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Chapter 1

Introduction

This chapter begins by introducing a material class, organic semiconductors, and
the requirements for their application in electronic devices. We will briefly dis-
cuss the associated experimental pathways to obtain devices achieving optimal
performance targets and highlight how computational modeling can guide in the
rational design of organic semiconductors. Particular attention will be paid to
multiscale modeling approaches and their respective methodological challenges
related to accuracy and reliability, both from fundamental and numerical perspec-
tives, leading to the three concrete problem statements to be tackled in this thesis.

1.1 Organic Semiconductors and Their Applications

Practically all modern electronics [1} [2 3]] are based on semiconducting materi-
als [4]. Inorganic semiconductors, such as silicon, have traditionally dominated
the field due to their well-understood properties and established manufacturing
processes. Despite their successes, there is a growing interest in alternative semi-
conductors driven by the need for more versatile, cost-effective, and flexible ma-
terials.

Organic semiconductors are a class of materials whose building blocks are
organic molecules, such as the ones shown in Fig. instead of elementary
atoms in case of inorganic semiconductors [5, |6]. As the interactions between
the building blocks are much weaker than in regular atomic lattices, the result-
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(a) (b) ()

Figure 1.1: Chemical structures of three molecules commonly used in organic semicon-
ductors: (a) Algs, (b) BCP, (¢) MADN.

ing materials are often spatially disordered and even form amorphous structures
at the mesoscopic scale [7]]. They are also inherently lighter than their inor-
ganic counterparts [8], which is beneficial for, e.g., portable and wearable de-
vices. Their easy processing from solution using techniques like spin coating [9]
or inkjet printing [[10, [11] facilitates low-cost, large-area fabrication of electronic
devices [12, [13] on flexible substrates [[14, 15, [16]. However, such shape flexibil-
ity of organic semiconductors means that molecular structures are easily altered,
significantly impacting their ability to conduct electrical charges and hence the
performance of the electronic device they are used in.

Figure shows a simplified schematic of a typical organic light-emitting
diode (OLED) consisting of a layered structure, including a cathode, an anode,
and intermediate layers comprising organic semiconductors that facilitate charge
transport and light emission. When a voltage is applied, electrons are injected
from the cathode into the electron transport layer, while holes are injected from
the anode into the hole transport layer. These charge carriers migrate toward
the central light-emitting layer, where they recombine to generate photons and
emit light. The efficiency and stability of an OLED depends significantly (but not
exclusively) on the charge transport properties in the electron and hole transport
layers and is crucial for achieving high brightness, low power consumption, and
extended device lifetime [17, 7, [18].

Charge transporting properties of the organic semiconductors also have sim-
ilarly high importance for applications in other opto-electronic devices, such as
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Figure 1.2: Schematic diagram of an OLED device structure. The device consists of
multiple layers, including the anode, which extracts and transports positive
charges (holes), and the cathode, which inserts electrons. The hole transport
layer facilitates hole movement toward the emission layer, where charge
recombination occurs, leading to light emission. The electron transport
layer transports electrons toward the emission layer, ensuring efficient charge
injection and recombination.
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Figure 1.3: Schematic diagram of the Time-of-Flight experimental setup. The gray
region between the anode and cathode electrodes represents the organic
semiconductor, with solid circles on the anode indicating the injected charges.
The electric field, denoted by F, is directed from the anode to the cathode. A
solid curve within the organic semiconductor illustrates the potential charge
transport pathway from the anode to the cathode.

organic photovoltaic cells [19} [20, 21]], organic photodetectors [22] 23], sen-
sors [24, 25| [26]], organic field-effect transistors [27, 28]].

1.2 Charge Mobility as Quantity of Interest

The primary property used to quantify charge transport in organic semiconduc-
tors is the charge mobility. While it is a material property, it is not a material
constant, as in general the charge mobility is influenced by external factors such
as temperature, charge carrier concentration, applied electric field (or voltage),
or in some cases the size of the material. On the macroscale, charge transport can
be seen as a drift-diffusion process and charge mobility additionally depends on
whether the system is in a steady-state or not.

In the following we focus specifically on the non-steady-state situation, as it is
more closely related to the operating conditions of organic semiconductors in de-
vices. One of the ways in which charge mobility is measured experimentally is in a
so-called time-of-flight setting [29, 30} [31]], which is illustrated in Fig. In this
setup, two electrodes sandwich an organic semiconductor of length L. Charges
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(holes or electrons) are injected at one side and migrate across the organic semi-
conductor towards the opposite electrode under the influence of an electric field
of strength |F| which is oriented parallel to the normals of the electrodes. The
time ¢ taken for a charge to travel from one electrode to the other, once detected,
is referred to as the time of flight (ToF). The charge mobility can be estimated as

_v-F L (1.1)
PR El |

Using this time-of-flight mobility as the quantity-of-interest for the design of
materials, experimental efforts focus either on improving the processing of the
material to obtain, e.g., less disordered morphologies or systems with fewer de-
fects and impurities, [32] [12, 133} [34] or on tuning the chemical details of the
molecular building blocks themselves [35] 13} 36]]. However, charge transport on
the material scale is a result of an intricate interplay between structural features
on micro- and mesoscale and the electronic properties of the molecular building
blocks. While the tunability of organic semiconductors along these two dimen-
sions (morphology and chemistry) holds in principle the potential to design of
materials with tailored electronic properties to meet the requirements of various
applications, disentangling the individual factors leading to the emerging observ-
able material characteristic is practically impossible from an experimental per-
spective. Therefore, experimental approaches can be somewhat trial-and-error
based, require substantial resources, and often lack a fundamental understanding
of the underlying mechanisms. Consequently, even when a molecule with desir-
able conductive properties is identified, the principles governing its performance
often remain obscure, hindering systematic design strategies for future materials.

1.3 The Role of Modeling

Computational approaches for modeling the charge transport processes in organic
semiconductors can play in crucial role in guiding the experimental material de-
sign efforts by zooming into the explicit dynamics of the electronic and atomic
degrees of freedom in the material, revealing fundamental processes and the in-
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terplay between electronic structure of molecular building blocks and the local
and global morphological details. Insight from such models should allow formu-
lating design rules on the one hand, and in silico prescreening of materials on the
other hand [37, 38} (39, [40].

Early efforts at modeling charge transport in organic semiconductors revolved
around descriptive, qualitative models rather than predictive, quantitative ones.
One of the seminal approaches is the Gaussian Disorder Model (GDM) [41]. It
is built on the premise that, due to the amorphous and disordered molecular ar-
rangement, charge carriers (electrons or holes) are localized [42], that is confined
to specific regions within the material. Consequently, charge transport is consid-
ered a carrier hopping process among two localized states i and j (i.e., single
molecules in organic semiconductors studied in this thesis) described by a transi-
tion rate w;;. Béssler further employs a cubic lattice to represent the localization
points (often considered the centers-of-masses of molecules) for the electronic
states and assigns them an energy E. The rate of transition between two states is
then proportional to the exponential of the energy difference: w;; ~ exp(E; — Ej).
Specifically, the energy F follows a Gaussian distribution, with the probability
density function given by

p(B) = (270) /2 exp(—E%/o?), (1.2)

where ¢ is the energetic disorder parameter. The GDM allows simulation of charge
transport as a sequence of individual transfer events and partially explains qual-
itatively the dependence of mobility on temperature, disorder, and charge con-
centration but shows discrepancies when compared to later experimental obser-
vations and lacks a fundamental interpretation of the underlying physics due to
its empirical nature [43]]. Later extensions considered an exponential density
of states (DOS) where the energies follow an exponential distribution, or a corre-
lated Gaussian disorder model when the state energies exhibit spatial correlations.
While these extensions improve in some cases the description of experimental re-
sults, they do not consider microscopic factors such as molecular shape, relative
orientation, and arrangement, which are crucial for optimizing organic semicon-
ductors.
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bi-molecular microscopic macroscopic device-scale
electron transfer  electronic dynamics transport observables

(a) (b) (d)

> 1

[ nm — = 10nm - = >>100 nm —

Quantum Chemistry kinetic models

Figure 1.4: Schematic of the multiscale model of charge transport. (a) Circles represent
localized states, and arrows indicate possible carrier transitions among
molecules. (b) The red curve illustrates a sequence of carrier hops between
molecules. (¢) A simple organic semiconductor device with an anode and
cathode, operating under the same conditions as in Fig. The red curve
represents a possible charge transfer trajectory from the anode to the cathode.
(d) An example of a physical observable at the device scale.

A predictive model of charge transport in disordered organic semiconductors
needs to start from the specific chemical and geometrical structure of the system
and calculate the electronic dynamics and eventually the charge mobility from
first principles. Due to the quantum nature of the electrons such an approach
should be based on solving the time-dependent Schrodinger equations for the
coupled electron-nuclear system. Obtaining a solution to this problem directly is
practically impossible for material systems like organic semiconductors, even with
commonly used approximate single-particle theories such as density-functional
theory. Instead, it is possible to build a multiscale model based like the GDM
and extensions on the idea of spatially localized electronic states and transitions
between them. However, in contrast to the GDM, the approach, as sketched in
Fig. is based on explicit structural details of the material at atomistic level
and explicit evaluation of the transition rates from first-principles theories [44].
The detailed theory and practice of this computational approach referred to as
multiscale model in this thesis will be discussed in Chapter Ultimately, the
multiscale model, like the GDM, reduces the charge transport to the dynamics on
a graph, whose vertices are the molecules’ centers-of-masses and the transition
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rates are used to define together with a distance criterion the weighted edges of
the graph.

1.4 Problem Statements

Realizing that the graph model is the central element of the multiscale model, we
refer to it as molecular charge transport network. One can distinguish three classes
of challenges for obtaining accurate predictions of the charge mobility associated
to different stages of the modeling process:

e the setup of the graph, which involves certain assumptions and approxima-
tions in solving the underlying classical and quantum models;

e the characterization and identification elements or regions in the network
that influence the charge dynamics;

e the theoretical and numerical methods used to extract the charge mobility.

These overall challenges help to define three concrete problem statements that
are at the core of the work presented in this thesis related to the following topics:

1.4.1 Accuracy of Charge Mobility Estimation

For a given molecular charge transport network, charge mobility is conventionally
obtained from methods like Kinetic Monte Carlo (KMC) or the direct numerical
solution of the master equation, a coupled system of ordinary differential equa-
tions for the time-dependent probablilities to find the graph in a specific state in
its state space. Both methods will be fully described in Chapter[3] What both have
in common is that they can be subject to convergence issues. For example, KMC
simulations often face poor sampling convergence due to spending a long time in
some low-energy states, leading to significant computational expenses and poten-
tially large errors in mobility estimates. Numerically solving the master equation
can have numerical stability problems. In both cases, these issues hamper the
use of the mutiscale-modeled molecular charge transport networks in exploring
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the fundamental aspects of charge transport and the accurate prediction of the
quantity-of-interest. The first problem statement therefore is:

How to obtain accurate charge mobility predictions from molec-
ular charge transport networks for a variety of different physical
situation?

1.4.2 Uncertainty of The Multiscale Model

As will be explained in detail in Chapter [2] the multiscale model framework used
to set up the molecular charge transport network comprises a combination of
different modeling techniques, ranging from classical molecular dynamics sim-
ulations to quantum and hybrid quantum-classical calculations. Each of these
techniques requires or intrinsically contains certain approximations or parameter
choices, which in turn lead to uncertainties in the details of the molecular charge
transport network and, ultimately, in the predictions of the charge mobility. The
uncertainty level might limit the usefulness of the computational model for ma-
terials design. Therefore, the work in this thesis focuses on the second problem
statement:

Is it possible to quantify the uncertainty in the predictions of charge
mobilities stemming from modeling choices in the construction of

the molecular charge transport network?

1.4.3 Identification of Traps in Charge Transport Networks

So-called traps are known to have a significant impact on the charge mobility.
They are individual molecules or clusters of molecules from which it is difficult
for the charge carriers to escape. The physico-chemical origin of such traps can
be range from structural defects to impurities, but traps can also be the result of
large energetic disorder with or without strong spatial correlations. It is typical
that one observes a significant increase of the effective mobility depending on the
number of charge carriers once all traps in the system are filled and the excess
charge carriers are not subject to trapping effects [45} 46,47, 48].
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There are numerous experimental methods to determine the origin, density,
and composition of charge carrier traps in organic semiconductors. For instance,
space-charge limited current measurements [49] detect trap density based on
device-level current measurements. The organic field-effect transistor method [50,
51] measures the overall density of trap states using gate voltage, which re-
lates the trap to the molecular energy level of the organic semiconductors. For
finer trap identification, electric force microscopy [52]] and Kelvin probe force mi-
croscopy [53] techniques utilize electrons to make a picture of the topology. They
can provide high spatial resolution images, correlating surface topography with
traps.

However, these experimental techniques cannot link specific molecular struc-
tures to traps, and the equipment is often cost-prohibitive. Although multiscale
modeling has been employed to simulate organic semiconductors, there is cur-
rently no computational method to detect traps in these models. Developing a
computational method to identify trapping molecules in modeled organic semi-
conductors would be significantly insightful. The third problem statement is:

How can traps of different character uniquely be identified in a
multiscale-modeled molecular charge transport network?

1.5 Thesis Outline

With the above introduction, this thesis is organized as follows: Chapter [2] intro-
duces the methodology of the multiscale model used to study charge transport
in organic semiconductors. It covers the relevant theory, concepts, and models
of multiscale modeling, followed by a description of the simulation procedures.
Chapter (3| presents the theories for calculating mobility using the charge transi-
tion rates. Specifically, the master equation and kinetic Monte Carlo methods are
introduced, along with a graph random walk (GRW) methodology, which calcu-
lates charge mobility from the expected hitting time of a continuous-time random
walk, addressing the first problem statement. Chapter [4] verifies the GRW method
by comparing it primarily with the KMC method. It also discusses the perfor-
mance of the GRW method under various scenarios, followed by a comparative
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analysis of the results and their implications for uncertainty quantification. Fol-
lowing this, Chapter |5|focuses on the uncertainty quantification of the multiscale-
modeled charge mobility, based on quantities of interest obtained from the GRW
method. The findings related to uncertainties in the model are presented, along
with a discussion on their implications for the model’s reliability and accuracy.
Chapter [6]introduces a trap-identification method for multiscale-modeled organic
semiconductors. The chapter begins by defining traps in organic semiconductors,
discussing their significance, and reviewing existing trap-detection methods. The
development of the method based on spectral clustering is then presented, fol-
lowed by the results and robustness of the trap-identification approach. Finally,
Chapter [7| concludes the thesis by summarizing the main findings and contribu-
tions to the field. It also suggests potential directions for future research based on
the results.



Chapter 2

Multiscale Model of Charge Transport

Adapted from the book chapter ” Time-Dependent Density Functional Theory
and Green’s Functions Methods with the Bethe—Salpeter Equation by W.
Scharpach, Z. Chen, V. Sundaram, B. Baumeier, in Comprehensive
Computational Chemistry (First Edition), edited by Manuel Yafiez, Russell J.
Boyd, Elsevier, 84-115 (2024)” and the paper ” Automatic Identification of Traps
in Molecular Charge Transport Networks of Organic Semiconductors, Z. Chen, P.
van der Hoorn, B. Baumeier, arXiv preprint 2411.07136 (2025)”.

This chapter provides a concise summary of the methodological background
of the elements of the multiscale model of charge transport that is at the center
of this thesis. As charge transport involves electrons, we start from the time-
dependent many-electron Schrodinger equation as the most general quantum the-
ory for the dynamics of the coupled electron-nuclei system. We introduce typical
approximations, such as the separation of nuclear and electronic degrees of free-
dom, density-functional theory as an effective single-particle theory, and classi-
cal molecular dynamics (MD), and discuss the differences between adiabatic and
non-adiabatic dynamics. For the latter, we revisit Fermi’s Golden Rule for time-
dependent perturbations in application to electron transfer processes to derive
the Marcus rate expression. In the second part of the chapter, we will focus on
practical aspects of the application of various numerical methods in the overall
multiscale modeling framework used in this thesis.

13



14 Multiscale Model of Charge Transport

2.1 Multiscale Model: Theory

In the following, Hartree atomic units are used, i.e., with a reduced Planck con-
stant 4 = 1, all charges in units of the elementary charge, positions in units of the
Bohr radius, and masses in units of the electron mass. We consider a molecular
system comprising M nuclei and N electrons. The coordinates R,, of the indi-
vidual nuclei with charges 7, and masses M, and r; of the individual electrons
are combined into the variables R = (R1,Rg,...,Ry/) and ¥ = (ry,re,...,TN),
respectively.

2.1.1 Many-electron Schrédinger Equation

Quantum mechanics describes the state of a system by the wavefunction ¥ (¥, R, t).
With the wavefunction, the probability of finding the system in a state is

1U(F, R, t) 2N rd* MR (2.1)
given that
/ O(F R, )PV ENR - 1. (2.2)
R3(M+N)

Denote the non-relativistic many-body Hamiltonian as

1 M 1 & ZaZs
H=--Y M,A - A
2; B8R F 5 Z R, —Rg| Z ity Z |I‘z—r3|
= a,ﬁ 1, =1 i,j=1,
a#B i#]
. N .
Thuc Vnuc»nuc Ta Velel (2 . 3)
>y
o I~ Ral
%uc-el

where 7" and V are the respective operators for the kinetic and potential energies
involving the nuclear (nuc) and electronic (el) subsystems. The time evolution of
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the many-body wave function ¥ (¥, R, t) is obtained by solving the time-dependent
Schrodinger equation [54]]

HU(T,R,t) =i ¥(T,R, 1) (2.4)

and can be used to calculate the expectation value of an observable described by
an operator A as

A(t) = (A)g = / (T, R, t) AV (F, R, t)d*V vd* V' R. (2.5)

This allows — formally — to extract information about structural, electronic and
optical properties of the system, as well as the dynamic response to an external
perturbation (described by an additional potential term in Eq. (2.3)) as measured,
e.g., by injecting external charges.

In practice however, Eq. is exactly solvable only for M = N = 1, which is
a hydrogen atom, so we will need to explore several approximations to make the
problem tractable. The standard method of solving a partial differential equation
such as Eq. is the method of separation of variables in which one makes
a product function Ansatz, i.e., U(¥,R,t) = ®(¥,R)Y(¢). If the Hamiltonian in
Eq. is not explicitly time-dependent, its expectation value, the total molec-
ular energy F, is constant according to Eq. (2.5), and the time evolution of the
wave function is given by Y(¢) = C exp (—iEt). The spatial component ®(¥, R) of
the wave function and the total energy are obtained as solutions of the stationary
Schrodinger equation

H®(T,R) = E®(F,R). (2.6)

Note that in Eq. both ¥ and R are explicit dynamic variables. Using the
Born-Oppenheimer separation and the adiabatic approximation [55]], the nuclei
are considered as fixed and generate a static external potential in which the elec-
trons are moving. To express this situation in formal terms, we consider a fized
arrangement of nuclei R. The Hamiltonian H, representing the electronic system
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that interacts with the fixed nuclear configuration is

I:Iel = ﬁel(ﬁ) = Tel + Vnuc-el (ﬁ) + Vsl-el . (2'7)
——— ~——

1-electron operator ~ 2-electron operator

In this situation, R is no longer a variable of the electronic system, but a fixed
parameter for the electronic degrees of freedom. The corresponding stationary
electronic Schrodinger equation is given by

A~

Hel(ﬁ)q)u(f; ﬁ) = Eu(ﬁ)q)u(f; ﬁ)v (2'8>

where {®,(T;R)} is a set of adiabatic electronic wave functions with state v.
Those can be used as a basis to expand the molecular wave function ®(t,R)
according to

o(r,R) =) E,(R)2,(%;R). (2.9)

Substituting these Born-Oppenheimer expanded wave function into Eq. (2.6) yields [56]
a coupled set of equations for the coefficients {Z,(R) }:

E=, (ﬁ> = (EV (ﬁ) + Tnuc + Vnuc—nuc) Ey(ﬁ) + Z Ayugu(ﬁ). (2.10)
I

The integrals A,,, are matrix elements of the transition between electronic states
v and p induced by the dynamics of the nuclei. In the adiabatic approximation, it
is assumed that A, = 0, i.e., there are no transitions between different electronic
states, and the nuclear motion for each electronic state v is determined by

EE,(R) = (E (R) + Thue + Vnuc_nuc) =, (R). (2.11)
This describes the motion of the nuclei in a potential energy surface (PES):

U,(R) = E,(R) + Vauenue(R). (2.12)



Multiscale Model of Charge Transport 17

== empirical PES
= quantum PES

Potential Energy

Collective Coordinate

Figure 2.1: Harmonic empirical approximation (red) of the quantum potential energy
surface (black).

2.1.2 Molecular Dynamics

Instead of solving the nuclear Schrédinger equation Eq. (2.11)), it is possible to ap-
proximate the dynamics of the nuclei within the framework of classical mechanics.
For a given quantum PES U, as the one sketched in Fig. one can construct a
classical Hamiltonian

o~ Pa(t)Pa(?)

R(t),P@1) =) ——2+U,(R(t 2.13
PR, P(0) = 3 = e + (R, (2.13)
where the P(t) are the momenta of the nuclei. Specifying the initial conditions,
i.e., the initial positions and momenta of a collection of particles, determines the
system’s evolution over time. For each particle «, the time-dependent trajectories
R.(t) and P,(t) are governed by Hamilton’s equations of motion (dropping the
explicit time-dependence for clarity):

iR, OH(R,P)

di OPa (2.14)
dP,  OH(R,P)

at R,
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For details on how to numerically solve these equations, including discussions
about the different statistical ensembles, we refer the reader to Ref. [57]. Using
the quantum PES U, (R) in H(R,P) is referred to as ab-initio molecular dynam-
ics. However, even with the approximations to the full Schrédinger equation that
will be introduced in the following sections, the computational cost for such sim-
ulations is enormous, as the quantum PES needs to be recalculated at each time
step. To reduce the cost, empirical approximations can be made to the quantum
PES as sketched also in Fig. This step involves to expand the full PES of
the complete set of dynamical variables into two- (bonds), three- (angles), four-
body (dihedrals), and higher-order terms, and approximating each of them with a
model function, such as harmonic potentials for bonds and angles. The collection
of all such model functions is referred to as a force field, and the evolution of the
Hamiltonian system as classical molecular dynamics.

2.1.3 Density-Functional Theory

Density-functional theory (DFT) offers an alternative to the electronic Schrodinger
equation by reformulating the problem in terms of the electron density n(r) rather
than the many-body wave function. The electron density (suppressing the para-
metric dependence on R) is

n(r) =N |®(T)|2dry - - - dry. (2.15)

R3N-3

The foundation of DFT lies in the two Hohenberg—Kohn theorems [58]], which
relate the ground state to the electron density:

1. The density ny, which minimizes the ground-state energy, uniquely deter-
mines the external potential Ve (r) acting on the electronic system. The
ground state ® is a one-to-one functional of the particle density n(r).
(Note that in this theorem, external potentials are considered equivalent if
they only differ by an additive constant.)
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2. The energy functional
Eln(m)] = [ vex(6)n(r)dr + @+ Vaal®) (2.16)

obeys a variational principle with respect to the particle density n(r) and is
minimal for the ground-state density ny(r):

E[no(r)] < En(r)]. (2.17)

These two theorems restrict DFT to studies of the ground state. From the Hohenberg—
Kohn theorems, it follows that the exact ground-state energy and density can be
found by minimizing a universal energy functional E[n(r)] under the constraint
that [n(r)d*r = N, so

5716(1') {E[”(r)] —h (/ n(r)d’r - Nﬂ =0 (2.18)

for n(r) = no(r). The Lagrange multiplier . can physically be interpreted as a
chemical potential. However, the expression of the functional in Eq. (2.16) is un-
suitable for this purpose, as terms for the kinetic energy and the electron-electron

interaction are not expressed as functionals of the density. To work around this
problem, Kohn and Sham proposed two approximations. First, they introduced
a fictitious system of N non-interacting electrons reproducing the exact ground-
state density, described by single-electron wave functions ¢;(r). The kinetic en-
ergy Ti[n(r)] for such a non-interacting electron system is

N
Tin(r) = -5 > [ iw)Asiwdr, (2.19)

For the electron-electron interaction, one splits off the classical Coulomb interac-
tion, called the Hartree energy

Eyln(r)] = / Md%d%’, (2.20)

v — |
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so that the Kohn—Sham (KS) energy functional reads
E®[n(r)] = Ti[n(r)] + /vext(r)n(r)dr + Eun(r)] + Exc[n(r)]. (2.21)

Here, the ezchange-correlation functional Exc[n(r)] combines the differences of the
true electron-electron interaction energy with all quantum effects and the classical
Hartree energy as well as errors made in the kinetic energy expression:

Exc[n(r)] = (T[n(r)] = Ts[n(r)]) + (Eeraln(r)] — Euln(r)]), (2.22)

where T'[n(r)] is the true kinetic energy functional, and FEg.¢[n(r)] is the true
electron-electron interaction energy. Instead of finding the ground-state energy
via variation with respect to the density Eq. (2.18), one can now perform a varia-
tion of Eq. to find a set of equations to determine the orbitals ¢; such that
the density n(r) minimizes EXS[n]. This yields a set of effective single-particle
equations known as the Kohn-Sham equations [59]

{—;A + vext(r) + vaaln(r)] + ‘W} K () — 2K 6KS ). (2.23)

where ¢X5 is the Kohn-Sham orbital with the effective Kohn—-Sham Hamiltonian:

d Exc[n(r)] .

o) (2.24)

N 1 1

Hys = _EA + vgs[n(r)] = _iA + Vext(r) + vu[n(r)] +
Note that the X5 are formally only Lagrangian multipliers used to introduce the
constraints that [ ¢¥(r)¢;(r)d*r = 1 in the minimization, but are often interpreted
as effective single-particle energies.

Two points are noteworthy about Eq. (2.23)). First, the variation of the exchange-
correlation energy functional defines a multiplicative exchange-correlation poten-
tial

S Exc[n(r)]

= (2.25)

Uxe[n(r)] =

As the exact form of Fy.[n(r)] is unknown, one has to resort to physically moti-
vated approximations with varying accuracy [60, |61} 62]. Second, both vy[n(r)]
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and wvxc[n(r)], needed to determine the ¢;, depend on the density, which is in turn
determined from the ¢;, requiring a self-consistent procedure to find the solutions.

2.1.4 Marcus Rate Theory

Despite the use of DFT for the calculation of molecular energies and wavefunc-
tions, the coupled dynamics of electrons and nuclei in charge transfer present
significant computational challenges due to the disparity in their respective time
scales. A potential solution to this issue involves treating the charge transfer as
transition events between the localized states. This section will introduce the
Marcus rate theory [63] [64] starting from two-level quantum systems and time-
dependent perturbation theory.

We start out from a model of a coupled donor-acceptor complex and its adia-
batic PES. Using bra-ket notation, let |[+) and |—) be two eigenstates of the cou-
pled system with energies ¢, and ¢_, respectively. The donor-acceptor Hamilto-
nian HPA can then be written in its adiabatic representation as

= ey |4) (4] + e |-) (-] (2.26)

However, as these adiabatic states of the coupled system are often not known,
one instead considers two states of the uncoupled system, |D) and |A), which are
solutions to Hp [D) = ep [D) and Ha |A) = ea |A), respectively. With these the
Hamiltonian of the two level system can be written in its diabatic form as

HY2 = 21, D) (D] + e |A) (A] + Jpa |D) (A| + Jap |A) (D], (2.27)

where Jpa = J}, is the coupling between state |1) and state |2), which also equals
Joa = (D|HPA|A). The energies of the coupled system can be obtained from
Eq. (2:27) with the Ansatz |+) = & |D) + ¢i |A), yielding

E4 = (61) +ea \/(ED — 5A)2 + 4|JDA‘2) . (2.28)

N =
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Fermi golden
rule

1 1
4
@ qc 4ga q
Figure 2.2: Potential energy surfaces of the donor and acceptor as a function of collective

variables. The transfer rate due to tunneling near the crossing point is
calculated using the Fermi golden rule.

The diabatic representation also allows invoking Fermi’s Golden Rule to esti-
mate the rate for a transition between the two diabatic states, according to:

2w
WDA = f|JDA‘25(5D — EA). (2.29)

Figure|2.2|shows the extension of the idea of two-level system to include some
(vibrational) degree of freedom ¢, generalizing the energies in Eq. to poten-
tial energy surfaces, here specifically showing the two PES Up(q) and Ux(q) of the
diabatic states, respectively. The adiabatic PES are then, cf. Eq.

U+(a) = 5 (Ula) + Un() % V/(Tla) ~ Ua@)2 + doa@)) . (230

The value ¢ is the crossing point at which the two PES intersect. In this picture,
for electron transfer to occur, the system must approach from the donor state the
crossing point. The inclusion of a vibrational degree of freedom also needs to be
reflected in Fermi’s Golden Rule.

Marcus theory [63,[65] proceeds based on the following assumptions:
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1. The charge transfer process is non-adiabatic, meaning the molecular vibra-
tional motion is much faster than the electron’s motion.

2. The temperature 7T is high: kgT > huy;,, Where vy, is the vibrational fre-
quency, and kg is the Boltzmann constant. This condition allows a classical
description of vibrational modes and a continuous density of states.

3. Averaging is performed over a large ensemble of donor-acceptor complexes
(states), corresponding to the thermal equilibrium distribution function.

The potential energy surfaces of the donor, Up(q), and acceptor, Ua(q), can
be approximated as parabolic harmonic functions of the collective variable ¢ (in
vibrational coordinates), along which charge transfer occurs:

1
Un(q) = U + B 2o(q — am)?, (2.31)

where vy, is the vibrational frequency, and m = D, A. Averaging over the Boltz-
mann distribution, f(q) = Z 'e~Up(@/kT where the partition function Z =
J, e PO/BT yields:

27

aon = [ F(@1IonPoUbla) ~ Un(@)) da. (2.32)

Due to the j-function, the crossing point ¢. must be determined to evaluate the
integral. Expanding

Un(q) — Uala) = US — UR + =22 (g — a0)” — (4 — an)?)

Wib, 2 2 (2.33)
= AEpa — tib(gp — qa)q + T(QD —qa)
where AEpa = U§ — Up. The crossing point is then:
AE + Wib (2 _ 2
ge = DA 2 (qD qA) ) (234)

VVib(QD - QA)



24 Multiscale Model of Charge Transport

Assuming further that Jpa does not depend on ¢, the electron transfer rate be-

comes:
2 | Jpal? ( yib(ge — CID)Z)
WpA = — exp | ——dbaze AL ) (2.35)
h \/2mkpTvyip (qp — qa)? 2T
Defining the reorganization energy as:
Wyib 2
Apa = T(QA - )%, (2.36)

and substituting Apa into equation Eq. (2.35)), the Marcus rate for charge transfer
from donor to acceptor is:

_ |Joal? & (AEpa — Apa)?
AT T\ kT Apa MpaksT ) (2:37)

With the transfer rate theory described in this section is the central aspect of
the multiscale model of charge transport. The energies U3 and Uy, the reorga-
nization energy Apa, and the electronic coupling element Jpa can be calculated
for given chemical and structural arrangements in a material system from the
quantum and classical methods introduced in this section. Having introduced

the theory of the multiscale model, the next section will introduce the specific
implementation of the multiscale model.

2.2 Multiscale Model: Practice

This section briefly introduces the practical aspects of the multiscale model for
charge transport in organic semiconductors. As indicated in the Introduction
(Chapter [1)), the multiscale model maps the molecular system of an organic semi-
conductor into a weighted, directed graph, facilitating the computational model
of charge transport. Denoting the graph as G(V, W), then the set of nodes V
represents the molecules, and the adjacency matrix W has its element w;; being
the Marcus rate from molecule 7 to molecule j (note that these indices replace
the D and A in the previous section). As shown in Fig. the multiscale model
consists of the following computational procedures:
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Figure 2.3: Summary of the multiscale model that maps a molecular structure into
a directed graph. (a) Molecular structure generated from classical MD
simulation. (b) Components and corresponding calculation scheme of the
Marcus rate. (¢) Output of the multiscale model, represented as a graph
with nodes depicted by circles. Each node is connected to neighboring nodes
whose closest-contact-distance is within a cutoff value, as indicated by the
dashed circle. The charge transfer rate from molecule 7 to molecule j, w;,
is calculated using the methodologies of the multiscale model. For clarity,
the rest of the directed edges and their corresponding weights are omitted.
The arrow indicates that the multiscale model maps a molecular structure
uniquely into a directed graph.

1. Classical MD simulations with empirical force fields are employed to gener-
ate the morphology of the organic semiconductor.

2. DFT calculation is performed on a single molecule to obtain the ground state
electronic properties including the reorganization energy. This procedure is
called the geometry optimization of a single molecule.

3. Electrostatic potential calculations based on the DFT parametrized electronic
properties are performed to obtain the energy difference.

4. DFT calculation on the DA complexes to obtain the coupling elements.

5. Calculation of Marcus rates and construct the graph, where each node rep-
resents a molecule (localized state) and the edges represent the Marcus rate
between the molecules. Since charge transfer only happens between the
pair of molecules whose closest contact distance is close, each node is con-
nected to other nodes within a cutoff distance.
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The integration of the above methodologies enables the multiscale model to
capture the complex interplay between molecular electronic structures, spatial
arrangements, and morphological inhomogeneities. By mapping these factors
into a graph, the multiscale model facilitates the detailed study and modeling of
the charge carriers transport using the kinetic models [66, 67, 68]]. Below we will
focus on the computational details in determining the molecular morphology and
the physical quantities A;;, AE;;, and J;; as they enter the Marcus rate.

2.2.1 Computational Details of Molecular Dynamics

While having different molecular building blocks, the explicit molecular materials
we will use as study systems in Chapters 5| and [6] both are amorphous bulk ma-
terials. To obtain structural information with classical molecular dynamics, the
identical computational procedure is used in both cases. Atomistic molecular dy-
namics simulations are conducted using the GROMACS software package [69],
employing a gromos54a7 type force field obtained via the tool Automated Topol-
ogy Builder [70]. Initially, 1000 molecules are randomly placed in a cubic cell
with a side length of 10 nm. Periodic boundary conditions are applied throughout
in all three spatial directions. After energy minimization, the system is simulated
for 1ns at a constant temperature of 300K and a constant pressure of 1bar in
the NpT ensemble using the V-rescale thermostat [71] with the coupling time
constant 0.1 ps and the Parrinello-Rahman barostat [72]] with a time constant for
pressure coupling 2 ps. The leap-frog algorithm [[73]] is used to integrate the mo-
tion equation Eq. with a time step of 1fs.

In the next phase, we employ simulated annealing to first increase the tem-
perature to 800K during a period of 0.5ns, i.e., well above the glass transition
temperature of the material. The system is maintained at the temperature for 1 ns
before cooling back down to 300 K during a period of 0.5 ns. Such heating-cooling
cycle is repeated three times. After this simulated annealing, a production run is
conducted for 2 ns using the NpT ensemble. The final configuration is chosen for
the rate calculation using multiscale model methodologies.
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2.2.2 Computational Details of Marcus Rate

The Marcus rate depends on the physical quantities A;;, AE;;, and J;;, which are
all related to quantum-level calculations in the framework of DFT in this thesis.

Since the molecules are in an environment consisting of many other molecules,
classical mechanics methods are required to evaluate electrostatic-related forces
using all the atomic charges obtained from the charge density due to DFT calcula-
tions.

Solving the Kohn-Sham equations Eq. (2.23) provides information about the
effective single-electronic wave functions ¢;(r) and associated energies ¢;, and

N
with that the charge density is determined as n(r) = 3 |#;(r)|*. A self-consistent
=1

solution to the Kohn-Sham equations corresponds to finding the ground-state
density po that minimized the total energy of the system U|n(r)] = E¥[n(r)] as

given by Eq. (2.21).

To solve Eq. (12.23) self-consistently, the Kohn-Sham orbitals ¢;(r) are expanded
in terms of a chosen basis set {(r)}:

&1(r) =Y clapalr) (2.38)

«

where ¢, are the expansion coefficients, and ¢, (r) are the basis functions. Substi-
tuting the basis set expansion into the Kohn-Sham equation and projecting onto a
basis function ¢3, we obtain:

> {pslHislva) = €1 calplPa)- (2.39)

«

This can be written in matrix form as: ) HgaCla = €1 ), SBaCla> OF
Hc; = ¢/Sc, (2.40)

where H : Hg, = (¢5|I:IKS|QOQ) is the Hamiltonian matrix, and S : Sg, = (¢3|¢a)
is the overlap matrix element.
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Figure 2.4: Potential energy surfaces of (a) the donor and (b) the acceptor in both charged
and neutral states, denoted by the superscripts ¢ and n. The superscripts
N and C refer to the neutral and charged structures of the donor/acceptor,
respectively. After the charge state is altered, both molecules relax their
nuclear coordinates. If all vibrational modes are treated classically, the
reorganization energy is the sum of the donor’s discharge energy, Af', and
the acceptor’s charge energy, AL°: Apa = AR + AL°.

Reorganization Energy To calculate the reorganization energy A;;, Equa-
tions and can be solved for different total charge states x = n,c
and corresponding equilibrium geometries X = N,C, where n and N stand for
"neutral" and c and C for "charged". The respective total energies will be denoted
in the following as U*X, dropping the explicit mention of the functional depen-
dency on n(r) for compactness. According to Fig. the reorganization energy
A;j for charge transfer from molecule i to molecule j as it enters the Marcus rate
equation Eq. can be calculated as:

Ay =UPC —UMN +UN - USC. (2.41)

Site energy difference The term AFE;; = E; — E; entering the Marcus rate is
the energy difference between two sites 7 and j (which refer to localized states
in the material). This energy difference is crucial as it directly influences the
rate of charge transfer between these sites. Each site energy F; is defined as
the difference between the total energies of the system in which molecule ¢ is
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carrying a charge and the system in which molecule i is not carrying a charge.
Mathematically, this can be expressed as:

E; = ES — B, (2.42)

where EY represents the total energy of the system when molecule i is charged,
and E} represents the total energy when molecule i is neutral. This difference cor-
responds to the ionization potential in the case of hole transport and the negative
of the electron affinity in the case of electron transport.

The total energy of a charged or neutral molecule, EX (where x denotes either
the charged state c or the neutral state n), is composed of several contributions
from different physical mechanisms. These contributions can be written as:

EZX _ Uz‘XX + E;{,el + E;{,polar’ (2'43)

where each term represents a specific energy component:

e UX is the intramolecular contribution from single molecules. This term
includes the energy associated with the electronic structure of the molecule
and changes due to the addition or removal of a charge.

Ex,static

y is the contribution from static intermolecular interactions. These

interactions arise due to the fixed positions and orientations of neighboring
molecules.

E*P js the contribution from polarization effects. When a molecule is

charged, it induces a polarization in the surrounding medium, which in
turn affects the energy of the charged molecule. This term accounts for the
energy change due to this polarization.

These detailed components of EY is essential for accurately modeling charge trans-
port in organic semiconductors. The intramolecular contribution U* can be calcu-
lated using Eq. (2.21)), while the static and polarization contributions often require
classical mechanics methods which consider the contributions due to inhomoge-
neous molecular environments such as packing, orientation, and correlation.
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In the multiscale model here, we employ a point charge representation [74]
for the electrostatic potential of charged and neutral molecules. Specifically, the
atomic charge is derived from the DFT potential energy surfaces according to the
CHELPG (Charges from electrostatic potentials using a grid-based method) pro-
gram. The main goal of the CHELPG method is to determine atomic charges, ¢;,
that best reproduce the electrostatic potential (ESP) calculated from the molecular
wavefunction. This is done by minimizing the difference between the calculated
ESP and the ESP generated by the fitted charges at a set of grid points around the
molecule. Using the determined atomic charges, the electrostatic energy contri-
bution is

X el qaz qbk
2.44
T I Ry (2:44)

ai by,k#i

where ¢ is the vacuum permittivity, a;, b, denotes the atoms in molecule 4, k, ¢
are the partial charge of atom « when molecule i is in state x.

Ppolar \ve use the

To account for the effects of polarization, and to evaluate E;"
model of distributed atomic dipole polarizabilities (Thole model) [75]. The de-
tails of this method are as follows. Firstly, evaluate the electric field at atom a

of molecule 7, ﬁé?) created by all atomic partial charges, then the induced dipole

moment ﬁgl) are computed. In this first step, intramolecular interactions are ex-

cluded. Secondly, induced dipole moments are iteratively refined as u(kﬂ) =
wFéi )Ozai + (1 - )/,Lgi). Here «,, is the isotropic atomic polarizability and w
is a damping constant (w = 0.5 is used in this work) for successive relaxation.
The following electric fields are then computed with the induced dipole moment
which now includes the intra-molecular interactions. The process is repeated un-

til Z i) — i) < 10~5Debye. In conclusion, EX® + EXPPT is a function of

all atomlc partial charges ¢, and isotropic atomic polarizability a,,. For a given
molecular structure, the sum of the electrostatic energy and the polarization en-
ergy, EX+ E¥P°" i uniquely determined, so as ;. Practical calculations of the
site energies are performed using the VOTCA software [39, 76, 77, 78]].

Electronic Coupling Element The coupling element between two molecules
¢ and j describes the coupling between two localized states, approximated by
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monomer single-particle wavefunctions |¢;) and |¢;). Throughout the thesis, the
frontier orbital of interest is the HOMO because the charge carriers are holes. The
frontier orbitals of a dimer, that is the adiabatic energy surfaces, result from the
interaction of the frontier orbitals of monomers and can be expanded in terms
of |¢;) and |¢;). The expansion coefficients C can be determined by solving the
generalized secular equation

(H— ES)C =0 (2.45)

where the Hamiltonian matrices H and the overlap matrices S are written as:

€; JO-
H = Y
o J2 e
o (2.46)
S — 1 Sij
C\S; 1

with e; = (¢s| HRs|61), € = (65| HRs|b5), Ty = (q{i!ﬁx?st) and S;; = (¢i|¢;) with
bra-ket notation. The Hamiltonian of the dimer HZ (see Eq. (2.24)) is diagonal in
its eigenbasis {|¢~)} with eigenvalues {¢7}, so HR; = diag(¢?). It is noteworthy
that the monomer orbitals ¢; and ¢; are not orthonormal in general, so that S # 1.

To facilitate the computations, it is necessary to transform Eq. (2.45) into a
standard eigenvalue problem of the form H*C = EC. Such a transformation [[79}
80, 81]] is achieved by:

Heff — §71/2H7871/2 (247)
where S™/2 can be evaluated [81] as:
1
512 0
s12=u| o o |U" (2.48)
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where the columns of the matrix U contain the N eigenvectors of the matrix
S, and s, ..., sy are the associated eigenvalues. Applying this decomposition to
Eq. yields an effective Hamiltonian matrix H*f in an orthonormalized basis,
and its entries can be directly identified with the coupling elements:

E; Jij

HeT = (2.49)

Ji‘ €5

Applying Eq. (2.47) to the elements of H* yields the formula for the coupling
elements:

_ Jioj — %(61 + ej)Si‘

Jij = o (2.50)
ij

Until this point, the terms in Eq. can be calculated by projecting the monomer
functions onto the dimer eigenbasis (This method is called Dimer-Projection Method [82]).
Using this method, the vector p; : p;; has entries p;, = (¢;|¢P) and p; : ;i has

entries pjr = (¢;]¢R), J can be calculated as Jj; = p;diag(e”)p;. Similarly,

ei(j) = pZ.T(j)pi(j) and S;; = p;p;. All of these operations are performed in the

basis set representation of the Kohn—-Sham wave functions as implemented in
VOTCA [76, 78].



Chapter 3

Methodology: Random Walk on Graph

Adapted from the paper ”A Graph Random Walk Method for Calculating
Time-of-Flight Charge Mobility in Organic Semiconductors from Multiscale
Simulations, Z. Chen, P. van der Hoorn, B. Baumeier, arXiv preprint 2405.15836
(2025)”.

Random walks in random environments are often used to model physical pro-
cesses [83]], where the random walker represents the motion of a particle and the
random environment is a model for a system that is characterized by some type of
disorder. Charge transport processes in organic semiconductors are examples of
random walks in an environment that is random in the sense that the electronic
structures/Marcus rates have various degrees of disorder. The dynamics of charge
carriers in organic semiconductors are influenced by myriad factors, including
the disordered nature of the molecular structure and the dynamic environment
in which they operate. A comprehensive understanding of the dynamics necessi-
tates a robust theoretical framework, one that can capture the stochastic nature
of charge movement. The multiscale model maps the organic semiconductor to
a graph, where each node corresponds to a molecular site, and the edges denote
possible transitions between the sites. This representation naturally lends itself to
a Markov chain framework, where the charge carriers perform exclusive random
walks on the graph due to the Pauli exclusion. The transition probability from
one node to another depends essentially on the energy landscape and spatial con-
figuration of all the molecules. By analyzing these random walks, one can gain

33
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insights into the charge transport properties and predict the dynamics of charge
carriers over time.

The computation of charge mobility necessitates the solution of the master
equation (MEq), a mathematical framework that describes the temporal evolu-
tion of the probability distribution of the charge carrier’s position. Solving the
MEq provides the probability distribution of locating the charge carrier at a spe-
cific node at any given time. However, the multiscale characteristics of charge
dynamics introduce significant stability challenges in the solution of the MEq.

As an alternative, the KMC method approximates the solution of MEq and
generates trajectories of charge carriers’ random walks on a graph by probabilis-
tically selecting transitions between nodes. This method captures the stochastic
nature of the process and provides detailed insights into the system’s temporal
evolution. However, KMC simulations can be computationally expensive, particu-
larly for large systems with low charge carrier concentrations. Moreover, a large
number of simulations are often required to obtain accurate estimates of charge
mobility.

Starting from this point, we propose the ToF (defined in the Chapter (1) eval-
uation based on the expected first hitting time of continuous-time random walks,
and we call this method GRW. With this background, the theory and practice of
random walks on graph will be introduced in this chapter. It begins with intro-
ducing Markov chain theory for the description of random walks on graph. Subse-
quently, the MEq method for solving the Markov chain is introduced followed by
the KMC method for simulating the random walk on graph and the GRW method,
which is based on the matrix formula for ToF calculation. Finally, the practice
of random walk on a graph will be introduced, including the specification of the
Markov chain, methods of solving the MEq, KMC algorithm, and the implementa-
tion of GRW method for evaluation of the ToF charge mobility.
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3.1 Random Walk on Graph: Theory

The theory used for describing the random walks on graph is the Markov chain
theory on a discrete, finite state space. Markov chains serve as a fundamental
model for a wide range of phenomena featuring in various scientific fields. A
Markov chain is a stochastic process {{;}:>o that satisfies the Markov property,
meaning that the future state of the process depends only on the present state and
not on the past states. Depending on the time ¢, the Markov chain is discrete-time
Markov chain (DTMC) when ¢t € N, and continuous-time Markov chain (CTMC)
when ¢ € R. This work will focus on the CTMC.

3.1.1 Continuous Time Markov Chain

The definition of a CTMC is related to a generator matrix, which can be defined
as:

Definition 3.1.1. Let S be a finite and countable set. A generator matriz £ =
(Q4j 14,5 € S) is a matriz satisfying the following condition:

e 0>y > —o0 for alli;
o ;>0 foralli # j;

o > Qi =0 for alli.
jes

For any generator matrix  the series > ;2 QF /k! converges componentwise
and this limit is denoted by e£2. Related to the generator matrix, a CTMC is defined
as follows (as a reference, see [|84] Theorem 2.8.2):

Definition 3.1.2. Let {&}i>0 be a continuous time-dependent stochastic process
taking the values in a finite state space S, and denote the transition probabilities,
the probability from state i to state j in a time period t as p;ij(t) := p(& = jl&o = 7).
Then & is a continuous-time Markov chain if there exists a generator matrix
Q such that: The transition probabilities p;;(t) can be calculated from the generator
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matriz Q using the matriz exponential formula:

pii(t) = [e¥]; (3.1)

where ¥ is the matriz after the exponential of matriz Qt, and the subscript i, j

means the ith row and jth column of the matriz eS2.

A CTMC has the memoryless property, that is, the probability of finding the
future state j, p(&, ., = j) depends only upon the present state at time ¢,,, and
does not depend on the past. That is,

p(gtn-ﬂ =J | gtl = il?EtQ =12,... 7£tn = in) = p(gtn+l =7 | gtn = 7’”) (32)
for all j,i1,42...1, € S and any sequence of time t] < to < -+ < t,, < tp41.

A Markov chain models the time evolution of the system states according to
the transition probability among the states. Time characteristics are central in
understanding Markov chains, including hitting time [85]] which is the time a
specified state is reached starting from a given initial state, cover time [86] which
is the expected time it takes for the process to visit every state at least once, and
mixing time [[87, [88] which is the time it takes for the chain to become close to
its stationary distribution, etc. In the Source-Sink setting, some states are Source
states where the charge dynamics begins and some states are Sink states where the
charge dynamics stops. The ToF from the Source state to the Sink state is related
to the hitting time of a CTMC. The expected first hitting times are essential for
characterizing the dynamic behavior of the system, as they provide insights into
how quickly or slowly certain states are attained [89)} (90, [85]. The first hitting
time to the Sink states of a CTMC is a random variable written as:

inf{t > 0: & € Sink},

Starting from state 4, that is, &,—¢ = 4, then the expected first hitting time to Sink
state is

7 = E[inf{t > 0: & € Sink}|¢o = 1], (3.3)
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where i € S is the initial state. The quantity 7; is related to the time evolution
of the state’s occupation probability and is typically governed by the MEq, whose
theory will be introduced in the next section. The process of hitting the Sink
states from individual Source states is reminiscent of a parallel electric network
of capacitors [91]], and accordingly, we evaluate the ToF as:

1
T = Nsource [ Z (Ti)1] s (3-4)

i€Source

with Nsource the number of source states, i.e., as the harmonic mean of the respec-
tive ;.

3.1.2 Master Equation

To model the charge transport dynamics, the position of the charge carriers as a
function of time must be obtained. That is, one needs to obtain the probability
of finding the state ¢ at time ¢: p;(t),7 € S. This can be achieved by leveraging
the definition of the CTMC, wherein the transition probability p;;(t) from state
i to state j in time ¢ is derived from the generator matrix 2. The entries of 2
represent the charge transfer rates, which govern the dynamics of the system.

Denote the transition probability matrix by P(t) = (p;;(t) : ¢,5 € S). Accord-
ing to Deﬁnition the transition probability p;;(t) can be expressed as [e¥];;,
where P(t) = f*. Taking the component-wise derivative with respect to ¢ yields
the forward equation:

— = =QP() (3.5)

Denote the vector p(t) : p;(t) whose ith entry is the probability of finding
the state ¢ at time ¢, this probability vector evolves according to: p(t) = P(¢)p(0),
where p(0) is determined by the Markov chain initial state {, = 4, that is, p;(0) = 1
and p;(0) = 0 for all j # i. To derive the master equation, differentiate p(¢) with
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respect to ¢ yields the master equation:

dp(t) d

i %(E(t)P(O))
= QP(1)p(0) (3.6)
=Qp(1)

The solution of the MEq Eq. depends on both the boundary conditions
and initial value p(0). In the ToF setting for calculating charge mobility, we con-
sider absorbing boundary conditions: certain states are designated as Source, rep-
resenting the initial states at time ¢ = 0, and others as Sink, where the random
walk terminates upon reaching these states. The CTMC always starts from a spe-
cific state ¢ ¢ Sink, so the initial value is: p;(0) = 1 and p;;(0) = 0.

Under this Source-Sink setting, one is interested in the expected first hitting
time. The expected first hitting time in Eq. can be seen as the average time
that the walker survives before entering the Sink state, since the dynamics stops
once the Markov chain reaches one of the absorbing states and stays there forever.
In such case, pg;(t) = 0 for all ¢t > 0 and k£ € Sink. Solving Eq. gives the
time evolution of p(¢), and the expected first hitting time with the initial value
p;(0) = 1 can by calculated as (as a reference, see [92] Chapter VI Eq. (7.5)):

=y /Ooot dpcjl't(t) dt, (3.7)

j€Sink

where the subscript i denotes the initial value p;(0) = 1, and the right hand side
of Eq. depends on p;(0) = 1 due to the solution of p;(¢) depending on p(0).
Analytical methods can solve Eq. and further calculate 7; via Eq. (3.7). To do
so, one can use the eigenvalue and eigenvector of 2.

Denote the eigenvalues of 2 as A, \o,..., A\, < 0, and the corresponding
eigenvectors as uj, ug,...,u, € R"™, where n is the number of states. When
the eigenvalues are real, the matrix Q is diagonalizable [93], Q = UAU™!
where A € R™" is the diagonal matrix consisting of the eigenvalues );, and
U = [u; ug --- u,). With this, Eq. can be written as a system of decoupled
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linear ODE:

d(U~' p(t))

P Auip)), (338)

which has a unique solution for the vector p(t):
Ulp@®t) = [aeMt ... cetl]T,

where ¢,k = 1,...,n are coefficients determined by the initial value: ¢, =
> [U " i pj(0). So

n
p(t) = ) exe™luy, (3.9)
k=1

where k loops over all states. Using this eigenvector representation of p(¢) the
expected first hitting time with initial value p;(0) = 1 becomes:

© ( n .
7'@':/0 %( Z [che’\k uk]j)tdt

jesink k=1

:/OOO Z [zn:ck)\ke’\’“tuk]jtdt.

jeSink k=1

(3.10)

n n
Here > ¢, eM'uy, is a vector, and the subscript notation [ 3 ¢ eMvtuy, ]j denotes

k=1 k=1
n n

the jth component of the vector. Using > cpdpe™t = 3 g Apets
k=1 k=1, #0
integration by part, Eq. (3.10]) can be formulated as:

t and

n

7'1':/ Z [ Z ck/\ke)"“tuk]jtdt
0 jesink k=1,A,70
> [/ > crugetdt] . (3.11)

n
= 0 .
j€8Sink k=1,Ax7#0

D S ID ST
jesink k=10
n

- Z[ Z )C\—kuk]j

jesink  k=1,7,0 "

o)
0
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where the second line use the fact that )\, e*! has a primitive function e*+!. The
third line is the integration by part using the fact that A\, < 0. While the MEq
theory provides a deterministic framework for modeling random walks on graphs
by describing the time evolution of occupation probabilities, the above analytical
method and direct numerical solution introduced in the later section can become
computationally prohibitive for large systems due to its complexity. To overcome
this challenge, the KMC theory introduced in the next section offers a stochastic
alternative by explicitly simulating individual charge carrier trajectories.

3.1.3 Kinetic Monte Carlo

Instead of solving the full set of coupled differential equations in MEq theory, KMC
samples transition events according to the underlying rate matrix, dynamically
propagating the system in discrete steps. This event-driven approach enables
efficient modeling of charge transport while preserving the statistical properties
described by the MEq.

The KMC method approximates the solution of the MEq by simulating the
jumping process of the charge carriers using Monte Carlo algorithm [94}95]]. The
elementary step of KMC is that at time ¢,, node i becomes occupied by a charge
carrier, at a later time ¢,.1, the node ¢ is unoccupied and the carrier jumps to
a different node ;7 # i. The period T7; = t,+1 — t, during which the node ¢
changes from being occupied by the charge carrier to being unoccupied is called
the sojourn time of node i. The time T; is exponentially distributed [96], and the
expected sojourn time is E[T;] = ﬁ where 3, (;; is the sum of all the possible
transition rates out of node i. So to simulate the jumping processes, whenever a
hopping event is realized, the time should be updated with an increment At se-
lected from an exponential distribution. Suppose the at time ¢ = 0, the dynamics
starts at state i. After many jumping steps, the first hitting time tg is recorded if
one of the Sink node is occupied by charge carrier. One needs to perform many
KMC simulations to obtain multiple ¢{ as random variables, and the expected first
hitting time from state i is calculated as the average of those iid random variables.

The KMC method operates on a simple principle, but its accuracy depends on
fulfilling some key criteria [96]:
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1. The KMC should run long enough such that when the system is in a steady-
state setting, the detailed balance is satisfied. Specifically, the relationship
7§ = 7;€Q4; must hold for all states ¢ and j, where 7; is the occupation
probability of state ¢ obtained from the Monte Carlo samples.

2. The independence of various hopping events must be effectively ensured.

Those criteria require that a sufficient number of KMC trajectories is needed to
achieve convergence in the ToF calculations. Although KMC solutions are inher-
ently approximate and lack the exactness and elegance of analytical approaches
like the MEq, they correctly implement the underlying statistical principles that
define the Markov chain. In KMC theory, the number of Monte Carlo samples to
achieve convergence is usually unknown, and inefficient samples usually lead to
deviated results. Instead of simulating the charge transport trajectories to obtain
the charge mobility, the ToF can be calculated from the hitting time theory of
CTMC with matrix equations.

3.1.4 ToF Calculation with Matrix Formula

The GRW method evaluates the expected first hitting time 7; via matrix calculation
and further calculates ToF 7 using Eq. Let 7 : 7; € R’} be the vector of
expected first hitting times of a CTMC: {¢,;} with generator matrix Q. The vector
element 7; denotes the expected first hitting time to sink states starting with initial
value p;(0) = 1 for i € S, as in Eq. . Denote P;; = Q;;/D; where D; :=
> j»i - It is noteworthy that 7;; is time-independent, and is different from the
pi;(t) used in the Markov chain Definition The time-dependent probability
pi;(t) represents the probability of the transitioning from state 7 to state j in a
time interval ¢ while P;; is the ratio between 2;; and the total rate out of state i.

With those settings, the vector 7; can be calculated as the minimal non-negative
solution to the following recursive equation (see, for example, Theorem 3.3.3
in [841D:

1 . .. .
— +> .. P;;7; if4isnot a sink state,

B arn 512
0 else.
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Equation (3.12) can be written in matrix form by considering the transition
matrix P € [0,1]"*", whose entry in ith row and jth column is:

0 if j # j and 7 is a sink state,
1 if i = j is a sink state, (3.13)
Pi; else.

By separating the sink states and the non-absorbing states, the matrix P can be
rearranged into a block matrix:

P, P
= (3.14)
0 1

Here, I is the identity matrix, P, is the submatrix restricted to the non-sink states,
and P, is the submatrix of the probability of transition from non-sink vertices
to sink vertices. The Markov chain under study is irreducible since there is a
path, a sequence of transitions, from any state to any other state with positive
probability. This ensures that the matrix P is irreducible, In this case, the Perron-
Frobenius theorem guarantees a unique largest eigenvalue with a strictly positive
eigenvector [97]. Since the row sum of matrix P is 1, its largest eigenvalue is 1.
The matrix (I — P) is not invertible, but (I — P,) is invertible.

Now, let 7* be the part of the expected first hitting time vector for non-sink
states. Equation can be written as 7; — > i PigTj = D%_ for non-sink state ¢,
its a matrix form yields:

I-P)m" =7, (3.15)

where the ith element of 70 is D%_. The ToF can be obtained by substituting the
vector 7* into Eq. (3.4). Based on the above theoretical background of CTMC,
MEq and KMC, the next section will introduce the specification of the system
setting: state space and the generator matrix.
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$1: (1,1,0,0,0) s2:(1,0,1,0,0) (1,0,0,1,0) $4:(1,0,0,0,1) 85:(0,1,1,0,0)

PEROCRVEROE DO,

:(0,1,0,1,0) s7:(0,1,0,0,1) 8§:(0,0,1,1,00 S9:(0,0,1,0,1) $10:(0,0,0,1,1)

Figure 3.1: The ten states of a connected 5-site system with blue circles representing
unoccupied sites and red circles for occupied sites. The numbers on the
top left figure give the site indices. The state notations are the brackets
containing 0 and 1 below each state plot. If site 5 is the Sink, then the Sink
states are s4,S7,S9,S10.

3.2 State Space and Generator Matrix

Numerically solving the MEq with Source-Sink setting, implementation of KMC
method and ToF calculation with matrix formula require the definition of the
state space, transition rates, and the generator matrix.

As mentioned in Chapter [2] the molecular system is mapped into a graph
denoted as G(V, W), where the vertices are the sites V = {1,2,...,n} and the
rate matrix W reads W = (w;; : 4,5 € V). When there is one charge carrier, the
state space consists of the carrier position at one of the n nodes. The generator
matrix Q : Q;; is related to the transition rate via:

i fori #£ 4
Qj = wig i (3.16)

—ZZ#%’I@ fori=j

That is, the off-diagonal elements are the charge transfer rates, and the diagonal
consists of the negative sum of the transfer rates.

When there are multiple charge carriers, the charge transport dynamics refers
to a number N, of charge carriers of equal sign moving through the molecular
system. The Pauli exclusion implies that each site can only be occupied by no
more than one charge carrier. This leads to dependencies between the dynamics
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of every individual charge carrier. In this situation, the full dynamics are modeled
as a continuous-time random walk on a larger graph Gg(V s, Wg), where each
node represents a state describing the position of all carriers in the material. The
state space of the CTMC, that is, the vertex set Vg is the countable ordered set
Vs = {si1,s9,... ’S(AZ)}' Each vertex is a configuration of charge carriers on the
sites of the system. That is, a vertex s is a set s = (s1, s2, ..., S,), whose element
s; is the occupancy of site i:

1 if ¢ is Occupied
0 if Unoccupied

Figure[3.1]visualizes the 10 possible states for a 5-site system with two charge car-
riers. In the ToF setting for charge mobility calculation, some sites are designated
as Sources corresponding to the molecules where charges are injected. Some sites
are designated as Sinks where the carriers are detected and the charge dynamics
will terminate if one of the Sinks is occupied. A state s is called a source state if all
the carrier-occupied sites are source sites. That is, if s; = 1, ¢ has to be the source
site.

Now we need the connections between the states to obtain the generator ma-
trix. In our model, there is a connection from state s to s’ when starting from the
former configuration, the latter is obtained by one charge carrier moving over an
edge in the graph G representing the material. Based on the above reasoning, we
define the arcs between the states. There is an arc (s, s’) if and only if:

1. s; = s}, = 1 holds for exactly N. — 1 indices k, and

2. there exists two indices 7, j such that w;; > 0, s; = 1 and s, = 0, while s; =0
and s;- =1

In this case, we say that s is connected to s’. While if any of these conditions
fail, we say that s is not connected to s’. For example, in the system displayed in
Figure [3.1] state s; is connected to s3 and sj;, but is not connected to s, and sy.
For every pair of connected states (s, s’), there exist unique indices i and j such
that s;, = 1 and s, = 1 — s;, as well as s;- =0ands; =1— s;-. In this case, we say
that s is connected to s’ via the pair (3, j).
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So the generator matrix for the continuous-time random walk on this larger
graph Gg(Vg, Wg) is:

0 if s # ¢’ and s is not connected to s’

Qsg = § wyj if s # s’ and s is connected to s’ due to (i,j)  (3.18)

=Dy e ifs=¢

A typical multiscale modeled system has several hundreds of nodes, while each
node is connected to less than 20 nodes, which has a contact distance within a
cutoff value. So the matrix € is usually sparse. When N, = 1, the matrix Eq.
is reduced to the matrix in the form Eq. (3.16). With this setup of the state space
and the generator matrix, the ToF and charge mobility can be evaluated from
the theory discussed in the above sections. The next session will introduce the
implementation of those methods in practice.

3.3 Random Walk on Graph: Practice

Based on the theory of random walk on graph, and the state space and gener-
ator matrix of CTMC, the practical aspects of random walk on a graph will be
introduced in this section.

3.3.1 Solving the Master Equation

In practice, numerical schemes are needed to obtain the ToF 7 from the solutions
p(t) of the Master Equation Eq. (3.6). Within the analytical expression for the
solution based on Eq. (3.9), the eigenvalues and eigenvectors of € need to be
calculated, and numerical schemes for dense matrices typically have a complexity
of O(n?), where n is the dimension of the matrix. For large systems, the computa-
tional costs for this step becomes significant.

Alternative direct numerical discretization methods of solving Eq. (3.6|) are
often prone to stability issues. To illustrate this, consider the application of the
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Runge-Kutta 4 method, such as shown in [[98] Chapter 12.5, in the form:

1
p(t+h)=p(t) + hlyr+y2 + 3 +y1), (3.19)

where y; = 2p(t), y2 = (2p(t) + y1), y3 = 2(2p(t) + y2), y4 = 2(p(t) + y3).
To analyze the numerical stability, it is more convenient to write Eq. (3.19)) with
the stability function:

h? h

3 h4
p(t+h) = (I +OQh + Q23 - Q‘Q’g - 9424> p(t). (3.20)

For numerical stability it is required that:

'1 LR+ (hi)* + (hAi)7 | (hAo)"

<1 (3.21)

2 6 24

for all eigenvalues )\; of Q. To get an idea of the practical implications, consider
further that in the £ obtained from the multiscale model described in Chapter
the non-zero negative eigenvalues ); typically range from —10 to —10'4. From this,
it is necessary that h ~ 1045 to ensure stability of the numerical solution. The
time-of-flight for materials with very efficient charge transport is around 10~ %s,
necessitating 10% steps in the RK4 method to resolve. For other materials, this
number can increase by orders of magnitudes more, leading ultimately to pro-
hibitively long computation times.

Due to the above-mentioned challenges, the ToF is usually evaluated using the
KMC method. The continuous-time random walk can be simulated according to
the transition probability in the definition of the Markov chain, and the time from
the Source state to the Sink state can be evaluated as random variables. An advan-
tage of KMC method is that the sparsity is naturally utilized. The implementation
of KMC will be introduced in the next section.

3.3.2 Implementation of Kinetic Monte Carlo

Here, we briefly summarize the KMC algorithm used in this work [44], which
focuses on the jumping events between sites and accounts for the Pauli exclusion
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principle at the same time. This setting means that KMC does not have to deal
with the large number of states due to multiple carriers, and it is an advantage
for implementation. Denote the clock time as ¢t when the KMC starts. This clock
time will be updated whenever a carrier takes a transition to a different site. First,
only processes involving an occupied site 7 are considered, and the total escape
rate from site i is calculated as:

wi= 3w (322
J

where the sum is over all sites j connected to site i. A particular charge carrier
is then selected using the First Reaction Method [99]], which involves choosing the
charge carrier k£ with the smallest waiting time ¢}’ = min(¢}’) where the minimum
is taken over the indexes of nodes occupied by a carrier. This waiting time t}" is
exponentially distributed with parameter w; !, and in KMC, is sampled using a
uniformly distributed random number U; € (0, 1]

¥ =w T In(U Y, (3.23)
and the system time is advanced to the new time ¢ := ¢ + t}'. Next, a destina-
tion site for the transition is selected according to the variable step size method
(VSSM). Specifically, the largest j is chosen such that:

J
wit Y wri < Vs, (3.24)
=1

where Uy € (0,1] is the second uniformly distributed random number. If the
transition process is prohibited due to Pauli repulsion, the charge carrier remains
at site k£ and we return to the step of sampling Us € (0,1]. If the transition is
allowed, the charge carrier moves to site j. A new waiting time for the charge
carrier at site j is then calculated as: wj_l In(U; ') where Us € (0,1] is another
uniformly distributed random number. The charge carrier & with the shortest
waiting time ¢}’ is selected again, and the KMC cycle repeats. When a carrier
reaches the Sink, the final clock time ¢ is recorded as the first hitting time ¢!. The
expected first hitting time is the averaged ¢f over multiple KMC runs. The KMC
algorithm is summarized with pseudo-code in Algorithm
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The KMC simulation procedure demonstrates that the number of states, aris-
ing from the quantity of carriers and sites, does not pose a computational chal-
lenge. A significant advantage of the KMC method lies in its capacity to model the
behavior of systems with increased complexity caused by the number of charge
carriers, as long as the random walk rules of the processes are well-defined. How-
ever, the primary challenge in utilizing the KMC method to evaluate mobility is
related to the convergence issue, partially due to the presence of trapping states
or regions. Specifically, the system includes states that are infrequently sampled
by the Monte Carlo algorithm. When these states are eventually sampled, the first
hitting time ¢ is substantially larger compared to other tf values, thus significantly
impacting the averaged tf. There are also trap regions where the random walk
processes will stay for a long time before visiting other states. This behavior will
increase the computation burden for each KMC simulation. Besides those com-
putational challenges, one can not define convergence criteria before performing
the KMC simulations.

To overcome those challenges, we propose the evaluation of ToF and charge
mobility by solving the expected hitting time in Eq. via matrix methods. In
the Source-Sink setting with absorbing states, only the expected first hitting time
7; is related to the charge mobility. This quantity can be in fact calculated as the
expected first hitting time of CTRW without solving the MEq or simulating the
KMC trajectories, circumventing the stability and the convergence issues involved
in those methods. The theory of this approach is not new, although it is not com-
monly seen in literature for studying charge dynamics in organic semiconductors.
The implementation of this method will be introduced in the next section.

3.3.3 Calculation of Expected First Hitting Time

In practice, the sparsity of P, allows for efficiently solving Eq. using iter-
ative techniques. In particular, we first apply the quasi-minimal residual method
(QMR) [100] to solve Eq. (3.15)). In a general context, the QMR method is an
iterative algorithm used to solve nonsymmetric linear systems utilizing the Krylov
subspace (the linear space span by {7° (I — P,)7% (I - P,)?7%,...}). QMR
method is designed to provide a smoother and more reliable convergence than
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Algorithm 1 Kinetic Monte Carlo Algorithm

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:

Initialize system time ¢ <0
Initialize carrier positions and calculate initial escape rates
Wi
for each occupied site i do
Calculate total escape rate w; ¢ Ej wji

Generate random number U; € (0,1]
for each carrier k do
Calculate waiting time ¢¥ < w, 'In(U;?)
Select carrier k with smallest waiting time ¢} (first reaction)
Advance system time ¢ <t +t]
Generate random number U € (0,1]
Select destination site [ using Variable Step Size Method (VSSM):
Find largest j such that wk_l S wki < Us
if transition to site j is allowed then
Move carrier to site j
else
Carrier remains at site k£ and repeat from step 11

if carrier k reaches the Sink then
Record first hitting time tf ¢ ¢
else
Repeat the algorithm from Step 3

. s . 1 Nywe £
Compute average first hitting time N >0 th over a total of
Nigme runs
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other Krylov subspace methods such as the biconjugate gradient method [100].
Due to the sparse matrix involved, the computational complexity of each itera-
tion of the QMR method is proportional to the number of non-zeros in the matrix.
The iterative process is considered to be converged when ||[7° — (I — P;)7*|]2 <
¢ - ||7°||]2, where the convergence threshold selected and used throughout the
thesis is ¢* = 107°. When the iterative steps exceed 10* and this criterion is not
yet achieved, the bi-conjugate gradient stabilized method [101] is used to solve
Eq. using the outcome 7* of the previous method as the initial guess. The
convergence criterion remains the same. Compared to QMR, the bi-conjugate
gradient stabilized method can be more efficient and converge faster in practice,
especially for large-scale problems.

To summarize, we have presented the solution of MEq, implementation of
KMC and calculating expected first hitting time with matrix formula. The KMC
simulation only has events where a single walker jumps and the clock time ad-
vances by an exponentially distributed time. In contrast, solving the MEq with
the boundary condition of Source-Sink setting and the calculation of expected
first hitting time requires the definition of the state space and the generator ma-
trix. The next chapter will present the results for verifying the GRW method of
evaluating the ToF and charge mobility.



Chapter 4

Random Walk and KMC Comparison

Adapted from the paper ”A Graph Random Walk Method for Calculating
Time-of-Flight Charge Mobility in Organic Semiconductors from Multiscale
Simulations, Z. Chen, P. van der Hoorn, B. Baumeier, arXiv preprint 2405.15836
(2025)”.

This chapter presents the results of verifying the GRW method of evaluating
ToF charge mobility as mentioned in Chapter|3] The GRW approach is validated
by conducting numerical studies of charge dynamics of single and multiple car-
riers in diffusive and drift-diffusive (due to an external electric field) regimes
using a surrogate lattice model of a realistic material, i.e., an amorphous phase
of tris(8-hydroxyquinoline)aluminum (Algs), which is an organic semiconductor
with high energetic disorder and commonly used in OLED as an electron-transport
material and emitting layer material. The properties of this material have been
simulated within a multiscale model framework combining quantum-mechanical
and molecular-mechanics methods. The surrogate model allows varying types
and strengths of energetic disorder from the reference baseline and verifies the
GRW approach for various material classes. A comparison with results from the
MEq confirms the theoretical equivalence of both approaches also in numerical im-
plementations. We further present that KMC results show substantial deviations
due to inadequate sampling. All in all, the result suggests that the GRW method
provides a powerful alternative to the more commonly used methods without
sampling issues and with the benefit of making use of sparse matrix methods.

51



52 Random Walk and KMC Comparison

In what follows, the surrogate model and the system setting are introduced,
followed by the results of verifying the GRW method for the ToF calculation. The
Poole-Frankel behavior of the organic semiconductor is studied based on the pro-
posed method. Finally, the scalability and the performance of the GRW method
will be presented.

4.1 Surrogate Model

The material is modeled as a directed graph G = (V,E). As detailed in Sec-
tion|3.1.1, when there is one charge carrier, the carrier dynamics can be modeled
as a continuous time random walk on this graph with transition rates between the
connected site ¢ and j given by the transfer rate w;; > 0. In the case of multiple
charge carriers, the full charge transport dynamics are due to a large number N,
of charge carriers of equal sign, and each site can only be occupied by no more
than one charge carrier. Due to these dependencies between the continuous time
random walks of every individual charge carrier, the full dynamics can be mod-
eled as a continuous time random walk on a large graph Gg = (Vg, Eg) with the

generator matrix given by Eq. (3.18).

The parameters required to describe the charge dynamics via the continuous
time random walks are the positions r; of all the site i and the transfer rates
wij (Eq. ) obtained from the multiscale model. The external electric field
contributes to the Marcus rates by acting as drift force. Considering the effect
of the drifted electric field and that each pair of site i and site j constitute a DA

complex, Eq. (2.37) becomes:

[Jyl? [ (AE; + qF -1ij — Ayj)?
= - , 4.1
YT T A\ kTA Y 4Nk T (4.1)

where the external electric field F (in V/m) and the charge of the carrier ¢ (in e)

can be considered as parameters of the simulation.

The surrogate model allows easy definition of different scenarios, specifically
for the important energy difference AE;; in the exponential in Eq. (4.1). The
surrogate model is based on a regular lattice model in three dimensions, filling
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the cubic simulation box [0, L] x [0, L] x [0, L] € R3, L > 0. With lattice constant

a, and N lattice points per dimension, L = (N — 1)a, and the position of vertex
T

iisr; = (x4,Yi, %) = (ix, 1y, 12)a With iy,4,,7, = 0,..., N — 1. For the ToF setup,
the source and sink regions are located at + = 0 and = = L, respectively, i.e.,
we study the ToF along the z-direction. While we consider all states involving
a site with = L (i.e. i, = N — 1) as the set of sink states, we will specify
different choices for the source states from the sites at x = 0 in Section As
soon as one of the charge carriers reaches the sink regions at + = L, the charge
dynamics terminates and the ToF is recorded. The sink state can be interpreted
as those states containing an occupied site at the sink region. With this setup, the
T _ T

_ T (i g e o= .
i =1 — T = (T4, Yij, 2ij), Where x;; = x; — x;.

For the perpendicular directions y and z, we assume cyclic boundary conditions,

connection vector is denoted as r
i.e., for the y-component of the vector connecting 7 and j

Yi — Vi if ly; —yi| < L/2,
Yij = § L+ (yj — vi) if |ly; —yi| > L/2 and y; > y; (4.2)
—L+(yj—y7;) 1f|y]—yl| ZL/Q andyi<yj

and z;; are defined analogously. We use the so defined entries of the connection

vector r;; to determine the distance metric |r;;| = /(@)% + (vij)? + (2i;)? and
an edge is assigned to all vertex pairs (i, j) for which |r;;| < 2a. For simplicity, we
set a = 1 nm. In the current setup of the lattice model, the total number of sites
n is related to number of lattice points N by n = N3. To ensure computational
feasibility for both the MEq, KMC, and GRW methods, we select N = 8. This
choice balances the requirements of numerical implementation across all methods
for the purpose of comparison and aligns with typical molecular system sizes used
in first-principles multiscale modeling.

As in the explicit multiscale model, we use a single reorganization energy for
all pairs, i.e., A;; = A = 0.23eV. We model the coupling elements mimicking
its known exponential distance dependence by |.J;;(|r;;|)|? = Joexp (—(|ri;| — a))
with Jy = 1.79 - 10~* (eV)?2. In the multiscale model, the site energies ¢; follow a
Gaussian distribution with mean € and variance o2. In the first class of site-energy
models, the ¢; are taken as independent and identically distributed (iid) Gaussian

samples. We refer to this model as uncorrelated. However, in Algs (and several
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other materials) the site energies show spatial correlation. In a correlated site-
energy model, we adopt a moving average procedure as in [[66], making use of the
invariance properties of the normal distribution with respect to convolution. First,
with three sequences of iid random variables Mi(a), Mi(b), MZ-(C) ~ N(0,0?), every
site is assigned the 4-tuple (V;, M, (a) Mi(b), MZ.(C)) to which we want to allocate
a random site energy ¢;. If V( ) Z( ), -,Vi(l) are the [ nearest neighbors of V;
with corresponding random variables M; ®),) Ml.(c)’(j ), j=1,2,--- 1 the spatially
correlated energies are evaluated as:

€ = /T M + \/> Z MO \/ — Z MO e (43)

where 74, m, > 0 (1, + m < 1) are the weights for the individual components and
Iy, 1. > 0 for some integers. Equation develops the spatially correlated ¢; as
a superposition of three independent energy landscapes. From the explicit Alqgs
data we choose € = —0.76eV, 0 = 0.19¢eV, 1, = 0.2, n, = 0.4, as well [, = 9 and
l. = 280.

With this surrogate model, the main physical quantity of interest studied is the
mobility (or equivalently ToF) in the system representing the molecular material.
Both of these come down to the first time a charge carrier hits one of the Sink
states. In terms of random walk description, this is called the hitting time of
the sink states. Our proposed method as detailed in Chapter will be used
for computing the hitting time. After this, we compare it to two other known
methods: master equation (see Chapter[3.1.2) and KMC (see Chapter|[3.1.3)).

4.2 Results

we show the results for the ToF 7 and the dependence of the mobility p on the
strength of the externally applied electric field F from the GRW method for dif-
ferent settings and comparisons to MEq and KMC methods. The base model we
use is a lattice model as introduced in Section 4.1| with V = 8. This system size
is typical for medium-scale molecular systems in multiscale modeling studies (ex-
amples can be found in [[44] [102] [103] [104]). It also ensures that the numerical
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solution of the master equation Eq. ([4.4), remains computationally feasible, en-
abling a direct comparison between our proposed method and the true dynamics
of Eq. (3.6). While based on properties of the explicit multiscale model for Algs
from [44] 661, the choice of a lattice model allows studying different settings for
the site energies on an equal footing: the no-disorder case (¢; = 0); uncorrelated,
Gaussian distributed disorder; and spatially correlated Gaussian disorder as mod-
eled by Eq. (4.3). To study different amounts of disorder, we introduce a scaling
parameter k € [0, 1] into the site energy term in the exponential of the Marcus
rate, i.e., we let AE;; — kAE;; in Eq. (4.1)), effectively smoothly interpolating
from o = 0.0eV to o = 0.19¢V using the same reference random samples of the
site energies. Further, we consider the case of N. = 1 and N, = 2 charge carriers.

4.2.1 Comparison of MEq and GRW

In Chapter and Chapter we have seen that the MEq and GRW ap-
proaches provide formally equivalent predictions of expected hitting times for the
defined sink regions and with that of the charge carriers’ ToF. In practice, the
MEq method serves as a valuable tool for investigating charge transport phenom-
ena within disordered organic materials [105] [106, [107, [108]. Here, we aim to
validate our numerical implementation of the GRW by comparing its predictions
of 7 to those obtained from the MEq. We employ the analytic form of the solution
of the initial value problem in Eq. with the eigenvalues { )\, } and correspond-
ing eigenvectors {u,} of the matrix Q as

(%)
p(t) = Z Cauaekaa (4.4)
a=1

where ¢ = U~ !p(0) and U = (uy, ..., u(n )) As initial value for Eq. (3.6)), we set

NC/NSource for s € Source
p(0) = ,

0 else
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Figure 4.1: Calculated ToF 7 (in s) for N, = 1 depending on disorder strength in systems
with uncorrelated (a) and spatially correlated (b) site energies, obtained
from MEq (filled symbols) and GRW (open symbols), respectively. Each
data point 7 represents the sample average of the ten realizations of the
Gaussian distributed energy landscapes.

where Nsource is the number of source states defined. The form of Eq. allows
analytic evaluation of the integral in Eq. to obtain 7. For the purpose of
comparing the two methods, we consider a single source state for both N, = 1
(s =(1,0,...,0)) and N. = 2 (s = (1,1,0,...,0)), respectively. Specifically, the
site 51 is located at r] = (0,0,0) and s at r} = (0,0, a). In Fig.[4.1] we show the
results of the obtained dependence of 7 on k for the systems with uncorrelated
and correlated disorder and N. = 1, respectively. No external electric field is ap-
plied, i.e., F = 0, so the dynamics of the charge carriers are purely diffusive. For
both MEq and GRW methods, the hitting time 7 is calculated by averaging ten
systems each with the same €, o. It is visually clear that there is numerically excel-
lent agreement between both approaches, as was expected from the theoretical
remarks in Chapter [3.1.2)and [3.1.4] The relative errors are consistently smaller
than 0.1 %, as shown in Fig.

This comparison confirms the validity of the GRW method we propose, at least
for N. = 1. As convenient as the form in Eq. (4.4) is at first glance, its application
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Figure 4.2: Relative difference (Tmeq — 7arw)/Tarw (in %) for different disorder scaling
factors k in systems with uncorrelated and spatially correlated disorder and
different numbers of charge carriers, respectively.

to larger-scale problems is problematic numerically: it requires the full eigende-
composition of €2, which cannot be obtained with sparse matrix methods. In the
present study, the N, = 2 case with n = 512 requires numerical diagonaliza-
tion of a full matrix with dimension 130816, even though € is extremely sparse.
This highlights one of the advantages of the GRW method as it can make use
of efficient sparse matrix implementations throughout. Alternative approaches to
solve Eq. that make use of numerical discretization schemes like forward and
backward Euler methods or higher-order Runge-Kutta methods, could be formu-
lated in sparse forms. However, the details of the matrix 2 make time-stepping
methods inefficient. For instance, in one realization of the k¥ = 1 uncorrelated
disorder case, the non-zero eigenvalues of Q range from —10'3 to —10%. With the
associated time-scales of the dynamic modes ranging from 10~'3s to 1025, and
the average hitting time of ~ 1073, a very small time step (10~'*s) and many
such steps (10'!) might be required in an extreme case to resolve 7 reliably. In
addition, the discretization scheme must also allow for integration of Eq. (3.7).
All in all, using time-stepping methods that resolve the actual dynamics of the
probabilities to obtain 7 seems cumbersome.
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Figure 4.3: Distributions of KMC steps until absorption to sink (Ntor) and the cor-
responding first hitting time 7 obtained via KMC for a single realization
of the lattice model with no site-energy disorder (a), Gaussian-distributed
site-energies without (b) and with spatial correlations (c). The density
histogram consists of 107 KMC sample points grouped into 100 bins.

4.2.2 Comparison of GRW and KMC

Besides the MEq method, many literature report the KMC method from studying
transport processes in organic semiconductors [109, 107, (110, 111}, [112]. How-
ever, the KMC method often requires long computations for each simulation, with
a single simulation sometimes requiring hours or even days to calculate the quan-
tities of interest. Moreover, many simulations need to be conducted to ensure that
the results indeed correspond to the true average values of the stochastic model.
We begin the discussion of the results by highlighting the potentially problematic
convergence behavior of KMC simulations as an alternative to solving the explicit
dynamics of Eq. (3.6)). For a single realization of the site energies with no, un-
correlated, and spatially correlated disorder with ¢ = 0.19¢eV, respectively, we
performed 107 KMC simulations. We recorded for each of these simulations the
individual first hitting time of the sink region (7) and the associated number of
KMC steps (Ntor). The resulting distributions are depicted in Fig. One can
see that the no disorder case in panel (a) is largely unremarkable. There is very lit-
tle noticeable spread in the distributions of the ToF and number of steps recorded,
with the maximum number of steps needed being around 1000. In contrast, the
data for the uncorrelated disorder case shown in Fig. (b), illustrate one of the
key challenges for KMC: the majority of 7 values cluster around 10~% s, while only
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Figure 4.4: Calculated ToF 7 (in s) depending on disorder strength on systems with
uncorrelated (a) and spatially correlated (b) site energies, obtained from
KMC (filled symbols) and GRW (open symbols), respectively. Data points in
red (blue) show the results for N, = 1 (N, = 2). Each data point 7 represents
the sample average of the ten realizations of the Gaussian distributed energy
landscapes. Each KMC simulation contains 1000 runs.

a small fraction falls near 10~2s, which is the main contribution to the average
hitting time (4.3 - 10~%s). The comparatively rare occurrences of long ToFs can
be attributed to the presence of isolated sites with low energies that are not al-
ways visited. Most of the KMC simulations seem to require 10000 steps or fewer.
In spatially correlated disorder case (Fig. [4.3|(c)), we do not observe the influ-
ence of apparently rarely sampled sites. Instead, due to the spatial correlation,
low-energy sites are not isolated, and several sites are likely to form regions of rel-
atively low energy. As the relative energy difference among the sites inside these
regions is small, the random walker in the KMC simulations spends a significant
number of steps in these regions before it progresses to another of such regions
or the sink. Consequently, some KMC simulations require up to 10° steps to finish.
Overall, it is clear that depending on the characteristics of the energetic disor-
der in the material, the results of ToF simulations from KMC simulation might be
subject to significant fluctuations, with convergence requiring numerous samples,
and in general potentially long simulation times per sample.
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Table 4.1: Calculated mean ToF 7 and standard error of the mean (in s) depending
on disorder strength on systems with uncorrelated and spatially correlated
site energies, obtained from GRW and KMC, respectively. Each data point
T represents the sample average of the ten realizations of the Gaussian
distributed energy landscapes. Each KMC simulation contains 1000 runs.

uncorrelated correlated
k GRW KMC GRW KMC
N.=1
0.0 (1.13£0.00)-107"*  (1.1840.00)-10~** (1.1340.00)-10**  (1.1840.00)-10~**
0.1 (1.334£0.02)-107**  (1.35+0.02)-107** (1.3240.05)-107*  (1.3140.05)-10
0.2 (2.1940.08)-107  (2.1840.08)-107** (2.1040.23)-107*  (2.1240.26)-107
0.3 (5.25+0.75)-107  (5.32+0.77)-107** (4.8241.29)-107"  (4.92+1.39)-107
0.4 (2.1840.95)-107° (2.25+1.02)-1071° (1.7240.86)-107°  (1.7140.86)-107*°
0.5 (1.58+1.16)-107?  (1.6841.26)-107° (9.37+£6.65)-107'°  (8.8346.14)-10°*°
0.6 (1.39+£1.21)-107®  (1.2941.17)-107® (6.66 £5.57)-107°  (6.4145.33)-107°
0.7 (1.2241.12)-1077  (1.16£1.07)-107" (5.3444.79)-107%  (5.49+4.93)-1078
0.8 (1.04£0.97)-107%  (1.12+1.05)-107 (4.4344.10)-1077  (4.40£4.06)-1077
0.9 (8.82+£8.32)-107°  (8.9748.46)-107° (3.67+£3.44)-107%  (3.6543.43)-107°
1.0 (7.3446.95)-107°  (9.87+9.35)-107° (2.99+£2.82)-107°  (3.0542.88)-107°
N. =2

0.0 (6.63+0.00)-107*2  (6.3740.00)-10"12 (6.6340.00)-107*%  (6.3740.00)-10"*2
0.1 (7.74+0.08)-107'* (7.7640.08)-10'2 (7.6240.25)-107'%  (7.4740.25)-10"*2
0.2 (1.24+0.04)-107""  (1.2340.04)-107"* (1.16 £0.11)-107**  (1.164+0.11)-10™
0.3 (2.53£0.15)-107"*  (2.5340.15)-10"** (2.4140.54)-107'"  (2.4340.55)-10
0.4 (5.95+0.54)-107""  (6.0040.56)-10"** (6.81+£2.84)-107'"  (6.8942.88)-107 "
0.5 (1.52£0.20)-107'°  (1.5140.20)-107*° (2.46 £1.48)-1071°  (2.4341.43)-107%°
0.6 (4.1140.78)-107'°  (4.1140.81)-1071° (1.0240.75)-107°  (1.01£0.73)-107°
0.7 (1.17£0.31)-107°  (1.2140.34)-107° (4.5143.67)-107°  (4.51£3.67)-107°
0.8 (3.44+1.21)-107°  (3.48+1.23)-107° (2.0241.73)-107%  (2.02+1.74)-1078
0.9 (1.05+0.46)-107%  (1.08+0.47)-1078 (8.954+7.94)107%  (9.04+8.04)-1078
1.0 (3.304+1.71)-107%  (3.284+1.69)-107% (3.9243.55)-1077  (4.04+3.66)-107"7

Against this background, combined with the potential numerical challenges of
MEq mentioned in the previous section, the GRW method is expected to provide
a significant advantage in not being affected by these and related convergence
problems. We demonstrate the quality of the predictions of 7 obtained by solving
Eq. compared to a reference from extensive KMC calculations. As in the



Random Walk and KMC Comparison 61

previous section, the hitting time 7 is calculated by averaging ten systems each
with the same €, o, with the tuned amount of disorder. The full set of results are
listed in Table Figure 4.4| shows the obtained dependence of 7 on k from the
two methods for uncorrelated and correlated disorder and for one and two charge
carriers, respectively. Again, no external electric field is applied, i.e., F = 0.

In the case of KMC, 1000 runs are performed for each realization of the site
energies, with carriers populating the source state. Overall there is a very good
agreement between the results obtained with the GRW method as compared to
KMC. Qualitatively, the data indicate that the more disorder is in the system, the
larger the ToF becomes. We also observe in all settings a reduction of 7 as the num-
ber of carriers increases, and that 7 decreases more in systems with uncorrelated
site energies as compared to those with correlated site energies. This observation
aligns with the findings reported in [113]]. According to [43]], one contributing
factor to this phenomenon is the nature of the isolated low-energy sites in the
uncorrelated case vs the possible existence of regions (or small clusters) of low-
energy sites in the spatially correlated case. In the former, a single carrier can be
trapped in such an isolated low-energy site, and for N, = 2, due to the exclusion,
the second carrier can "freely” diffuse within the rest of the system. This would
correspond in Fig.[4.3](b) to the elimination of the KMC trajectories with the large
7 as discussed above. From the logarithmic scale on the y-axes in Fig. it
is difficult to assess the differences in the results from GRW and KMC in detail.
We therefore show in Fig. the relative difference A7 = (Tkmc — TGrRW)/TGRW
depending on the disorder scaling factor k, for all four cases studied. Except for
the case N. = 1 in uncorrelated disorder with k£ = 1, the results differ at most by
7% (N. = 1 uncorrelated), 4 % (N. = 2 uncorrelated), 6 % (N, = 1 correlated),
and 4 % (N, = 2 correlated), respectively. For the case N. = 1 with uncorrelated
disorder and k = 1, a 30 % relative error arise due to the inadequate KMC sam-
plings. This error highlights the convergence limitations of KMC, attributed to
insufficient sampling due to the low-energy regions of the molecular system.
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Figure 4.5: Relative difference A7 = (Tkme — Tarw)/7arw (in %) for different disor-
der scaling factors k in systems with uncorrelated and spatially correlated
disorder and different numbers of charge carriers, respectively.

4.2.3 Electric Field Dependent of ToF Mobility from GRW

With the advantages of the GRW method over MEq and KMC approaches as dis-
cussed in the previous two sections for the case of purely diffusive charge carrier
dynamics, we now turn to the application of the GRW framework to study the
electric-field dependent mobility of one and two charge carriers, whose dynamics
now correspond to a drift-diffusion process. Recall that the mobility is defined as
o= % In the following, we set FT = (F,0,0), such that we can evaluate the
mobility as a function of F' as u(F') = ﬁ We use 7(F') here to emphasize that
the ToF itself also depends on the value of the electric field, through the Marcus
rates Eq. (1.1). Of course, as seen before for the diffusive carrier dynamics, the

ToF also depends on the type and amount of disorder in the system.

From experiments, it is empirically known that the charge carrier mobility of
many disordered organic semiconductors is approximately p(F) = pg exp(5vVF),
for F € [107V/m,10® V/m]. Poole and Frenkel also predicted this electric-field
dependence in a model describing the mechanism of trap-assisted electron trans-
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Figure 4.6: Electric-field dependence of the mobility p in the N = 8 multiscale model
system for (a) spatially uncorrelated and (b) spatially correlated disorder for
N. =1 (filled symbols) and N. = 2 (open symbols) and varying strength of
energetic disorder via scaling factor k, as obtained from the GRW method.

port for insulators and semiconductors [114]. It is therefore common to plot the
mobility 4 against v/F in a so-called Poole—Frenkel plot. We show in Fig. 4.6/ such

a plot as resulting from GRW calculations for our system with (a) spatially uncor-
related and (b) correlated disorder of different strengths indicated by the values
of k. With the logarithmic y-axis one can observe indeed an ideal linear depen-
dence of the mobility on v/F for most of the cases. Exceptions can be noted for
k =1 with N. = 1 in (a) and k& = 1 for both one and two charge carriers in (b),
where the shown field-dependence deviates from the Poole-Frenkel model at low
F. Nevertheless, for all scenarios studied in this section, we have extracted the
Poole-Frenkel parameters po and § from the results in Fig. and summarize
them in Table For k£ = 0, there is by construction no difference between the
uncorrelated and correlated cases. With an increasing amount of disorder in the
system, the mobility increases because the respective ToF increases as discussed
in the field-free cases before, which is reflected in the values for .
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Table 4.2: Poole-Frenkel parameters o (in cm?/(Vs)) and 3 (in y/cm/V) extracted
from GRW simulations for N, = 1 and N, = 2.

uncorrelated correlated
k 1o B o B
GRW for N, =1
0.0 24.107! 221074 241071 2.2.107¢
04 191072 531074 1.5-1072  3.9-1074
06 25107* 7.8107% 8.1.107* 5.3.107*
1.0 22107° 5.8107* 451077 8.0-1074

GRW for N, = 2
0.0 27107! 261074 2.7.107!  2.6-1074
04 161072 4.4.1074 2.71072 4.1.107%
0.6 1.1.107% 5.9-1074 2.5-107% 5.6-1074
1.0 46106 7.8107* 2.1.107° 7.3-107*

For each value of & > 0, mobilities for the spatially uncorrelated site energies
are lower than those in the correlated case. From the inverse relation of y and
7, this seems at first glance at odds with the ToF for F' = 0 in Fig. where
for N. = 2 shorter 7 are recorded for systems with uncorrelated site-energies
than for correlated ones, which would indicate a higher mobility for the former.
However, the additional drift component of the charge carriers’ dynamics in the
direction of an applied electric field has strong effects on the ToF that are different
for each of the scenarios studied in the work. One can see an indication of this
in Fig. comparing the uncorrelated and correlated cases at low fields. In the
correlated case, there is the already mentioned deviation from the ideal linear
relation between p and v/F in the Poole-Frenkel plot. This is not visible in the
uncorrelated case.

We therefore show in Fig. the dependence of the mobility on the electric
field for much smaller field strengths in the interval [4 - 10* V/m,4 - 107 V/m] for
the case of N. = 2 and k = 1. One can clearly see a crossover between the values
of the mobility in the uncorrelated and correlated disorder cases for low fields,
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Figure 4.7: Electric-field dependence of the mobility u for small field strengths in the
N = 8 multiscale model system for spatially uncorrelated and spatially
correlated disorder for N, = 2 and & = 1, as obtained from the GRW
method.

agreeing qualitatively with what is expected from the ToF data in the diffusive
regime discussed in Section This observation of the in general not ideal
Poole-Frenkel behavior for small fields emphasizes that the extracted values of 1
as listed in Table 4.2 should not be interpreted as the true mobilities at F' = 0.

4.3 Scalability and Performance

In the previous section, we demonstrated that the GRW method proposed in this
work yields quantitatively accurate estimates of the ToF, or the charge mobility
in ToF settings, without the need to explicitly calculate the dynamics of charge
carriers in multiscale systems and without common sampling and convergence
problems of state-of-the art methods, such as KMC. In particular, low charge con-
centration typically poses the most significant computational challenges for the
KMC method, as discussed in Section [4.2.2] (cf. Fig.[4.3|(b)) and in previous stud-
ies [115) [104]. Long computational times and inadequate sampling are preva-
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lent issues in most first-principles multiscale systems. As shown in Section
Fig. a 30% error was observed in our test case with uncorrelated energies and
k = 1. That is, the KMC method reported ToF values that are 30% larger than the
true ToF value. These challenges become more pronounced as the system size and
disorder increases. Here, we now turn to a discussion of the scaling and conver-
gence behavior of the GRW method, by considering model systems with different
sizes ( ](L,C) of the state space for different amounts of spatially uncorrelated ener-
getic disorder. Specifically, we vary the extension of the lattice in the z-direction,
such that [0, L,] x [0, L] x [0, L] C R® where L = (N — 1)a with N = 8 as used in
the previous section, and L, = (N, — 1)a for N, = 10, 20, 30, 40. This corresponds
to systems with n = 640, 1280, 1920, 2560, all typical system sizes accessible to
first-principle multiscale models. Analogously to the previous section, sites with
x = 0 are source sites, and sites with x = L, are sink sites, with source and sinks
states determined accordingly.

Using the quasi-minimal residual method and the biconjugate gradients stabi-
lized method for solving the matrix equation Eq. (3.15)), the convergence of the
solution is quantified using the metric €* := ||7°||2/||7" — (I-P;)7*||2. The conver-
gence of the GRW method is studied by monitoring ¢* as a function of the number
of iterative steps Njer. As described in Chapter convergence is achieved
when €* < 1075, Figure illustrates that for N, = 1, the number of iterative
steps required for convergence increases with both the disorder parameter k£ and
the system size n. Specifically, as the system size increases from 640 to 2560, the
number of required iterations grows approximately linearly, from 100 to 430.

Figure |4.9|illustrates a similar trend of increasing iteration steps required for
convergence. As the system size increases from 640 to 2560, the iteration steps
rise substantially from 600 to 3280. The convergence becomes increasingly chal-
lenging with higher disorder and larger n, as evidenced by the pronounced oscil-
lations. This nonlinear growth arises from the combinatorial increase in states,
( ﬁc), for N, = 2 carriers. In larger systems with N. > 2, the proposed method
faces computational challenges due to the exponential growth in state space. At
the same time, the KMC method can also have convergence difficulties in large
systems even if there are multiple carriers.
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Figure 4.8: Convergence behavior of the ToF calculation using the GRW method for
N, =1.

From a practical perspective, the time required to obtain the convergence in
GRW method, the time-to-solution t,, is more relevant than the number of itera-
tions needed. In Fig. we show this time for N. = 1 and N, = 2 and different
numbers of sites with varying energetic disorder, as recorded with our proof-of-

concept implementation in Python on an Intel(R) Xeon(R) Gold 5120 CPU @
2.20GHz with 28 threads. When there is one carrier, the GRW method takes less
than 1s to achieve converged ToF, even for the largest system with n = 2560. In
contrast, a single KMC simulation, i.e., for one random seed from one sink state,
using production code for the uncorrelated system with size n = 512 can take

more than 1 minute to complete on the same system, and the ToF obtained from
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Figure 4.9: Convergence behavior of the ToF calculation using the GRW method for
N, =2.

1000 KMC simulations stills has 30% relative error. Even though the KMC simu-
lations can be trivially parallelized, these aspects highlight the advantages of the
GRW method in computational time. When N, = 2, one can see that the required
computational time increases exponentially. This exponential time increment for

multiple carrier systems is a challenge for the GRW method and requires further
exploration.
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Figure 4.10: The time-to-solution (in s) using the GRW method for systems with (a)
N. =1and (b) N. = 2 charge carriers and different number of sites depend-

ing on the energetic disorder, as recorded with our Python implementation
on an Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz with 28 threads.

4.4 Conclusion

Using the lattice surrogate models, this chapter validates the accuracy of ToF eval-
uation with the GRW method. Based on graph theory, the GRW method avoids
numerically cumbersome calculations of the explicit dynamics of the carriers, and
is therefore not prone to discretization problems or sampling issues as commonly
used master equation or KMC approaches. It also shows that the ToF obtained
from the GRW method has better accuracy compared to that obtained via KMC.
We have shown that it allows for accurate and reliable predictions of the effec-
tive ToF (in the diffusive regime) and the field-dependent charge mobility (in
the drift-diffusive regime) for a wide range of scenarios covering vastly different
possible material properties. The GRW method will be used in the next chapter
to calculate the quantity of interest (i.e., ToF) for uncertainty quantification in a
multiscale-modeled organic semiconductor, MADN.



Chapter 5

Uncertainty Quantification in Multiscale
Charge Transport Models

Adapted from the paper ” Uncertainty Quantification in Multiscale Models of
Charge Transport in Organic Semiconductors: Influence of the
Ezhange-Correlation Functional, Z. Chen, P. van der Hoorn, B. Baumeier, arXiv
preprint 2503.22356 (2025)”.

This chapter presents the impact of exchange-correlation functional choices
on the predictive accuracy of multiscale models for charge transport in organic
semiconductors. A hybrid functional approach is applied to analyze uncertain-
ties in key parameters influencing charge mobility, focusing on the Hartree-Fock
exchange fraction. Using 2-methyl-9,10-bis(naphthalen-2-yl)anthracene (MADN)
as a test system, first-principle based multiscale modeling methods as introduced
in Chapter [2 are used to compute reorganization energies, site energies, and elec-
tronic coupling elements. Monte Carlo sampling quantifies the uncertainty prop-
agation, revealing that site energy variations dominate transport property uncer-
tainties, while coupling elements contribute minimally. The findings underscore
the need for accurate parameter determination and functional selection, with im-
plications for enhancing the reliability of first-principles-based multiscale model-
ing frameworks in organic semiconductor design. This chapter is organized as
follows: Section |5.1|introduce the source of uncertainty of our investigation, Sec-
tion 5.2 presents the explicit results from the model using different values of aprx,
before the results of uncertainty quantification and sensitivity analysis via Monte

70
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Carlo sampling are shown in Section A discussion and summary conclude
this chapter.

5.1 Source of Uncertainty

In computational science, quantifying the uncertainties, or UQ, of a model sheds
light on the robustness and the sensitivity of the model, and generates new in-
sights into the results [116} 117, 118} 119, 120, [121]]. As detailed in Chapter [2]
one important source of uncertainties in the multiscale models is the approxima-
tion of the DFT exchange-correlation functionals, which plays an fundamental
role in multiscale model methodologies.

The single molecular geometry optimization for obtaining the reorganization
energy, the mixed quantum-classical methods for obtaining the site energies with
the help of microelectrostatic methods [122,[123]], and the dimer projection method
for determining coupling elements [124] fundamentally depend on the DFT cal-
culations. Therefore, the dependence of DFT calculations on the choice of an
exchange-correlation functional raises the question of how sensitive the simu-
lated charge transport is to this choice and how certain predictions of material
properties are.

Many common uncertainty quantification studies focus on models with (par-
tial) differential equations, e.g., drift-diffusion equations in which the diffusivity
is a parameter, and assume a certain distribution for the values of the parame-
ter(s). For the multiscale model of charge transport, it is not straightforward to
cast the large variety of available exchange-correlation functionals into the role of
a model parameter with some distribution. To keep the problem tractable, we fo-
cus here instead specifically on the exchange part in hybrid functionals [125,[126],
in which a DFT model for the exchange is mixed using a weighting factor aypx
with a Hartree-Fock type exchange, i.e.,

Ey = OZHF)(E)I;IF + (1 — OZHF)()E)E)FT. (51)
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More specifically, we take as the basis the PBEO functional [127] and scrutinize
(i) how the predictions of the multiscale model of charge transport are affected
by variation of aygx as a proxy for uncertainties in the choice of DFT functionals,
(ii) what the level of confidence is in quantitative predictions, and (iii) what are
the most sensitive quantities in the model. In this sense, Eq. is deceptively
simple. For each value of aygpyx, the graph G generated by the multiscale model is
constructed using the respective value of the reorganization energy, the N, site
energies, and the Np,;, coupling elements, and the dimensionality of the problem
from the perspective of UQ is Nyg = 1+ N1+ Npair, which can easily be on the or-
der of 10* — 10°. We consider the simulated ToF and the associated mobility as the
quantity of interest, which then are subject to uncertainties in these Nyq parame-
ters stemming from the variation in aypx. As a prototypical system, we will study
hole transport in an amorphous morphology of 2-methyl-9, 10-bis(naphthalen-2-
yDanthracene (MADN), a wide-gap semiconductor that is used extensively as an
ambipolar host material in organic light-emitting diodes [128, [129]. The next
section will present the modeling results of this material.

5.2 Explicit Results from the Multiscale Model

In this section, we present and analyze the explicit results of the multiscale model
of charge transport in amorphous MADN as obtained for different values of aypx.

5.2.1 Molecular Parameters

The molecular parameters are presented first, as they are used in different ways
in the multiscale model. Figure shows the adiabatic ionization potential, re-
organization energy, neutral state dipole moment, and isotropic polarizability in
neutral and cationic (hole) states, respectively. The adiabatic ionization potential
in Fig.[5.1](a) contributes to the site energy, but as it is determined per molecule-
type in the system, it does not affect the site-energy difference AE;; in Eq. (4.1)).
It is nevertheless interesting to see that it increases almost linearly over the shown
range of ayrx. In contrast, the reorganization energy as shown in Fig. [5.1](b) ap-



Uncertainty Quantification in Multiscale Charge Transport Models 73

(a (b)
6.5 . e
— - /”
% » 0.30 ,/
Z 6.4 . >
o) o 2,0.28 g
| / <
9 ¢ 0.261 /
6.31¢" .
0.0 0.1 0.2 0.0 0.1 0.2
QHFX QAHFx
(c) (d)
L 7001e-.
. .
—_ e, —_ ‘\‘
) : .
2061 “e 2600 e
] \ — °
=) b e h
°© o .
0.60 ! 500 .: : .n
° e g
0.0 0.1 0.2 0.0 0.1 0.2
AHFX QAHFX

Figure 5.1: Dependence of molecular parameters as used directly in the multiscale
model or in its paramaterization phase on the amount of Hartree—Fock type
exchange in the PBEO-based hybrid functional appx. (a) The adiabatic
ionization potential, (b) reorganization energy, (c) dipole moment of the
neutral molecule, and (d) isotropic molecular polarizability in neutral and
charged states, respectively.

pears to saturate for aypx after an initially close to linear increase. In total, A
is found to be in an interval between 0.25¢eV and 0.33 €V. Panels (c) and (d) of
Fig. show the dipole moment of the neutral MADN molecule and the isotropic
polarizability of the neutral and cationic (hole) states, respectively, both as elec-
trostatic properties that enter indirectly the parameterization of the microelectro-
static model. As is visible, the dipole moment is rather independent on aygx (note
that the jump of the last shown data point appears more pronounced because of
the very small scale on the y-axis). The isotropic polarizabilities in panel (d) ex-
hibit a linear decrease with increasing value of aypx which can be attributed to
an increasingly attractive effective potential from stronger the Hartree—Fock-like
exchange term and consequently more strongly bound electrons as one can also
see from the increasing ionization potential in panel (a).
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Figure 5.2: Panels (a)-(e): Scatter plot of site energies of the MADN system for different
values of aprx vs the PBEO (agrx = 0.25) reference. (f) Site energy disorder
o in eV for all values of agpx.

5.2.2 Site Energies

Figure (a)—(e) presents scatter plots comparing the distributions of the calcu-
lated site energies of MADN molecules for different aypx values, using aypx =
0.25 (PBEO functional) as a reference in all cases. Visually, the distributions look
very similar as most data points cluster near the diagonal line. In Table we re-
port the minimum (Ep,;,) and maximum (FEpax) values of the energies and the
standard deviation o of the individual distributions, which are also shown in
Fig. [5.2(f). All noted variations in these quantities appear small. The data in
Fig. and show that the observations on the total site energies also hold
for the individual contributions of electrostatic and polarization energies. This is
also reflected by the small variations in the respective standard deviations o and

Opolar listed in Table
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Table 5.1: Characteristics of site energies E (all in eV) obtained for the different values of
agrx : minimum (Eyi,) and maximum (Fyax ), the overall standard deviation
and the contributions for static and polar calculations, as well as the largest
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Interestingly, we find the biggest variation of 0.1 eV in the values for Fyj,. This
minimal energy (or rather all the energies in the low-energy region of the distri-
butions) can have a very significant influence on the charge transport properties,
depending on how much the site energy differences are influenced in the charge
transport network. To further characterize the effect of different aypx values, we
consider the largest absolute variation in the site energies depending on ayrx by
calculating the Chebyshev distance D, = max(|E;(anrx = 0.25) — E;(omrx)|)-
From the results listed in Table one can sée that on individual level the site
energies can vary substantially, with more than 0.1 €V. This variation is larger than
the recorded values of o and with all agpx yielding the same mean site energy of
-0.86 eV this could indicate non-neglibible effects on charge transport.

5.2.3 Distributions of Electronic Couplings

Distributions and correlations compared with the PBEO reference for the elec-
tronic coupling elements calculated with different values for aypx are shown
in Fig. The individual distributions appear very similar, with a peak of
logy0[(Jij/€V)?] between -5 to -6, and a long tail of the distribution towards more
negative values. The comparison with the PBEO reference shows that while there
is a clear correlation between the results for different values of ayryx, the spread in
the order of magntitudes of ij can be very large especially for the lower coupling
regions. Overall, the squared electronic coupling elements are found in a very
wide range from 1072 to 107! (eV)? due to its exponential distance dependence
and sensitivity to mutual orientation of the two involved molecules. Whereas
the site energy distributions discussed in the preceding section are well-defined
in the sense that each energy is unambiguously associated to a physical entity —
a molecule in the morphology, the coupling elements are evaluated for a neigh-
borlist with the closest contact distance less than 0.5nm. Clearly, if this cutoff
is chosen to be large, a lot of hopping pairs with very small coupling elements
will be considered that may not be relevant at all (or even unphysical) for charge
transport. Therefore, the increasing deviations for the most negative values in
Fig. may not be relevant either. To determine the range of logy[(.J;;/eV)?]
that are significant for the charge dynamics, a percolation analysis is performed
to find a critical threshold value for the squared electronic coupling below which
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Figure 5.6: The maximum size of the subgraphs obtained in the percolation algorithm
as a function of critical value J..

the largest connected subgraph is identical to the full graph. This is achieved by
removing for a given value for J. from the full graph the edges with ij < J?
followed by the determination of the number of vertices in the larges connected
subgraph max(Ngp). Figure|5.6/shows the resulting dependence of max(Ngy,) on
the critical value J.. It is apparent that for log,, J> = —5, all vertices are in the
largest connected subgraph. The charge transport network’s overall connectivity
is mostly affected by coupling elements larger than this threshold, and the charge
transport properties are expected to be more sensitive to deviations for the associ-
ated edges. We also note that overall, the results in Fig. again seem to be very
similar for all aypx studied in the work.

5.2.4 ToF Calculations

From the analysis of reorganization energies, site energies, and electronic cou-
pling elements for different values of aygx, it is not clear how the mostly on
distribution-level observed variations impact the overall charge transport prop-
erties. To scrutinize the dependence of such a material property, we now cal-
culate the ToF 7 and report the respective values in Table Here, we refer
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Table 5.2: Simulated ToF (in s) for different values of apypx in the full graph, with
an additional cutoff on J2?, and for the case with no energetic disorder,

respectively.
OHFX full Jij1(logy ij >—=5) AE; =0
0.00 6.4-107° 7.5-107° 1.9-10710
0.05 7.9-107° 8.1-107Y 4.1-10710
0.10 1.6-1078 1.6-1078 4.0-10710
0.15 3.0-1078 3.1-1078 4.0-10710
020 2.1-1078 2.5-1078 4.5-.10710
0.25 9.5-1078 9.7-1078 7.2-10710

with ”full” to the ToF obtained for the as-calculated charge transport network.
One can see that 7 varies by roughly one order of magnitude between aypx = 0
(6.3-107?s) and appx = 0.25 (9.5 - 1078 s), with an almost monotonous increase.
When the squared coupling elements with values below 10~° (eV)? are set to zero
(Ji;1(logg Ji > —5)), one obtains only minimally, but consistently, larger 7, cor-
roborating the notion that the very small coupling elements are of little relevance
for charge transport. Finally, we also consider the case in which the energetic dis-
order is ignored (AE;; = 0). Here, one also can see (next to the generally shorter
ToF) a consistent increase in 7, however only by a factor of about 3.8, a combined
effect of the increased reorganization energy and variations in coupling elements.

5.3 Uncertainty Quantification and Sensitivity Analysis

The previous section shows that different HFX affect the calculated ToF. In this
section, we use the Monte Carlo method to estimate the range of the ToF given a
confidence level, followed by a sensitivity analysis to determine which parameter
contributes more to the variance of ToF.
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5.3.1 ToF of Diffusion

As discussed the ToF is calculated from the graph with weighted edges defined
by the electronic structure data (A, By, ..., Ey, J?Z, ..., JJQVP), where N is the num-
ber of molecules (vertices) and NNV, the number of molecule pairs (edges) in the
neighbor list. We can therefore consider that 7 = 7(x) with

x = (A, By,..., En,logio(J7), .. ., logio(JR,))

as dependent on M =1+ N + N, parameters with uncertainty, in this case stem-
ming from the possible choices of ayrpx in the exchange-correlation functional of
the multiscale model. Note that due to the data range for the electronic coupling
element as discussed in the previous section, we consider log;,(J?) instead of J2.
For MADN, we have NV = 1000 and N, = 8764 so that M = 9765.

Because the precise distribution of the uncertainties of the M parameters is not
known, we consider the maximum amount of uncertainties from a maximum like-
lihood estimation based on the data obtained from the explicit results for the dif-
ferent values of agpx and the assumption of normal distributions. In other words,
each of the parameters x; for i = 1,..., M is assigned a normal distribution with
N(E(z;),V(x;)), with E(x;) (V(z;)) the mean (variance) of the respective data.
Then, Monte-Carlo sampling is used to obtain Nyc = 50000 different realizations
of x, the respective ToF is calculated from these samples, and the resulting distri-
bution P(logy(7)) is statistically analyzed. Specifically, we consider four different
settings: in three settings, only one of the parameters blocks (A, {E}, {logio(J?)})
is sampled while the values of the other blocks are set to their respective mean
values, and we denote the resulting distributions as Py (log;y(7)), Pr(log;o(7)),
and P;(log;y(7)), respectively. In the fourth setting, all parameters are sampled
at the same time, yielding Px(log;,(7)). As these distributions do not necessarily
follow any specific analytic form, we estimate a 99% confidence interval around
the median using the equal-tailed percentile method.

The four respective distributions of 7 in the MADN system are shown in Fig.
together with the indicated confidence intervals obtained from Monte-Carlo sam-
pling. Black dots at the z-axes are the data from the explicit calculations for the six
ayryx values discussed before. Considering first the three distributions with single
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Figure 5.7: Distribution of ToFs in the MADN system from Monte Carlo sampling
with a sample size Ny = 50000. The red vertical lines indicate the lower
bound and upper bound of the 99% confidence interval around the median.
The black circles indicate the ToF obtained using explicit appx values.
Uncertainties considered are (a) in the reorganziation energy, (b) in the site
energy, (c) in the coupling elements, and (d) in all simultaneously.

property sampling in panels (a)-(c), we find the confidence intervals for log;,(7)
of [—8.0, —7.4] for uncertain A, [-8.0, —6.5] for uncertain E, and [—7.9, —7.7] for
uncertain J, respectively. Interestingly, all three share very similar lower limits
of the confidence interval, while the upper limits and the shape of the distribu-
tions differ significantly. While P (log;y(7)) and Pj(log;,(7)) appear relatively
symmetric, indictaing possible a log-normal distribution of 7, Pg(log,y(7)) is dis-
tinctly asymmetric which might point to a normal distribution of 7 for uncertain
energies. From the three distributions and the confidence intervals one can see
that the effect of the uncertainty in the coupling elements on the ToF is small
(factor of 2 on 7). The effect of uncertainty in the reorganization energy is only
slightly higher (factor of four). Uncertainty in the site energies, in contrast, has a
much bigger impact on the estimates of 7. From the distribution of Px(log;(7))
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in Fig. [5.7/(d), one can see than when all parameters are sampled, the result is
dominated by the effects from the uncertainty in the site energies, with an overall
similar shape and a confidence interval of [-8.3, —6.6], corresponding to a range
from about 5 ns to about 250 ns in 7.

We note that the above analysis from sampling via independent distributions
of the uncertain parameters assumes that the parameters themselves are indepen-
dent or uncorrelated. Correlations in organic semiconductors are typically found
among the site energies when the molecules are polar [39, [130]. MADN has a
very low dipole moment, and we find practically no spatial correlations between
the site energies, making the sampling approach suitable for this material system.

Besides the inspection on the distributions for various uncertain parameter
(sets) as above, one can also quantify the sensitivity of the time-of-fight to the
respective parameters by evaluating their contributions to the overall observed
variance in 7. One way of decomposing the variance of the model output into
fractions attributed to input parameters is the variance-based sensitivity analysis
using Sobol indices [131].

To measure the parameter z;’s contribution to 7 = 7(x) including all variance
caused by its interaction with other parameters {x, k # i}, the total Sobol index
St is calculated as

Spi= Ex.. [Vw-(ﬂxw')].

, Vi) (52)

Here, x.; denotes the vector of all entries of x but x;. The variance of 7 given a
set of x.; taken over z; is V., (7|x~;) and Ex_,[-] denotes the mean of argument
() taken over all factors but x;. We then consider based on the structure of the
vector x the Sobol index for the reorganization energy as Sy p = S71, for the site

N+1 N+1+Np
energies as St g = »_, St,, and for the coupling elements as Sy p = > St,.
i=2 i=N-+2

Using the quasi Monte Carlo method[132] with a sample size Nomc = 1000 to
calculate S7;, we find that Sz, = 0.097, St g = 0.950 and St ; = 0.028. The
Sobol indices corroborate the observation from the confidence intervals that the
uncertainty in the site energies gives the dominant contribution to the variance of
the simulated ToF. Contributions from the reorganization energy and the coupling
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elements are both small in relation, with the one of A slightly larger than the one
of J. This is also in line with the general observations on the distributions in

Fig.

5.3.2 Drift-diffusion Charge Mobility

When an external electric field, F, is applied to the system, the transport is not
just diffusive but a drift-diffusion process. The material property of interest is then
the drift mobility evaluated as y = % where v = L/ is the effective velocity of
the charge carrier and L is the vector connecting the initial and final positions of
the charge carrier. Here, we perform calculations for six different field directions
(positive and negative Cartesian directions) with the source and sink conditions
set accordingly. The electric field is taken into account in the Marcus rate via an
additional term in AF;; given by eF - r;;, where r;; connects the center-of-masses
(COMs) of molecules i and j (see Eq. ). Finally, we define for a certain
field strength F' = |F| the ToF drift mobility x(F') is as the average over the six
directions.

We perform such mobility calculations for the six explicit ayrx models as well
as the Monte-Carlo sampled uncertainty for six different values of F. The results
are shown in Fig. While the distributions shift depending on the strength of
the applied field, the overall shape and the width of the confidence intervals is
very similar. The width of the confidence intervals in log;,(x) decreases from 0.9
at low fields (4-107 V/m) to 0.7 at a field of 9-10” V/m, corresponding broadly to
a width of close to one order of magnitude in p. A stronger drift component due
to a larger external electric field seems to make the mobility slightly less sensitive
to uncertainties.

Figure shows the plot of the charge mobility as a function of v/F to reveal
the electric field dependence of the type u(F) = poexp(SvF) as predicted by
Poole and Frenkel [133]. We show the explicit results for the six chosen aypx val-
ues together with the confidence interval estimated from the uncertainty quantifi-
cation via Monte-Carlo sampling. In Table [5.3|we also summarize the parameters
1o and S extracted from fits of the explicit data to the Poole-Frenkel expression.
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Figure 5.8: Distribution of the mobility u for different values of the externally applied
electric field F' as obtained from uncertainty quantification using Monte Carlo
sampling with a sample size Nyc = 10000. The red vertical lines indicate
the lower bound and upper bound of the 99% confidence interval around the
median. (a) |[F|=4-107V/m, (b) |[F| =5-10"V/m, (c) |F| =6-107V/m,
(d) |F| =7-10"V/m, (e) |F| =8-10"V/m, (f) |[F| =9-10"V/m.
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Figure 5.9: Electric-field dependence of the mobility p in the multiscale modeled MADN
system. The dash lines are Poole-Frenkel plots obtained with specific agpx
values, and the green shaded area indicates the 99% confidence interval
estimated from the MC sampling with a sample size of Ny;c = 10000.

Table 5.3: Poole-Frenkel parameters o (in cm?/(Vs)) and 3 (in y/cm/V) of the multi-
scale modeled MADN, calculated by the six different agpx values.

QHFX Ho B

0 40-107% 1.0-1073
0.05 2.1-107% 9.3.107*
0.10 1.0-107% 1.5-1073
0.15 80-107* 1.6-1073
020 93.-100* 13.1073
025 26-100* 1.8-1073
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The values for jo vary from 2.6 - 107% cm?/(Vs) to 4.0 - 1072 cm?/(Vs), roughly
one order or magnitude depending on the chosen aygyx, in line with the uncer-
tainty from the Monte-Carlo sampling. The Poole-Frenkel slope 3 in contrast is
found to be much less sensitive to uncertainties, with recorded values between

9.3-107*/cm/V and 1.8 - 1073 y/cm/V.

5.4 Discussion and Conclusion

Results in this chapter show that, by systematically varying the Hartree—Fock ex-
change fraction in hybrid functionals, the site energy uncertainties have a domi-
nant influence on the variability of the ToF and mobility predictions. In contrast,
the uncertainties in reorganization energies and electronic coupling elements are
shown to have a relatively minor effect. This suggests that further efforts to en-
hance the accuracy of site energy calculations — potentially through improved
parameterization or advanced quantum mechanical methods — could significantly
improve the reliability of multiscale modeling predictions. Interestingly, the re-
sults also demonstrate that the uncertainties in electronic coupling elements, par-
ticularly those with very small magnitudes, are less relevant for overall charge
transport. This aligns with the percolation analysis, which indicates that cou-
pling elements below a critical threshold contribute minimally to the connectivity
of the charge transport network. Thus, simplifying approximations in handling
these low-value couplings could be justified in specific scenarios to reduce compu-
tational complexity without compromising accuracy.

Another notable finding is the robustness of field-dependent mobility predic-
tions. Despite uncertainties in the underlying molecular parameters, the electric
field dependence of mobility exhibits relatively consistent Poole-Frenkel behavior
across the tested range of aypx values. This robustness suggests that multiscale
models retain predictive value for field-dependent trends, even when parame-
ter uncertainties are present. However, the results also highlight the challenge
of achieving quantitative accuracy in charge mobility predictions, given that the
uncertainty range spans an order of magnitude. This raises important considera-
tions for interpreting simulation results in the context of experimental data. For
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instance, small differences in predicted mobility between two materials or designs
may not be statistically significant given the intrinsic uncertainties.



Chapter 6

Trap Identification in Charge Transport
Networks

Adapted from the paper ” Automatic Identification of Traps in Molecular Charge
Transport Networks of Organic Semiconductors, Z. Chen, P. van der Hoorn, B.
Baumeier, arXiv preprint 2411.07136 (2025)”.

In this chapter, we will present the method that automatically identifies traps
or regions of traps in a multiscale-model charge transport network. Our pro-
posed method builds on the random walk model of charge dynamics on a directed,
weighted graph, the molecular transport network. It comprises an effective heuris-
tic to determine the number of traps or trap clusters based on the eigenvalues and
eigenvectors of the random walk Laplacian matrix and uses subsequent spectral
clustering techniques to identify these traps. In contrast to currently available
methods, ours enables the identification of trap molecules in organic semiconduc-
tors without having to explicitly simulate the charge dynamics.

Using the charge transport network resulting from a multiscale model of an
amorphous morphology of bathocuproine (BCP) [[134], a molecular material with
known high energetic disorder [135]] and complex charge trapping behavior, we
demonstrate that our approach successfully identifies both a single trap, multiple
distributed traps, and a combination of a single-molecule trap and trap regions
on an equal footing. We also find a strong relation between the cost function

89
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associated with the normalized cut and the charge-carrier dynamics simulated in
a time-of-flight setup, as well as the physical characteristics of the trap (regions).

This chapter is organized as follows: the traps characteristics in organic semi-
conductors and potential identification methods in the literature are briefly re-
viewed in Section Section introduced the graph-theoretic decomposition
(GD) method used in this work, and Section gives the details of the spectral
clustering-based trap identification method we propose in this work, including the
determination of the cluster number and K-means clustering. The results of the
application of this method to a molecular network (consisting of BCP molecules)
and its modifications to cover different trap types are presented and discussed in
Section [6.5] to Section [6.9] presents the application of the proposed method
on the systems where traps can not be found purely based on the lowest energy.

6.1 Traps in Organic Semiconductors

Depending on the materials, traps can be defect-like single molecules or clusters
of several neighboring ones, and can have a significant impact on the dynamics
of charge carriers. On a macroscopic level, traps are often considered in the
literature in terms of the energy density of state (DOS) p(FE), typically assumed to
be Gaussian curves or exponential. In equilibrium, the mean energy of a charge
carrier in the DOS is

b oo Eg(E)p(E)dE
< 2 9(E)p(E)dE

(6.1)

Here g(E) = [exp(Ekng) + 1]~ is the Fermi-Dirac distribution with the Fermi
energy Ep determined by [* g¢(E)p(E)dE = N, with N, being the number of
charge carriers. A visualization that qualitatively shows the trap energies’ loca-
tion is shown in Fig. Molecules with energies much lower than E, are then
considered as (deep) traps. However, such a qualitative criterion is insufficient to
identify traps in a molecular charge transport network for several reasons: First,
the estimate of E, is based on a chosen model DOS, which has some assumed

continuous distribution. A realistic material, even on the scale 100 nm, will, how-
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Figure 6.1: Density of state function of OSC assuming a Gaussian model. The bell curve
annotated as "hole/electron" indicates the range of transport energies for
hole/electron. The red dashed lines indicate the location of equilibration
energy Foo p, Eoo e for hole and electron.

ever, not exhibit such a continuous DOS. Second, a discrete version of Eq.
depends on the number of molecules in the system, and the equilibrium energy
in such a discrete DOS is dependent on system size [[136]. Third, focusing on
the DOS alone ignores other contributing factors to the charge dynamics, or the
features of the transport network, such as electronic coupling elements between
pairs of neighboring molecules, structural details of the material and or spatial
correlations. These details are connected to the variety of physical sources for
traps, e.g., interfacial effects, defects in molecular packing, or chemical impuri-
ties. This makes it difficult to provide a quantitative definition of traps that can
be used for identification. The bi-molecular transfer rate (such as the Marcus
rate which is introduced in Chapter |2) cannot be used to identify traps. If mul-
tiple connected molecules form a trap region, the rates within the region can be
very large although the rates jumping out of the region are small, resulting in the
charge carrier spending a long time within the region [137].

At present, there are no methods for the identification of traps in molecular
charge transport networks that perform reliably for all different trap types. Few at-
tempts have been reported in identifying trap regions, or clusters, based on analyz-
ing the actual simulated dynamics, e.g., via kinetic Monte Carlo (KMC) [[104}[771].
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Qualitatively, once entered into such a trap region, the random walk (representing
the charge dynamic of a single carrier) transitions mostly within it and escaping
it is a rare event, making such KMC simulations very time-consuming. Two meth-
ods to accelerate KMC simulations which indirectly involve trap identification
have previously been discussed. One is based on the (stochastic) watershed algo-
rithm filling regions ("basins”) in the spatially resolved energy distribution [[104]].
This purely energy-based criterion does, however, not consider additional details
of the factors influencing the molecular charge transport network. The second
method [[138]] is based on a graph-theoretic decomposition and makes use of the
fact that in the presence of trapping regions the Markov chain on the molecular
charge transport network is nearly completely decomposable [139], allowing the
associated graph to be partitioned into subgraphs. While this method takes the
full information of the hopping-type dynamics into account, it is sensitive to the
choice of parameters (related to, e.g., graph connectivity properties or transition
rate ratios) and is not successful in identifying single trap nodes in the graph (as
will be also discussed in later sections). The next section will introduce the details
of the GD method as implemented in this work.

6.2 Graph-theoretic Decomposition Method

The GD method proposed in [138] is used to speed up the KMC simulation by
identifying and grouping regions of traps (problem regions) where the walkers
become stuck. This accelerated KMC is named aggregated Monte Carlo simula-
tion [115]. The GD method used in identifying the problem regions is a potential
method to identify traps and calculate mobility with less computational effort.
The GD algorithm begins by taking a vertex of minimal vertex degree in G and
uses this vertex as the basis of a cluster. Then each node v’ adjacent to v is checked,
and added to G if certain criteria are satisfied. The criteria for including a node
into a cluster are:

1. Either a completeness criterion or a fullness criterion. 1) The completeness
criterion requires that % > « for some a > 0, where R(G) is the
ratio of the number of edges in the graph G to the number of edges that G

would have if it were complete. In the case of G consist of only one node,
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Algorithm 2 Graph-Theoretic Decomposition

1: put C=V, set j=1.

2: Put S=8"=10

3: Choose from C a vertex v of minimal degree, mark it and add it
to S.

4: Move to S’ all vertices adjacent to wv.

5. Choose a vertex s in S’.

6: If the fullness or connectivity criterion is satisfied and the
threshold criterion is satisfied, then move s’ to S and add to S’
all vertices in C adjacent to s’. Otherwise, move s to C.

7. If S’ # (), repeat from step 5.

8: Put aside the vertices in S as superstate Vj.

9: If C#(, set j=j+1 and repeat from step 2.

R(G) = 1 since G is complete. 2) The fullness criterion requires that the
external node v’ be adjacent to at least a proportion 3 of nodes in the cluster
G for some /3 > 0.

2. A threshold criterion. This requires that at least one transition probability
from ¢’ into a node in G be bigger than ~ and that at least one transition
probability from G to v’ be bigger than ~ for some v > 0.

The process is repeated until no more nodes can be added to G. At that stage,
the nodes of subgraph G are removed from G and classified as a cluster. The
algorithm begins again until all nodes are classified.

Starting from a graph G = (V,E) The GD algorithm is summarized in Algo-
rithm

6.3 Spectral Clustering Method

In this section, we present the theoretical background of spectral clustering for
trap identification, including a recapitulation of details about the random walk
Laplacian matrix, the graph partitioning based on its eigenvalues and eigenvec-



94 Trap Identification in Charge Transport Networks

tors, and the K-means clustering algorithm. We will also propose our heuristics
for determining the number of traps, within this framework.

6.3.1 Random Walk Laplacian Matrix and Graph Partitioning

Identifying traps within a multiscale modeled molecular charge transport network
corresponds to finding the regions of nodes in the corresponding graph in which
the random walk process takes a long time, while the transition between the
regions is rare.

In spectral clustering theory, see for example [[140] Proposition 5, finding such
regions of nodes corresponds to cutting through the graph such that the resulting

partitions G1, - - - , G, minimize the objective function
" cut(Gy, Gi)
NCut(Gy, - -- 6.2
u ( 1, 9 ; VO]. ) > ( )

where cut(G;, G;) = §(Wg, g, + Wa,.q,), With Was := > wjj, and vol(G;)
i€A,jeB
the volume G;, calculated by summing up the weights of the edges within G;.
In the context of trap identification, the partition that minimizes Eq. (6.2)) will
correspond to the traps in the system and the remaining molecules. That is, we
have K = k — 1 traps and one element G; will represent all non-trap nodes.

The problem is that solving Eq. is known to be an NP-hard problem.
However, a relaxation of it can be solved using the so-called random walk Lapla-
cian matrix. For a weighted graph G = (V, W) define the out-degree matrix by
D:=D;; =) ; Wig and the Laplacian matrix by L = D — W. The random walk
Laplacian matrix of a graph G is given by

L,=1-D"'W, (6.3)

So L,,, is the Laplacian matrix normalized by D.

Note that the charge transport graph is directed and hence the Laplacian ma-
trix is not symmetric in general. Nevertheless, the random walk Laplacian L,
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has a real-valued spectrum. This follows from the fact that
L, =I-D"3(1-Lg,)D 2, (6.4)

where Loym=1- Q_%WQ_% is the normalized symmetric Laplacian. So L, is
similar to Lgym; and since the latter has a real-valued spectrum, L., has N real
eigenvalues: \; =0 < A2 < A3 < --- < Ay. The fact that L., has real eigenvalues
enables the use of spectral clustering methods for our directed charge transport
network.

The idea behind spectral clustering is to consider the relaxation of the NP-hard
discrete minimization problem for NCut Eq. (6.2)), which tries to find T € RV**
that minimizes

min Tr(T'D :L.,D :T) (6.5)
Tc RN xk

subject to the constraint that T'T = I. The solution T* to Eq. (6.5) is formed by
the first £ eigenvectors of random walk Laplacian matrix L,,,.

It should be noted that solving Eq. does not yield a partition of the graph,
as this is a relaxation of the true discrete optimization problem we wish to solve.
To construct a partition in practice a K-means algorithm, introduced in the next
subsection, is performed on the rows of solution T* to Eq. .

6.3.2 K-means Clustering Algorithm

In general, the K-means clustering method partitions a dataset consisting of N
data points into distinct clusters, minimizing the distance between points in each

cluster. Let £ > 2 and consider N data points: {x;,Xs,---,xy} where x; € R%.
For any partition Cy,--- ,C; of {1,2,..., N} we define the cost function
L
Z(Cy, - C) = Zm Z |1xi — 512 (6.6)

=1 1,7EC;



96 Trap Identification in Charge Transport Networks

: 107 !

| '

0.08 g 10-2 / 80 '
| |

| /

i 103 J !

i 601 !

0.06 I :
‘f 1074 f '§ H

'

= 004 s 10| ! +40] |
= ] ~< H

- 10764 ¢ |
0.02 i 207 4
10774 ! |

/ i~
0.00 1078] e 0 ¥ teteestccsessoee
2 12 22 32 42 52 2 12 22 32 42 52 2 6 10 14 18 22

i i i

Figure 6.2: The first fifty eigenvalues of the random walk Laplacian matrix L, (a)
without log scale and (b) with log scale. The first eigenvalue is zero and
is not shown in the plot. (c) Eigenvalue ratio A;41/A; as a function of the
index.

The objective of K-means clustering is to find the partition Cf,--- ,C; that mini-
mizes Eq. (6.6). That is, the partition minimizes the pairwise squared distance
within each cluster normalized by the cluster size. A practical approach to this is
via a local search algorithm such as Lloyd’s algorithm [[141]: In this work, the in-

Algorithm 3 Lloyd’s algorithm for K-means clustering

1: Input k and xi1,X2,---,Xn, C1,---,Cr are randomly initialized
2: while not converged do
Compute ¢; = |0711\ Y x; for [=1,2,--,k

1€C,
4: Update Cy,---,Ck bly assigning each point X; to the cluster
whose centroid c¢; is closest to.
5: If the cluster assignment did not change, convergence is
achieved.
6: Return cluster assignment Ci,---,Cp.

put N data points are the IV rows of the matrix T* that is the solution to Eq. (6.5).
The resulting k clusters are then understood to correspond to K = k — 1 traps in
the system and the remaining group of nodes representing the rest of the system.
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6.3.3 Determination of the Cluster Number

For the description of the K-means clustering algorithm, it follows that one needs
to provide an input k for the number of clusters. The main problem, as is also
the case for our intended application, is that it is often unclear what & should be.
Therefore, this subsection will introduce an algorithm to determine the number
of clusters, which is based on the more commonly applied eigengap heuristic.

Starting from spectral clustering theory, we know that the multiplicity of the
smallest eigenvalue O of a graph Laplacian equals the number of connected com-
ponents in the graph G. If Gq,--- , G are the connected components, then the
eigenspace corresponding to eigenvalue O is spanned by the vectors {1g,}% ;.
Here 1¢, is the vector where elements corresponding to the nodes in cluster G;
are one and the rest are 0. This shows that both the eigenvalues as well as the cor-
responding eigenvectors contain relevant information about the possible number
of clusters.

Of course, in many applications, the graph is a single connected graph and
the interesting clusters do not reside in disconnected components. Hence, we
cannot simply use the multiplicity of the first eigenvector. Instead, a variety of
ways to determine the number of clusters have been discussed previously. For
instance, Fraley and Raftery proposed finding the number of clusters based on
the log-likelihood of the data [[142], while Still and Bialek suggested information-
theoretic criteria based on the ratio of within-cluster and between cluster simi-
larity [[143]]. Tibshirani el at. used gap statistics on general data points to find
the cluster number [[144]]. Specifically, in the heuristic eigengap method based
on perturbation theory, & is chosen such that Ay, --- , \; are very small and Ay
is relatively large [140]. In practice, it can however be difficult to implement
this heuristic as it is not well-defined what “relatively large“ is. This problem can
clearly be seen in the eigenvalues of L, for the BCP model system, as shown on
linear and log scale in Fig. [6.2|(a,b), respectively.

To overcome the non-obvious challenge of finding a good %, we notice that
the ratio of the eigenvalue \;;;/)\; is large for the small indices i, as shown in
Fig.[6.2(c). As the index i becomes large, \;;1/)\; becomes small. This prompts
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us to utilize the index ¢ yielding the maximum Ay, 1/)¢ as a good first guess for
the number of clusters.

Additionally, the eigenvectors also contain important information about possi-
ble clusters. For example, when considering 2 clusters, the entries below O in the
second eigenvectors will correspond to nodes in one cluster while those above 0
correspond to nodes in the other cluster. From this, the idea is that we should
only consider those nodes i such that the i-th entry in the ¢-th eigenvector is large
in absolute value.

All together, our method first chooses the index ¢ such that A\, 1/)\; is the
largest. Then using the eigenvectors corresponding to the first ¢ eigenvalues, we
consider the elements sufficiently distinct from zero. This is controlled via a pa-
rameter a. For each of the first ¢ eigenvectors, we will look at the induced sub-
graph on those nodes whose entries are larger than « in absolute value. We then
collect the disconnected components of this induced subgraph as separate graphs.
After this, we have a collection of small subgraphs from which we will remove all
subgraphs that are themselves a subgraph of another graph in this collection. This
procedure leaves us with a list of disjoint subgraphs given by the first ¢ eigenvec-
tors and we take k to be the number of these graphs plus 1. The full procedure to
determine the cluster number k is summarized in Algorithm

Let us make a few remarks about this algorithm. Firstly, to select ¢ such that
Ar+1/A¢ is maximum, the algorithm starts from ¢ = 2 since the first eigenvalue is
always 0. This is also the only eigenvalue equal to 0 as we only work with con-
nected graphs. We then normalize the eigenvectors corresponding to the selected
eigenvalues as |u;|/max(|u;|). The purpose of this normalization is to make the
algorithm more robust and less dependent on the parameter a, which is used to
indicate the entries of eigenvector elements distinct from zero. In particular, we
can take 0 < a < 1. In general, the value of a should not be too close to 1 to avoid
missing relevant subgraphs. It should also not be too close to zero because then
it will not be selective enough. In this work we pick different increasing values of
a starting at 0.9, to check how robust the analysis is for a closer to 1. Finally, note
that when counting the total number of induced subgraphs, if the subgraphs are
contained in other subgraphs, those do not contribute to the value of k.
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Algorithm 4 Determination of cluster number k

: Input: G, L, a.
: Calculate (A, u;) for i =1,--- N, such that \j < A <.+ < Apy.
:for 1=2,3,---,N—1 do

u; < [ug]/max(|u;|)

1
2
3
4
5: Calculate ¢ = argmax(A;fl)
6: Denote empty set B =0
7. for i=1,2,---,¢ do

8 Set node list Q=0
9 for 7=1,2,---,N do

10: if u;; > a then
11: add j to @)
12: Let Hi,...,H)s denote the disconnected components of the

induced subgraph in G on the nodes in @).
13: Update B=BU{Hy,...,Hy}
14: for H,H' € B do
15: if H C H' then
16: remove H from B
17: k= |B|+1
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Figure 6.3: (a) The distribution of site energies. (b) The distribution of coupling elements.
(c) The spatial resolution of molecule energies in 3-dimension, where each
solid circle represents a molecule.

6.4 Trap identification Based on ToF

The BCP morphology is obtained by the classical molecular dynamic simulation
with computational details in Chapter Performing the multiscale model in
Chapter [2] the Marcus rates and the material graph are evaluated with computa-
tional details in Chapter 2.2.2]using the functional BHANDHLYP for the exchange-
correlation functional [145]. The electronic structure parameters of the BCP
molecule calculated from the multiscale model are shown in Figl6.3]

We begin with a short semi-quantitative analysis of the effect of traps in a
molecular charge transport network. As the name suggests, once a charge carrier
encounters a trap, it will spend a significant amount of time in it and the observed
charge dynamics will be slow (large ToF). However, if there are more carriers in
the system than traps, one can expect that once all traps are filled, the remaining
charge carriers are very mobile. Denote as N; the number of traps, with N, the
number of charge carriers as in Chapter([3.1.1]and 7(Nc) the ToF depending on the
number of charge carriers, evaluated, e.g., by Eq. and Eq. (3.4). Then one
expects the ratio 7(N¢)/7(N. + 1) to be large for N. = N;. Analysis of this ratio
then provides a qualitative indication of the effective number of traps (depending
on a definition of ”large”) in the transport network but not their location. In
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Figure 6.4: The scatter plot of 7(1)/7¢(1) for each node with index i. The only point
with a value greater than 100 is the trap node whose index is 66. Inset:
A box of 1000 BCP molecules simulated from MD. The Source and Sink
molecules are highlighted by the blue color, and the molecule corresponding
to trap node having large 7(1)/7%(1) is highlighted by the red color. The
other BCP molecules are in gray color.

addition, the evaluation of 7(N,) for a large number of carriers is computationally
cumbersome [146].

To avoid such expensive calculations and still gain insight into which molecules
correspond to the V; traps, one can consider all different subsets QQ(/V;) of size N;
of molecules in the network. We then consider the ToF of a single charge carrier
7(1) in the full system and in a system in which the subset Q(N;) has been re-
moved from the network, 7¢(1). The removal of the nodes is motivated by the
fact that in the case of very strong traps, carriers will not easily escape them and
thus they will for N, > N; be largely inaccessible to the mobile carriers. In this
scenario, one can inspect the ratio 7(1)/7%9(1) and identify traps from its "large”
values. In the special case with only a single trap /V; = 1 the set Q(1) is given by
a single node index 4, and we can inspect 7(1)/7%(1). This is shown for all i for the
simulated BCP system in Fig. It is clear that there is a single molecule node
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whose presence in the molecular charge transport network affects the ToF by four
orders of magnitude. While it is intuitive to call this particular node a trap in this
specific case, it is less obvious in general and the precise definition of a threshold
value here is hardly possible. Another drawback of using the inspection of the
ratio 7(1)/7%(1), or its more general form, is the need for many cumbersome ToF
calculations of the (]Z\Yt ) different scenarios. This shows that a general method
that identifies traps in molecular charge transport networks based on the graph
structure alone without the need to actually calculate the dynamical properties is

of great usefulness.

6.5 Identification of Single-molecule Trap

From the above analysis of the ToF sensitivity to the various nodes, we have identi-
fied node 66 is being a trap in the simulated BCP system, with site energy -1.89 eV.
We will refer to this node as the trap node and will denote it as v¢,p. In the fol-
lowing this trap node is used as the reference to scrutinize approaches for trap
identification in molecular charge transport networks that solely rely on network
properties.

6.5.1 Results from GD Method

Before turning to the spectral clustering method as proposed in Section (6.3 we
first show the results of the GD method [138]], whose technical details are sum-
marized in Section[6.2] The method contains three adjustable parameters, «, 3, 7.
The first two are related to details of the connectivity of the graph, whereas ~ is
used to define a threshold involving the ratios of transition rates. In application
to multi-node traps or trap regions, a choice of «, 5 = 0.02 and v = 0.2 has been
reported before [104]. We apply the GD method to BCP and calculate the num-
ber of clusters n and the total number of molecules in the cluster containing the
trap node, denoted as ny, for different choices of the parameters. The parameter
« characterizes the change in the ratio of the number of edges in the cluster to
the number of edges that G would have if it were complete. In our BCP graph,
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Figure 6.5: (a) The number of clusters after performing the GD method and (b) the size of
the cluster containing the trap node with 8 = 0.02,0.9 and v = 0.5,107, as
a function of a.. (¢) The number of clusters after performing the GD method
and (d) the size of the cluster containing the trap node with o = 0.02,0.9
and v = 0.5,107°, as a function of 3.

this change is negligible. And 3 characterizes the number of edges between a sub-
graph and an adjacent node. We find the results of the GD method to be mostly
insensitive to the choice of o and 8 as shown in Fig. Figure [6.5] shows the
results of using different «, 5 combinations to identify traps in the BCP structure.
Small and large v are used with varying «, 8. This figure shows that at both small
v = 1079 and large v = 0.5, various values of «, 3 combination can not identify
node v as a trap.

The parameter v related to the rate ratios has, however, a significant impact
on the obtained clustering, as is shown in Fig. (a) for the range of 107° <

v < 21071

For very small v, we obtain a single large cluster equal to the



104 Trap Identification in Charge Transport Networks

@ [ J
e
.,
800 p
S ,c'
600 N
| ’
.
<
400
- Ny,
200 --e- ng
..... ""/
0 o= -o- 9" 0----0-000- - o
10> 1074 10~ 1072 107!

(d) v=0.1
i

Figure 6.6: Results of GD method on the BCP charge transport network. (a) The total
number of clusters (ng) after performing the GD method, and the size of
the cluster containing the trap node (ny,), as a function of GD parameter
~. For three values of v, the BCP structures are visualized: (b) v = 0.005,
the red molecules indicate the cluster containing the trap node with more
than 600 molecules. (c) v = 0.01, the 9 molecules in red indicate the cluster
containing the trap node, and the molecules in blue color contain 348 clusters
(d) v = 0.1 with 4 molecules in red forming the cluster containing the trap
node.

whole system. With increasing v the GD method yields more clusters. Between
v =102 and 102 one can see a rather sharp transition in the size of the cluster
that contains the previously identified trap node. At the onset of the transition
(v = 5-1073), see Fig. (b), the cluster containing this node contains more than
600 molecules. After the transition (y = 1072, Fig. c)), this size is massively
reduced. For the previously recommended value of v = 0.2, each molecule is a
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Figure 6.7: Results of the spectral clustering method for multiscale modeled BCP system:
(a) The first ten eigenvalues of L. (b) A;11/\; as a function of 4. (c) The
number of clusters determined from Algorithm [4] as a function of a. (d)-(e)
The first and second normalized eigenvector elements of L., as a function of
node indexes. (f) The BCP system where molecules in red and grey color
are first and second clusters, respectively, as identified using the K-means
clustering with k = 2.

cluster by itself. Tuning the parameter values of «, 3 does not help in identifying
the trap node and GD cannot directly detect the single trap node that leads to
large ToF, although the GD method should group molecules into clusters where
random walk jumps are more frequent compared to jumps outside the clusters.

6.5.2 Results from Spectral Clustering Method

Turning to the performance of the spectral clustering method in application to
BCP, we first show in Fig. (a) the ten smallest eigenvalues of the random-walk
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Laplacian. We note that the first eigenvalue is numerically very close to zero,
as expected by the theory. Focusing on the next two eigenvalues, one can see
a strong increase from A\s to A3, while the preceding eigenvalues increase less
quickly. These observations lead to a behavior of the ratio A\;;1/)\; as shown in
Fig. (b) for 2 <4 < 10. The maximum of \;;,/); is larger than 80 when i = 2,
while all other values are below 5. Our procedure in Algorithm [4will thus take ¢ =
2 in line 5. Figure (c) shows the outcome of the algorithm for different values
of the threshold parameter a ranging from 0.9 to 0.9999. We note it robustly
yields the value k& = 2 for the K-means clustering step, meaning that there should
be one trap in the system. The reason for the observed robustness is clear from
the inspection of the normalized elements of the first and second eigenvectors in
Fig.[6.7/(d) and (e), respectively, which show a single entry (corresponding to the
trap node) being 1. Accordingly, the K-means clustering step is performed with
k = 2 yielding one cluster that only contains the previously identified trap node,
while the other cluster is the rest of the system, visually indicated in Fig. [6.7](f).

6.5.3 Relation between Cost function and ToF

The spectral clustering method very clearly identified the trap node in the BCP sys-
tem. This is also reflected by the fact that the value of the cost function Eq.
for the proposed cut is 8.8 - 10~'2, while the cost of cutting any other single node
is 0.99. We thus see a clear indication that a low cost is a qualitative signal of a
possible trap. On the other hand, it is known that the energy of a trap node qual-
itatively influences the recorded ToF. This raises whether there is also a relation
between the site energy of single-molecule traps and the cost of the correspond-
ing cut, and hence between the cost function and the ToF. To investigate this, we
take the simulated BCP system and modify the site energy Eiap of the trap node,
ranging from a small energy value (-2.4€eV) to a relatively large value (-1.6€V)
and determine the cost of cutting according to our method this node and the ToF
in the system. We note that when the original trap node has a site energy above
(-1.6€V) it is no longer defined as a trap by our algorithm, which explains why
we use this as the upper bound on the energy for this experiment. The results
are shown in Fig. (a). For low values of the site energy, one simultaneously
observes a large ToF and small cost, indicating both a clear trap characteristic and



Trap Identification in Charge Transport Networks

107

(a)

(b)

| = --e- E, vsZ »° 10 B %
1077 ll\ == E, Vs T’!' 10 1077
n A
10713 o 107 w108 %
S l\l . — S .
E ¥ 4 .
Q -19 s " 4 B Q -19 .
S 10 - n‘. 10 S 10 .
» N
1073 ° ", 102 1077 "
," -
—-2.25-2.00-1.75 103 108
E,, [eV] T [s]

Figure 6.8: In a BCP system, the trap node’s energy Fi;ap is varied from -2.4eV to
-1.6€V. (a) Dependence of the cutting cost Z(Cq,C2) and the ToF 7 on Eiyap.
(b) Dependence of Z(Cy,Cs) on 7.

straightforward identification via our spectral clustering method. Increasing the
energy leads to a decrease in ToF and an increase in the cost of cutting the node
from the graph. Moreover, when plotting the pairs of cost function as a function
of the ToF, as in Fig.[6.8|(b), we observe a power-law dependence between the two
quantities. Together these results show that indeed the cost function associated
with cutting out a single-molecule trap and the ToF of the system are intricately
related.

6.5.4 Results With an Applied Electric Field

To further validate the robustness of our spectral clustering method, we investi-
gate its performance under non-equilibrium conditions by introducing an external
electric field. This scenario is particularly relevant for practical applications, as or-
ganic semiconductor devices often operate under bias, leading to non-equilibrium
charge transport dynamics. To illustrate this, we apply an electric field to the BCP
system and analyze the resulting charge transport dynamics quantified by the ToF
and clusters identified by the spectral clustering method. The electric field we
applied is F = [F, 0 0] where F, has values in the range 0 to 1 x 10V /m.



108 Trap Identification in Charge Transport Networks

R S — S — N — &----- O--—-- ©--6
102 =,
-—o-- T Q\
_ o -—6-- TVtrap b\
», 107 &
H A e Y153 Y
1072, “
Q
]
O
102 104 10° 108

|F| [V/m]

Figure 6.9: (a) The 1-carrier ToF 7, and the ToF 7=r when removing the node vgyap as
a function of the electric field. (b) The number of clusters and the partition
cost function Z as a function of the electric field.

Figure shows that as the electric field strength increases, the ToF decreases
significantly, indicating a faster charge transport along the direction of F. Using
the proposed method, the node vap is found as a single cluster across the range
of the studied electric field. As shown in Fig. removing the vyp results in a
significant decrease in ToF as indicated by the gap between 7 and 7=, Further-
more, as the electric field |F| > 10° V/m, the gap between 7 and 7V= shows signs
of reducing. This phenomena suggests that the electric field, having the direction
drift force for the charge dyanmics, can potentially reduce the trap effects. When
the electric field |[F| > 10® V/m, the trapping effect of vyap is totally suppressed.

These results demonstrate that, even under non-equilibrium conditions in-
duced by the electric field, the trap node vyap identified at equilibrium contin-
ues to exhibit a strong trapping effect, as evidenced by the cost function and the
change in ToF upon its removal. Our proposed method effectively identifies such
traps in non-equilibrium conditions, where the occupancy of these nodes is influ-
enced by external forces.
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Figure 6.10: Sensitivity of ToF and performance of the GD method for multiple dis-
tributed traps. (a) The ratio 7(1)/79(1) as a function of the energies of
the nodes in @ = {v1,v2, - ,v5}. (b) The number of clusters n.; after
performing the GD method when the nodes in @) have energies £ = —1.8¢eV,
and the size of the cluster containing a specific node n,,,, as a function of
GD parameter 7.

6.6 Identification of Multiple Distributed Traps

The previous section shows that the spectral clustering method can reliably iden-
tify a single trap node as it occurs in the modeled BCP system. In the following,
we will scrutinize if the same holds in a system with multiple trap molecules that
are not connected with each other — a scenario we refer to as multiple distributed
traps. Within the spectral clustering method, we expect that having multiple dis-
tributed traps will increase the cluster number k for the K-means clustering steps
as given by Algorithm 3] As the simulated BCP system does not have multiple dis-
tributed traps, we modify it by taking the trap node we found and 4 other nodes
(Q = {v1 = Vtrap,v2--- ,v5}), which are not connected by an edge in the charge
transport network and set their site energies all to £ = —1.8 eV, which is close to
the site energy of the original trap node. It can be seen from the dependence of
the ratio 7(1)/79(1) on E in Fig.[6.10|(a) that such a value points indeed to a very
pronounced trapping effect of the charge carrier.

First, we consider the predictions from the GD method in Fig. |6.10{(b). We
again show the resulting number of clusters n. and the number of molecules n,,,
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Figure 6.11: Results of the trap identification by spectral clustering methods for the BCP
systems with multiple distributed traps. (a) The first ten eigenvalues of L, .
(b) Aix1/A; as a function of 7. (¢) The number of clusters determined from
Algorithm [f as a function of a. (d)-(e) The first and second eigenvector
elements of L., as a function of node indices. (f) The BCP system where
molecules in red color are molecules consisting of nodes vy, vo, - -+ , v5. Each
red molecule is partitioned as one cluster. The grey molecules are one
cluster, as identified using the K-means clustering with k£ = 6.

in each of the clusters containing one of the 5 prepared trap nodes v;, depending
on the parameter v in the GD method. Qualitatively, one can observe the same
behavior as for the single trap case: the method only yields isolated traps if nearly
each molecule is its own cluster, or the whole system is a single cluster. Evidently,
the method fails to correctly characterize the multiple distributed traps situation
in the charge transport network.

Turning to our spectral clustering method, we see in Fig.[6.11/(a) and (b) that
the largest value for the ratio is still at ¢ = 2, as was the case for the single trap sit-
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Figure 6.12: Sensitivity of ToF and performance of the GD method for trap regions.
(a) The ratio 7(1)/79(1) as a function of the energies of the nodes in
Q = {v1,v2, - ,v6}. (b): The number of clusters after performing the
GD method when the nodes in @ have energies £ = —1.8¢eV, and the
maximum size of the cluster containing at least one specific node in Q, as
a function of GD parameter 7.

uation. However, unlike that situation, when inspecting the first two normalized
eigenvectors in Fig. [6.11)(d,e), one can clearly see five and four relevant non-zero
elements, respectively. Overall, the determined number of unique induced sub-
graphs is k£ = 6, which indeed implies that there are 5 traps in the system shown
in Fig. [6.11)(f): the five individual distributed trap nodes and one cluster that
is the rest of the system. This shows the necessity of the addition step in Algo-
rithm |3] The result k£ = 6 is also relatively robustly with respect to the choice of
the method’s parameter a as shown in Fig. (c). Only when a > 0.9 is used,
the spectral clustering method yields k¥ = 2. So again, using Algorithm [4] with
a = 0.9 finds the correct number of clusters k£ = 6, and also the right trap nodes.

6.7 Identification of Trap Region

It is known that for some materials the site energies are correlated in space, e.g.,
due to strong permanent dipole interactions as in amorphous Alqs [39, 166, [104].
This leads to a situation in which several sites with low energy are connected,
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Figure 6.13: Trap identification results using spectral clustering methods on the BCP
system with trap regions. (a) The first ten eigenvalues of L. (b) A\jt1/\;
as a function of 7. (¢) The number of clusters determined from Algorithm
as a function of a. (d)-(e) The first and second eigenvector elements of
L, as a function of node indices. (f) The BCP system where molecules
in red color show v; as a single molecule cluster and the connected region

Q = {va, -+ ,u6} is a second cluster. The gray molecules form the third
cluster, as identified using K-means clustering with k& = 3.

forming a trap region instead of single-molecule traps as studied in the previous
two sections. A random walk process that enters such a region tends to jump
among those nodes with only a small probability of escaping the region. This
scenario was the original motivation for the GD method as it aims at partitioning

the graph into clusters that the random walk spends a significant amount of time
in.

We investigate whether our proposed spectral clustering methods can iden-
tify such trap regions in the BCP system. Because the BCP system does not
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have strong spatial correlations, there are no such trap regions in the as-modeled
molecular charge transport network. We therefore select six nodes @Q = {v; =
Utraps V2, - - -, Ug } consisting of the original trap node and a distant node vy dis-
connected from v; = wviap plus its four closest neighbors vs, v, vs,v6. We then
set the site energies of the nodes in ) to a value £ so the v, is a single-
molecule trap while Qregion := {v2,...,v6} is trap region. In Fig. (a), we
show 7(1)/79(1) for different values of E and observe a clear trapping effect on
the ToF for £ < —1.6eV. In the following we set £ = —1.8¢eV.

Figure [6.12)(b) shows the result of the GD method to identify the traps: the
total number of clusters n., and the maximum cluster size n,, when m is one of
the nodes in Qegion for different values of v. When v = 1075, nm = 5, and
Qregion is successfully identified as a single cluster and the rest of the 995 nodes
as another cluster. As in Section the isolated trap node is not identified as a
separate cluster. As ~y increases, more clusters appear, and when v > 1072, the
five low-energy nodes in Qregion are no longer partitioned into one cluster.

Turning now to the trap identification by spectral clustering, we show the
eigenvalues of L,,, and the ratio );;1/); in Fig.[6.13|(a,b), respectively. We again
observe that the maximum of the ratio is found at i« = 2. The full algorithm
yields a value k¥ = 3, indicating the presence of two traps. As can be seen from
Fig. [6.13|(c), the determination of k is very robust with respect to the choice of
the parameter a. Looking at the elements of the first two normalized eigenvectors
(see Fig.[6.13|(d,e)) we clearly see a single large entry and a group of five other
large entries, representing Qregion. Finally, K-means clustering with k£ = 3 yields
the three correct clusters as shown in Fig. [6.13|(f): in red the isolated trap node
Virap and the trap region formed by Qregion and in gray the third cluster containing
all other molecules.

It should be noted that there is a second large jump for the eigenvalues at
i = 4. To further check the performance of our method we also perform the
spectral clustering method on the first four eigenvectors, instead of the first two.
This gives k = 4 with the only difference being that there is now a fourth cluster
that comprises a single node v;. However, when checking the effect of this node
on the ToF via the ratio 7(1)/7%(1) with node v; added to @, we find that the
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ratio is =~ 1, i.e., node v; does not have the system characteristics we associated
with a trap. This supports the choice of ¢ = 2 yielded by our Algorithm [4]

6.8 Spectral Clustering for Networks Without Traps

To further demonstrate the applicability of the proposed method, we present the
results of performing spectral clustering on two systems devoid of traps. The first
system is the commonly used BCP device, with all site energies set to be equal,
representing an amorphous system without energy disorder but with coupling
element disorder. The second system is a 10 x 10 x 10 cubic lattice, where all site
energies are zero and each node is connected to its nearest neighbors with equal
coupling elements, resulting in uniform Marcus rates.

In the zero-energy BCP system, the eigenvalues of the corresponding L,,, and
their ratios are shown in Fig. [6.14/(a)(b). It is observed that : = 3 has the max-
imum ratio % The first eigenvector is a constant vector 1 because the graph
is symmetric and the first eigenvalue is zero. Consequently, the first eigenvector
does not provide significant information about the clustering structure. Applying
Algorithm 4 to the second and third eigenvectors identifies the number of clusters

as k = 3.

Performing a K-means clustering using £ = 3 finds the following results: one
cluster contains 15 nodes Q1 = {v1,v2,-- ,v15} and the second cluster contains
20 nodes {vig,v2, -+ ,v35}. These two clusters are indicated by the red regions
in Fig. Those clusters are not traps because changing the energy of the
nodes in those clusters will not significantly change the ToF. The third cluster
consists of the rest of the 965 nodes. Here the first two clusters found through
the proposed method contain much more nodes than the eigenvector elements
above a = 0.9. Since the system has no trap, the method tries to cut the graph
to solve the minimization problem Eq. (6.2), so the clusters are relatively large
(Zey p0 = 7.6 X 1073).

For the 10 x 10 x 10 lattice system, the eigenvalues of its L, and their ratios
are shown in Fig. [6.15/(a) (b). The first eigenvector is a constant vector and the
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Figure 6.14: Spectral clustering results on the BCP device graph where all energies are
set to be 0. (a): The first ten eigenvalues of L,,. (b): % as a function
of i. (c)-(e): The first, second and third eigenvector elements of L, as
a function of node indexes. (f): The BCP device where molecules in red
color form two large clusters. And the gray molecules are one cluster, as
identified using the K-means clustering with k = 3.

entries of the second eigenvector exhibit a stepping feature, while the third eigen-
vector shows no clear boundary between its elements. Applying Algorithm [4 to
the second eigenvector reveals that k = 2. Performing a K-means clustering using
k = 3, the K-means clustering algorithm partitions the first 500 nodes (nodes 1-
500) into one cluster, with the remaining 500 nodes forming the second cluster
as shown in Fig. This bisected partitioning minimizes the objective function

described in Eq. (6.5)).
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Figure 6.15: Spectral clustering results on the graph of a cubic lattice with 1000 sites,

where all energies are set to be 0 and the connection to nearest neighbors

are equal. (a): The first ten eigenvalues of L,,. (b): % as a function of 4.

(c-e): The first, second and third eigenvector elements of L, as a function
of node indexes. (f): A top view of a cubic lattice with 1000 nodes, where
the nodes in red are partitioned as one cluster and the nodes in gray color
are in a second cluster.

6.9 Comparison with Energy-Based Trap Identification

As mentioned in Section the energy-based identification of traps is straight-
forward in many scenarios, but it relies heavily on the assumption that traps are
simply the sites with the lowest energy in the system. This assumption holds
under equilibrium conditions where the occupancy of traps follows Fermi-Dirac
statistics, and the transition rates between sites obey detailed balance. However,
there are several situations where the energy-based method fails to correctly iden-
tify traps, particularly when the dynamics of charge transport are influenced by
factors beyond just the site energies. The bi-molecular charge transition rate (such
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(a)

neighbors of Virap

Figure 6.16: (a) Visualization of the node vyap which is colored in blue and has the

lowest energy FEiap = —1.80. The neighbors of v, are colored in green,
representing different molecular types. The reorganization energies between
Vrap and its neighbors are non-symmetric: Ay, ; =0.1eV and Aj,, . =
0.2eV. Two BCP molecules in red color, v; and vy, are two single clusters
identified using the K-means clustering with k£ = 3. (b) Visualization of the
node vgrap Which is colored in blue and has the lowest energy Fipap = —1.80.
The neighbors of vy, are colored in light-dark, representing different
molecular types. The coupling element between viap and its neighbors are
not large, having values in range 107%eV? > ij > 10~ "eV?2. Two BCP
molecules in red color, v; and vy, are two single clusters identified using
the K-means clustering with k = 3.

as the Marcus rate used in the draft) is also related to coupling elements J;; and

reorganization energy \;;. So focusing on the energy alone ignores other factors.

If the charge transfer rate into the lowest energy site is small, then the occupation

probability of this site will be small and has no trap effect. In this section, we

demonstrate the limitations of the energy-based method and highlight the advan-

tages of our spectral clustering approach through two illustrative models.

6.9.1 Non-Symmetric Reorganization Energy

In the first example, we consider a system where the reorganization energy A;; for
charge transfer between molecules is non-symmetric. This can occur in materials
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Figure 6.17: Trap identification results using spectral clustering methods on the BCP

system where the site viap and its neighbors have nonsymmetric reorga-
nization energy. (a) The first ten eigenvalues of L,y. (b) Aiy1/A; as a

function of 4. (c¢)-(d) The first and second normalized eigenvector elements
of L, as a function of node indexes.

with different types of molecules and complex molecular geometries, where the
energy required to reorganize the environment during charge transfer depends
on the direction of the transfer. In such cases, the lowest energy site may not

necessarily act as a trap, even if it has a significantly lower site energy compared
to the rest of the network.
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To illustrate this, we modify the BCP system by introducing a non-symmetric
reorganization energy for specific pairs of molecules. We select the node vap with
a low site energy E,,,, = —1.80eV and adjust the reorganization energy A such
that Ay,,,; = 0.1eV and Aj,,, = 0.2eV. We show this setup in Fig. (a),

where the node vy, is colored in blue and its neighbors are in light-black color.
The node virap has the lowest energy.

Due to the non-symmetric reorganization energy, Ay, ;j 7 Aj vy, the transi-
tion rate from this molecule to its neighbors is not small. This results in a situation
where the low-energy site is not a trap because charge carriers can easily escape
from it due to the high forward transition rate. In contrast, the spectral clustering
method, which considers the full graph structure and transition rates, correctly
identifies that this site is not a trap. The energy-based method, however, would
incorrectly classify this site as a trap solely based on its low energy.

The result of the proposed spectral clustering methods is shown in Fig.
The method identifies nodes v; and v, with site energy E,, = E,, = —1.70eV
(in red color shown in Fig. [6.16|(a)) as the single traps in this system, putting
those two nodes in their own cluster and the other 998 nodes in another. The
ToF of the system without removing any node is 7 = 0.5684s, after removing
v1,v9, We obtain 7(¥1:v2) = 1.420 x 10~3s. But after removing veap We obtain
TV — ().5541 s, which is very close to 7 = 0.5684 s. We clearly see that removing
the lowest energy site virap has no effect of the ToF, and the nodes identified from
our proposed method influence the ToF significantly.

6.9.2 Small Coupling Element with Neighboring Sites

In the second example, we consider a scenario where the lowest energy site verap
has a very small electronic coupling element J,,,, ; with its neighboring sites j.
This can occur in materials with poor orbital overlap between molecules or in
systems with significant spatial disorder. In such cases, even if a site has a very
low energy, the probability of charge carriers transitioning to or from this site is
extremely low, resulting in low occupancy and hence no trapping effect.
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Figure 6.18: Trap identification results using spectral clustering methods on the BCP

system where the node vy, and its neighbors have weak coupling elements.
(a) The first ten eigenvalues of Lyy. (b) A\j11/A; as a function of 7. (¢)-(d)
The first and second normalized eigenvector elements of L, as a function
of node indexes.

To demonstrate this, we modify the BCP system by selecting a molecule with
the lowest site energy and reducing its electronic coupling elements with all

neighboring molecules to a relatively small value. Specifically, the electronic cou-
pling elements J,,

«pj DEtWeen the lowest energy site vyap (highlighted in blue in
Fig.|6.18) and its neighbors j has range: 10-%eV? > J2 . > 10~"eV?. Such a
system is visualized in Fig. 6.16{(b), where the lowest energy site v is in color

blue and its neighbors are in light-dark color. As a result, the transition rates to
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and from this site become negligible, and charge carriers rarely occupy this site.
While the energy-based method would still classify this site as a trap due to its low
energy, it does not exhibit any trapping effect in practice, as carriers are unlikely
to be captured or released from this site. The ToF of this system is 7 = 0.5968s.
After removing veap, the ToF is 79w = 0.5968 s, which is the same as the ToF
without removing any nodes.

Applying our proposed spectral clustering method, the ratio of the eigenvalues
Ai+1/Ni and the analysis of the first two eigenvectors suggest that the K-means
clustering should be performed with k£ = 3. The clustering results identify v; and
v3 as two single clusters while the remaining 998 nodes form a single large cluster.
Removing vy, v3, the ToF is 7(¥1:¥3) = 6.342 x 10~?s, indicating the real trapping
effect of vy, vs.

These two models demonstrate the limitations of the energy-based trap identi-
fication method and highlight the advantages of the spectral clustering approach.
While the energy-based method is effective in simple scenarios where transition
rates are solely dependent on their energy, it fails in more complex situations
where the dynamics of charge transport are influenced by factors such as non-
symmetric reorganization energies or low electronic coupling elements. In con-
trast, the spectral clustering method, which considers the full graph structure and
transition rates, can correctly identify traps in these complex scenarios.

The added value of the spectral clustering method lies in its ability to capture
the interplay between site energies, transition rates, and the overall network struc-
ture. This makes it a more robust and general approach for identifying traps in
organic semiconductors, particularly in systems with complex charge transport dy-
namics. By leveraging the spectral properties of the graph Laplacian, our method
provides a more comprehensive understanding of trap behavior, which is crucial
for optimizing the design and performance of organic electronic devices.
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6.10 Conclusion

Traps play an important role in defining the electrical properties of organic semi-
conductors and their functionality in electronic devices. They significantly influ-
ence the charge transport mechanism in organic semiconductors and allow for
a tuning of the charge mobility as indicated by variations in the ToF measure-
ments. Understanding and eventual control of the charge mobility is often sought
via multiscale modeling of the materials which leads to its representation as a
molecular charge transport network. Here we have developed and implemented
a novel method based on spectral clustering to identify traps within such molecu-
lar charge transport network of multiscale-modeled organic semiconductors. Our
approach avoids the complexities associated with calculating multiple-carrier ToF
and overcomes the need for system-dependent parameters, making it a robust
method for general multiscale model system. Leveraging the eigenvalue ratio and
eigenvector entries allows the application of K-means clustering on the eigenvec-
tor elements from the Laplacian matrix, reinforcing the robustness of our spectral
clustering approach.

The effectiveness of our method is demonstrated through the analysis of the
multiscale-model BCP device, where we successfully identified a single-molecule
trap, distributed traps, and region of traps coexisting with single-molecule traps.
This capability to identify and quantify traps without extensive parameter tuning
marks a significant advancement over other candidate methods, such as the wa-
tershed algorithm and GD. Our proposed method and the findings from this study
can potentially enhance our understanding of trap dynamics in organic semicon-
ductors and also offer a powerful tool for optimizing the design and performance
of these materials in practical applications.



Chapter 7
Conclusion

The multiscale model of charge dynamics in organic semiconductors results in
molecular charge transport networks. As mentioned in the Introduction Chap-
ter [1, there are three problem statements in this theme. The first problem is
related to the accurate extraction of charge mobility from the charge transport
networks. This thesis proposes the GRW method to obtain accurate charge mobil-
ity predictions from the molecular charge transport network. Relating the ToF to
the expected first hitting time of a CTMC, the key aspect of this method is the ex-
pected first hitting time calculation using a matrix formula. By numerical studies
on a surrogate model of an Algs device, this method is validated by comparison
to the MEq and KMC method. The charge mobility calculation with GRW method
can avoid the numerical stability issue in MEq and the KMC convergence issue in
certain network scenarios.

Then, the next problem statement in the molecular charge transport networks
is due to the setup of the graph, whose construction involves assumptions and
approximations associated with the quantum and classical models. The model-
ing choice to deal with those assumptions and approximations raises the problem
of the possibility to quantify the uncertainty in the multiscale model. To inves-
tigate this problem, numerical studies are performed on an MADN charge trans-
port network, where the ToFs are calculated using the GRW method. The ToFs
are calculated with five different values of the aypx in the DFT functional PBEO.
Using Monte Carlo sampling of the electronic parameters, the ToF uncertainties
associated with various Hartree-Fock fractions in the DFT exchange-correlation
functional are quantified within a specific confidence level. The sensitivity of the
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reorganization energy A, site energy F, and the coupling element J to the ToF
is analyzed through Sobol indexes calculation, which shows that ToFs are most
sensitive to Es and least sensitive to Js. Our UQ investigation sheds light on
interpreting the computational results of organic semiconductors.

The third problem regards the trap identification in the molecular charge trans-
port network. This thesis proposes a method based on spectral clustering to suc-
cessfully identify traps in networks containing a single trap, distributed traps, and
a combination of a single trap and a trap region. From an input of the molecular
network, this method identifies traps without relying on system-specific param-
eters or requiring a large number of ToF calculations. This method improves
the computational robustness and efficiency for trap identification in molecular
charge transport networks.

Although the problems are addressed in this thesis, there are limitations in the
proposed methods and numerical studies, and future research can be performed
to potentially address those limitations.

Firstly, when evaluating the charge mobility using the GRW method, the com-
putational challenges of the MEq and KMC are circumvented partially because all
the states are considered simultaneously when calculating the ToF. For systems
with a large number of charge carriers, the state space is so large that the matrix
equations are difficult to solve. So, the proposed GRW method is only suitable
for situations with low carrier density. (Those situations are usually the ones for
which KMC has sampling issues, so our proposed method is a complementary
method for KMC.) Developing computational models/methods for charge mobil-
ity evaluation without suffering from the MEq’s discretization problems, KMC’s
convergence issue, and the GRW method’s dimension problem will make the com-
putational models applicable to a wider range of physical situations.

The second limitation is that the uncertainty quantification is only performed
for the MADN molecular network, whose site energy is practically uncorrelated.
Different material models have other parameters that this thesis has not consid-
ered yet, such as the energy correlation and coupling element correlation, since
the Monte Carlo sampling scheme ignores those model parameters. Performing
uncertainty quantification that takes those parameters into account will make
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quantitative analysis more complete and rigorous, and facilitate the investigation
of a broader range of material models.

Another limitation regarding the uncertainty quantification is the represen-
tation of the uncertainties. This thesis considers the uncertainty generated by
different apypx. Other model settings, such as the empirical force field for ap-
proximating the PES, and the types of basis sets used for solving the Kohn-Sham
equation, also represent important sources of uncertainties. If those uncertainties
can be quantified, the predictive ability of the multiscale model will be improved.

In addition to addressing these limitations, there are additional recommenda-
tions for future work building on the foundations laid in this thesis.

First of all, machine learning related methods have been used for setting up
the molecular networks, such as the calculation of the terms entering the Mar-
cus rate expression [147, (148, [149] [150]. Integration with machine learning
can potentially reduce the need for computational resources. Further, utilizing
machine learning methods for Marcus rate calculation in the multiscale model
can generate more accurate results. For example, deep neural networks have
been used to achieve nearly exact solutions of the electronic Schrédinger equa-
tion for molecules with up to 30 electrons [151]. When the amount of electrons
in a localized state is less than this number, and the electronic structure param-
eters (A, E,J) can be evaluated with such deep neural network method, then
the molecular charge transport network can be set up more accurately, yielding a
more accurate charge mobility evaluation.

A second future direction is to understand the physical mechanism of the expo-
nential dependence of the partition cost function on the energy of traps, as shown
in Chapter[6] While the spectral clustering based method works well in trap iden-
tification, such exponential dependence is not yet explored. The partition cost
function depends on all the nodes/edges in the network, while the change of a
single molecule’s energy surprisingly leads to an exponential change in the parti-
tion cost function. So, understanding its exponential dependence on the energy
of the traps sheds light on the interaction between the molecules, and the way
by which such interaction contributes to the charge transport in the molecular
networks.
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Furthermore, the proposed spectral clustering method works very well for
characterizing traps, but this method completely ignores the trajectory of charge
transport. This is largely because we want to develop an effective method for
finding traps, thus ignoring the transport paths that are usually determined by
high-dimensional parameters. Undoubtedly, if the charge transport path can be
further reflected in the proposed method, it will be more helpful in understanding
charge dynamics and aiding the optimization of organic semiconductors.

A last recommendation is to study the electronic structure parameters, charge
mobility, and trap characterization for multiple molecular structures sampled from
the MD simulation. Those investigations will show the charge mobility’s time se-
ries behavior, such as the correlation between the electronic parameters, charge
mobility as a function of time and the traps’ evolution. The time correlation be-
tween the electronic structures, such as Es or Js, reveals the variation of elec-
tronic structures as the atom coordinates change along the PES. Molecular struc-
tures are not constant at all the times. Either with an NpT condition or NVT
condition described in Chapter [2] the coordinates of all molecules in a molecular
network vary at different times. Thus, the temporal evolution of networks’ prop-
erties provides a more comprehensive understanding of the charge transport with
various molecular topologies.



Summary

This thesis investigates the charge transport dynamics in amorphous organic semi-
conductors based on a first principle multiscale model, focusing on three primary
objectives. First, it aims to develop a method for accurately evaluating the ToF
in organic semiconductors, overcoming computational challenges associated with
the MEq and KMC methods. Second, it seeks to quantify uncertainties in the
multiscale model, particularly those related to exchange-correlation functionals.
Third, it tries to create an efficient method for identifying traps in the multiscale
modeled molecular network of organic semiconductors.

The thesis presents the theoretical foundation and implementation of the mul-
tiscale model, which links charge dynamics to microscopic factors such as molecu-
lar electronic structures, spatial arrangements, and morphological inhomogeneities.
Subsequently, related theories and methodologies within the graph random walk
framework are introduced, including the MEq, KMC, and the ToF calculation
based on the matrix formula in the GRW method.

By leveraging these theories, the thesis verifies the accuracy of the proposed
ToF evaluation using the GRW method. This method facilitates the quantification
of uncertainties in the multiscale model due to exchange-correlation functionals
and the development of a trap-identification method employing spectral cluster-
ing techniques. The uncertainty quantification provides a confidence range for
charge mobility prediction in the multiscale model, fostering a closer connection
between charge transport and the microstructure of organic semiconductors. The
trap-identification method contributes to detecting key molecules in controlling
the switching behavior of organic semiconductors, showing potential applications
in the optimization of innovative organic devices. In summary, this research and
the methodologies developed herein advance the understanding of charge dynam-
ics in organic semiconductors through computational studies.
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