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This study investigates the impact of exchange-correlation functional choices on the predictive
accuracy of multiscale models for charge transport in organic semiconductors (OSCs). A hybrid func-
tional approach is applied to analyze uncertainties in key parameters influencing charge mobility, fo-
cusing on the Hartree–Fock exchange fraction. Using 2-methyl-9,10-bis(naphthalen-2-yl)anthracene
(MADN) as a test system, molecular dynamics and density functional theory are combined to com-
pute reorganization energies, site energies, and electronic coupling elements. Monte Carlo sampling
quantifies the uncertainty propagation, revealing that site energy variations dominate transport
property uncertainties, while coupling elements contribute minimally. The findings underscore the
need for accurate parameter determination and functional selection, with implications for enhancing
the reliability of first-principles-based multiscale modeling frameworks in OSC design.

I. INTRODUCTION

Organic semiconductors (OSCs) are materials that
consist of organic molecules, often in disordered struc-
tures formed during spin-coating or deposition process-
ing. Besides their semiconducting properties, they are
mechanically flexible and come with the potential to con-
trol charge transport properties [1–3]. This flexible func-
tionality is achieved by tuning molecular properties to
achieve an ideal operation at the device level [4, 5]. Com-
putational approaches that aim at predicting the charge
transport properties of disordered molecular materials re-
solving the interplay between single-molecule properties
(such as their electronic structure or response properties)
and mesoscale material morphology can play an impor-
tant role in supporting or even guiding experimental op-
timization processes [4, 6, 7].

First-principles based multiscale models are such types
of computational approaches. Due to the infeasibility of
explicitly simulating the coupled non-adiabatic electron-
nuclear dynamics for the time- and length scales of realis-
tic materials, these models typically exploit the localiza-
tion of electronic states in disordered molecular materi-
als and consider a rate-based description of hopping-type
transport. A popular choice for the electron transfer rate
ωij between two localization sites i and j is Marcus the-
ory [8, 9], in which

ωij =
2π

ℏ
|Jij |2√
4πλijkBT

exp

(
− (∆Eij − λ)2

4λkBT

)
, (1)

where ℏ is the reduced Planck constant, kB the Boltz-
mann constant, and T the temperature. As depicted in
Fig. 1, given a larger scale morphology and with the def-
inition of localization sites (Fig. 1(a)), multiscale models
employ first-principles based methods (Fig. 1(b)) to ex-
plicitly calculate the remaining physical, material-specific
(or rather transfer-pair-specific) quantities in Eq. 1: the
reorganization energy λ (here a single value as we as-
sume a single-component material), the electronic cou-

pling Jij , and the site energy difference ∆Eij = Ei −Ej .
With all that information, charge transport is modeled
as a continuous time random walk (CTRW) process on
a graph G, constructed from the localization sites and
the calculated rates between them (Fig. 1(c)). Panel (b)
of Fig. 1 mentions some specific methods for the calcu-
lation of the quantities entering Eq. 1, such as mixed
quantum-classical methods for obtaining the site ener-
gies with the help of microelectrostatic methods [10, 11]
or the dimer projection method for determining coupling
elements [12], as they are the ones adopted in this work.
What is essential about these and alternative ones is that
they typically rely on density-functional theory (DFT)
calculations, either directly or as a mean to parametrize
classical models. The dependence of DFT calculations on
the choice of an exchange-correlation functional raises the
question of how sensitive the simulated charge transport
is to this choice and how certain predictions of material
properties are.
Uncertainty quantification (UQ) is concept from com-

putational science which allows for an estimation of con-
fidence intervals for a quantity of interest (QoI) and an
analysis of its sensitivity in models of a physical system
that contain uncertain, maybe empirical, or noisy, pa-
rameters [13–18]. Many common UQ studies focus on
models with (partial) differential equations, e.g., drift-
diffusion equations in which the diffusivity as parameter,
and assume a certain distribution for the values of the
parameter(s). For the multiscale model of charge trans-
port, it is not straightforward to cast the large variety of
available exchange-correlation functionals into the role of
a model parameter with some distribution. To keep the
problem tractable, we focus here instead specifically on
the exchange part in hybrid functionals [19, 20], in which
a DFT model for the exchange is mixed using a weighting
factor αHFX with a Hartree–Fock type exchange, i.e.,

Ex = αHFXE
HF
x + (1− αHFX)E

DFT
x . (2)

More specifically, we take as the basis the PBE0 func-
tional [21] and scrutinize (i) how the predictions of the
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FIG. 1. Schematic representation of the multiscale framework for simulation of charge transport: (a) a representative large-scale
morphology is obtained from Molecular Dynamics. (b) Information about the molecular building blocks and the morphology
are used to determine the molecular transport graph G for a given choice of the αHFX via calculation of reorganization energy,
site energies, and electronic couplings. (c) The time-of-flight charge mobility is simulated based on the graph.

multiscale model of charge transport are affected by vari-
ation of αHFX as a proxy for uncertainties in the choice
of DFT functionals, (ii) what the level of confidence is
in quantitative predictions, and (iii) what are the most
sensitive quantities in the model. In this sense, Eq. 2 is
deceptively simple. For each value of αHFX, the graph
G is constructed using the respective value of the reor-
ganization energy, the Nmol site energies, and the Npair

coupling elements, and the dimensionality of the problem
from the perspective of UQ is NUQ = 1 +Nmol +Npair,
which can easily be on the order of 104−105. We consider
the simulated time-of-flight (ToF) and the associated mo-
bility the QoI in the following (see Fig. 1(c)) which then
are subject to uncertainties in these NUQ parameters,
stemming from the variation in αHFX. As a prototyp-
ical system, we will study hole transport in an amor-
phous morphology of 2-methyl-9, 10-bis(naphthalen-2-
yl)anthracene (MADN), a wide-gap semiconductor that
is used extensively as an ambipolar host material in or-
ganic light-emitting diodes [22, 23].

This paper is organized as follows. Section II out-
lines the theoretical and computational details of the
multiscale model, including the morphology simulation
with classical molecular dynamics, the determination of
all quantities in the transition rates, and the calculation
of the charge transport properties from the constructed
graph model. In Section III, we discuss the explicit re-
sults from the model using different values of αHFX, be-
fore we show the results of uncertainty quantification
and sensitivity analysis via Monte Carlo sampling in Sec-
tion IV. A brief summary concludes the paper.

II. MULTISCALE MODEL

The multiscale model maps a large scale molecular
morphology with atomistic detail into a graph G(V,W),
where the set of nodes V is determined from the center-
of-masses of the individual molecules and W is the ad-

jacency matrix formed by the Marcus rates ωij . Two
nodes i, j are connected if the corresponding molecules
have their closest-contact distance smaller than rcutoff =
0.5 nm.

A. Molecular Dynamics

Classical molecular dynamics (MD) is used to create
an amorphous morphology of MADN. An empirical force-
field for these simulations has been obtained via the Au-
tomated Topology Builder [24], and an initial structure
containing 1000 molecules in a cubic cell is created. Pe-
riodic boundary conditions are applied throughout in all
three spatial directions. After energy minimization, the
system is simulated for 1 ns in theNpT ensemble, keeping
a constant temperature of 300K and constant pressure of
1 bar using the velocity-rescale thermostat [25] with the
coupling time constant 0.1 ps and the Parrinello-Rahman
barostat [26] with a time constant for pressure coupling
2 ps. The equation of motion for updating the atomic
coordinates is implemented by leap-frog algorithm [27]
with a time step of 1 fs. Following this, the temperature
is increased to 800K, well above the glass transition tem-
perature, during a period of 0.5 ns. This temperature is
maintained for 1 ns before cooling back down to 300K
during a period of 0.5 ns. Such a heating-cooling cycle is
repeated three times. After this simulated annealing, a
production run is conducted for 2 ns using the NpT en-
semble. The final configuration of MADN is chosen for
the further steps in the multiscale model, whose configu-
ration is a cubic box with a length of 9.0 nm and a density
of 1.08 g/cm3. All calculations have been performed with
the GROMACS software package [28].
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B. Electronic Structure Calculations

Molecular orbitals ϕl(r) with energies ϵl of the indi-
vidual molecules in the morphology are obtained within
DFT as the solutions to the Kohn–Sham equations [29](

−1

2
∇2

r + vext(r) + vH[ρ](r) + vXC[ρ](r)

)
ϕl(r)

= HKSϕl(r) = ϵlϕl(r), (3)

where vext is an external potential (typically from
the nuclei), vH[ρ] the electrostatic Hartree poten-
tial of a classical charge density ρ(r), and vXC[ρ]
the exchange-correlation potential containing explicit
quantum-mechanical electron-electron interactions. The
charge density is determined from the single-particle

wave functions as ρ(r) =
Nel∑
l=1

|ϕl(r)|2. As the Hartree

and exchange-correlation potential depend on this den-
sity, solutions to Eq. 3 have to be found self-consistently.
This corresponds to finding the ground-state density ρ0
that minimizes the total energy of the system expressed
as

U = U [ρ] = Ts[ρ]+

∫
vext(r)ρ(r)dr⃗+EH[ρ]+EXC[ρ] (4)

where Ts[ρ] is the kinetic energy, EH[ρ] and EXC[ρ] the
Hartree and exchange-correlation energies, respectively.

The practical calculations in this work have been per-
formed with the ORCA software [30] using the def2-
tzvp [31] basis set to represent the Kohn–Sham wave
functions. As mentioned in the Introduction, the cor-
relation part of the exchange-correlation functional is
taken from the PBE0 functional, while the weighting
factor of the Hartree–Fock type exchange in the ex-
change part is varied. In common practice, α is small
and below 0.25. For our uncertain quantification study,
α = 0, 0.05, 0.10, 0.15, 0.20, 0.25 are chosen for the multi-
scale model.

C. Reorganiztion Energy

The reorganization energy λ accounts for the energy
change caused by the geometry variation during the
charge transport, and is linked to four points on the
potential energy surfaces of neutral (n) and charged (c)
molecules at neutral (N) or charged (C) equilibrium ge-
ometries via:

λij = UnC
i − UnN

i + U cN
j − U cC

j , (5)

where UxX is the total DFT energy of x = n, c state in
the X = N,C geometry. While in principle transfer pair
specific, we use a single value of all molecular pairs.

D. Site Energy

The site energy Ei = Ec
i − En

i is the difference be-
tween the total energies of the system in which molecule
i is carrying a charge or not, corresponding to the ioniza-
tion potential in case of hole transport and the negative
of the electron affinity in case of electron transport. The
individual total energies in turn consist of different con-
tributions associated with different physical mechanism,
i.e.,

Ex
i = UxX

i + Ex,el
i + Ex,polar

i , (6)

where UxX
i is the internal energy contributions and both

Ex,el
i and Ex,polar

i are contributions arising from purely
static and polarizable intermolecular interactions, re-
spectively. As those interactions are typically long-
ranged, the intermolecular contributions to the site en-
ergy can typically not be calculated with a fully quantum-
mechanical method and classical models are adopted, in-
stead, which we refer to as a microelectrostatic model us-
ing moment representations parametrized based on single
molecule DFT reference data. Specifically, in the multi-
scale model here, we employ a point charge respresen-
tation [32] for the electrostatic potential of charged and
neutral molecules, so that the electrostatic energy con-
tribution is

Ex,el
i =

1

4πϵ0

∑
ai

∑
bk,k ̸=i

qxai
qnbk

|Rai
−Rbk |

(7)

where ϵ0 is the vacuum permittivity, ai, bk denotes the
atoms in molecule i, k, qxai

are the partial charge of atom
a when molecule i is in state x. To account for ef-
fects of polarization, and to evaluate Ex,polar

i , we use the
model of distributed atomic dipole polarizabilities (Thole
model) [33], in which the parameters are also determined
such that the classical volume of the molecular polariz-
ability tensor matches the DFT reference. Intermoelcular
effects are considered in a region of 4.0 nm around each
individual molecule. Practical calculations of the site en-
ergies are performed using the VOTCA software [34–37].

E. Electronic Coupling Elements

The coupling element Jij between molecule i and j de-
scribe the coupling strength between two localized states,
here approximated by monomer single-particle wavefunc-
tions |ϕi⟩ and |ϕj⟩, respectively. For hole transport, the
relevant orbitals are highest-occupied molecular orbital
(HOMO). Using the Dimer-Projection Method [12] the
coupling element is determined as:

Jij =
J0
ij − 1

2 (ei + ej)Sij

1− S2
ij

(8)

where J0
ij = ⟨ϕi|ĤKS

D |ϕj⟩, ei = ⟨ϕi|ĤKS
D |ϕi⟩, ej =

⟨ϕj |ĤKS
D |ϕj⟩, and Sij = ⟨ϕi|ϕj⟩ with bra-ket notation.
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The Hamiltonian of the dimer, HKS
D (see Eq. 3), is diag-

onal in its eigenbasis
{
|ϕD

k ⟩
}
with eigenvalues

{
ϵDk

}
, so

HKS
D = diag(ϵD). With the projections of the monomer

functions on the dimer eigenbasis, i.e., pik = ⟨ϕi|ϕD
k ⟩

and pjk = ⟨ϕj |ϕD
k ⟩, J0

ij can be calculated as J0
ij =

pT
i diag(ϵ

D)pj . Similarly, ei(j) = pT
i(j)pi(j) and Sij =

pT
i pj . All of these operations are performed in the basis

set representation of the Kohn–Sham wave functions (see
Sec. II B) as implemented in VOTCA.

F. Time-of-flight Calculation

After constructing the graph G from the multiscale
model, charge dynamics are modeled as a continuous-
time random walk on this graph. In the time-of-flight
(ToF) model, some vertices serve as source nodes, repre-
senting the electrode where charge carriers are injected,
and some as sink nodes, where charge carriers are de-
tected and the ToF is recorded. In CTRW the ToF is cal-
culated as the expected hitting time of a continuous time
Markov chain. For a system with N molecules and one
charge carrier, the transition rates between the molecules
define the adjacency matrix W:

Wij =

{
0 i is not connected to j,

ωij i is connected to j,
(9)

Then the transition probability from state i to j is
pij = Wij/Di where Di :=

∑
j Wij . And the expected

time from node i to reach the sink τi is calculated via:

τi =

{
1
Di

+
∑

j ̸=i pijτj if i is not a sink node,

0 else.
(10)

To account for all possible starting nodes of the carrier,
all source nodes must be considered. The random walk
process can be modeled as a parallel electric network of
capacitors [38]. Accordingly, the ToF is evaluated using
the harmonic mean:

τ = Nsource

[ ∑
i∈Source

(τi)
−1

]−1

, (11)

where Nsource is the number of source nodes.
To determine the ToF in the simulated MADN system

along the positive x-direction, we remove the PBC in this
direction and define the nodes with coordinates 0 nm <
x < 0.5 nm as source nodes, and those with coordinates
8.5 nm < x < 9 nm as sink nodes. These definitions are
changed accordingly for simulating transport in negative
x-direction, and y- or z-directions.

III. EXPLICIT RESULTS FROM THE
MULTISCALE MODEL

In this section, we present and analyze the explicit re-
sults of the multiscale model of charge transport in amor-
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FIG. 2. Dependence of molecular parameters as used directly
in the multiscale model or in its paramaterization phase on the
amount of Hartree–Fock type exchange in the PBE0-based hy-
brid functional αHFX. (a) The adiabatic ionization potential,
(b) reorganization energy, (c) dipole moment of the neutral
molecule, and (d) isotropic molecular polarizability in neutral
and charged states, respectively.

phous MADN as obtained for different values of αHFX.

A. Molecular Parameters

We begin with a brief discussion of the molecular pa-
rameters as they are used in different ways in the mul-
tiscale model. Figure 2 shows the adiabatic ionization
potential, reorganization energy, neutral state dipole mo-
ment, and isotropic polarizability in neutral and cationic
(hole) states, respectively. The adiabatic ionization po-
tential in Fig. 2(a) in principle contributes to the site
energy but as it is determined per molecule-type in the
system, it has no effect on the site-energy difference ∆Eij

in Eq. 1. It is nevertheless interesting to see that it in-
creases almost linearly over the shown range of αHFX. In
contrast, the reorganization energy as shown in Fig. 2(b)
appears to saturate for αHFX after an initially close to
linear increase. In total, λ is found to be in an interval
between 0.25 eV and 0.33 eV. Panels (c) and (d) of Fig. 2
show the dipole moment of the neutral MADN molecule
and the isotropic polarizability of the neutral and cationic
(hole) states, respectively, both as electrostatic proper-
ties that enter indirectly the parameterization of the mi-
croelectrostatic model. As is visible, the dipole moment
is rather independent on αHFX (note that the jump of the
last shown data point appears more pronounced because
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TABLE I. Characteristics of site energies E (all in eV) ob-
tained for the different values of αHFX: minimum (Emin) and
maximum (Emax), the overall standard deviation and the con-
tributions for static and polar calculations, as well as the
largest absolute variation DαHFX with respect to the PBE0
data (αHFX = 0.25).

αHFX Emin Emax σ σel σpolar DαHFX

0 -1.11 -0.59 0.08 0.10 0.04 0.13
0.05 -1.07 -0.63 0.07 0.09 0.04 0.12
0.10 -1.13 -0.61 0.08 0.10 0.04 0.13
0.15 -1.16 -0.59 0.09 0.11 0.05 0.15
0.20 -1.12 -0.63 0.08 0.10 0.05 0.12
0.25 -1.17 -0.60 0.08 0.11 0.04 —

of the very small scale on the y-axis). The isotropic po-
larizabilities in panel (d) exhibit a linear decrease with
increasing value of αHFX which can be attributed to an
increasingly attractive effective potential from stronger
the Hartree–Fock-like exchange term and consequently
more strongly bound electrons as one can also see from
the increasing ionization potential in panel (a).

B. Site energies

Figure 3(a)-(e) presents scatter plots comparing the
distributions of the calculated site energies of MADN
molecules for different αHFX values, using αHFX = 0.25
(PBE0 functional) as a reference in all cases. Visually,
the distributions look very similar as most data points
cluster near the diagonal line. In Table I, we report the
minimum (Emin) and maximum (Emax) values of the en-
ergies and the standard deviation σ of the individual dis-
tributions, which are also shown in Fig. 3(f). All noted
variations in these quantities appear small. The data in
Figures 9 and 10 in the Appendix show that the obser-
vations on the total site energies also hold for the in-
dividual contributions of electrostatic and polarization
energies. This is also reflected by the small variations in
the respective standard deviations σel and σpolar listed in
Tab. I.

Interestingly, we find the biggest variation of 0.1 eV
in the values for Emin. This minimal energy (or rather
all the energies in the low-energy region of the distribu-
tions) can have a very significant influence on the charge
transport properties, depending on how much the site
energy differences are influenced in the charge transport
network. To further characterize the effect of differ-
ent αHFX values, we consider the largest absolute varia-
tion in the site energies depending on αHFX by calculat-
ing the Chebyshev distance DαHFX

= max
i

(|Ei(αHFX =

0.25) − Ei(αHFX)|). From the results listed in Tab. I,
one can see that on individual level the site energies can
vary substantially, with more than 0.1 eV. This variation
is larger than the recorded values of σ and with all αHFX

yielding the same mean site energy of -0.86 eV this could

indicate non-neglibible effects on charge transport.

C. Electronic couplings

Distributions and correlations compared with the
PBE0 reference for the electronic coupling elements cal-
culated with different values for αHFX are shown in Fig-
ure 4. The individual distributions appear very similar,
with a peak of log10[(Jij/eV)2] between -5 to -6 , and a
long tail of the distribution towards more negative val-
ues. The comparison with the PBE0 reference shows
that while there is a clear correlation between the results
for different values of αHFX, the spread in the order of
magntitudes of J2

ij can be very large especially for the
lower coupling regions. Overall, the squared electronic
coupling elements are found in a very wide range from
10−2 to 10−15 (eV)2 due to its exponential distance de-
pendence and sensitivity to mutual orientation of the two
involved molecules. Whereas the site energy distributions
discussed in the preceding section are well-defined in the
sense that each energy is unambiguously associated to
a physical entity – a molecule in the morphology –, the
coupling elements are evaluated for a neighborlist based
on a chosen cutoff as explained in Section II. Clearly, if
this cutoff is chosen to be large, a lot of hopping pairs
with very small coupling elements will be considered that
may not be relevant at all (or even unphysical) for charge
transport. Therefore, the increasing deviations for the
most negative values in Figure 4 may not be relevent
either.
To determine the range of log10[(Jij/eV)2] that are

significant for the charge dynamics, a percolation anal-
ysis is performed to find a critical threshold value for
the squared electronic coupling below which the largest
connected subgraph is identical to the full graph. This is
achieved by removing for a given value for Jc from the full
graph the edges with J2

ij < J2
c followed by the determi-

nation of the number of vertices in the largest connected
subgraph max(Nsub). Figure 5 shows the resulting de-
pendence of max(Nsub) on the critical value Jc. It is
apparent that for log10 J

2
c = −5, all vertices are in the

largest connected subgraph. The overall connectivity of
the charge transport network is therefore mostly affected
by the coupling elements larger than this threshold, and
the charge transport properties are expected to be more
sensitive to deviations for the associated edges. We also
note that overall, the results in Fig. 5 again seem to be
very similar for all αHFX studied in the work.

D. Time-of-flight calculations

From the analysis of reorganization energies, site ener-
gies, and electronic coupling elements for different values
of αHFX, it is not clear how the mostly on distribution-
level observed variations impact the overall charge trans-
port properties. To scrutinize the dependence of such a
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FIG. 3. Panels (a)-(e): Scatter plot of site energies of the MADN system for different values of αHFX vs the PBE0 (αHFX = 0.25)
reference. (f) Site energy disorder σ in eV for all values of αHFX.

TABLE II. Simulated ToF (in s) for different values of αHFX

in the full graph, with an additional cutoff on J2, and for the
case with no energetic disorder, respectively.

αHFX full Jij1(log10 J
2
ij > −5) ∆Eij = 0

0.00 6.4 · 10−9 7.5 · 10−9 1.9 · 10−10

0.05 7.9 · 10−9 8.1 · 10−9 4.1 · 10−10

0.10 1.6 · 10−8 1.6 · 10−8 4.0 · 10−10

0.15 3.0 · 10−8 3.1 · 10−8 4.0 · 10−10

0.20 2.1 · 10−8 2.5 · 10−8 4.5 · 10−10

0.25 9.5 · 10−8 9.7 · 10−8 7.2 · 10−10

material property, we now calculate the time-of-flight τ
and report the respective values in Table II. Here, we
refer with ”full” to time-of-flight obtained for the as-
calculated charge transport network. One can see that
τ varies by roughly one order of magnitude between
αHFX = 0 (6.3 · 10−9 s) and αHFX = 0.25 (9.5 · 10−8 s),
with an almost monotonous increase. When the squared
coupling elements with values below 10−5 (eV)2 are set to
zero (Jij1(log10 J

2
ij > −5)), one obtains only minimally,

but consistently, larger τ , corroborating the notion that
the very small coupling elements are of little relevance
for charge transport. Finally, we also consider the case in
which the energetic disorder is ignored (∆Eij = 0). Here,
one also can see (next to the generally shorter time-of-

flight) a consistent increase in τ , however only by a factor
of about 3.8 , a combined effect of the increased reorga-
nization energy and variations in coupling elements.

IV. UNCERTAINTY QUANTIFICATION AND
SENSITIVITY ANALYSIS

The previous section shows that different HFX affect
the calculated ToF. In this section, we use the Monte
Carlo method to estimate the range of the ToF given
a confidence level, followed by a sensitivity analysis to
determine which parameter contributes more to the vari-
ance of ToF.

A. Time-of-flight of diffusion

As discussed the ToF is calculated from the graph
with weighted edges defined by the electronic struc-
ture data (λ,E1, . . . , EN , J2

1 , . . . , J
2
Np

), where N is the

number of molecules (vertices) and Np the number
of molecule pairs (edges) in the neighbor list. We
can therefore consider that τ = τ(x) with x =
(λ,E1, . . . , EN , log10(J

2
1 ), . . . , log10(J

2
Np

)) as dependent

on M = 1+N +Np parameters with uncertainty, in this
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FIG. 4. Scatter plot of electronic coupling elements of the MADN system for different values of αHFX vs the PBE0 (αHFX = 0.25)
reference.
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FIG. 5. The maximum size of the subgraphs obtained in the
percolation algorithm as a function of critical value Jc.

case stemming from the possible choices of αHFX in the
exchange-correlation functional of the multiscale model.
Note that due to the data range for the electronic cou-
pling element as discussed in the previous section, we
consider log10(J

2) instead of J2. For MADN, we have
N = 1000 and Np = 8764 so that M = 9765.

Because the precise distribution of the uncertainties of
the M parameters is not known, we consider the maxi-
mum amount of uncertainties from a maximum likelihood
estimation based on the data obtained from the explicit
results for the different values of αHFX and the assump-
tion of normal distributions. In other words, each of the
parameters xi for i = 1, . . . ,M is assigned a normal dis-
tribution with N (E(xi),V(xi)), with E(xi) (V(xi)) the
mean (variance) of the respective data. Then, Monte-
Carlo sampling is used to obtain NMC = 50000 different
realizations of x, the respective time-of-flight is calcu-
lated from these samples, and the resulting distribution
P (log10(τ)) is statistically analyzed. Specifically, we con-
sider four different settings: in three settings, only one of
the parameters blocks (λ, {E} ,

{
log10(J

2)
}
) is sampled

while the values of the other blocks are set to their respec-
tive mean values, and we denote the resulting distribu-
tions as Pλ(log10(τ)), PE(log10(τ)), and PJ(log10(τ)), re-
spectively. In the fourth setting, all parameters are sam-
pled at the same time, yielding Px(log10(τ)). As these
distributions do not necessarily follow any specific ana-
lytic form, we estimate a 99% confidence interval around
the median using the equal-tailed percentile method.

The four respective distributions of τ in the MADN
system are shown in Fig. 6 together with the indicated
confidence intervals obtained from Monte-Carlo sam-
pling. Black dots at the x-axes are the data from the
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FIG. 6. Distribution of ToFs in the MADN system from
Monte Carlo sampling with a sample size NMC = 50000. The
red vertical lines indicate the lower bound and upper bound
of the 99% confidence interval around the median. The black
circles indicate the ToF obtained using explicit αHFX values.
Uncertainties considered are (a) in the eorganziation energy,
(b) in the site energy, (c) in the coupling elements, and (d) in
all simultaneously.

explicit calculations for the six αHFX values discussed
before. Considering first the three distributions with sin-
gle property sampling in panels (a)-(c), we find the con-
fidence intervals for log10(τ) of [−8.0,−7.4] for uncer-
tain λ, [−8.0,−6.5] for uncertain E, and [−7.9,−7.7] for
uncertain J , respectively. Interestingly, all three share
very similar lower limits of the confidence interval, while
the upper limits and the shape of the distributions dif-
fer significantly. While Pλ(log10(τ)) and PJ(log10(τ))
appear relatively symmetric, indictaing possible a log-
normal distribution of τ , PE(log10(τ)) is distinctly asym-
metric which might point to a normal distribution of τ
for uncertain energies. From the three distributions and
the confidence intervals one can see that the effect of the
uncertainty in the coupling elements on the time-of-flight
is small (factor of 2 on τ). The effect of uncertainty in
the reorganization energy is only slightly higher (factor
of four). Uncertainty in the site energies, in contrast, has
a much bigger impact on the estimates of τ . From the
distribution of Px(log10(τ)) in Fig. 6(d), one can see than
when all parameters are sampled, the result is dominated
by the effects from the uncertainty in the site energies,
with an overall similar shape and a confidence interval of
[−8.3,−6.6], corresponding to a range from about 5 ns to
about 250 ns in τ .

We note that the above analysis from sampling via in-
dependent distributions of the uncertain parameters as-
sumes that the parameters themselves are independent

or uncorrelated. Correlations in organic semiconductors
are typically found among the site energies when the
molecules are polar [34, 39]. MADN has a very low dipole
moment, and we find practically no spatial correlations
between the site energies, making the sampling approach
suitable for this material system.
Besides the inspection on the distributions for various

uncertain parameter (sets) as above, one can also quan-
tify the sensitivity of the time-of-fight to the respective
parameters by evaluating their contributions to the over-
all observed variance in τ . One way of decomposing the
variance of the model output into fractions attributed to
input parameters is the variance-based sensitivity analy-
sis using Sobol indices [40].
To measure the parameter xi’s contribution to τ =

τ(x) including all variance caused by its interaction with
other parameters {xk, k ̸= i}, the total Sobol index ST,i

is calculated as

ST,i =
Ex∼i

[Vxi
(τ |x∼i)]

V(τ)
. (12)

Here, x∼i denotes the vector of all entries of x but xi.
The variance of τ given a set of x∼i taken over xi is
Vxi(τ |x∼i) and Ex∼i [·] denotes the mean of argument (·)
taken over all factors but xi. We then consider based
on the structure of the vector x the Sobol index for the
reorganization energy as ST,λ = ST,1, for the site ener-

gies as ST,E =
N+1∑
i=2

ST,i, and for the coupling elements

as ST,E =
N+1+Np∑
i=N+2

ST,i. Using the quasi Monte Carlo

method[41] with a sample size NQMC = 1000 to calcu-
late ST,i, we find that ST,λ = 0.097, ST,E = 0.950 and
ST,J = 0.028. The Sobol indices corroborate the obser-
vation from the confidence intervals that the uncertainty
in the site energies gives the dominant contribution to
the variance of the simulated time-of-flight. Contribu-
tions from the reorganization energy and the coupling
elements are both small in relation, with the one of λ
slightly larger than the one of J . This is also in line with
the general observations on the distributions in Fig. 6.

B. Drift-diffusion Charge mobility

When an external electric field, F, is applied to the
system, the transport is not just diffusive but a drift-
diffusion process. The material property of interest is
then the drift mobility

µ =
vF

|F|2
, (13)

where v = s/τ is the effective velocity of the charge car-
rier and s is the vector connecting the initial and final
positions of the charge carrier. Here, we perform cal-
culations for six different field directions (positive and
negative Cartesian directions) with the source and sink
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FIG. 7. Distribution of the mobility µ for different values
of the externally applied electric field F as obtained from
uncertainty quantification using Monte Carlo sampling with a
sample size NMC = 10000. The red vertical lines indicate the
lower bound and upper bound of the 99% confidence interval
around the median. (a) |F⃗ | = 4 · 107V/m, (b) |F⃗ | = 5 ·
107V/m, (c) |F⃗ | = 6 · 107V/m, (d) |F⃗ | = 7 · 107V/m, (e)

|F⃗ | = 8 · 107V/m, (f) |F⃗ | = 9 · 107V/m.

conditions set accordingly. The electric field is taken ac-
count in the Marcus rate in Eq. 1 via an additional term
in ∆Eij given by eF · rij , where rij connects the center-
of-masses of molecules i and j. Finally, we define for
a certain field strength F = |F| the ToF drift mobility
µ(F ) is as the average over the six directions.

We perform such mobility calculations for the six ex-
plicit αHFX models as well as the Monte-Carlo sampled
uncertainty for six different values of F . The results are
shown in Fig. 7. While the distributions shift depending
on the strength of the applied field, the overall shape and
the width of the confidence intervals is very similar. The
width of the confidence intervals in log10(µ) decreases
from 0.9 at low fields (4 · 107 V/m) to 0.7 at a field of
9 · 107 V/m, corresponding broadly to a width of close to
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2 /(
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FIG. 8. Electric-field dependence of the mobility µ in the
multiscale modeled MADN system. The dash lines are Poole–
Frenkel plots obtained with specific αHFX values, and the
green shaded area indicates the 99% confidence interval es-
timated from the MC sampling with a sample size of NMC =
10000.

TABLE III. Poole-Frenkel parameters µ0 (in cm2/(Vs)) and

β (in
√

cm/V) of the multiscale modeled MADN, calculated
by the six different αHFX values.

αHFX µ0 β
0 4.0 · 10−3 1.0 · 10−3

0.05 2.1 · 10−3 9.3 · 10−4

0.10 1.0 · 10−3 1.5 · 10−3

0.15 8.0 · 10−4 1.6 · 10−3

0.20 9.3 · 10−4 1.3 · 10−3

0.25 2.6 · 10−4 1.8 · 10−3

one order of magnitude in µ. A stronger drift component
due to a larger external electric field seems to make the
mobility slightly less sensitive to uncertainties.

Figure 8 shows the plot of the charge mobility one log-
arithmic y-axis as a function of

√
F to reveal the elec-

tric field dependence of the type µ(F ) = µ0 exp(β
√
F )

as predicted by Poole and Frenkel [42]. We show the ex-
plicit results for the six chosen αHFX values together with
the confidence interval estimate from the uncertainty
quantification via Monte-Carlo sampling. In Table III
we also summarize the parameters µ0 and β extracted
from fits of the explicit data to the Poole–Frenkel ex-
pression. The values for µ0 vary from 2.6 ·10−4 cm2/(Vs)
to 4.0 · 10−3 cm2/(Vs), roughly one order or magnitude
depending on the chosen αHFX, in line with the un-
certainty from the Monte-Carlo sampling. The Poole–
Frenkel slope β in contrast is found to be much less
sensitive to uncertainties, with recorded values between
9.3 · 10−4

√
cm/V and 1.8 · 10−3

√
cm/V.
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V. DISCUSSION & CONCLUSION

One key observation of this study of Uncertainty Quan-
tification in multiscale models for charge transport in
organic semiconductors due to the choice of exchange-
correlation functionals in density functional theory by
systematically varying the Hartree–Fock exchange frac-
tion in hybrid functionals is the dominance of site energy
uncertainties in influencing the variability of the time-
of-flight and mobility predictions. In contrast, the un-
certainties in reorganization energies and electronic cou-
pling elements are shown to have a relatively minor effect.
This suggests that further efforts to enhance the accu-
racy of site energy calculations – potentially through im-
proved parameterization or advanced quantum mechan-
ical methods – could significantly improve the reliability
of multiscale modeling predictions. Interestingly, the re-
sults also demonstrate that the uncertainties in electronic
coupling elements, particularly those with very small
magnitudes, are less relevant for overall charge trans-
port. This aligns with the percolation analysis, which
indicates that coupling elements below a critical thresh-
old contribute minimally to the connectivity of the charge
transport network. Thus, simplifying approximations
in handling these low-value couplings could be justified
in specific scenarios to reduce computational complexity
without compromising accuracy.

Another notable finding is the robustness of field-
dependent mobility predictions. Despite uncertainties
in the underlying molecular parameters, the electric

field dependence of mobility exhibits relatively consistent
Poole–Frenkel behavior across the tested range of αHFX

values. This robustness suggests that multiscale models
retain predictive value for field-dependent trends, even
when parameter uncertainties are present. However, the
results also highlight the challenge of achieving quantita-
tive accuracy in charge mobility predictions, given that
the uncertainty range spans an order of magnitude. This
raises important considerations for interpreting simula-
tion results in the context of experimental data. For in-
stance, small differences in predicted mobility between
two materials or designs may not be statistically signifi-
cant given the intrinsic uncertainties.

Despite the progress made, there are limitations to this
study that warrant further investigation. First, the anal-
ysis is restricted to variations in αHFX as a proxy for
different exchange-correlation functionals. While this ap-
proach captures a significant portion of the uncertainty,
other factors such as basis set selection, dispersion cor-
rections, and model approximations may also contribute
to variability in the results. Expanding the uncertainty
quantification framework to include these factors would
provide a more comprehensive understanding of the ro-
bustness of multiscale models.

Furthermore, the study focuses on a single material
system, MADN, which exhibits moderate disorder. Ex-
tending the analysis to other OSCs with varying degrees
of disorder, charge-carrier types, or different molecular
morphologies would enhance the generality of the con-
clusions.
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FIG. 9. Panels (a)-(e): Scatter plot of the electrostatic contribution to site energies of the MADN system for different values
of αHFX vs the PBE0 (αHFX = 0.25) reference. (f) Site energy disorder σ in eV for all values of αHFX.
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FIG. 10. Panels (a)-(e): Scatter plot of polarization contribution to site energies of the MADN system for different values of
αHFX vs the PBE0 (αHFX = 0.25) reference. (f) Site energy disorder σ in eV for all values of αHFX.
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