K̂nuclδij + Eel,j(R)δij − Λ̂ji(R)

)
χnucl
j (R) = Eχnucl

i (R), (7.3)
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for j = 1, 2, . . . , N , where the non-adiabatic coupling operator Λ̂ji is

Λ̂ji =

N∑

α=1

(
2
〈
Ψel
j

∣∣∇α
∣∣Ψel

i

〉
∇α +

〈
Ψel
j

∣∣∇2
α

∣∣Ψel
i

〉)
, (7.4)

in which we dropped the coordinate R for the sake of clarity. Last equation
describes a system of differential equations (one equation for each value of j), and
once the system is solved and a set of functions χnucl

i is obtained, one could write
down the exact solution of the Schrödinger equation.
The task to solve the Eq. (7.3) equation system is almost impossible. Equations
in the system are coupled in a sense that the solution of any i-th equation, enters
all other equations via the coupling operator. One way to decouple the equations
in the system is assuming that Λ̂ji = 0 either for all i 6= j, or for all i without any
exception. This is equivalent to the Born-Oppenheimer approximation presented
in Section 2.3. If we equate with zero only all the off-diagonal (i 6= j) elements of
Λ̂ji, one falls in the so-called adiabatic approximation. Often Λji is very small but
not zero. In these cases the adiabatic approximation and the Born-Oppehnheimer
approximation are used interchangeably.
This approximation is labelled as ”adiabatic” because when solving the electronic
Schrödinger equation for different fixed nuclear configurations by continuously
varying the nuclear coordinates, one assumes that the electronic state of the sys-
tem continues to be the same. Namely, one presumes that nuclei ”stay” on the
same potential energy surface (PES). This scenario is reasonable only when PESs
for different electronic states are well separated. It is easy to understand that
the adiabatic approximation is inadequate in the regions of nuclear coordinates
where PESs come close to or even cross each other. If there is some coupling, the
nuclei might ”jump” from one PES to the other. For all the cases when the off-
diagonal terms cannot be neglected introduce the so-called non-adiabatic effects.
The problem is that these non-diagonal terms are hard to calculate. A possible
solution could be introducing the diabatic states. A diabatic transformation of
the adiabatic states replaces these off-diagonal kinetic energy terms with poten-
tial energy terms. The main idea is to choose a basis for the wavefunctions in
which the derivatives of the electronic wavefunctions with respect to the nuclear
coordinates vanish. The concept of diabatization should not be limited to the
Born-Oppehneimer approximation failure with respect to the nuclear coordinates
only. Within the context of a system that can undergo electron, hole or energy
transfer in an environment, another definition is that the diabatic states are the
initial and final states of the system before or after the transfer process. In fact, as
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we have already seen in the previous discussions, states of the system depend on
the environment, in particular, when the environment is polarizable. A realistic
scenario is that the adiabatic states of the isolated system will not be the relevant
stationary states of the solvated system, and they do not describe the system be-
fore or after the transfer event.
In general, going beyond the Born-Oppenheimer approximation, one can use a
truncated expansion of the total wave function Eq. (7.2). One then has the freedom
to unitarily transform the electronic wave function without affecting the expansion

ψel
i → φel

i =
∑

j

ψel
i Uji. (7.5)

In particular, one can attempt to find a transformation matrix, U(R), that elim-
inates the non-adiabatic couplings at the cost of introducing couplings by the
off-diagonal diabatic potentials. This concept is called diabatization, and {φel

i }
are diabatic states.
In ab initio calculations, one directly obtains the adiabatic wave functions as ei-
genstates of the electronic Hamiltonian. These adiabatic electronic wave func-
tions may have appreciable or even singular—nonadiabatic couplings for different
nuclear configuration, rendering them unsuitable for subsequent dynamical calcu-
lations. Finding the trasformation U helps as a remedy for this problem. The
process of finding the transformation is often called diabatization.

7.2 Methodology

In this work, we applied the Many-Body Green’s Functions Theory in the GW ap-
proximation with the BSE for the calculations of electronic excitations in a polar-
izable embedding. These concepts have been already discussed in this thesis work,
respectively in Section 3.4, Section 3.5, Section 3.6 and for the sake of brevity they
are not illustrated again in this section. Regarding the technical implementation
of the aforementioned methods, the reader can read through Section 4.2.
Diabatization methods, on the other hand, have never been discussed before, and
they are the main topic of this section.

7.2.1 Diabatization Methods

Electronic states obtained from as eigenstates of some (approximate) Hamiltonian
are adiabatic states |Φi〉, such as the excitations χS obtained from the BSE as in-
troduced in Section 3.5 and Section 4.2. Corresponding diabatic states

∣∣Φdiabatic
a

〉
,
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needed for the evaluation and understanding of electron transfer processes, can be
found via a unitary transformation

∣∣Φdiabatic
a

〉
=

Nstates∑

j=1

Uaj |Φj〉 . (7.6)

The unitary transformation matrix U is determined by extermalizing some func-
tion f(U), and various methods differ by the definition of this function, with some
choices being discussed below. With this, the adiabatic form of the electronic
Hamiltonian Hel with adiabatic energies εi, i.e., 〈Φi|Hel |Φj〉 = εjδij is transformed
into the diabatic form

Hdiabatic
ab =

〈
Φdiabatic
a

∣∣Hel

∣∣Φdiabatic
b

〉
=
∑

ij

Uia 〈Φi|Hel |Φj〉Ubj . (7.7)

For the two-state problem (Nstates = 2), the transformation can be written expli-
citly as a rotation

U =

(
U11 U12

U21 U22

)
=

(
cos θ − sin θ
sin θ cos θ

)
. (7.8)

and the diabatic Hamiltonian as

Hdiabatic =

(
cos θ sin θ
− sin θ cos θ

)(
ε1 0
0 ε2

)(
cos θ − sin θ
sin θ cos θ

)
. (7.9)

Its off-diagonal elements

JER
ab =

1

2
sin (2θ)(ε2 − ε1) (7.10)

are then the non-adiabatic couplings between the two diabtic states.

Edmiston-Ruedenberg Diabatization

In the Edmiston-Ruedenberg (ER) localized diabatization formalism [268], the
objective is the maximization of the self-repulsion of the diabats via

fER(U) =
∑

i,j,k,l,m

UjiUkiUliUmiRjklm. (7.11)
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Here, the tensor Rjklm is defined in basis of molecular orbitals as

Rjklm =
∑

vcv′c′

Djk
vc(vc|v′c′)Dlm

v′c′ . (7.12)

with

(vc|v′c′) =

∫∫
φv(r)φc(r)φv′(r

′)φc′(r
′)

|r− r′| dr dr′, (7.13)

where the indices v, v′ and c, c′ spanning the occupied and unoccupied levels,
respectively. In Eq. 7.12, Djk is the excited state transition density matrix between
the excited states j and k. If the φn(r) are expressed in an atomic orbital basis
{χα(r)} according to φn(r) =

∑
α d

n
αχα(r), Eq. (7.12) can be rewritten as

Rjklm =
∑

αβγδ

Djk
αβ(αβ|γ δ)Dlm

γδ . (7.14)

The tensor (αβ|γ δ) is part of the standard implementation of DFT-GW -BSE, in
which the transition density matrix between states j and k in the atomic orbital
basis reads

Djk
αβ = D0

αβδjk +
∑

cc′

dcαM
jk
cc′d

c′

β −
∑

vv′

dvαM
jk
vv′ , d

v′

β (7.15)

where

M jk
cc′ =

∑

v

(
AjvcA

k
vc′ −BjvcBkvc′

)
(7.16)

and

M jk
vv′ =

∑

c

(
AjvcA

k
v′c −BjvcBkv′c

)
. (7.17)

With these definitions, Eq. (7.14) can be computed and the ER functional can
be maximized. For the two-state case, there is a closed form for this maximizing
angle [269]. It is computed with the help of

A12 = R1212 −
1

4

(
R1111 +R2222 − 2R1122

)
(7.18)

B12 = R1112 −R2212 (7.19)

as

cos(4θ) = − A12√
A2

12 +B2
12

. (7.20)
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Generalized Mulliken–Hush Diabatization

In the Generalized Mulliken–Hush (GMH) approach to diabatization [270, 271],
the adabatic-to-diabatic transformation is based on the defition of the diabatic
states as eigenstates of the dipole moment. Specifically in a two-state model, the
method requires the calculation of the dipole moment of each adiabatic state µ1

and µ1, and the transition dipole moment between the two, µ12. The non-adabatic
coupling element is then calculated as

JGMH
ab =

|µ̂12|(ε2 − ε1)

((µ1 − µ2)2 + 4µ̂2
12)

1/2
, (7.21)

where µ̂12 is the projection of µ12 on the charge transfer direction (µ1−µ2)/|µ1−
µ2|.

Fragment Charge Difference Diabatization

Another alternative is to determine the diabatic states as eigenstates of the so-
called fragment charge difference (FCD) matrix [272], based on the definition of
donor (D) and acceptor (A) fragments, as ∆Qij = Qij(D)−Qij(A). The fragment
charges are typically obtained from a population analysis of the individual adia-
batic densities and the transition density between them. Again, for a two-state
model, the coupling is given by

JFCD
ab =

|∆Q12|(ε2 − ε1)

((∆Q11 −∆Q22)2 + 4∆Q2
12)

1/2
. (7.22)

7.3 Results

7.3.1 Naphthalene-TCNE complex

Stacked geometries of naphthalene and TCNE with different intermolecular dis-
tances are taken from Ref. [273]. Ground state calculations on KS-DFT level are
performed with the ORCA [245] package using both the PBE0 functional [274]
and the def2-tzvp basis [275] together with optimized auxiliary basis sets [276] in
resolution-of-identity techniques to efficiently express terms involving four-center
Coulomb integrals. We compare in the following the results based on G0W0 cal-
culations and eigenvalue selfconsistent evGW calculations. The convergence limit
for the self-consistent GW -cycles in the evGW scheme was set to 10−5 Hartree
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(a) (b)

Figure 7.4: Distance dependence of LE-CT coupling elements in the
naphthalene-TCNE complex. (a) GW -BSE results with the ER, GMH, and
FCD diabatization methods based on full BSE solutions following evGW
calculations with FAA frequency integration, employing the def-tzvp basis
and PBE0 functional in the ground state DFT run. Reference results on
EOM-EE-CCSD and TDDFT levels are taken from Ref. [273]. (b) Pure
GW -BSE and TDDFT results based on FCD as in (a) compared to mixed
methods, in which the fragment charge factor is taken from TDDFT and the
energy difference from GW -BSE (TDDFT/GW -BSE) and vice-versa, show-
ing that the difference between between the pure GW -BSE and TDDFT
results originate from the different predicted energies.

(0.27 meV). Quasiparticle corrections are determined for the 197 lowest energy or-
bitals, and the product basis for the electron-hole wavefunctions are formed from
the 66 occupied and 131 lowest unoccupied orbitals. All orbitals are included in
the RPA step for calculating the dielectric function, i.e., 320 orbitals for def2-svp,
668 for def2-tzvp, and 1380 for def2-qzvp, respectively. Both, the fully analytic ap-
proach (FAA) and a generalized plasmon-pole model as introduced in Section 4.2.3
as used for the frequency integration of the self-energy. The obtained excitation
energies for all variants are summarized in Tab. 7.1.

In Fig. 7.4(a), we show the distance-dependent LE-CT couplings as resulting from
evGW -BSE calculations with the FAA, the def2-tzvp basis set, and PBE0 in the
ground state calculation. We first compare the influence of the choice of diabatiza-
tion method, with the couplings obtained from ER shown as circles, from GMH as
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Table 7.1: Distance-dependence of the low-energy LE and CT excitation
energies (in eV) in a naphthalene-TCNE complex, based on different vari-
ants of GW -BSE using the def2-tzvp basis set and the PBE0 functional in
the DFT ground state calculation.

FAA PPM
evGW G0W0 evGW G0W0

full TDA full TDA full TDA full TDA

LE energy
3.5 Å 4.309 4.341 3.998 4.022 4.255 4.262 4.006 4.035
3.9 Å 4.306 4.340 4.000 4.024 4.266 4.306 4.007 4.037
4.0 Å 4.306 4.339 4.000 4.024 4.264 4.305 4.006 4.036
4.5 Å 4.305 4.339 3.997 4.022 4.262 4.303 4.003 4.033
5.0 Å 4.300 4.333 3.995 4.020 4.257 4.299 4.000 4.030

CT energy
3.5 Å 2.214 2.220 1.875 1.880 2.255 2.261 1.976 1.982
3.9 Å 2.387 2.389 2.052 2.054 2.430 2.432 2.157 2.159
4.0 Å 2.424 2.426 2.090 2.092 2.467 2.469 2.195 2.197
4.5 Å 2.589 2.590 2.255 2.255 2.632 2.632 2.360 2.361
5.0 Å 2.727 2.727 2.396 2.396 2.770 2.770 2.501 2.501

LE-CT difference
3.5 Å 2.095 2.121 2.123 2.141 2.000 2.001 2.030 2.053
3.9 Å 1.920 1.951 1.948 1.970 1.836 1.874 1.850 1.878
4.0 Å 1.881 1.913 1.909 1.932 1.797 1.836 1.811 1.839
4.5 Å 1.716 1.749 1.743 1.767 1.630 1.670 1.642 1.673
5.0 Å 1.572 1.606 1.599 1.623 1.488 1.529 1.499 1.529
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crosses, and FCD as diamonds, respectively. While both GMH and FCD methods
appear to yield very similar couplings with a maximum deviation of 4 meV at a
separation of 3.5 Å (see also Tab. 7.2), the JER

LE-CT result slightly lower, e.g., by
9 meV at the closest distance. Note that the respective slopes of the three GW -
BSE based data are identical, reflecting the same exponential decay of the LE-CT
coupling with distance. Comparing our results to those obtained by EOM-EE-
CCSD/GMH and TDDFT/FCD with the ωB97X-D [277] functional [273] shown
in Fig. 7.4(a) as solid and dashed lines, respectively, we observe a combination of
an offset to lower energies and a slightly stronger slope in GW -BSE. For instance,
at the optimal intermolecular distance of 3.9 Å, EOM-EE-CSSD/GMH predicts a
LE-CT coupling of 128 meV, TDDFT/FCD 126 meV, compared to 86 meV from
ER, 95 meV from GMH, and 93 meV from FCD with GW -BSE. To understand
this difference, we take a closer look at the results obtained with FCD diabatiz-
ation in Fig. 7.4(b). The GW -BSE and TDDFT results are from Fig. 7.4(a) are
shown again, now combined with ”mixed” versions. In these versions, we first
distinguish in the expression for JFCD

LE-CT between the fragment charge contribution
fFCD = JFCD

LE-CT/(ε2 − ε1) and the energy contribution fε = (ε2 − ε1). Then we
combine fFCD(TDDFT) with fε(GW -BSE) (TDDFT/GW -BSE) and vice versa
(GW -BSE/TDDFT). For the former, we find that the resulting couplings are es-
sentially identical to the ones from pure GW -BSE, while the latter results are in
close agreement with the full pure TDDFT data. This corroborates the notion
that the difference between the pure TDDFT and GW -BSE derived couplings can
to a large extend be attributed to differences in the energies. From Tab. 7.1, the
LE-CT energy difference at the optimal naphthalene TCNE distance is 1.92 eV in
GW -BSE and 2.70 eV in TDDFT [273], and their ratio almost exactly translates
into the ratio of the respective coupling elements.

Table 7.2 also contains LE-CT couplings as obtained from different variants of
GW -BSE, in which we have changed the exact frequency integration in Eq. (4.18)
with a PPM, the level of GW from evGW to G0W0, and/or the BSE from its full
form to the TDA. Overall, the JLE-CT are not very sensitive to the specific choices
in the GW and BSE steps. For the sake of clarity, we will focus on the results from
ER diabatization at the optimal separation of 3.9 Å in the following. First, the
use of the TDA of the BSE impacts the couplings by only 1 meV, also the use of
the one-shot G0W0 method instead on evGW does not show differences exceeding
3 meV. Even the use of the PPM in place of the exact frequency integration (FAA)
is of the same order, so that all values are within 3 % of the FAA/evGW/full BSE
result. Similar observations also hold for the other intermolecular distances and
diabatization techniques.
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Table 7.2: LE-CT coupling elements (in meV) in the naphthalene-TCNE
complex at several intermolecular distances, as obatined using ER, GMH,
and FCD diabatization with different variants of GW -BSE using the def2-
tzvp basis set and the PBE0 functional in the DFT ground state calculation.

FAA PPM
evGW G0W0 evGW G0W0

full TDA full TDA full TDA full TDA

ER diabatization
3.5 Å 163 165 158 161 161 163 155 155
3.9 Å 86 87 84 85 88 89 86 86
4.0 Å 73 74 71 72 75 76 73 73
4.5 Å 34 34 33 33 35 35 34 34
5.0 Å 16 17 16 17 17 18 17 17

GMH diabatization
3.5 Å 172 172 169 169 169 169 165 165
3.9 Å 95 95 93 94 93 93 92 92
4.0 Å 81 81 80 80 80 80 79 79
4.5 Å 38 38 38 38 38 38 37 37
5.0 Å 18 18 18 18 17 17 17 17

FCD diabatization
3.5 Å 168 168 165 166 165 165 161 162
3.9 Å 93 93 92 92 92 92 90 90
4.0 Å 80 80 79 80 79 79 77 77
4.5 Å 38 38 37 37 37 37 37 37
5.0 Å 17 17 17 17 17 17 17 17
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7.3.2 Rubrene-fullerene low-donor content system

We now move from the well-ordered, small molecule naphthalene-TCNE dimer to
a disordered cluster of larger molecules and investigate the sensitivity of LE-CT
coupling elements based on GW -BSE on the different diabatization methods and
if eventual differences propagate to different answers in dynamic models of conver-
sion between LE and CT states. Specifically, we study an amorphous morphology
with low-donor content (< 10 mol%), composed of fullerene (C60) and 5,6,11,12-
tetraphenyltetracene (rubrene) [278]. Because of the low-donor content, a C60

cluster will surround the donor molecule, making the interaction between the single
donor molecule with a close shell of neighboring C60 acceptors representative of
the properties of the system as a whole. These complexes are therefore meaningful
candidates for a computational analysis of the influence of donor-acceptor con-
formations and environment polarization effects in the GW -BSE/MM framework
introduced in Sec. 3.6 and its consequence on the conversion dynamics between
initially excited LE on rubrene (LER) to CT excitations.

CT density of states

To obtain representative structures, mixed morphologies have been simulated with
ab-initio MD based on Density Functional Tight Binding theory using linear scaling
self-consistent field calculations within the CP2K code [279]. Initial configurations
have been prepared using Packmol [280], targeting experimental values [278] for
densities and mole percentages. This structure is first equilibrated at 700 K in
NpT (with velocity rescaling thermostat [281] at atmospheric pressure [282]) for
7 ps (time step 1 fs), then annealed to 300 K within 10 ps. A final NpT equilibration
followed for 5 ps.
For calculating the LE and CT densities of states, C60 molecules are selected
which are approximately in the first neighbor shell around one rubrene molecule.
Given the conformation of this low-donor content materials, the behavior of this
shell of molecules should be representative of the overall behavior of the material.
After selection, polarizable GW -BSE/MM embedding calculations as described in
Section 3.6 are performed for all dimers formed by rubrene and fullerene. Specific-
ally, we employ for the GW -BSE calculations the def2-tzvp basis set [275] with
an optimized auxiliary basis [276] for the steps including resolution-of-identity.
The ground-state DFT calculation uses the PBE0 functional [274]. Eigenvalue
self-consistent GW (evGW ) calculations are performed to obtain the explicit
quasiparticle-corrected energies for the highest 100 occupied and lowest 100 un-
occupied orbitals, respectively. All orbitals are included in the RPA step and
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not explicitly GW corrected levels are scissors shifted according to the highest
absolute quasiparticle correction among the explicitly corrected occupied or unoc-
cupied orbitals, respectively. The frequency integration in Eq. (4.18) is performed
using the PPM. Coupled electron-hole wavefunctions according to Eq. (3.68) are
constructed using transitions between the highest 220 occupied and 220 lowest
unoccupied states. In the MM part of the GW -BSE/MM, polarizable electrostatic
interactions are taken into account within a cutoff of 4 nm. The resulting energies
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Figure 7.5: Energies of CT excitations (green vertical bars) from vacuum
GW -BSE (dashed) and GW -BSE/MM calculations with polarizable embed-
ding (solid). Solid and dashed curves indicate respective density-of-states
obtained by Gaussian broadening with 0.1 eV as a guide-to-the-eye. Blue
and orange lines highlight the GW -BSE/MM energies of LEs on rubrene
and C60, respectively.

of CT and LE excitations are depicted in Fig. 7.5. In general, the effects of polar-
izable embedding on the LE energies are small, as has been observed before, e.g.,
for embedded push-pull polymers [210] or small-molecule donor molecules [283].
Therefore, we only show the GW -BSE/MM results for the respective LEs, indic-
ated by the blue (rubrene at 2.01 eV) and orange (C60 at 1.97 eV) vertical lines
as there is no noticeable disorder. For the CT excitations, the GW -BSE calcu-
lations in vacuum already reveal significant energetic disorder, originating from
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(a) (b)

CT0

CT1

CT0

CT1

Figure 7.6: (a) Effective LE-CT couplings (see Eq. (7.23)) in the rubrene-
C60 dimers resulting from polarizable GW -BSE/MM calculations with the
GMH and FCD diabatization schemes against those from ER. (b) Relation
between LE-CT energy difference ∆ELE-CT = ΩCT − ΩLE and the LE-CT
coupling from GW -BSE ER diabatization.

the different rubrene-C60 conformations and the long-range electrostatic interac-
tion between electron and hole. Individual CT excitation energies are marked by
the short green vertical lines in Fig. 7.5, where we also show a density-of-states
obtained by broadening with a Gaussian function of width 0.1 eV. After polariz-
able embedding in GW -BSE/MM the CT energies (solid green lines) are shifted to
lower energies, with energetic stabilization of up to 1 eV. Note that in vacuum, the
CT excitation energies result generally higher than both LEs, which would make a
conversion process of a LE on rubrene to a CT state energetically unlikely. After
embedding, we find that the energetic stabilization brings several high-energy CTs
close to the LEs, and some notably very much lower at 1.65 eV (CT1)and 1.42 eV
(CT0), respectively. The latter compares favorably with the experimentally meas-
ured CT energy of 1.46 eV reported in Ref.[278]. However, given the disorder in
the CT excitation energies, it is unclear if the measurement truly probes simply
the lowest-energy CT state, or one that is preferably dynamically populated during
the timescale of the conversion process and the experiment.
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Non-adiabatic LE-CT couplings

To proceed beyond considering only the energy difference for the conversion of LE
to CT excitons, we consider the LE-CT couplings and analyze if the disorder in
them could be indicative of some dimers not participating in the process. We also
investigate if for such large bi-molecular structures, the use of GMH, FCD, and
ER diabatization has any influence on the results.
A specific aspect of the rubrene-C60 systems that requires extra is the (near)
degeneracy of the 15 lowest LE on C60, stemming from the 5-fold degeneracy of
its HOMO and 3-fold degeneracy of its LUMO. For the same reason, also the
CT states are 3-fold near degenerate. We take this into account by calculating
an effective diabatic coupling [284, 285] between NLE-fold degenerate LEs and
NCT-fold degenerate CT excitons as

J̄LEx−CT =

√∑NLE

m=1

∑NCT

n=1 J
2
LEx,m−CTm

NLE ·NCT
, (7.23)

with JLEx,m−CTn the coupling element between the m-th degenerate LE and the n-
th degenerate CT. The results from the different diabatization methods are shown
in Fig. 7.6(a). There, we plot the couplings obtained with GMH and FCD diabat-
ization against those from ER, and distinguish between LER-CT (filled symbols)
and LEC60

-CT (open symbols) couplings. Roughly speaking, the effective coup-
lings from ER cover a range from 0.02 meV to 17 meV, with many occurring close
to 1 meV. Compared to the small-molecule naphthalene-TCNE dimer with ideal
stacking, we find a stronger dependence on the diabatization method, although
the differences between GMH and FCD seem minor in most cases. Of particu-
lar interest are the couplings of the two low-energy CT states, CT0 and CT1, as
marked in Fig. 7.6(a). Specifically, the LER-CT couplings are different using ER
(0.6 meV vs. 17 meV), while similar when using GMH at about 3 meV. As the ER
method takes the full details of the electronic (transition) densities into account,
it stands to reason that the extra details have a bigger contribution to the LE-CT
couplings for more disordered structures and larger molecular building blocks.
In Fig. 7.6(b) we show the relation between the energy offset of LE and CT states,
calculated as ∆ELE-CT = ΩCT−ΩLE, and the LE-CT couplings obtained with ER.
From Eq. (7.10) one generally expects some dependence of the couplings on the
energy difference. Some dependence is visible in Fig. 7.6(b), although it is hard
to ascribe a definite trend to the data. Noteworthy is that the two dimers with
the most negative energy offsets corresponding to the two low energy CT states
discussed in Section 7.3.2. In particular, CT1 at energy 1.65 eV is found to have
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the highest coupling between the rubrene LE and the CT state. In comparison, the
coupling to the lowest CT state, CT0, is smaller by a factor of 30. This raises the
question what impact the differences in couplings have for the LE-CT conversion
dynamics, particularly which of the CT states is most likely to be probed over
which timescale.

Kinetic Model

To scrutinize the effects of the disorder in energies and LE-CT couplings obtained
from the GW -BSE/MM calculations in Sections 7.3.2 and 7.3.2 and the influence
of different diabatization methods, we now study the conversion dynamics between
LE and CT excitations with a kinetic model based on Marcus rates as in Eq. (7.1).
This model requires in addition to the calculation of the LE-CT couplings and
the excitation energies Ω also the determination of the respective reorganization
energies λab. Within the Marcus picture, λLEx−CT = ECT(LEx) − ECT(CT) and
λCT−LEx

= ELEx
(CT) − ELEx

(LEx), where x = R,C60 and Ea(G) represents the
total energy of state a at geometry of state G. As such, this would require the
cumbersome optimization of the dimer structures in the respective CT and LR
states. Instead, we approximate the energies from monomer calculations, such
that

ECT(LER) = E+
R (R∗) + E−C60

(C0
60) (7.24)

ECT(LEC60
) = E+

R (R0) + E−C60
(C∗60) (7.25)

ELER
(CT) = E∗R(R+) + E0

C60
(C−60) (7.26)

ELEC60
(CT) = E0

R(R+) + E∗C60
(C−60) (7.27)

ECT(CT) = E+
R (R+) + E−C60

(C−60) (7.28)

ELER
(LER) = E∗R(R∗) + E0

C60
(C0

60) (7.29)

ELEC60
(LEC60) = E0

R(R0) + E∗C60
(C∗60), (7.30)

where the superscripts refer to the state of the monomers (0: ground state, +:
cation, −: anion, ∗: excited). The total energy calculations and geometry optim-
izations in this step are performed using (time-dependent) DFT with the same
basis set and functional as the GW -BSE calculations in Section 7.3.2, and we
obtain λLER−CT = 0.12 eV, λCT−LER = 0.12 eV, λLEC60

−CT = 0.18 eV, and
λCT−LEC60

= 0.21 eV, respectively. In similar spirit, we determine the vertical
to adiabatic energy relaxations of the excited states, Λa = Ea(0) − Ea(A), as
ΛCT = 0.15 eV, ΛLER

= 0.16 eV, and ΛLEC60
= 0.23 eV.
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( (
Figure 7.7: Schematic representation of the rate matrix of a kinetic model,
with full squares indicating where the respective rates with LE-CT coup-
lings occur.

With all energies and coupling elements at hand, we determine all rates between
LE and CT states according to Eq. (7.1) at T = 300 K for the kinetic model, which
describes the time-evolution of the state population probabilities P(t) via a system
of ordinary differential equations of the kind

d

dt
P(t) = WP(t). (7.31)

In this specific case, PT (t) = [PLER
(t),PT

LEC60
(t),PT

CT(t)] is of dimension 21, and∑
i Pi(t) = 1 for all t. The structure of the off-diagonal entries of the matrix W is

shown in Fig. 7.7, emphasizing again that in this minimal model, we only consider
transitions between LE and CT states, not between different LE, and different
CTs. The diagonals of W contain the negative of the sum of all other column
entries, i.e., Wii = −∑jWji.

We initially prepare the system in the LER state, i.e., PT (t = 0) = [1, 0, . . . , 0] and
numerically study the evolution of Eq. (7.31) for tmax = 1µs using the backward
Euler scheme [286] with 105 steps. In Fig. 7.8(a), we show the resulting popula-
tion probabilities with the LE-CT couplings calculated using ER diabatization.
Initially, the population of the LER state decays rapidly and it is completely de-
populated within 50 ps. This initial decay occurs primarily into three CT states,
with a clear preference for the CT1 state. After 50 ps the two additionally popu-
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(a) (b) (c)
ER GMHCT1 CT1

Figure 7.8: (a) Population dynamics of the excited states for tmax = 1µs as
a solution to Eq. (7.31) for LE-CT couplings from ER diabatization. The
blue line indicates the population of the LER excited state, orange lines
the ones of the respective LEC60 , and green dashed lines populations of CT
states, respectively. (b) Same for GMH diabatization. (c) Time evolution
of the expected CT energy 〈ΩCT〉 from population probabilities based on
models with different diabatization methods.

lated CT states convert first into LEC60 as intermediates in the timescale of 100 [ps]
to 10 ns, until they also decay nearly exclusively into CT1. Note that we do not
observe over the timescale of 1µs a noticeable population of the lowest energy CT
state, CT0. As can be seen from Fig. 7.8(b), there are some qualitative similarities
when the dynamics are modeled based on GMH diabatization. In particular, the
same rapid initial decay of LER and the final near complete population of CT1 can
be seen. Some quantitative difference can be noted in the details of the interme-
diate dynamics. Initially, CT1 does not get populated. Instead, the populations
of the two other CT states is much higher and, consequently, also the populations
of the two intermediate LEC60

they convert into.
We also report in Fig. 7.8(c) the expectation value of the measured CT energy,
calculated according to

〈ΩCT(t)〉 =

10∑

n=1

PCTn(t)ΩCTn , (7.32)

for the three different diabatization methods considered in this work. As could
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be expected from the individual populations over time, the expected CT energy
follows similar trends. At about 50 ps, all methods exhibit a peak, whose height
depends slightly on the method. Its energy of more than 1 eV is, however, a
consequence of the low population of high energy (∼ 2 eV) CT states, and not
indicative of the population of either CT0 or CT1. The dip following the peak is a
combined effect of the depopulation of the high-energy CT states to both CT1 (in
case of ER) and some LEC60 . In the model based on GMH/FCD, the cumulative
population of all CT states is minimal at t = 1 ns, leading to the pronounced
reduction of the expected CT state energy. On the other hand, in the ER model,
the CT1 state is already populated at this time, but the combination of it being
a low energy excitation and only partially populated (around 0.6) still leads to a
smaller but noticeable minimum. Only on the timescale of 1µs, when the CT1

population is nearly 1, 〈ΩCT(t)〉 is indicative of a pure CT state. Interestingly,
the value of 〈ΩCT(t = 1µs)〉 = 1.50 eV is close to the CT energy reported in
experiments (1.46 eV) [278], although we do not want to overstress this apparent
agreement due to the limited nature of the model. Noteworthy in this context is
also that in both cases (ER and GMH/FCD), no population of CT0 is observed in
the considered timescale. In thermal equilibrium (t → ∞), one would expect the
state occupation probabilities to be Boltzmann distributed according to

P th
i =

exp(−βΩi)∑21
i=1 exp(−βΩi)

, (7.33)

and as such, an almost complete population of CT0. While out limited model
appears to run into a different equilibrium with complete CT1 occupation as in
Fig. 7.8, this is misleading, as even in the model a conversion to CT0 will happen
on a much longer timescale. Note, however, that adding additional conversion
pathways to the model is expected to reduce the time in which the system reaches
thermal equilibrium, but doing so is beyond the scope of this work which focuses
on the analysis of different diabatization methods with respect to the calculation
of LE-CT couplings.

7.4 Conclusions

In summary, we have developed the determination of LE-CT coupling elements
within the framework of GW -BSE. We have shown that in an ideal small-molecule
dimer of naphthalene and TCNE, the quantitative estimates of these couplings are
largely insensitive to methodological choices in the GW and BSE steps of the cal-
culation, and only small differences are noted between the Edmiston–Ruedenberg,
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Generalized Mulliken–Hush, and Fragment Charge Difference diabatization form-
alisms, respectively. Compared to literature results for this model system on
TD-DFT level, we could show that the difference found in the GW -BSE-based
calculations can be attributed to different predictions of the adiabatic dimer en-
ergies entering the diabatization procedure, and not differences in the densities
of the excitations. In larger-scale, disordered molecular complexes, such as the
low-donor content rubrene-fullerene mixtures, the LE-CT couplings are found to
be more sensitive to the choice of the diabatization formalism. While the two
more approximate Generalized Mulliken–Hush and Fragment Charge Difference
approaches yield couplings that are largely in agreement with each other, they
differ from respective results based on the Edmiston–Ruedenberg approach, which
takes full details of the excited state densities into account. To scrutinize the effect
of the different predictions both qualitatively and quantitatively, we have employed
the respective LE-CT couplings in a minimal kinetic model of the conversion from
LE to CT states based on Marcus rates. From the obtained time evolution of
state population probabilities, it is apparent that the dynamics are affected on an
intermediate timescale, but not the final steady state prediction.
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Chapter 8

Conclusion

This thesis addressed various challenges in modeling electronic excitations in com-
plex materials through three distinct and interconnected objectives. The first
objective focused on methodological advancements, aiming to explore the feasibil-
ity of combining classical and quantum mechanics to gain comprehensive insights
into the behavior of realistic materials. By developing a hybrid approach that in-
tegrated these two realms, the research enabled accurate modeling of both macro-
scopic properties (e.g., prediction of spectroscopy profiles) and molecular-detailed
properties (e.g., energy spatial profile and diabatic coupling elements) under real-
istic conditions. This hybrid method allow for the definition of different regions
that can be treated at different level of accuracy. This makes it, within a reas-
onable compuational cost, a valuable ”input machines” for bigger scale modeling
the macroscopic properties of materials and their response to external perturba-
tions (mainly in Kinetic Monte Carlo simulations). To achieve this objective, the
research utilized a hybrid approach, often referred as QM/MM, where the clas-
sical part (MM) was modeled using multipole expansions, and the quantum part
was developed using GW -BSE (Green’s function perturbation theory within the
GW approximation and Bethe-Salpeter equation) to capture charged and neutral
electronic excitations. The GW approximation is a perturbative method used to
obtain a more accurate description of the electronic self-energy compared to tradi-
tional density functional theory (DFT) calculations. By considering the electron-
electron interactions beyond DFT, GW captures the quasiparticle properties of the
system, such as electron addition and removal energies, which are crucial for ob-
taining quantitative estimates of charged electronic excitations in materials. The
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Bethe-Salpeter equation (BSE) on the other hand is a many-body perturbation
theory used to calculate the electron-hole correlation responsible for optical excit-
ations like excitons and charge-transfer states. BSE provides accurate excitation
energies and wavefunctions, making it a suitable choice for studying neutral ex-
cited states. Multipole expansions are a powerful tool in classical mechanics for
efficiently describing the electrostatic interactions in large-scale systems. In this
approach, the charge distribution of atoms or molecules is represented by a series
of multipole moments (e.g., monopole, dipole, quadrupole, etc.). The multipole
expansion provides an accurate description of long-range electrostatic interactions
while significantly reducing the computational cost compared to explicit treatment
of each molecule’s electronic structure. On the other hand, the quantum part of
the hybrid approach employed the GW -BSE method, which offers a rigorous and
accurate description of the electronic interactions at the atomic and molecular
level.
The combination of classical embedding and GW -BSE in the hybrid approach
offers several advantages:

• Accuracy and Efficiency:
The GW -BSE method ensures accurate descriptions of electronic excitations
at the quantum level, capturing both localized and delocalized excitations.
In contrast, the multipole expansion efficiently handles the long-range elec-
trostatic interactions, providing a balance between accuracy and computa-
tional cost.

• Large-Scale Systems:
The classical part based on multipole expansions allows the simulation of
large-scale systems, making it possible to study materials with a signific-
ant number of atoms or molecules, such as extended solids and molecular
aggregates.

• Incorporation of Environment:
The hybrid approach can naturally account for the influence of the sur-
rounding environment on the electronic excitations, which is particularly
important in the study of materials in realistic conditions (e.g., in solution
or at interfaces).

• Study of Realistic Materials:
By combining classical and quantum mechanics, the hybrid approach en-
ables the investigation of realistic materials under experimentally relevant
conditions, providing valuable insights into their properties and behavior.
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By harnessing the strengths of classical embedding and GW -BSE, the hybrid ap-
proach developed in this thesis offers a powerful framework to accurately capture
both macroscopic and microscopic properties of materials, advancing the under-
standing of electronic excitations and their role in determining material behavior.
The second objective of this thesis focused on addressing localized and delocalized
bi-molecular electronic excitations in specific materials to test and validate com-
putational techniques. In recent years, computational experiments have become
increasingly important in bridging the gap between theoretical predictions and
experimental observations. These computational experiments allow researchers to
gain deeper insights into the behavior of materials and provide valuable guidance
for experimental investigations.

For the specific material, MADN the research successfully reproduced the HOMO
(Highest Occupied Molecular Orbital) peak in the Ultraviolet Photoelectron Spec-
troscopy (UPS) spectrum by breaking down the photoelectron spectroscopy into
its fundamental parts. This accomplishment demonstrated the effectiveness of the
developed hybrid approach, which combined classical multipole expansions and
quantum GW -BSE calculations, in accurately predicting electronic excitations in
realistic materials. Building upon this success, the research further predicted the
properties of other relevant electronic states, such as the LUMO (Lowest Un-
occupied Molecular Orbital) and the optical gap (absorption spectra). The re-
search provided a comprehensive understanding of the entire electronic structure
of MADN. One significant outcome of accurately predicting the electronic states
in MADN is the estimation of the exciton binding energy. Estimating the exciton
binding energy is essential because it provides insights into the stability and mobil-
ity of excitons in the material. A higher binding energy indicates a more stable ex-
citon, which leads to longer exciton lifetimes and more efficient charge carrier gen-
eration and recombination processes. On the other hand, a lower binding energy
facilitates exciton dissociation, enabling efficient charge transport, and is desirable
for device applications like OLEDs and organic solar cells (OPVs). By accurately
predicting the electronic states and optical properties of MADN, including the
exciton binding energy, the research opens up new possibilities for designing and
engineering materials with improved optoelectronic performance. This knowledge
can guide the development of new organic semiconductors with tailored proper-
ties, allowing researchers to optimize the performance of devices like OLEDs and
achieve more efficient light emission and energy conversion. Additionally, a deeper
understanding of exciton behavior in materials like MADN can pave the way for
the discovery of novel excitonic materials with unique and desirable characterist-
ics. Another testbed for the methodologies developed in this thesis is disordered
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molecular complexes with a low-donor content, in the specific those made out of
rubrene-fullerene mixtures. Besides the computation of localized excitations (LE)
and charge-transfer states (CT), we have developed the determination of LE-CT
coupling elements within the framework of GW -BSE (with classical embedding).
Coupling elements require the computation of diabatic states. A diabatic state
refers to an electronic state that is localized in nature. It is distinct from an
adiabatic state, which represents an eigenstate of the full Hamiltonian, including
both electronic and nuclear degrees of freedom. Especially in complex materials
and molecular systems, the diabatic states can significantly differ from the adia-
batic states, leading to non-adiabatic effects. These non-adiabatic effects play a
crucial role in electronic excitations, energy transfer, and chemical reactions. We
have shown that in an ideal small-molecule dimer of naphthalene and TCNE, the
quantitative estimates of these couplings are largely insensitive to methodological
choices in the GW and BSE steps of the calculation, and only small differences
are noted between the Edmiston–Ruedenberg, Generalized Mulliken–Hush, and
Fragment Charge Difference diabatization formalisms, respectively. Compared to
literature results for this model system on TD-DFT level, we could show that the
difference found in the GW -BSE-based calculations can be attributed to different
predictions of the adiabatic dimer energies entering the diabatization procedure
and not differences in the densities of the excitations. In larger-scale, disordered
molecular complexes, such as the low-donor content rubrene-fullerene mixtures,
the LE-CT couplings are found to be more sensitive to the choice of the diabatiza-
tion formalism. While the two more approximate Generalized Mulliken–Hush and
Fragment Charge Difference approaches yield couplings that are largely in agree-
ment with each other, they differ from respective results based on the Edmiston–
Ruedenberg approach, which takes full details of the excited state densities into
account. To scrutinize the effect of the different qualitatively and quantitative pre-
dictions, we have employed the respective LE-CT couplings in a minimal kinetic
model of the conversion from LE to CT states based on Marcus rates. From the
obtained time evolution of state population probabilities, it is apparent that the
dynamics are affected on an intermediate timescale, but not the final steady-state
prediction.

The third objective rounds around implementing multi-scale methods and innov-
ative techniques into an open-source code (VOTCA-XTP). By creating a versatile
computational platform that integrates quantum-mechanical simulations, molecu-
lar dynamics, and other approaches, the research contributed to accelerating the
discovery of new materials with tailored properties. The objective can be broke
down in:
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• In the context of computational materials science, open-source codes are
invaluable for several reasons:

– Transparency and Reproducibility:
Open-source codes provide transparency in computational methods,
allowing researchers to understand how the calculations are performed
and validate the results independently. This transparency promotes
reproducibility and fosters trust in the scientific community.

– Collaboration and Community Contribution:
By making the code open-source, researchers encourage collaboration
within the scientific community. Others can contribute to the code,
suggest improvements, and extend its capabilities, which leads to the
rapid development and dissemination of new techniques and advance-
ments.

– Accessibility:
Open-source codes make cutting-edge computational tools accessible
to a broader audience, including researchers with limited resources.
This accessibility democratizes computational research and accelerates
progress across different scientific disciplines.

• Model Development and Innovation:
A strong grasp of the technicalities enables researchers to develop new mod-
els, algorithms, and methodologies tailored to address specific challenges
and bridge existing gaps in the field.

• Code Efficiency and Speed:
In today’s computational landscape, the efficiency of code is paramount for
multiple reasons:

– Scalability: Materials science simulations often involve large-scale sys-
tems and require substantial computational resources. Efficient code
allows researchers to scale their simulations to larger systems and per-
form high-throughput computations.

– Competitive Edge: In the fast-paced world of research, speed and ef-
ficiency in computations can provide a competitive edge, allowing re-
searchers to publish results more quickly and stay at the forefront of
their field.

Developing an in-house code allows researchers to have full control over the imple-
mentation and fine-tune it to their specific needs. This flexibility turns the code
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into a testing ground for exploring new scientific and mathematical ideas. Re-
searchers can experiment with novel algorithms and numerical techniques to ad-
dress complex challenges, which might not be feasible with off-the-shelf software.
This flexibility and adaptability foster creativity and innovation in computational
materials science.
Overall, the thesis successfully addressed the outlined questions:

1. The findings presented in this thesis demonstrate the effectiveness of merging
GW -BSE with classical embedding techniques for the accurate prediction of
material properties that involve electronic excitations. By combining these
approaches, it becomes possible to enhance the precision and quantitative
nature of gas-phase GW -BSE calculations by accounting for the influence of
neighboring molecules, specifically through polarization effects. Moreover,
the newly developed methodologies offer the capability to generate energy
profiles within targeted regions of morphological significance. This feature
holds the potential to greatly enhance our comprehension of electronic ex-
citations by creating a ’map’ of the energy profile. This is particularly useful
when input for ab-initio methods are needed and specific requirements must
be met (e.g., need excitation energies in the bulk or at the surface). Con-
sequently, these advancements hold promise for expediting the design of
improved devices through a more profound insight into electronic excita-
tions.

2. The research demonstrated the possibility of providing quantitative pre-
dictions of experimental spectra, including UPS, IPS, and Absorption, by
employing the hybrid approach that combined classical and quantum mech-
anics. The first-principle analyses enabled the informed development of
device models, fostering a deeper understanding of electronic excitations and
their impact on material properties, thereby facilitating the design of im-
proved devices. Beside providing a tool to gain more insight on experimental
spectra, or even produce insightful spectra when experiments are hard to
perform, the quantitative preditioncs together with the methods developed
in this thesis can be helpful in application, in particular for parameters-
free models used to simulate macroscopic characteristic of opto-electronic
devices. The accuracy of the input quantities needed before starting with
the macroscopic stage (i.e., KMC simulations) cna be accurately determined
with the methods developed in this thesis.

3. It is possible to compute non-adiabatic coupling elements using the GW -
BSE/MM approach for use in a rate-based model to describe the dynamic
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conversion between localized and charge transfer excitations. This combin-
ation of methods holds the potential to provide valuable insights into the
intricate interplay between electronic excitations and facilitate a more ac-
curate representation of the conversion dynamics in various systems. By
incorporating non-adiabatic coupling elements derived from the GW -BSE
framework into a rate-based model, one can enhance the predictive power of
the model and gain a deeper understanding of charge transfer processes and
their impact on material behavior. Beside the scientific interest, there is an
application interest (parameters-free models) in which this new framework
can be integrated and use.

Nevertheless, different shortcomings and open problems have not been answered
in this work, leaving room for improvement:

• As described in Section 4.2, the GW implementation has, at best, a scal-
ing of O(N4), which prohibits its application to many systems of interest.
An active field of research is dedicated to this subject and many solutions
have been proposed that can be possibly implemented in VOTCA-XTP.
For example, it is possible to compute the GW without unoccupied state
by using the so-called Sternheimer method [287]. Several O(N3) algorithms
with gaussian basis functions were developed [288, 289, 290, 291] inspired
by the space-time method [292]. Another promising work on low-scaling
GW claims a O(N2) scaling [293]. Furthermore, a stochastic approach was
proposed [294] as a solution towards low-scaling GW .

• The presented QM/MM strategy suffers from the problem of cutting through
bonds in macromolecules (e.g., moving side-chains into the MM region, or
looking at active parts of a larger polymer, protein). A possible amendment
relies on QM/QM’/MM models, based on subsystem-DFT. In other words, a
layer between the active region (treated with high accuracy QM method) and
the MM region (treated classically), is inserted, and this layer is treated with
a low-scaling QM method (usually DFT). For example, see GW -BSE [85].

• Within the QM/MM framework, the MM model does not cover charge-
transfer inside the MM region. Possible solutions that do not involve the
use of the Thole model, are the explicit calculation of charge-transfer within
the Drude model [295] or within the charge-equilibration technique [296].

• The GW -BSE could be explicitly coupled with the Ewald-MM. In fact,
the current implementation a fully classical Ewald-MM is used. It is, in
principle, possible to compute GW -BSE energies and densities with the
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explicit long-range electrostatic embedding. No work has been found on
this subject, but there are implementations of this explicit coupling with
DFT [297]. The same idea can be explored in the realm of GW -BSE and
possibly implemented in the VOTCA-XTP software.

• The GW -BSE/MM framework relies on the assumption that the environ-
ment response is single-reference in character, as described in Section 3.6
and Section 4.2. This assumption allows for an unambiguous identification
of the excited states in the self-consistent procedure. Following the state
of interest is done via computing oscillator strengths for optical transitions
or the amount of transferred charge between two molecules, or directly the
density matrix of the excitation. Any of these state-tracking methods are
not straightforwardly applicable, e.g., at or close to intersections where at
least two states mix strongly. The possible ambiguity in the state detection
requires a careful look to each step of the self-consistent cycle. A possible
amendment can be adding a classical polarization directly in the GW as
described in [212].

In summary, this thesis significantly contributed to the understanding of elec-
tronic excitations in complex materials, paving the way for further advancements
in material science, device engineering, and computational methods. The combin-
ation of classical and quantum mechanics, the investigation of specific materials,
and the creation of an open-source computational platform collectively represent
a valuable and impactful contribution to the scientific community. The research
outcomes are expected to inspire future studies in this field and drive innovations
in various technological applications.
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Kinetic monte carlo study of the sensitivity of oled efficiency and lifetime
to materials parameters. Advanced Functional Materials, 25(13):2024–2037,
2015.

173



BIBLIOGRAPHY

[18] Ben Streetman. Solid state electronic devices. Prentice Hall, Upper Saddle
River N.J., 5th ed. edition, 2000.

[19] Gregory H. Wannier. The structure of electronic excitation levels in insulat-
ing crystals. Physical Review, 52(3):191–197, 8 1937.

[20] J. Frenkel. On the transformation of light into heat in solids. i. Physical
Review, 37(1):17–44, 1 1931.

[21] J.D. Wright. Molecular Crystals. Cambridge University Press, 1995.

[22] Zaiyu Wang, Ke Gao, Yuanyuan Kan, Ming Zhang, Chaoqun Qiu, Lei Zhu,
Zhe Zhao, Xiaobin Peng, Wei Feng, Zhiyuan Qian, Xiaodan Gu, Alex K.-
Y. Jen, Ben Zhong Tang, Yong Cao, Yongming Zhang, and Feng Liu. The
coupling and competition of crystallization and phase separation, correlating
thermodynamics and kinetics in opv morphology and performances. Nature
Communications, 12(1):332, Jan 2021.

[23] Marcella Günther, Negar Kazerouni, Dominic Blätte, Jose Dario Perea,
Barry C. Thompson, and Tayebeh Ameri. Models and mechanisms of ternary
organic solar cells. Nature Reviews Materials, 8(7):456–471, Jul 2023.

[24] Gary Hodes. Perovskite-based solar cells. Science, 342(6156):317–318, 10
2013.

[25] Ian A. Howard, Michael Meister, Björn Baumeier, Henrike Wonneberger,
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Appendix A

Experimental details for
LEIPS and Absorption
expertiments for MADN
isomers

In the following the details on the experimental setups used to produce Fig-
ure 6.1 [236], Figure 6.2 [237] and Figure 6.3 [237] in Ch. 6.

Low-energy inverse photoemission

The experimental setup was the following: ITO-coated glass plates were used as
substrates. The ITO substrates were washed with acetone and isopropanol and
then treated by UV-ozone. The MADN thin films were chosen to be of 5 nm
or 10 nm thicknesses. They were prepared by the vacuum deposition technique.
The LEIPS measurements were performed without exposing the sample to air.
Regarding the experiments, they were performed with different detection photon
wavelengths of 193 nm, 260 nm,285 nm and 335 nm. The electron affinities (EA),
measured not directly but by taking the onset of the tangent, at the three detection
wavelengths of 260 nm, 285 nm and 335 nm nm distributed between 2.09 and 2.24
eV. The smaller the detection wavelength is 1 eV, the higher the electron affinity
becomes. Although the reason of the photon energy dependence is not clear,
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a slight sample charging seems to be reason for this wavelength dependency, in
particular for α-MADN.

Absorption spectra

The author of the manuscript is currently awaiting the provision of detailed in-
formation pertaining to the experimental setup from the individuals responsible
for executing the experiments.
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Appendix B

Dirac’s bra-ket notation

Bra–ket notation is a notation for linear algebra and linear operators on complex
vector spaces together with their dual space both in the finite-dimensional and
infinite-dimensional case. It is specifically designed to ease the types of calculations
that frequently come up in quantum mechanics.

In quantum mechanics , the state of physical system is indentified with a vector in
a complex separable Hilbert space H, or equivalently by a point in the projective
Hilbert space of the system. Each vector in this space is called ket, indicated with
the symbol |·〉. In a finite dimensional space, a ket can be seen as a column vector
given a basis for the Hilbert space, written out in components,

|ψ〉 =




c1
c2
...
cm


 (B.1)

In infinite dimensional space there are inifinitely many components (possibly even
uncountably many). The nice thing about this notation is the possibility of ex-
press these ininitely many components vectors with the same notation of finite-
dimensional ones, allowing to have a simple tool for manipulate quantum-mechanical
states.

Every ket |ψ〉 has a dual bra, indicated as |ψ〉. In a finite dimensional space the
bra corresping to Eq. (B.1) would be
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〈ψ| =
[
c1 c2 · · · cm

]
. (B.2)

This is a continuous linear functional from H to the complex numbers C, defined
by:

〈ψ| : H −→ C : 〈ψ| (|φ〉) = IP (|ψ〉 , |φ〉) for all kets |φ〉 (B.3)

where IP (·, ·) indicates the inner product defined on the Hilbert space. The in-
ner product is thus usually indicated using 〈ψ|φ〉, from which the name bra-ket
notation.
Since bras and kets are vectors in a Hermitian vector space they can be manipu-
lated using the usual rules of linear algebra.

• Given any bra 〈ψ|, and kets |φ1〉 and |φ2〉, and complex numbers c1 and c2,
since bras are linear functionals

〈ψ| (c1 |φ1〉+ c2 |φ2〉) = c1 〈ψ|φ1〉+ c2 〈ψ|φ2〉 (B.4)

• Given any kets |φ1〉 and |φ2〉, and complex numbers c1 and c2, from the
property of the inner product

c1 |φ1〉+ c2 |φ2〉 is dual to c∗1 〈φ1|+ c∗2 〈φ2| (B.5)

• Given ant bra 〈ψ| and ket ketφ, by property of the inner product

〈ψ|φ〉 = 〈φ|ψ〉∗ (B.6)

In quantum-mechanics linear operator are ubiquitous. For instance, observable
physical quantities are represented by self-adjointe operators whereas transforma-
tion processes are represented with unitary linear operators. These linear operators
A : H → H act on kets |φ〉 and spits out another ket A |φ〉. Operators can also be
viewed as acting on bras from the right hand side. Composing the bra 〈ψ| with
the operator A results in the bra 〈ψ|A, defined as a linear functional on H by the
rule

(〈ψ|A) |φ〉 = 〈ψ| (A |φ〉) (B.7)

this is usualy expressed as 〈ψ|A |φ〉. Sometimes linear operator on H are defined
by the outer product: if 〈ψ| is a bra and |φ〉 is a ket, the outer product |ψ〉 〈φ|
denotes the rank one operator that maps the ket |χ〉 to the ket |ψ〉 〈φ|χ〉. Just as
kets and bras can be transformed into each other, the element from the dual space
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correspoding to A |ψ〉 is 〈ψ|A†, with A† the Hermitian conjugate of the operator
A.
Two Hilber spaces V and W may form a third Hilbert space V ⊗W by a tensor
product. This may comes hany if one has to deal with a system of subsystems
described by V and W respectively. If |ψ〉 is a ket in V, and |φ〉 is a ket in W,
the tensor product of the two kets is a ket in V ⊗W . This is usually written in
different ways

|ψ〉 |φ〉 = |ψ〉 ⊗ |φ〉 = |ψ, φ〉 (B.8)

Sometimes in quantum-mechanics it is useful to work with the projections of state
vectors onto particular basis, rather than the vectors themselves. The projections
are simply complex numbers, and can be formulated in terms of partial differential
equations. For instance, the space of a zero-spin point particle is spanned by a
position basis {|r〉}, where the label r spans over the set of position vectors. Given
any ket ψ, we can define the complex scalar function of r, known as wavefunction
is defined as

ψ(r) := 〈r|ψ〉 . (B.9)

The same holds for linear operators acting on wavefunctions. For a linear operator
A acting on a wavefunction we have the equality

Aψ(r) = 〈r|A |ψ〉 . (B.10)
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Appendix C

Quantum Mechanics
Principles

Quantum Mechanics Theory can be constructed based on three ingredients (pos-
tulates):

• Quantum mechanics degree of freedom can be discrete or continuous. They
can be one or infinitely many. Each one is denoted by φ; the collection of
all its values forms the space F .

• The state space in quantum mechanics is a Hilbert space. The state space is
denoted by V and an element of V is |ψ〉 ∈ V . The dual space VD consists of
all the mapping, denoted by 〈χ|, of V to complex numbers. The expression
〈ψ|χ〉 = 〈χ|ψ〉∗ is the inner product.

• Operators Ô that act on V and map it to itself Ô : V → V . The space of
operators is denoted by Q = V ⊗ VD. The tensor of two states vectors is
given by |χ〉 ⊗ 〈ψ| = |χ〉 〈ψ| ∈ V ⊗ VD.

• All eigenvalues of a Hermitian operator Ô = Ô† are real and can represent
physically observed quantities. The Hermitian conjugation of an operator,
denoted by 〈χ| Ô |ψ〉∗ = 〈ψ| Ô† |χ〉.

In general given two observables we have that [Ôi, Ôj ] 6= 0. The physical ob-

served value is given by 〈ψ| Ô |ψ〉 with |ψ〉 being the quantum state describing the
observable state.
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Consider the eigenfunctions and eigenvalues of a Hermitian operator given by

Ô |ψn〉 = λn |ψn〉 ; 〈ψn|ψm〉 = δn,m (C.1)

All Hermitian operators have the following spectral decomposition in terms of their
eigenvalues and eigenfunctions

Ô =
∑

n

λn |ψn〉 〈ψn| (C.2)

Therefore the eigenvectors form a complete set of vectors (just using Ô = 1̂, the
unity operator)

1̂ =
∑

n

|ψn〉 〈ψn| =
∑

n

P̂n (C.3)

where we define the projection operator P̂n = P̂ 2
n .

Every state vector has its decomposition

|χ〉 = 1̂ |χ〉 =
∑

n

|ψn〉 〈ψn|χ〉 =
∑

n

cn |ψn〉 (C.4)

with
cn = 〈ψn|χ〉 (C.5)

it follows that
〈χ|χ〉 = 1→

∑

n

|cn|2 = 1→ |cn|2 ∈ [0, 1] (C.6)
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Appendix D

Second quantization and
Fock space

In many-body theory one often starts from a product wave function describing a
set of non interacting particles that occupy given orbits (called the reference state).
This could be a Slater determinant for fermions or a macroscopic condensate orbit
for bosons.

Since removing a hole orbit from the reference state leads to a systems with fewer
particles, we extend the use latin hole indices to indicate states of N −1,N −2,. . .
particles. Here, N is the number of particles in the referecnce state. Analogously,
particle indices will be used to distinguish states of N−1,N−2,. . . particles. This
notation will include labelling exact many-body eigenstates of the Hamiltoninan.

D.1 Second Quantization

Most of the processes described by many-body Green’s functions involve the trans-
fer of particles to/from the intital sysytem. Thus it is useful to extend the Hilbert
space to allow for states with different particle numbers. In fact we will use the Fock
space which includes a complete basis set for each possible number of particles,
from zero (the vacuum) to infinity. The basis states of the Fock space can be taken
to be product of one-body wave functions and must be automatically symmetrized
or antisymmetrized (for bosons and fermions, respectively). Using Dirac’s bra and
ket notation one can specify the basis states just by saying how many particles nα
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D.1. SECOND QUANTIZATION

are contained in each single particle orbit α. For istance we can build a state with∑
α nα = 8 particles distributed over different orbitals such as

|n1 = 2, n2 = 0, n3 = 1, n4 = 5, . . .〉 (D.1)

Of course this example represents a bosonic state (Pauli’s exclusion principle is
violated here).
In general the completeness relation here reads as

1 =

nmax∑

n1

nmax∑

n2

· · ·
nmax∑

nα

· · · |n1, n2, n3, . . .〉 〈n1, n2, n3, . . .| (D.2)

and includes the vacuum state |0〉 = |nα = 0,∀α〉. nmax is 1 for fermions and ∞
for bososns. States with different number of particles are orthogonal by definition.
A brief summary of fermions and bosons.

D.1.1 Creation and annihilation particles operators

Changes in the particle numbers are performed by the so-called creation and an-
nihilation operators. These operators act on vectors in Fock space and, as their
names suggest. they add or remove one particle in a specific orbital. Their effect
on Fock states is the same as that for the creation and annihilation of harmonic
oscillator quanta in the linear oscillator problem

c†α |n1, n2, n3, . . . , nα, . . .〉 = φα
√

1 + nα |n1, n2, n3, . . . , nα + 1, . . .〉 (D.3)

cα |n1, n2, n3, . . . , nα, . . .〉 = φα
√
nα |n1, n2, n3, . . . , nα − 1, . . .〉 (D.4)

where φα is a phase factor that should embody the symmetry of the wavefunction
(symmetric for boson; antisymmetric for fermions). Distinction between fermion
and boson can be achieved defining proper commutation rules between these op-
erators retrieving the correct Pauli statistics (i.e, occupation number for fermions
is either 1 or 0)

[cα, c
†
β ] = δα,β , [cα, cβ ] = [c†α, c

†
β ] = 0, for Bosons (D.5)

{cα, c†β} = δα,β , {cα, cβ} = {c†α, c†β} = 0, for Fermions (D.6)

The anticommutator implies antysymmetrization of the fermions wavefunctions
and fix the fermion occupation number to be 1 or 0. For Bosons φα = 1. For
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D.1. SECOND QUANTIZATION

Fermions the phase is usually chosen as

c†α |n1, n2, n3, . . . , nα, . . .〉 = δ0,α(−1)sα
√

1 + nα |n1, n2, n3, . . . , nα + 1, . . .〉 (D.7)

cα |n1, n2, n3, . . . , nα, . . .〉 = δ1,α(−1)sα
√
nα |n1, n2, n3, . . . , nα − 1, . . .〉 (D.8)

with sα = n1 + n2 + n3 + · · ·+ nα−1.
From these relations it follows that c†αcα |nα〉 = nα |nα〉. We can thus define the
number of particles operator as

N̂ =
∑

α

c†αcα (D.9)

The eigenvalues of N̂ are non negative integers and its eigenstates are wave func-
tions with a definite number of particle. To create a basis vector we can apply
several times on |0〉 with creation operators. The normalized many-body wave-
functions reads

|n1, n2, n3, . . .〉 =
1√

n1!n2!n3! . . .
(c†1)n1(c†2)n2(c†3)n3 . . . |0〉 (D.10)

D.1.2 Creation and annihilation field operators

The creation operator for a particle in position r of coordinate space is indicated
by ψ(r). If {uα(r)} are the single particle wave functions of a general orthonor-
mal basis, the creation (and annihilation) operators in the two representation are
related via a unitary transformation

ψ†(r) =
∑

α

c†αu
∗
α(r) (D.11)

c†α =

∫
ψ†(r)uα(r)dr (D.12)

It follows that to create a particle in a state α one simply superimposes eigenstates
of position with weights given by the corresponding wave function

|α〉 = c†α |0〉 =

∫
uα(r) |r〉 dr (D.13)

with |r〉 = ψ†(r) |0〉 being a particle localized at position r. Analogously, one
can extract the first quantization wave function corresponding to a one-body Fock
state by

uα(r) = 〈r|α〉 (D.14)
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D.2. OPERATORS IN FOCK SPACE

These relations can be generalized to states of any number of particles as

|r1, r2, · · · , rN 〉 =
1√
N !

ψ†(r1)ψ†(r2) . . . ψ†(rN ) |0〉 (D.15)

〈r1, r2, · · · , rN |n1, n2, . . .〉 = Φ(r1, r2, r3, . . . ; {n}) (D.16)

D.2 Operators in Fock space

We build a formalism for describing operators in second quantization. Although
it is possible to make it general, we will focus on one- and two-particles operators
as they are important in describing the many-electron Hamiltonian. We explicitly
derive the operator form for the one-body operator keeping in mind that the same
approach should be use for higher order operators.

D.2.1 One body operators

Let O = O(r) be a one-body operator that acts independently on each particle of
the systems. The expression for its matrix elements in coordinate systems depends
on the number of particles N and is

〈r1, r1, . . .|O |r1, r1, . . .〉 =
( N∏

j=1

δ(rj − r′j)
) N∑

i=1

O(ri) (D.17)

for a generic Fock state

〈n′1, n′2, . . .|O |n1, n2, . . .〉 =

=

N∑

i=1

∫
dr1

∫
dr2· · ·

∫
drN 〈n′1, n′2, . . .|r1, r2, · · · , rN 〉O(ri)×

〈r1, r2, · · · , rN |n1, n2, . . .〉 =

=
1

N !

N∑

i=1

∫
dr1

∫
dr2· · ·

∫
drN 〈n′1, n′2, . . .|ψ†(r1) . . . ψ†(rN ) |0〉O(ri)×

〈0|ψ(rN ) . . . ψ(r1) |n1, n2, . . .〉 =

=
1

(N − 1)!

∫
dr1

∫
dr2· · ·

∫
drN 〈n′1, n′2, . . .|ψ†(r1) . . . ψ†(rN ) |0〉O(r1)×

〈0|ψ(rN ) . . . ψ(r1) |n1, n2, . . .〉
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D.3. EXPECTATION VALUES

Now recalling that |0〉 〈0| = 1,
∫
drψ†(r)ψ(r) = N we are left with

〈n′1, n′2, . . .|O |n1, n2, . . .〉 =

∫
dr 〈n′1, n′2, . . .|ψ†(r)O(r)ψ(r) |n1, n2, . . .〉 (D.18)

so we have

O =

∫
drψ†(r)O(r)ψ(r) =

∑

αβ

Oαβc
†
αcβ (D.19)

with

Oαβ =

∫
dru∗α(r)O(r)uβ(r) (D.20)

D.2.2 Two bodies operators

Given a two-body operator

V =

N∑

i<j

V (ri, rj) (D.21)

one obtain

V =

∫
dr1

∫
dr2ψ

†(r1)ψ†(r2)V (r1, r2)ψ(r2)ψ(r1) =

=
1

2

∑

α,β,γ,δ

Vα,β,γ,δc
†
αc
†
αcδcγ (D.22)

with

Vα,β,γ,δ =

∫
dr1

∫
dr2u

∗
α(r1)u∗β(r2)V (r1, r2)uγ(r2)uδ(r1) (D.23)

D.3 Expectation values

Let’s asume that that we have a state
∣∣ψN

〉
of a system of N particles. The

expectation value of a one-body operator O can be calculated with a simple sum
involving the one-body reduced density matrix, which is defined as

ραβ =
〈
ψN
∣∣ c†βcα

∣∣ψN
〉

(D.24)
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D.3. EXPECTATION VALUES

so the expectation value is

〈
ψN
∣∣O
∣∣ψN

〉
=
∑

αβ

ρβαOαβ = Tr(ρO) (D.25)

and of course
Tr(ρ) = N (D.26)

These results are particularly interesting since the theory of many-body Green’s
functions does not attempt any calculation of the full many-body wave func-
tion. Rather the focus is on determining directly quantities related to the density
matrices, which are calculated in terms of basic excitation modes of the system.
Thus, even if one does not compute the complete ground state wave function,
these eqautions tell us that it is still possible to extract the expectation values of
interesting observables.
It is also useful to insert the complete set of eigenstates {

∣∣ψN−1
〉
} of the (N-1)-

body system in Eq.D.24 we obtain

ραα =< c†αcα >=
∑

k

|
〈
ψN−1
k

∣∣ cα
∣∣ψNk

〉
|2 (D.27)

This result is interesting because the overlap function
〈
ψN−1
k

∣∣ cα
∣∣ψNk

〉
gives the

probability amplitude that the system collapses into a state
∣∣ψN−1
k

〉
after remove

of a particle in the state α in
∣∣ψNk

〉
.

In an analogous way, we introduce the two-body reduced density matrix

Γαβγδ =
〈
ψNk
∣∣ c†αc†βcγcδ

∣∣ψNk
〉

(D.28)
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Appendix E

Quantum Mechanics picture

Different quantum mechanics pictures:

Heisenberg picture

• Ket state: Constant

• Observable: AH(t) = exp{iHSt}AS exp{−iHSt}
• Density: Constant

Interaction picture

• Ket state: |ψI(t)〉 = exp{−iH0,S} |ψI(t)〉
• Observable: AI(t) = exp{iH0,St}AS exp{−iH0,St}
• Density: ρI(t) = exp{iH0,St}ρS exp{−iH0,St}

Schrödinger picture

• Ket state: |ψS(t)〉 = exp{iHSt} |ψS(0)〉
• Observable: constant

• Density: ρS(t) = exp{−iHSt}ρS(0)
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Appendix F

Many-electron wave-function
approaches

Coupled Cluster Theory

Coupled cluster (CC) theory exploits the basic Hartree–Fock molecular
orbital method and constructs multi-electron wave functions using the ex-
ponential cluster operator to account for electron correlation:

|ψ〉 = exp(T )
∣∣ΨHF

0

〉
, (F.1)

with T =
∑

i=1 Ti the cluster operator and Ti the i-th excitation operator
(i = 1 single excitation, i = 2 double excitation and so on). This for-
mulation provides in principle the exact solution to the time-independent
Schrödinger equation Eq. (2.6) but makes the problem non-Hermitian and
the obtained energy non-variational.
Variationally optimized coupled cluster [298] overcomes this problem but
can only be applied to small systems [299, 300, 301]. Another drawback is
the computational cost of most coupled-cluster implementations that makes
these methods suitable only for small molecules, in general. CC methods
scale at best as O(Np), where p is a relatively high power (e.g., p = 7 for
coupled cluster including single and double excitations, with triples treated
perturbatively) and development of a efficient techniques is an active field of
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research. CC has been successfully used for excited state calculations [302,
303, 304]. Wang and Berkelback [305] have recently shown that Equation-
of-Motion Coupled-Cluster Theory can yield promising results for optical
excitation energies, exciton binding energies, exciton dispersion relations,
and exciton–phonon interaction energies of simple crystalline solids like Si,
C, SiC, MgO, or LiF. Other attempts are made in this direction for ground-
state and excited-state methods that combine CC and perturbation theory
based on a partitioning of excitations that are internal or external to an
active space [306, 307, 308, 309].

Configuration interaction

Configuration interaction (CI) is another post-Hartree–Fock linear vari-
ational method for quantum chemical multi-electron systems. Mathemat-
ically, configuration describes the linear combination of Slater determinants
used for the wave function. In order to account for electron correlation, CI
uses a variational wave function that is a linear combination of configura-
tion state functions (CSFs) built from spin orbital Slater determinants of
the kind of Eq. (2.31)

|ψ〉 =
∑

I=0

cI |ΨI〉 . (F.2)

If the expansion includes all possible CSFs of the appropriate symmetry,
then this is a full configuration interaction procedure which exactly solves
the electronic Schrödinger equation within the space spanned by the one-
particle basis set. If only one spin orbital differs, we describe this as a
single excitation determinant. If two spin orbitals differ it is a double
excitation determinant and so on. Due to the long CPU time and large
memory required for CI calculations, the method is limited to relatively
small systems.

Quantum Monte Carlo

Quantum Monte Carlo (QMC) has been very successful in performing large-
scale calculations for extended systems in quantum chemistry. The method
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relies on the stochastic estimation of the energy of a trial wave function
according to

Etrial =

∫
ψtrial(r)Ĥψtrial(r)d3Nr∫
ψtrial(r)ψtrial(r)d3Nr

. (F.3)

For the calculation of excited-states, many refined QMC methods have
been developed. Variational Monte Carlo (VMC) as presented by Zhao et
al. [310] allows for the application of a rigorous variational principle to both
ground and excited state wave functions. Diffusion Quantum Monte Carlo
(DQMC) is very promising for applications to condensed-matter because it
explicitly includes electron-electron correlation effects, and it scales reason-
ably well with system size as shown in the case of a silicon crystal in [311].
These QMC methods offer an accurate means of probing both the ground-
and excited-state properties of atoms, molecules, and solids from first prin-
ciples and with system-size scaling as O(N3), albeit with a large prefactor.
The methods have been thoroughly reviewed by Hunt et al. [312] discuss-
ing isolated molecules (anthracene, tetracyanoethylene, benzothiazole and
boron trifluoride) and three-dimensional systems (diamond, silicon, cubic
boron nitride) and free-standing monolayer phosphorene.
While describing excited states, a major reason of failure is the intrinsic
difficulty of maintaining orthogonality with the lower-lying states when the
targeted many-body excited state is being represented stochastically in an
imaginary-time projection method. Auxiliary-field Quantum Monte Carlo
(AFQMC) as discussed in [313] offers a new framework for addressing this
difficulty and for performing excited state calculations in solid. Ma et
al. studied the fundamental gap of prototypical semiconductors, Si and
diamond, and of the more challenging wurtzite ZnO crystal being in good
agreement with GW calculations (see Section 3.4) and experiment, offering
a non-perturbative and free of empirical parameters methods for correlated
materials.
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zie alla tua determinazione. Continuerò a sostenerti in ogni passo del tuo
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