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ABSTRACT
Many-body Green's function theory in the GW approximation with the Bethe–Salpeter equation (BSE) provides a powerful 
framework for the first-principles calculations of single-particle and electron–hole excitations in perfect crystals and molecules 
alike. Application to complex molecular systems, for example, solvated dyes, molecular aggregates, thin films, interfaces, or 
macromolecules, is particularly challenging as they contain a prohibitively large number of atoms. Exploiting the often localized 
nature of excitation in such disordered systems, several methods have recently been developed in which GW-BSE is applied to a 
smaller, tractable region of interest that is embedded into an environment described with a lower-level method. Here, we review 
the various strategies proposed for such embedded many-body Green's functions approaches, including quantum–quantum and 
quantum–classical embeddings, and focus in particular on how they include environment screening effects either intrinsically 
in the screened Coulomb interaction in the GW and BSE steps or via extrinsic electrostatic couplings.

1   |   Introduction

The controlled use of electronic excitations in materials has led 
to important technological advancements, such as the design 
of cutting-edge optoelectronic devices and the development 
of energy-efficient materials. Understanding electronic exci-
tations is crucial for unlocking the full potential of materials, 
and ab  initio methods offer insight into these quantum-level 
processes without requiring extensive experimental input. 
However, as materials become more complex, with thousands 
or even millions of atoms, and real-world conditions come into 
play, accurately simulating these systems becomes a significant 
computational challenge. Macroscopic phenomena like optical 
absorption, luminescence, electrical conductivity, and other 
bulk or surface material properties cannot be fully captured by 

microscale models alone due to the complex interactions across 
larger lengths and time scales. As a result, studying electronic 
excitations in complex disordered systems remains a challenge 
for ab initio methods.

Many-Body Green's Functions Theory in the GW approximation 
and Bethe–Salpeter Equation (BSE) has often been considered 
the method of choice for the calculation of electronically excited 
states (both charged and neutral) in hard condensed matter sys-
tems [1–3], starting from a mean-field ground-state reference 
often obtained from density functional theory [4, 5] (DFT). Early 
studies in the late 1990s of inorganic crystals such as elementary 
semiconductors, or insulators such as magnesium oxide or lith-
ium fluoride have been tractable because the atomic structure 
of these materials can be represented by small unit cells with 
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only a few atoms [6]. Nowadays, efficient implementations with 
periodic boundary conditions (PBCs) [7–10] coupled with recent 
methodological developments [11, 12] and increased comput-
ing power have allowed treating larger systems, such as recon-
structed surfaces, defect structures, or in general materials with 
more complex structures [13, 14].

At the other end of the material spectrum, interest in applying 
GW-BSE to study molecular excitations has picked up consid-
erably later, beginning in earnest around 2010. The possible 
explanations for this delayed uptake are likely pragmatic: (i) 
many-body wave function-based quantum chemistry alternatives 
such as coupled-cluster or configuration interaction have widely 
been, and still are, considered the state-of-the-art [15–17], and (ii) 
existing GW-BSE implementations in solid-state codes with PBCs 
and a plane-wave basis are rather inefficient for isolated systems, 
requiring large and mostly empty unit cells. With implementa-
tions without PBCs and localized-orbital bases instead of plane 
waves becoming available, several groups showed that Green's 
function methods are very powerful also in molecular systems, 
balancing—simplified speaking—the accuracy of more com-
putationally expensive wave function methods with the cost of 
time-dependent density-functional theory [18] (TDDFT). One of 
the most notorious problems, for instance, of TDDFT is the very 
sensitive dependence of predicted charge-transfer type excitation 
energies on the choice of the exchange-correlation functional 
[19]. In GW-BSE these excitation energies are predicted with the 
same accuracy as localized excitations (compared with the exper-
iment) usually without the need for special tuning [20–22].

Based on these and more [23–28] promising results for various 
types of excitations in single molecules or dimers, it is natural 
to turn the attention to more complex material systems, such as 
solvated dyes, molecular aggregates, thin films, interfaces, or 
macromolecules. However, as for all other ab initio methods, the 
system sizes required to realistically and representatively study 
electronic excitations in such materials exceed by far what is 
computationally tractable. Yet, the realization that many of such 
material systems are characterized by a significant amount of 
disorder leading to—in broad terms—localization of electronic 
states (in contrast to the Bloch states in hard condensed mat-
ter), offers a way out of this conundrum. That is, partitioning the 
overall system into a region of interest (“active region”), say a 
dye molecule, which is embedded in a surrounding region such 
as one containing a solvent. Both regions can then be described 
at different levels of theory such that the very accurate and com-
putationally expensive method is restricted to the active region, 
while a less expensive lower-level method is used for the envi-
ronment. This lower level can be either a simplified quantum 
mechanical (QM) model in a QM/QM setting [29–31], a molec-
ular mechanics (MM) approach (QM/MM) [32], or a continuum 
model [33–35] representing the environment as a structure-less 
material having realistic macroscopic dielectric properties.

In the context of all of these approaches, the focus of this top-
ical review is specifically on embedded Many-Body Green's 
Function methods, that is, calculations using GW-BSE as the 
high-accuracy electronic structure method for a region of in-
terest embedded into a region at lower-level description. As we 
will see, there are generally two classes of embedding strategies 
here: one treats GW-BSE just as any other high-level method and 

couples it extrinsically to the lower-level method via, for exam-
ple, in the case of only weakly interacting systems, purely clas-
sical electrostatic interaction modules. While very powerful, as 
we will discuss in detail in Section 3.3, GW-BSE also allows for 
another class of approaches. These exploit the fact that one of 
the main ingredients of Green's functions methods here is the 
screened Coulomb interaction, W, which is essential for repre-
senting the electronic many-body effects in quasiparticle and 
electron–hole excitations. In some sense, GW-BSE can be seen 
as an exciting merger between advanced quantum-mechanical 
principles, on the one hand, with classical electrostatic concepts, 
on the other hand. Embedding approaches can be devised that 
explicitly and intrinsically make use of these electrostatic con-
cepts at the core of GW-BSE.

In this review, we will in the following first briefly revisit the gen-
eral methodology of GW-BSE in Section 2 to introduce the main 
concepts and equations as well as some computational aspects as 
they will be relevant later. Section 3 is devoted to the discussion 
of the various embedding strategies, starting from GW-BSE-in-
DFT methods either starting from projection-based-embedding 
or subsystem DFT, introducing approximations to GW-BSE-
in-MM embedding, and different flavors of external GW-BSE/
MM calculations. For each of these approaches, we will summa-
rize the main theoretical aspects and some computational de-
tails. Throughout, we will also give a few examples of application 
to material systems, ranging from small dimer complexes, via 
solvent-solute systems, to molecular films and surfaces.

2   |   Many-Body Green's Functions Methods for 
Electronically Excited States

In this section, we briefly recapitulate the essential ideas and 
theoretical framework of Green's functions approaches, upon 
which the embedding methods we will discuss are based. We 
restrict ourselves to the discussion of the most important results 
and refer the interested reader to more exhaustive derivations in 
the literature [3].

All the following are essential approaches to extracting informa-
tion on the excited states of a system consisting of M nuclei and 
N electrons. The coordinates R� of the individual nuclei with 
charges Z� and ri of the individual electrons are combined into 
the variables R =

(
R1,R2, … ,RM

)
 and r =

(
r1, r2, … , rN

)
, re-

spectively. For a simpler presentation, we consider a system with 
a spin-singlet, closed-shell ground state. Hartree atomic units 
are used throughout. Using the Born-Oppenheimer separation 
with the adiabatic approximation, the stationary Schrödinger 
equation for the electrons reads

with the electronic Hamiltonian

(1)Ĥel

(
R
)
Φ�

(
r;R

)
= E�

(
R
)
Φ�

(
r;R

)

(2)

Ĥel = −
1

2

N∑
i=1

Δri
−

M∑
�=1

N∑
i=1

Z�

∣ ri − R� ∣
+
1

2

N∑

i≠ j
i, j=1

1

∣ ri − rj ∣
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Here, 
{
Φ�

(
r;R

)}
 is a set of adiabatic electronic wave functions, 

where � = 0 indicates the ground state and all 𝜈 > 0 the excited 
states of the system.

2.1   |   Effective Single-Particle Ground State 
Approaches

The electronic Schrödinger equation (Equation 1) is in practice 
still not solvable for many-body systems, due to the presence of 
the electron–electron interaction V̂ el−el. The Green's function 
methods we discuss in this review aim at descriptions of sin-
gle- or two-particle excited states. As most of the common for-
mulations require information about the ground state electronic 
structure, we begin the discussion with effective single-particle 
methods for the ground state.

In the Hartree–Fock method [36], an ansatz is made for the 
many-electron wave function based on single-electron functions 
�i
(
ri
)
, enforcing the antisymmetry with respect to particle ex-

change via the Slater determinant [37]:

With the help of the variational principle, a set of equations to 
determine the single-particle functions can be derived:

with vC = |r−r�|−1. Here, we have also introduced the electronic 
densities

The first integral in Equation  (5) corresponds to the clas-
sical Hartree integral [36] of the Coulomb interaction 
vH(r) = ∫ n(r�)vC(r, r�)dr�, and the second integral defines the 
exchange potential operator vx(r) = ∫ n(r, r�)vC(r, r�) ⋯ dr�. 
The N-electron problem has thus been mapped on a set of ef-
fective single-particle problems with the Hartree–Fock potential

Hohenberg and Kohn [4] realized that one does not even need 
the full many-electron wave function to find the ground state of 
a many-electron system and that instead the electron density n(r) 
alone is enough to determine the ground state. Within the Kohn–
Sham framework of DFT, the density is again determined from 
another set of effective single-particle wave functions, which can 
be obtained as solutions to the Kohn–Sham equations [5]:

with the effective Kohn–Sham Hamiltonian

Despite their formal differences, we can write both HF and DFT 
in more general terms as mean-field (MF) single-particle meth-
ods with Hamiltonians

in which

Both the Hartree–Fock method and Kohn–Sham DFT provide 
a framework to calculate the ground state of an interacting 
many-electron system. We note in passing that pure KS-DFT 
and HF can also be found as limiting cases within the gener-
alized Kohn–Sham framework [38]. There are various ways to 
obtain information about excited states in these frameworks, 
for example, by time-dependent formulations (explicit or within 
linear response). Alternatively, one can consider electronic ex-
citations as perturbations to the ground state and obtain again 
effective single- or two-particle formulations for the excitations 
and their energies within the framework of perturbation theory 
with many-body Green's functions.

2.2   |   Single-Particle Excitations and the GW 
Approximation

Hedin derived a closed set of equations that define the single-
particle Green's function G1

(
r1t1, r2t2

)
 for an interacting set 

of electrons [39, 40]. The main idea, firstly introduced within 
the Dyson's equation of motion framework, is to truncate an 
infinite hierarchy of equations of motions for G1 depending 
on higher-order Green's functions G2,G3, … by the introduc-
tion of the self-energy Σ

(
r1t1, r2t2

)
 which is an effective non-

local, non-Hermitian potential, accounting for all many-body 
exchange and correlation terms that are beyond the scope of 
Hartree contributions. Hedin derived a self-consistent formu-
lation of Dyson's equation of motion where distinct building 
blocks such as Green's function, screened Coulomb interac-
tion, polarization, self-energy, and vertex correction interact 
self-consistently with each other [39, 40]. Hedin's equations 
can be simplified by the so-called GW approximation, in which 
the self-energy is written as Σ = iGW , and allows to derive a set 
of effective single-particle eigenvalue problems known as the 
quasiparticle (QP) equations

(3)ΦHF
�
r;R

�
=

1√
N!

det

⎛⎜⎜⎜⎜⎜⎝

�1
�
r1
�

⋯ �1
�
rN

�

�2
�
r1
�

⋯ �2
�
rN

�

⋮ ⋱ ⋮

�N
�
r1
�

⋯ �N
�
rN

�

⎞⎟⎟⎟⎟⎟⎠

(4)
{

−
Δr

2
+ vext(r) + ∫ n

(
r�
)
vC
(
r, r�

)
dr�

}
�HFj (r)

(5)− ∫ n
(
r, r�

)
vC
(
r, r�

)
�HFj

(
r�
)
dr� = �HFj �HFj (r)

(6)n(r)=

N∑
i=1

�∗
i
(r)�i(r) and n

(
r,r�

)
=

N∑
i=1

�∗
i
(r)�i

(
r�
)

(7)vHF(r) = vext(r) + vH(r) + vx(r)

(8)
{
−
1

2
Δ+vext(r)+vH(r)+vxc[n](r)

}
�KS
i
(r)=�KS

i
�KS
i
(r)

(9)

ĤKS = −
1

2
Δ + vKS[n](r) = −

1

2
Δ + vext(r) + vH(r) + vxc[n](r)

(10)Ĥ
MF

= −
Δ

2
+ vext + vH + vMF = ĥ + vMF

(11)vMF =

{
vx MF=HF

vxc MF=KS

(12)
ĤMF�QP

i
(r)−vMF(r)�QP

i
(r)

+∫ Σ
(
r, r�, �QP

i

)
�QP
i

(
r�
)
d3r� =�QP

i
�QP
i
(r)
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Typically, the QP wave functions �iQP(r) are approximated by 
the mean-field wave functions �MFi (r), which allows to write the 
QP energies as

The self-energy is calculated in frequency space as

from the Green's function based on the mean-field solution

and the screened Coulomb interaction W  in the random-phase 
approximation

Evaluating Equation  (16) in turn requires the microscopic, 
frequency-dependent dielectric function given by

containing the irreducible polarizability �0:

As the self-energy is energy-dependent, and thus depends on 
�QP
i

, the solution of Equation (13) must be found self-consistently. 
From Equation (17) it is possible to split the self-energy Σ = iGW  
into its bare exchange part

and the explicitly frequency-dependent correlation part

With �i = �MF
i

+
⟨
�MFi |Σx − vMF|�MFi

⟩ and 
⟨
�MFi |Σc(�)|�MFi

⟩
= Σci (�), 

we can rewrite Equation (13) into the fixed-point problem

Due to the pole structure of the self-energy, there are in general 
several solutions to Equation (22). In this situation, the spectral 
weight, defined as

is used to identify the “true” QP energy by Z(�) ≈ 1, or 
|dΣc(�)∕d�| ≈ 0.

In the above, when evaluating the self-energy, the MF eigenval-
ues and eigenfunctions are used to construct G and W , which 
is also known as an “one-shot” G0W0 calculation. Alternatively, 
it is possible to use updated QP energies until eigenvalue self-
consistency is reached (evGW) [25, 41, 42].

2.3   |   Coulomb Hole Plus Screened Exchange 
Approximation

As can be seen from the above, the frequency dependence of 
the self-energy gives rise to several computational intricacies. 
If one considers only the static case, in which W

(
r, r�,� = 0

)
 

throughout, one can split the self-energy differently. In analogy 
to the bare exchange term in HF or Σx, one can define a statically 
screened exchange (SEX) term as

and a local-in-space static Coulomb hole (COH) term

This COHSEX approach has been discussed in the literature as 
an alternative mean-field potential vMF to use in Equation (10), 
yielding in some cases improved starting points for then dynam-
ically screened GW calculations. It is mentioned here as it is also 
used in several approaches for environment embedding, as will 
be discussed in Section 3.

2.4   |   Two-Particle Excitations and the Bethe–
Salpeter Equation

The quasiparticle approach making use of the GW approxima-
tion is suitable for modeling single particle excitations such 
as the addition or removal of an electron to/from the system. 
However, charge-neutral excitations that involve excitonic ef-
fects (electron–hole pair interaction) are not accounted for, 
as they require a two-particle Green's function in the context 
of many-body Green's functions theory. The corresponding 
equation-of-motion can be expressed after some manipula-
tion as a non-Hermitian eigenvalue problem known as Bethe–
Salpeter equation (BSE)

(13)�QP
i

= �MFi +

⟨
�MFi

||||Σ
(
�QP
i

)
− vMF

||||�
MF
i

⟩

(14)Σ
(
r, r�,�

)
=

i

2� ∫ G
(
r, r�,� + ��

)
W

(
r, r�,��

)
ei�

��d��

(15)G
(
r, r�,�

)
=

∑
m

�MFm (r)�MF∗m

(
r�
)

� − �MFm − i�sgn
(
EF − �MFm

)

(16)W
(
r, r�,�

)
= ∫ ϵ−1

(
r, r��,�

)
vC
(
r��, r�

)
d3r��

(17)ϵ
(
r, r�,�

)
= �

(
r, r�

)
− ∫ vC

(
r, r��

)
�0

(
r��, r�,�

)
d��

(18)�0

(
r, r�,�

)
=

occ∑
v

unocc∑
c

{
�MF∗v (r)�MFc (r)�MF∗c

(
r�
)
�MFv

(
r�
)

� −
(
�MFc − �MFv

)
+ i�

(19)−
�MFv (r)�MF∗c (r)�MFc

(
r�
)
�MF∗v

(
r�
)

� +
(
�MFc − �MFv

)
− i�

}

(20)
Σx

(
r, r�

)
=

i

2� ∫ G
(
r, r��+��

)
vC
(
r, r�

)
ei�

��d��

= −

occ∑
v

�MFv (r)�MF∗v

(
r�
)
vC
(
r, r�

)

(21)

Σc
(
r, r�,�

)
=

i

2� ∫ G
(
r, r�,� + ��

)(
W

(
r, r�,��

)
− vC

(
r, r�

))
d��

(22)� − �i = Σci (�)

(23)Z(�) =

(
1−

dΣc(�)

d�

)−1

(24)ΣSEX
(
r, r�

)
= −

occ∑
v

�MFv (r)�MF∗v

(
r�
)
W

(
r, r�,� = 0

)

(25)ΣCOH
(
r, r�

)
= �

(
r − r�

)[
W

(
r, r�,� = 0

)
− vC

(
r, r�

)]

(26)HBSE ∣ �S ⟩ = ΩS ∣ �S ⟩
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in which the electron–hole wave functions ∣ �S ⟩ are typically 
expressed in basis of resonant and antiresonant products of 
single-particle functions (with c and v indices for unoccupied 
and occupied states, respectively)

With that, the BSE explicitly reads in matrix form

with elements

and

For many systems, the off-diagonal blocks K in Equation  (28) 
are small and can be neglected known as the Tamm–Dancoff 
approximation (TDA). This makes the BSE matrix a Hermitian 
matrix. Furthermore, we can also ignore backward transitions 
which lead to:

and the resulting electron–hole amplitude:

We have suppressed the explicit spin variables so far. The spin 
structure of the BSE solutions depends on the spin-orbit cou-
pling. If the ground state is a spin singlet state and spin-orbit 
coupling is small compared with the electron–hole coupling, the 
single particles can be classified as spin-up state or spin-down 
state. It can be shown that there are two distinct types of solu-
tions to the BSE: spin-singlet and spin-triplet excitations. This 
allows in turn, to solve the BSE separately for the spin type of 
interest, with

respectively.

2.5   |   Computational Aspects

All quantities involved in GW-BSE calculations are based on the 
mean-field single-electron wave functions �MFi  and energies �MF

i
. 

Most implementations for isolated, molecular systems make use 
of localized basis functions, or atomic orbitals (AO), ��(r) and 
expansion coefficients ci� according to

Inserting this into Equation (10), multiplying from the left with 
�� (r), and subsequent integration yields

with the integrals F�� and S�� defining the elements of the so 
called Fock matrix F and overlap matrix S, respectively. The Fock 
matrix comprises terms from the one-electron contributions to 
ĤMF (kinetic energy and external potential) also referred to as 
core Hamiltonian h

core
, from the classical Hartree contribution J, 

explicit exchange K in hybrid DFT or HF, and from the exchange-
correlation potential V

xc
 in DFT. Note that in general, the basis 

functions are normalized but not orthogonal to each other, and 
S ≠ 1. With this matrix notation, Equation (39) can be written as

and the electron density can then be rewritten as

Here, we introduce the density matrix D as

A particularly important numerical step in GW-BSE calcula-
tions is the determination of 4-center repulsion integrals over 
the Gaussian-type orbitals (GTOs)

which are required for setting up the MF Hamiltonian as well 
as the self-energy. This step usually scales with N4

b
 (with Nb the 

number of basis functions). As one can see from Equation (43), 
GTOs occur as product functions ��(r)�� (r), of which N2

b
 unique 

combinations exist. They can be approximated by a smaller aux-
iliary basis, ��, which contains only Naux = 3Nb to 5Nb functions 
instead. Rewriting the 4-center integrals as a combination of 
3-center and 2-center repulsion integrals [43] reduces the scal-
ing from N4

b
 to N3

b
 by:

(27)�S
(
r, r�

)
= AS

vc�c(r)�
∗
v

(
r�
)
+ BSvc�v(r)�

∗
c

(
r�
)

(28)

(
Hres K

−K −Hres

)(
AS

BS

)
= ΩS

(
AS

BS

)

(29)Hres
vc,v�c� (�) = Dvc,v�c� + Kx

vc,v�c� + Kd
vc,v�c�

(30)Kcv,v�c� (�) = Kx
cv,v�c� + Kd

cv,v�c�

(31)Dvc,v�c� =
(
�c − �v

)
�vv��cc�

(32)Kx
vc,v�c� = ∫ �∗

c (r)�v(r)vC
(
r, r�

)
�c�

(
r�
)
�∗
v�

(
r�
)
d3rd3r�

(33)Kd
vc,v�c� = ∫ �∗

c (r)�c� (r)�v
(
r�
)
�∗
v�

(
r�
)
W

(
r, r�,� = 0

)
d3rd3r�

(34)HresAS,TDA = ΩTDA
S AS,TDA

(35)�TDAS

(
r, r�

)
=

∑
vc

AS,TDA
vc �c(r)�

∗
v

(
r�
)

(36)HBSE
singlet = D + Kd + 2Kx

(37)HBSE
triplet = D + Kd

(38)�i(r) =

Nb∑
�=1

ci���(r)

(39)

Nb∑
�=1

∫ �� (r)Ĥ
MF

��(r)d
3r

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
FMF
��

ci� =

Nb∑
�=1

∫ �� (r)��(r)d
3r

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
S��

ci��
MF
i

(40)FMFci = �MFi Sci

(41)n(r) =

N∑
i=1

||�i(r)||2 =
Nb∑

�,�=1

D����(r)�� (r)

(42)D�� =

N∑
i=1

ci�c
i
�

(43)
(
��| ����

)
=∫

��(r)�� (r)���
(
r�
)
���

(
r�
)

∣ r−r� ∣
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where (�| �)−1 is an element of the inverse of the 2-center repul-
sion matrix

and (��|�) is an element of the 3-center repulsion tensor

The expression in Equation (44) appears formally as the inser-
tion of a resolution-of-identity (RI) with metric (�|�)−1.

Within the RI approximation, the elements of the QP Hamiltonian 
in the basis of KS states contain Σmn(E) =

⟨
�MFm | Σ̂(E)|�MFn

⟩
, 

which are determined as

where the factor with � → 0+ ensures convergence of the inte-
gral, and the imaginary perturbations ± � avoid singularities on 
the real axis, where the plus (minus) is taken when l is occupied 
(unoccupied). Further,

and

is called the dielectric matrix (cf., Equation 17).

3   |   Embedding Strategies for Many-Body Green's 
Function Methods

We discuss the challenges of using the GW and BSE methods 
to analyze complex molecular systems, which are made up of 
molecules with enough structural disorder to localize electronic 
states. Due to the high computational cost and (N4

)
 scaling of 

these methods, it is impractical to apply them to large systems 
such as solid–liquid interfaces, molecules in solution, complex 
alloys, and nanostructures. As a solution, embedding strategies 
are considered as they offer a good balance between accuracy 
and computational cost for modeling large molecular systems. 
In these strategies, a specific part of the system (I) is treated 
with higher accuracy (the subsystem of interest), while the 
rest (II) is addressed with a lower accuracy method (the em-
bedding region). In this review, the high-accuracy Many-Body 
Green's function method (GW-BSE) is discussed as the pre-
ferred method for studying electronically excited states, and its 
coupling with different methods used in the embedding region 
is explored.

In broad terms, two distinct embedding strategies can be em-
ployed. The idea behind the subtractive and additive embed-
dings [44] is depicted somewhat simplified in Figure  1. In a 

(44)
(
��| ����

)
≈

∑
�,�

(��|�)(�| �)−1(�| ����
)

(45)(�| �) = ∫ ��(r)vC
(
r, r�

)
��
(
r�
)
d3r d3r�

(46)(��|�)=∫ ��(r)�� (r)vC
(
r, r�

)
��
(
r�
)
d3r d3r�

(47)Σmn(E) =
∑
�,�

∑
l

Iml� Inl�
i

2� ∫
ei���−1�� (�)

E + � − �l ± i�
d�

(48)Iml� =
∑
�

(�|�)−1∕2∑
�,�

cm� c
l
� (��|�)=

∑
�

(�|�)−1∕2Mml
�

(49)���(�) = ��� − 2

occ∑
m

unocc∑
l

Iml� Iml�

[
1

� −
(
�m − �l

)
+ 2i�

(50)−
1

� +
(
�m − �l

)
− 2i�

]

FIGURE 1    |    Schematic representation of different QM/MM embedding schemes. The part figure (a) depicts the subtractive QM/MM scheme 
where the QM part is replaced by a classical counterpart, and the interaction between the inner and outer regions is treated purely classically. The 
QM region energy is shifted with the help of the classical contribution to avoid double counting. The part figure (b) shows the additive scheme where 
the MM and QM region energy are evaluated separately, with the interaction between the QM and MM part treated explicitly. Usually, the MM part 
enters the QM Hamiltonian as an external field, and the process is repeated until self-consistency is reached.
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subtractive scheme, three separate calculations are performed: 
One GW-BSE calculation for the isolated subsystem I and cal-
culations at the lower accuracy embedding method (emb), one 
for the entire system (subsystems I + II) and one for subsystem I. 
The total energy of the full system is then obtained as

The advantage of this approach is its simplicity: It automatically 
ensures that no interactions are double-counted. The embedded 
total energy of the full system is a simple sum, with the term 
Eemb
I+II

− Eemb
I

 considered as an energy correction.

On the other hand, the additive scheme total energy reads

where the GW-BSE system is embedded within the larger sub-
system II and the interaction between the two regions is ex-
plicitly evaluated via the inclusion of the term VGW−BSE−emb

I−II
 in a 

coupled Hamiltonian and only a single calculation for the cou-
pled system is required.

The above is only giving the broad strokes of embedding meth-
ods for many-body Green's functions as several important de-
tails remain vague: (i) what is the total energy of the GW–BSE 
system, (ii) what are suitable methods for the embedding, and 
(iii) how is the coupling term defined? The first question is 
straightforward to answer, considering

However, the state dependence of this energy highlights another 
complication, namely that unless the method chosen for the em-
bedding is purely static, the individual terms in Equations (51) 
and (88) are all state-dependent, as well. As a consequence, em-
bedded excitation energies need to be calculated as total energy 
difference, reminiscent of ΔSCF, that is,

The above is, in principle at least, not unique to Green's function 
method approaches used as high-accuracy methods for subsys-
tem I. We will see later that the state-dependence and total en-
ergy perspective can be partially circumvented making use of 
the dielectric screening intrinsically present in GW–BSE via the 
self-energy and the screened Coulomb interaction. Questions (ii) 
and (iii) will be addressed in the following sections where we 
will review some specific choices for embedding strategies in the 

context of GW-BSE both from a methodological point of view 
and by showcasing application examples. We will differentiate 
embedding with other quantum-mechanical (QM/QM) methods 
and embedding with classical molecular mechanics (QM/MM) 
methods.

3.1   |   GW-BSE-in-DFT Embedding

Here, we first consider the case in which the method for the 
embedding subsystem II is another mean-field quantum-
mechanical method, specifically DFT, and focus on GW-BSE-in-
DFT embedding methods. These approaches build on the fact 
that it is possible to partition the ground-state electronic density 
within DFT in an in-principle exact manner compared with a 
(sometimes fictitious) full treatment.

3.1.1   |   Projection-Based Embedding

Projection-based embedding is a formally exact DFT-in-DFT 
embedding scheme, introduced by Manby et al. [45]. They pro-
posed to partition the density of a full reference system n(r) 
into the densities of two subsystems nI(r) and nII(r), such that 
n(r) = nI(r) + nII(r). Then, one considers one of them (from now 
on nI(r)) as active while the other (from now on nII(r)) is regarded 
as an inactive embedding density. A set of effective Kohn–Sham 
equations for the (orbitals forming) active density embedded in 
the inactive density can be derived, and the resulting total en-
ergy of the embedded system can be made to agree exactly with 
the total energy of the full system. The first step of the algorithm 
is to perform a reference self-consistent DFT calculation on the 
complete system employing the full-molecule AO basis as de-
scribed in Section 2.5. Then, a unitary transformation is used 
to transform the N occupied canonical molecular orbitals, �i(r) 
for i = 1, … N, into localized orbitals, �LOi (r). Note that this step 
leaves the total density of the system unchanged. Following this 
localization, an initial active density is constructed by selecting 
those localized orbitals with a significant Mulliken population 
qI
i
> qt on the atoms of the chosen subsystem I, yielding:

The corresponding density of the inactive region is determined 
from this nI(r) as nII(r) = n(r) − nI(r). With this initial parti-
tioning of the total reference density into two subsystem den-
sities, one now considers the active density as a variable in the 
subsystem I. A set of effective equations requires the addition 
of an embedding potential accounting for the electrostatic and 
exchange-correlation interactions with the electrons in subsys-
tem II. At the same time, it must be ensured that the Pauli exclu-
sion principle is not violated between the orbitals forming the 
densities of both subsystems. The main idea in projector-based 
embedding that fulfills both objectives is to raise the energies of 
orbitals associated with subsystem II to very high values during 
the calculation for subsystem I.

(51)Esub = EGW−BSE
I

+ Eemb
I+II

− Eemb
I

(52)Eadd=EGW−BSE
I

+Eemb
II

+VGW−BSE−emb
I−II

(53)EGW−BSE
s

=

⎧⎪⎪⎨⎪⎪⎩

EMF for s=ground state

EMF−�sQP for s=hole excitation

EMF+�sQP for s=electron excitation

EMF+ΩBSE
s

for s=electron−hole excitation

(54)�QP,emb
s

=EGW−BSE
gs −EGW−BSE

s
for s=hole excitation

(55)�QP,emb
s

=EGW−BSE
s

−EGW−BSE
gs for s=electron excitation

(56)
ΩBSE,emb
s

=EGW−BSE
s

−EGW−BSE
gs for s=electron−hole excitation

(57)
nI(r) = 2

N∑

i=1

qIi >qt

|||𝜙
LO
i (r)

|||
2

 17590884, 2024, 6, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1734 by B
jörn B

aum
eier - T

echnical U
niversity E

indhoven , W
iley O

nline L
ibrary on [17/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 18 Wiley Interdisciplinary Reviews: Computational Molecular Science, 2024

If we now consider nI(r) the initial density of the active region 
and denote the variable density as ñI(r), the Fock matrix in the 
full-molecule AO basis for an embedded (I-in-II) calculation on 
the electrons in subsystem I is given by

where hI−in−II
core

 is the embedded core Hamiltonian based on the 
partitioned initial densities nI and nII:

It contains the core Hamiltonian of the full system, the differ-
ence between the Hartree, exchange, and exchange-correlation 
terms for the full system and the initially chosen active subsys-
tem, respectively, as well as a projection term �P

II
 with the pro-

jection operator

based on the density matrix DII of the environment and the 
atomic orbital overlap matrix S to ensure orthogonality between 
the occupied states of the environment and the rest of the active 
subsystem. The level-shift parameter � is typically of the order 
of 105 − 106 Hartree.

3.1.2   |   Subsystem DFT

Compared with projection-based embedding, the subsystem-
DFT (sDFT) approach does not start from a plain DFT reference 
calculation of the full system (see, e.g., [46, 47] for more details). 
Instead, the idea here is to perform Kohn–Sham-like calcula-
tions on fragments and then to determine the full-system density 
from the fragment densities. This way, the embedding region II 
can actually be split further into all molecular fragments. For the 
sake of presentation, we continue with the two region notation. 
Then, as in the projection-based embedding, the total electron 
density is given as n(r) = nI(r) + nII(r), and each subsystem den-
sity is obtained from Kohn–Sham equations with constrained 
electron density (KSCED). To calculate the molecular orbitals 
of subsystem I in the frozen density nII of subsystem II, these 
KSCED equations read [48–52]:

where the embedding potential is

Here, the last term stems from the variation of the nonadditive 
kinetic energy Ts

[
nI + nII

]
= Ts

[
nI
]
+ Ts

[
nII

]
+ Tnadd

s

[
nI,nII

]
, and 

needs to be approximated in practical use. Note that in sDFT, 
the role of the subsystems (frozen vs. unfrozen density) must be 

iterated until a convergence of the total energy of the full system 
is achieved.

3.2   |   DFT-Embedded GW-BSE Calculations

Performing either projection-based embedding or sDFT calcu-
lation offers the advantage that the respective densities can be 
associated with the two (or more) subsystems and that the total 
density of the overall system is a sum of the subsystem densities. 
By construction, then also the occupied molecular orbitals of 
the subsystem of interest I are mostly localized in the respective 
spatial region. It is therefore possible, to limit the GW-BSE cal-
culation to this “active” region only. For this, no changes in the 
formulation of the actual GW-BSE steps is required as the em-
bedding potential is simply another external potential already 
included in the preceding DFT-in-DFT calculation. This implies, 
however, that all quantities involved use the embedded Kohn–
Sham molecular orbitals and their energies as starting point. As 
these are changed with respect to the full reference case, one 
should not in general expect to obtain the same excitation ener-
gies from a GW-BSE calculation after subsystem-DFT as from a 
full GW-BSE calculation.

Examining the self-energy split into the exchange part Σx and 
correlation part Σc provides some insight into the qualitative dif-
ferences. The expression of the exchange part in the molecular 
orbitals reads (c.f. Equation 21)

and is therefore affected by two aspects: (i) summing over fewer 
occupied states in the DFT-embedded GW-BSE calculation and 
(ii) the changes in the molecular orbitals themselves. While Σx 
itself only depends on the occupied orbitals, it is important to 
realize that it enters the calculation of quasiparticle energies also 
of unoccupied states.

Performing a similar analysis for the frequency-dependent 
correlation part is more complicated. Recall first that 
Equation (21) gave

Here, the screened Coulomb interaction depends on the irreduc-
ible polarizability in the form (Equation 19)

symbolically via

(58)FI−in−II = hI−in−II
core

[
nI + nII

]
+ J

[
ñI
]
+ K

[
ñI
]
+ V

xc

[
ñI
]

(59)

hI−in−II
core

[
nI + nII

]
= h

core
+ J

[
nI + nII

]
− J

[
nI
]
+ K

[
nI + nII

]
− K

[
nI
]

(60)+ V
xc

[
nI + nII

]
− V

xc

[
nI
]
+ �PII

(61)P
II
= SDII S

(62)

{
−
1

2
Δ + vext(r) + vH

[
nI
]
(r) + vxc

[
nI
]
(r) + vemb[n

I,nII](r)
}
�Ii (r) = �Ii�

I
i (r)

(63)

vemb
[
nI,nII

]
(r) = vH

[
nII

]
(r) + vxc

[
nI + nII

]
(r) − vxc

[
nI
]
(r) +

�Tnadd
s

[
nI,nII

]
�nI

(64)Σx
(
r, r�

)
= − 2

Nocc∑
i=1

�Ii (r)�
I
i

(
r�
)
vC
(
r, r�

)

(65)

Σc
(
r, r�,�

)
=

i

2� ∫ G
(
r, r�,� + ��

)(
W

(
r, r�,��

)
− vC

(
r, r�

))
d��

(66)
�0

(
r, r�,�

)
=

occ∑
v

unocc∑
c

{
�∗
v
(r)�c(r)�

∗
c

(
r�
)
�v

(
r�
)

�−
(
�c−�v

)
+ i�

−
�v(r)�

∗
c
(r)�c

(
r�
)
�∗
v

(
r�
)

�+
(
�c−�v

)
− i�

}

(67)W = vC + vC�0W
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In the exact reference calculation, the above is evaluated based 
on a full-DFT ground state. If one performs an embedded DFT 
calculation, the irreducible polarizability for subsystem I can be 
written with the respective labels as

Subsystem embedding thus changes the polarizability. As the 
sum over occupied orbitals is limited to the active occupied 
orbitals, contributions to the screening from transitions that 
start from “originally” occupied orbitals of the embedding re-
gion are missing. This results in changes of the response even if 
the �(r) and energies � were unchanged. The lack of screening 
contributions from the now inactive region, generally translates 
into weaker contributions of Σc to the quasiparticle energies (in 
absolute values) in the DFT-embedded GW calculation com-
pared with the full GW case. Even in weakly interacting, non-
bonded molecular structures, for instance, where the orbitals 
themselves are only minimally affected by the embedding, one 
can expect to find the occupied (virtual) quasiparticle energies 
below (above) the ones from the full calculations. That means, in 
turn, that the HOMO-LUMO gap in subsystem-GW is also larger 
than the respective gap in full-system GW.

Examining now the electron–hole excitations on the level of the 
BSE, the reduction of the number of occupied orbitals limits the 
transitions used in the expansion of the two-particle wavefunc-
tions to those starting from the active subsystem. Furthermore, 
different quasiparticle energies obtained at GW level directly af-
fect the free transition term Dvc,v′c′ from Equation (31) in the BSE 
Hamiltonian. The exchange and direct (screened) terms of the 
electron–hole interaction kernel Kx

vc,v′c′
 and Kd

vc,v′c′
 are affected in 

similar ways from changes in the orbitals, energies, and screen-
ing as Σx and Σc, respectively. As a consequence of the reduced 
screening, a stronger electron–hole attraction can be expected 
compared with the full-system calculation. This stronger bind-
ing of electron and hole in turn compensates to some degree the 
increased quasiparticle gap entering the free transition term.

In [53, 54], Tölle et  al. considered how additional screening 
effects from the environment can be incorporated in DFT-
embedded GW-BSE calculations. Starting out from the screened 
Coulomb interaction of system I in the form of Equation (67):

where the superscript I - I indicates that the screened and bare 
Coulomb interaction only acts on orbitals in the region I. 
Including also the effects of the embedding subsystem II via its 
own irreducible polarizability � II

0
, one obtains:

where

so that finally

After further manipulations including the introduction of the 
interacting polarizability

it is possible to rewrite

or equivalently

Note that if the system is composed of more than two subsys-
tems, higher order terms (as many as the number of subsystems) 
need to be taken into account, and Equation (75) is then a one-
body screening correction approximation. It includes a modified 
Coulomb interaction ṽI-IC , in which the term vI-Ireac = vI-II

C
� IIvII-I

C
 can 

be interpreted as a reaction field, describing the fluctuation of a 
charge at a point r due to a charge fluctuation at r′ both in sub-
system I which is mediated by the polarization of subsystem II. 
With the help of the frequency-dependent dielectric function of 
subsystem I as

one arrives at

and easily sees that the reaction field appears both in the dielec-
tric function and again in the modified Coulomb interaction.

Tölle et al. provided additional details about the implementa-
tion of the above for several subsystem fragments in different 
bases within the resolution-of-identity (RI) method in [53, 54], 
and we point the interested reader to the original work. The 
authors then reported the results of DFT-embedded GW-BSE 
calculations on an ammonia-benzene dimer, aqueous meth-
ylenecyclopropane, and a water-solvated adenine-thymine 
dimer. In Figure 2, we reprint from their work the dependence 
of the quasiparticle energy of the HOMO of ammonia in the 
ammonia-benzene dimer at different intermolecular separa-
tions (fig.  5 of [53]). One can clearly see that for both sDFT 
(here labeled as “Naddkin”) and projection-based-embedding 
(PbE), the plain embedded GW calculations without account-
ing for environment screening (blue open circles) from the 
benzene molecule yield lower quasiparticle energies than 
the supermolecular full system reference (open squares). The 
difference is largest for the closest dimer separation (around 
0.2 eV) and becomes progressively smaller for larger distances. 
Note that Kohn–Sham energies for the HOMO already differ 
by about 0.05 eV in the respective ground state calculations for 
the shortest intermolecular separation (cf., fig. 4 of [53]). The 
inclusion of the environment screening here from the single 

(68)
� I
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=
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)
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c
−�I
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−
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(r)�I∗

c
(r)�I

c

(
r�
)
�I∗
v

(
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(69)W I-I = vI-IC + vI-IC � I
0W

I-I

(70)W I-I = vI-IC + vI-IC � I
0W

I-I + vI-IIC � II
0W

I-II

(71)W II-I = vII-IC + vII-IC � I
0W
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0W
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II-I

(73)� I = � I
0 + � I

0

(
vI-IC � I + vI-IIC � II

)

(74)W I-I =
(
vI-IC + vI-IIC � IIvII-IC
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1 + � I
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I-I
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= ṽI-IC
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1 + � I
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(75)W I-I = ṽI-IC + ṽI-IC � I
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I-I
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benzene molecule (red crosses) brings the quasiparticle ener-
gies in very close agreement with the full calculations. The au-
thors observed similar behavior for the quasiparticle energies 
of methylenecyclopropane with a variable number of water 
molecules as solvent and in water-solvated adenine–thymine 
dimers.

The authors also pointed out the importance of including the 
environment correction in both steps of the GW-BSE procedure 
when interested in electron–hole excitations. The screening en-
ters both the calculation of the quasiparticle energies (and with 
that the free transition part of the BSE) and the electron–hole 
interaction kernel. The individual effects can be distinguished 
from the data shown in Figure  3 for solvated MCP. Without 
environment screening, the excitations are found at higher en-
ergies in the subsystem calculation as compared with the full 
reference. This is a combination of too large quasiparticle gap 
and too strong electron–hole interaction when the environ-
ment screening is not accounted for. One can see that when 
environment screening is included on GW level only the BSE 
energies are obtained several 0.1 eV below the reference—the 
free transition part is almost correct, so the deviation can be 
attributed to too strong electron–hole interaction. Only when 
the latter is also additionally screened, a very good agreement 
with the full system reference can be observed.

Overall, it could be demonstrated successfully that DFT-
embedded GW-BSE calculations yield good agreement with full 
supermolecular GW-BSE calculations if even approximately, en-
vironment effects are taken into account. The downside of this 
approach is mainly its still significant computational cost when 
applied to large-scale systems with large molecules in active and 
inactive regions.

3.3   |   GW-BSE-in-MM Embedding

Excited states in complex molecular systems are in general multi-
scale, in the sense that intrinsic quantum-mechanical properties 

of the basic units, that is, isolated molecules, and the local and 
global morphology of the large-scale molecular system are in-
tertwined. At this scale, the use of GW-BSE-in-DFT embedding 
as sketched in the previous section can be computationally ex-
tremely demanding, if not prohibitive. Similar notions also apply 
to other quantum-quantum embedding strategies [30, 31, 33].

A way to reduce such overly costly computations is to employ 
a classical (electrostatic) method for the embedding region, in-
cluding, that is, approaches in which the environment of an 
electronically active region is replaced by a polarizable con-
tinuum [33, 34, 55, 56], or when it is represented by a classical, 
molecular mechanics parametrization (MM) [32, 57]. The GW-
BSE formalism allows for different approaches to include such 
classical environmental polarizabilities. The one that we will 

FIGURE 3    |    BSE energies obtained from supermolecular and 
embedded evGW@PBE0-BSE(TDA) calculations for aqueous MCP. 
Reprinted (adapted) with permission from Journal of Chemical Theory 
and Computation 2021;17(4):2186–2199. Copyright 2021 American 
Chemical Society.

FIGURE 2    |    Quasi-particle energy of the HOMO located on ammonia in an ammonia-benzene dimer with varying separation (see inset) using 
nonadditive kinetic (Naddkin) (a) or projection-based embedding (PbE) (b) [G0W0@BHLYP, def2-TZVP; aux(m), subsystem-only auxiliary basis; 
aux(s), supermolecular auxiliary basis].
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review first is conceptionally very similar to the GW-BSE-in-
DFT embedding, in the sense that the environment response 
is directly included in the calculation of the screened Coulomb 
interaction W  both in the GW  and the BSE stages of the cal-
culations. Later, we will also discuss alternative subtractive 
and additive quantum-classical approaches, which use total 
energies of coupled systems as introduced earlier rather than 
modifying the screened Coulomb interaction directly.

3.3.1   |   Classical Environment Polarizability in W

While we present the idea of including a classical environment 
polarizability in the calculation of the screened Coulomb inter-
action of subsystem I after the GW-BSE-in-DFT embedding, 
these methods have been developed historically in different 
order. For the sake of presentation, we pick up from the defi-
nition of the modified Coulomb interaction in Equation (74) in 
GW-BSE-in-DFT embedding, which now in real-space form in-
cluding the explicit dependence on the frequency � reads

The integral on the right-hand side is the already introduced re-
action field or reaction potential

The decisive step is now to introduce here a classical model of 
the polarizability of subsystem II, that is, � II

→ �MM.

Essentially, a classical approximation to the environment polar-
izability only differs by the adoption of a specific model for �MM 
in place of the explicitly QM variant used in � II. There are, how-
ever, a few noteworthy aspects to this:

	 i.	 There is not a single “one-size-fits-all” MM model for the 
environment polarizability, including continuum mod-
els (polarizable continuum model) as well as atomistic 
models of varying sophistication (Drude model [58, 59], 
charge equilibration [60, 61], distributed polarizabilities in 
Applequist [62], or Thole [63, 64] form).

	ii.	 Classical models need to be parametrized, in the sim-
plest case (polarizable continuum model) with a mac-
roscopic dielectric constant �r or with various element 
or atom-specific quantities (Drude, Thole, and charge 
equilibration).

	iii.	 Most if not all classical models cannot be cast in an explicit 
form �MM

(
rII, r

′
II

)
 that allows a straightforward evaluation 

of Equation (79).

	iv.	 Most if not all classical models only provide static polariz-
ability in the zero-frequency limit (�→ 0) instead of full 
dynamic polarizability.

Trying to address the details and the respective strengths and 
weaknesses of the different classical polarization models and 
with that the steps required in their parametrization according 

to points (i) and (ii) exceeds the scope of this review and we 
point the reader to the original literature, instead. We will 
focus on general remarks to points (iii) and (iv), which are to a 
large extent agnostic to the specifics of the MM models used. 
Duchemin, Jacquemin, and Blase [55] proposed to not calcu-
late the real-space form of the reaction field, vIIreac

(
r, r′,�

)
, as 

in Equation (79) but instead exploit the resolution-of-identity 
(RI) method. Recall that in Equation  (45), auxiliary basis 
functions �� were used to calculate two-center Coulomb re-
pulsion integrals

to be later used to calculate approximated four-center Coulomb 
integrals needed in the GW-BSE implementation. Herein, one 
‘simply’ replaces vI-I

C

(
r, r′

)
→ ṽIIC

(
r, r′

)
, such that one has to ad-

ditionally determine:

Note that both functions �� and �� are auxiliary functions in the 
QM region (subsystem I). These integrals can be computed by 
considering the basis function �� as a charge distribution that 
polarizes the embedding region according to the adopted MM 
model. Then, the action of this response field on the basis func-
tion �� is calculated.

In the above, we have already conveniently ignored the fre-
quency dependence, implying the use of the static limit, as was 
also done in GW-BSE-in-DFT embedding, for the whole fre-
quency range. As an alternative, it was suggested also in [55] 
to use the COHSEX approximation (cf., Equations  24 and 25) 
to determine state-specific correction terms to the quasiparticle 
energies of an isolated system in a vacuum, �QP

i
, as in

As an example, the authors studied solvatochromic shifts of 
the first ionization potential (HOMO energy) for the four nu-
cleobases adenine, cytosine, thymine, and uracil upon embed-
ding in water represented by a polarizable continuum model. 
They pointed out the importance of carefully choosing the ap-
propriate value of the dielectric constant for the embedding 
region, corresponding to fast and slow screening processes. 
The high dielectric constant of water (ϵr = [78.35]) results as 
a combination of relaxation processes of electronic (fast) and 
nuclear (slow) degrees of freedom. The authors argue that 
while for the ground state, screening from both is appropriate, 
only the fast, electronic, processes can react to the excitation 
(ionization) process, and therefore one should use the optical 
dielectric constant ϵ∞ = [1.78] in the embedded calculation, 
yielding in the end to an additional contribution to the sol-
vatochromic shift: first, the ground-state is calculated based 
on DFT with PCM using the high ϵr, then a GW  embedding 
calculation is performed starting from the molecular orbitals 
of this ϵr -embedded ground state, however using ϵ∞ in the re-
action field calculation. In Table 1, we reprint the results from 
this so-called non-equilibrium approach as reported in [55], 

(78)

ṽI-IC
(
r, r�,�

)
= vI-IC

(
r, r�

)
+ ∫ vI-IIC

(
r�, rII

)
� II

(
rII, r

�
II,�

)
vIIIC

(
r�II, r

)
drIIdr

�
II

(79)

vIIreac
(
r, r�,�

)
= ∫ vI-IIC

(
r�, rII

)
� II

(
rII, r

�
II,�

)
vII-IC

(
r�II, r

)
drIIdr

�
II

(80)(�| �) = ∫ ��(r)v
I-I
C

(
r, r�

)
��
(
r�
)
drdr�

(81)(�| �)reac = ∫ ��(r)v
II
reac

(
r, r�

)
��
(
r�
)
drdr�

(82)�QP,ΔCOHSEX
i

= �QP
i

+
(
�COHSEX,emb
i

− �COHSEXi

)
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obtained with the direct use of the static approximation in 
the determination of the embedded quasiparticle calculations 
(here labeled ΔGW ) and the ΔCOHSEX variants, respectively. 
One can see that both approaches give very similar shifts in 
the non-equilibrium calculation with deviations < 0.05 eV. In 
an equilibrium calculation, that is, if ϵr is also used in the em-
bedded GW  step, the overall shifts are larger (due to the much 
larger polarization effect) as are the differences between ΔGW  
and ΔCOHSEX.

As a side note, we emphasize that the choice between this 
non-equilibrium vs. equilibrium scenario may depend on the 
type of excitation and the physical process of interest. Polarity-
sensitive dyes, for instance, exhibit strong Stokes shifts of the 
optical emission energy with respect to the absorption energy 
in strongly polar solvents such as water. Here, however, nuclear 
relaxation by far dominates the effects of electronic degrees of 
freedom. Baral et al. [65] studied such nuclear relaxation effects 
for prodan also with coupled classical Molecular Dynamics-
GW-BSE calculations (MM/GW-BSE), in which no electronic 
polarization from the embedding region was taken into account, 
but only electrostatic background from the reorienting solvent 
molecules. As shown in Figure 4, this allows us to capture the 
nuclear relaxation on ps timescale and calculated Stokes shifts 
in good agreement with the experiment. We will revisit such 

external coupling between GW-BSE and MM regions in the fol-
lowing section.

What the previous example highlights is that excitation ener-
gies, no matter if charged or neutral, can also be affected by 
electrostatic effects from the environment that are not merely 
arising from polarization. Non-symmetrical structural details, 
for instance, combined with non-negligible electrostatic mo-
ments can cause additional shifts of excitation energies with 
respect to vacuum. Such situations are typically also present 
in low-dimensional systems, such as surfaces of molecular 
crystals. Li et  al. [57] have extended the approach based on 
Equation (81) to study charged excitations at the (001) surface of 
a pentacene crystal. In particular, they used the charge response 
model by Tsiper and Soos to model the polarization effects [66] 
and combined it with long-range static embedding effects in the 
low-dimensional environment [67] to account for crystal field 
effects. Figure 5 shows how the inclusion of different environ-
mental effects affects the calculated ionization potential and 
electron affinities at the surface. It is very obvious that polariza-
tion effects massively reduce the GW  gap compared with the gas 
phase calculation (which agrees favorably with experimental 
results for gas phase ionization energies). From a purely elec-
trostatic perspective, the excited electron and hole get screened, 
or energetically stabilized, in the same way, meaning that the 
ionization potential lowers and the electron affinity increases. 
Additional inclusion of the crystal field affects both excitation 
energies in the same direction, that is, the absolute energies are 
shifted, but their energy difference is more or less constant.

3.3.2   |   External QM/MM

The methods presented in Section 3.3.1 provide ways to include 
screening effects from a classical environment into GW-BSE 
calculations utilizing additional terms in the screened Coulomb 
interaction W . In contrast to this internal inclusion of screen-
ing, alternative approaches focus on accounting for these effects 
with what we from now on refer to as external QM/MM. As the 
name suggests, the calculations for the QM and classical MM re-
gions of such approaches are more separated than, for example, 
by evaluating the effects on an environment reaction field via 
Equation (81). Instead, the two regions are coupled based solely 

TABLE 1    |    Solvatochromic shifts (in eV) of the first ionization 
potential of four nucleobases upon solvation in water represented by a 
PCM, as obtained by using the static approximation for �MM directly in 
the GW  calculation (ΔGW) and by the ΔCOHSEX approach.

Adenine Cytosine Thymine Uracil

Non-equilibrium

ΔGW 0.60 0.67 0.95 1.05

ΔCOHSEX 0.64 0.70 0.99 1.07

Equilibrium

ΔGW 1.51 1.67 1.92 1.96

ΔCOHSEX 1.64 1.75 2.03 2.15

Note: All data from [55].

FIGURE 4    |    (a) Time-dependent emission energy of prodan in different solvents and (b) final Stokes shifts as obtained from MM/GW-BSE 
calculations from [65]. Reprinted (adapted) with permission from Journal of Physical Chemistry B 2020;124(13):2643–2265. Copyright 2020 
American Chemical Society.
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on electrostatic interactions. A typical workflow of such an ex-
ternal GW-BSE/MM calculation is shown in Figure 6. The four 
method ingredients are the classical microelectrostatics model, 
the DFT calculation for the ground state, as well as the GW  
and Bethe–Salpeter equation steps, respectively. The classical, 
polarizable environment in the MM region enters the GW-BSE 
workflow merely as a specific external potential on the level of 
the reference ground state calculation: the first element of the 
classical model is a set of static atomic multipoles that create a 
local electric field which polarizes the electronic density of the 
QM region. The second element is the addition of polarizable 
distributed atomic multipoles for molecules in the MM region 
(as mentioned in the Section  3.3.1). Combined with the static 
moments, the overall effect of polarization is a self-consistent 
reaction field inside the QM region. In the specific formulation 
of the Thole model, static atomic multipole moments [63, 64] are 
indicated as Qm

t , where t  is the multipole rank and m the associ-
ated atom in the molecule M. The interactions between the mul-
tipoles moments Qm

t  and Qm′

u  are described by the tensor Tmm′

tu . To 
account for polarization, a polarizability �mm′

tu  is assigned to each 
atom. Interaction with the field generated by moments u on a 
different atom m′ creates induced moments ΔQm

t . Consider now 
the splitting of a purely classical (MM) system  in state s into 
two regions ℛ and ℛ′ with  =ℛ ∪ℛ

�. Molecules in region ℛ 
(ℛ′) are indicated by M (M ′), and atoms in molecule M (M ′) by 
m (m). The total classical energy of the system is then given by

where

with

and

Equation (83) needs to be minimized with respect to the induced 
moments ΔQm

t . Note that other classical environment models 
differ mainly by the specific expressions used for Equations (86) 
and (87).

In a QM/MM setup, the total energy, cf. also Equation (52), is 
given as the sum of QM, MM, and QM/MM coupling terms:

Here, the two regions are explicitly coupled via the term 
V
QM∕MM
12

, that is, via electrostatic interactions between the 
two subsystems. These are accounted for by adding the exter-
nal potential of the multipoles in the MM region to the QM 
Hamiltonian as one-electron operators during the computation 
of the electronic wave function. Vice-versa, the MM region is 
polarized by the explicit electrostatic field from the QM density. 
Specifically in GW-BSE, there are several options for this den-
sity, depending on the type of excitation (s). If s is a quasiparticle 
excitation, we define

with fs = − 1 for occupied and fs = + 1 for unoccupied QPs. If 
s is an electron–hole excitation, its total density is evaluated as

Here the electron (hole) contribution of the exciton to the den-
sity is computed by integrating the squared excited-state wave-
function �S with respect to the hole (electron) coordinates, 
that is,

The inclusion of a polarizable MM region requires a self-
consistent procedure to evaluate the total QM/MM energy 
of a system in a given state s. At a single step p within this 
self-consistent procedure, first a QM level calculation (DFT 
for the ground state s = g, DFT + GW-BSE for electron–hole 
excited s = x states) is performed in the electric field generated 
by the total moments in the MM region. The total energy of 
the QM region in state s is then given by Equation  (53), and 
excitation energies are obtained from it and the energy of the 
classical region via “Δ-QM/MM-SCF” formulations as total 
energy differences according to Equation (56). In Figure 7 this 
is indicated by the three different “routes” that the calculation 

(83)E(s)
class

() = E(s)(ℛ) + E(s)
(
ℛ

�
)
+ E(s)

(
ℛ,ℛ�

)

(84)
E(s)(ℛ) =

1

2

∑
M ∈ℛ

∑

M � ∈ℛ

M �≠M

E(s)
MM � +

1

2

∑
M ∈ℛ

E(s)
M

(85)E(s)
(
ℛ,ℛ�

)
=

∑
M ∈ℛ

∑
M � ∈ℛ

�

E(s)
MM �

(86)

E(s)
MM � =

∑
m∈M

∑
m�∈M �

∑
tu

(
Qm(s)
t +ΔQm(s)

t

)

×Tmm�

tu

(
Qm�(s)
u +ΔQm�(s)

u

)

(87)
E(s)
M

=
∑
m∈M

∑

m� ∈M

m�≠m

∑
tu

ΔQm(s)
t

(
�−1

)mm�

tu(s)
ΔQm�(s)

u

(88)EaddQM∕MM = EQM
1

+ EMM2 + V
QM∕MM
12

(89)n
(s)

QP
(r) = nDFT(r) + fs

|||�
QP
s
(r)

|||
2

(90)n(s)(r) = nDFT(r) + n(s)e (r) − n(s)
h
(r)

(91)�(s)e (r) = �(s)e
(
re
)
= ∫ drh||�S(re, rh)||2

(92)�(s)
h
(r) = �(s)

h

(
rh
)
= ∫ dre||�S(re, rh)||2

FIGURE 5    |    Evolution of Ionization Potential and Electron Affinity 
from the gas phase to crystal surfaces for a pentacene crystal. Calculation 
results from [57] include different contributions from intermolecular 
interactions (polarization, crystal field, band dispersion) to the final 
excitation energies at the crystal surface. Reprinted (adapted) with 
permission from Physical Review B 2018;97:035108.
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can take through the algorithm: Route 1 corresponds to the 
reference ground state calculation in which the MM region 
has responded to the plain DFT density of the QM region; in 
route 2 the external polar field the MM enacts on the QM re-
gion is determined as a response from the quasiparticle den-
sity Equation  (90) (GW∕MM); and route 3 is used to get the 
total QM/MM energy in which the density in the QM region is 
determined according to Equation (92).

As a first example of an application of a variant of such a GW/
MM embedding scheme, Galleni et  al. [68] studied the peak 
broadening pf photoemission spectra in amorphous polymers. 
Figure 7 shows as an example the obtained core level and va-
lence region photoelectron spectra of polymethyl methacry-
late (PMMA), where the data shown as “charges” correspond 
roughly speaking to a GW/MM calculation with no polarization 
in the MM region, while “charges + dipoles” include polariza-
tion effects. One can clearly see that intrinsic local inhomoge-
neities in the electrostatic environment induce a broadening of 
0.2–0.7 eV in the binding energies of both core and semivalence 
electrons.

FIGURE 6    |    Example of a typical workflow for externally embedded GW-BSE calculations combining classical microelectrostatics models with 
DFT and GW-BSE calculations in a QM/MM scheme. Three different routes to converged total energies are indicated: 1—ground state DFT/MM; 
2—quasiparticle GW/MM; 3—electron–hole GW-BSE/MM.
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FIGURE 7    |    Experimental and calculated photoelectron spectra 
for the O 1s, C 1s, and valence regions of amorphous polymethyl 
methacrylate (PMMA) [68]. Reprinted (adapted) with permission from 
Journal of Physical Chemistry Letters 2024;15(3):834–839. Copyright 
2024 American Chemical Society.
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Figure  8 shows in steps the effects of embedding of electron–
hole excitations in GW-BSE/MM on the charge-transfer type 
excitations between two adenine base pairs in solvated double-
stranded DNA. The progression from a GW-BSE calculation in 
vacuum, via a GW-BSE/MM with a non-polarizable environment, 
to GW-BSE/MM with a polarizable environment shows not only 
that the charge-transfer excitation energy is affected but also that 
the nature of the electronic excitation is also sensitive to effects 
from the complex environment. Here, for instance, the amount 
of transferred charge changes from a partial charge transfer of 
0.6 e to an integer charge transfer of 1 e. It is also clear that this is 
an effect of polarization, as integer transfer is not observed with 
a static MM environment in Figure 8b. This is not only a conse-
quence of the converged GW-BSE/MM calculation having differ-
ent weights for the respective transitions between occupied and 
unoccupied single-electron states in Equation (27). Additionally, 
the single-particle functions themselves are affected by the in-
clusion of the contribution of polarized electrostatic moments in 
the external potential of the underlying ground-state calculation.

A notorious problem for the external GW-BSE/MM approaches 
with polarization is related to the self-consistency procedure in 
the quantum-classical iterations cycle. Evaluation of the QM 

density as in Equation (90) or Equation (92) (and the respective 
energies) depending on the calculation route can be tricky as 
electronic energy levels can swap between iterations. Following 
the “correct” state is not always trivial, especially if polarization 
effects cause significant changes to the nature of the excitation, 
as they do in the example of Figure 8. Issues like these are well-
known also for instance in geometry optimizations in excited 
states.

3.3.3   |   Subtractive (MM-in-MM) Embedding

As attractive and powerful the embedding approaches presented 
in Sections 3.2 and 3.3 are, the calculations are, in general, still 
computationally demanding if applied to complex molecular 
systems. In some situations, it can be attractive to use a subtrac-
tive embedding scheme as mentioned in Section  3. Instead of 
explicitly coupling the quantum and classical regions via elec-
trostatic interactions as in Section 3.3, the QM part is also rep-
resented using the same classical model as the environment. 
One then performs two calculations with the classical model: 
one using a parametrization of the classical model based on the 
ground state and one using a parametrization based on the ex-
cited state of interest. Then, similar to the Δ-QM/MM-SCF of 
the previous section, the difference of the classical total energies 
is an energy correction to the respective vacuum excitation en-
ergy, cf. Equation (51). This way, the calculation of energy cor-
rections is very fast and can be readily applied to, for instance, 
large molecular morphologies of amorphous materials, or is 
easily combined—depending on the details of the microelectro-
statics model—with many of the available methods for efficient 
large-scale electrostatics methods like Particle or Particle-Mesh 
Ewald [69–71].

As an example for GW  calculations using periodic embedding 
[73] in the subtractive sense, we show in Figure 9 the layer-
resolved highest-occupied molecular orbital energy diagram 
of a thin film of 2-methyl-9,10-bis(naphthalen-2-yl)anthra-
cene [72]. The studied film contains about 1000 molecules 
and the shown values for the respective layers are obtained by 
averaging over many individual embedded GW  calculations. 

FIGURE 8    |    Effect of polarization on charge-transfer excitons in solvated DNA from different GW-BSE calculations: (a) a single DNA base pair 
in vacuum, (b) the same base pair in an environment that is not polarizable, (c) the same base pair in a polarizable environment. Reprinted with 
permission from Journal of Chemical Theory and Computation 2018;14(12):6253. Copyright 2018 American Chemical Society.

FIGURE 9    |    Layer-resolved energy levels of a thin film consisting 
of 1000 β-MADN (see inset) molecules obtained at different levels of 
theory: Vacuum KS, vacuum GW, static, and polarizable GW + MM-
in-MM including long-range effects with periodic embedding (labeled 
pMM), taken from [72]. The error bars correspond to the range of ±1 
SD. Reprinted (adapted) with permission from Physical Review B 
2020;101:035403. Copyright 2020 American Physical Society.
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Performing 1000 additive GW-BSE/MM as in Section 3.3 in-
stead is orders of magnitude more computationally expen-
sive. The disadvantage of using the subtractive method is that 
one needs classical microelectrostatics models for molecules 
both in their ground state (for the embedding region) and the 
excited state and that these models provide a sufficiently ac-
curate representation of quantum mechanical electrostatic 
responses. In [72], for instance, this was checked for selected 
molecules in the bulk and at the surface of the film by com-
paring results from additive GW/MM and subtractively em-
bedded GW  calculations.

4   |   Conclusion

In summary, we have explored in this review various strategies 
for building embedded many-body Green's function methods in 
application to complex molecular systems. These strategies differ 
in many aspects: from how the environment is represented (on a 
lower quantum-mechanical level, using a classical model with at-
omistic details, or by a polarizable continuum), to how the environ-
ment effects are included in the GW-BSE calculations (intrinsically 
via the screened Coulomb interaction W  or extrinsically via a self-
consistency in total energy calculations of electrostatically coupled 
regions). Despite their sometimes very fundamental differences, 
the presented example applications to molecular dimers, molec-
ular crystals, solvated dye or DNA systems, macromolecules, and 
molecular thin films show that all the strategies contain the cor-
rect physics. Preference for a particular method might depend on 
the actual system under study, apparently more so regarding the 
choice of the environment model rather than how the effects of 
the model are included. Therefore, the careful parametrization of 
models for the embedding region is a common challenge for all ap-
proaches. These challenges are, however, not unique to embedded 
GW-BSE calculations and pertain to nearly all subsystem-type cal-
culation that mix different levels of theory. More Green's function 
method specific challenges are related to the state-dependence of 
the environment response discussed above and, on a more tech-
nical level, extending the environment screening contribution 
beyond the static (zero-frequency) case. As the discussion of the 
example of the polarity-sensitive dye above has shown, many inter-
esting chemical (or physical) processes involve not only a response 
of the electronic system but a change in structural properties of 
the molecular system. Eventually, this will require extending the 
embedded Green's function models to include nuclear dynamics.
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