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Abstract
We study the Wasserstein metric to measure distances between molecules represented by the atom
index dependent adjacency ‘Coulomb’ matrix, used in kernel ridge regression based supervised
learning. Resulting machine learning models of quantum properties, a.k.a. quantum machine
learning models exhibit improved training efficiency and result in smoother predictions of energies
related to molecular distortions. We first illustrate smoothness for the continuous extraction of an
atom from some organic molecule. Learning curves, quantifying the decay of the atomization
energy’s prediction error as a function of training set size, have been obtained for tens of thousands
of organic molecules drawn from the QM9 data set. In comparison to conventionally used metrics
(L1 and L2 norm), our numerical results indicate systematic improvement in terms of learning
curve off-set for random as well as sorted (by norms of row) atom indexing in Coulomb matrices.
Our findings suggest that this metric corresponds to a favorable similarity measure which
introduces index-invariance in any kernel based model relying on adjacency matrix
representations.

1. Introduction

The application of machine learning (ML) to atomistic simulation has been gaining traction over recent
years [1–9]. Kernel ridge regression (KRR) models of quantum properties (Q) applicable throughout
chemical compound space (CCS) was established in 2012 [10], and has been growing ever since [11–15]. See
references [16, 17] for more details and references about the methodology known as QuantumMachine
Learning (QML). By now, QML has become a viable and popular approach for generating surrogate
property models enabling rapid estimates of relevant molecular and materials properties, holding great
promise for computational materials and molecular design [18, 19], as recently exemplified for the discovery
of nearly ninety stable crystal candidates in the Elpasolite structure [20].

When setting up standard KRR based QML models of some quantum property P (aka ‘label’) [13], three
fundamental choices must be made, (i) the representation x (aka ‘feature’), (ii) the kernel function (k), and
(iii) the metric (dist(·,·)), such that

P(x) =
N∑
i

βik(dist(x,xi)), (1)

where N and {βi} correspond to number and regression coefficients of training instances, respectively. The
representation of a chemical system is known to play an important role. For example, when using incomplete
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representations (or non-unique), proof was given that QML models can produce absurd results [21]. While
the details of the representation (other than uniqueness) are less crucial for artificial neural networks, the
specific definition of how a chemical system is being specified is known to dramatically affect the learning
efficiency of KRR based QML models. Namely, encoding the right physics, such as translational or
atom-index invariance, in the representation results in systematic reduction of quantum data needs for
achieving the same pre-defined predictive accuracy [22]. This is of particular interest since QML models are
typically trained within scarce data regimes due to (a) the immense computational (or experimental) cost for
generating labels and (b) the tremendous scale of CCS [23, 24].

Due to their obvious impact on QML model performance, it is not surprising that substantial efforts
have been made to improve conventional representations. For example, using atomization energies of
organic molecules stored in the QM9 dataset [25], various benchmark results have been obtained including
as representations the Coulomb matrix and BOB (2015) [26], BAML (2016) [22], HDAD (2017) [27],
constant-size-descriptors (2018) [28], SLATM [29] (2017), SOAP (2017) [16], FCHL (2018) [30], MBD
(2018) [31], and wavelets (2018) [32]). See reference [9] for a joint graphical illustration of learning curves
coming from these, as well as artificial neural network based, models. Apart from the representation, the
choice of kernel function is also known to affect the performance of the QML model, as shown in
references [13, 16, 33–35].

Within this paper, we focus on the aforementioned third choice (iii): The metric. More specifically,
previous studies have predominantly relied on Euclidean or Manhattan norms as a metric. This choice can be
questioned when it comes to atom index dependence of adjacency matrices, such as the Coulomb matrix
(CM) [10], possibly resulting in discontinuities in the surrogate model due to displacement (or alchemical
change [24]) of the nucleus. In this paper, we discuss how such spurious artefacts are resolved by using a
more sophisticated, distribution based measure: The Wasserstein metric [36].

2. Method

The CM is an adjacency matrix with diagonal and off-diagonal terms corresponding to approximate free
atom and nuclear repulsion contributions to the total potential energy of a molecule, respectively [10]. Its
adaptation to crystal representations was published subsequently [37]. Its creation was motivated by the fact
that it is unique for fixed molecular charges up to permutation of atoms, and that first-principles
calculations also require only nuclear coordinates RI and nuclear charges ZI as input.

CIJ =

{
0.5Z2.4

I I= J
ZIZJ

|RI−RJ| I ̸= J
. (2)

As the CM is invariant to 3D translations and rotations of a molecule, it intrinsically ensures that the
molecule’s potential energy is constant under those transformations. Among the early problems identified
for the general application of the Coulomb matrix is the index dependence. Sorting the Coulomb matrix
such that ||Cm|| ≥ ||Cm+1|| for allm, where Cm is themth row, renders the CM bijective up to rotation and
translation. While appealing for its simplicity and still in use for various applications [38, 39], the use of the
sorted CMmust be cautioned when applied to situations in which smooth geometrical (or alchemical)
changes are under consideration. Such applications include training throughout CCS and subsequent
prediction of energies in molecular dynamics trajectories, or geometry relaxations energies, when sorting can
lead to a swapping of indices in the vectorized forms of the CM, and sudden atomic index reassignments
between test and query system. This indexing problemmanifests itself in discontinuities in predictions and/or
the need for a large number of data points for training the respective models.

Here, rather than attempting to resolve the indexing problem through ever more sophisticated
representations, for example using atom centered symmetry functions [40], SOAP [41], HDAD [27],
SLATM [29], MBD [31], or FCHL [30], we investigate if this issue can also be resolved by using a different
metric, capable of alleviating the sudden re-assignment occurring within L1 or L2 norms. In particular, the
Wasserstein norm of order 1, which is denoted byW1, is a natural way to compare two probability
distributions p and q [36]. This norm is widely used in various fields, like machine learning, image
processing, and signal processing [42–44].

As illustrated in figure 1, the Wasserstein metric is the minimal amount of work needed to transform one
distribution into another; work being defined as the amount of distribution times the distance it has to be
transported. There are many different ways of transporting an amount of distribution from a region x of p
into a region y of q. The set of all possible transport plans to move p into q is denoted by Γ. Hence,
computing the distance between two distributions can be formulated as an optimization problem where the
aim is to find that transport plan γ ∈Γ such that the total amount of work is minimal. The Wasserstein [36]
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Figure 1. Illustrating some transport plan (not necessarily the optimal) between some initial and target distributions. The
patterned boxes indicate how an amount of distribution is redistributed from an initial set of points a1,a2, and a3 to points A1

and A2.

Figure 2. Toy model illustrating the effect of atom index invariance (W1) and lack thereof (L1). As a model, a normalized atom
pair-wise interatomic Lennard Jones potential energy estimate has been used, giving E as a function of displacement d (in steps of
0.01 ) of a central atom, as shown in the inset. Randomly selected training data points are indicated as open circles. CM based
QML predictions with the Wasserstein kernelW1 trained on ten data points (dotted line) are smooth, while discontinuities are
visible for the L1 norm for small (solid) and large (dashed) training sets. |∆E| indicates the energy difference between the true
and the predicted value.

metric is expressed as

W1(p,q) = inf
γ∈Γ

ˆ
Rd×Rd

dγ(x,y) |x− y|

=

ˆ
R
dt

∣∣P−1(t)−Q−1(t)
∣∣ , (3)

where the right-hand side equation was shown to hold in reference [45] with P and Q being the cumulative
distribution functions of p and q. The vectorized two-dimensional Coulomb matrix representation of a
molecule can be used in equation (3). In practice, the evaluation is done by using empirical cumulative
distribution functions (cdf). The integral in equation(3) becomes the absolute value of the difference of two
distinct cdf ’s. So, in worst case scenario it behaves likeO(2n log(n)). From now on, we set the L1 and L2
based kernel functions k to be the well known Laplacian and Gaussian kernel, respectively. Additionally, we
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Figure 3. Learning curves for DFT/B3LYP/6-31G(2df,p) atomization energies of QM9 molecules for various kernel metrics for
the Coulomb matrix representations. Circles and triangles indicate the mean absolute error (MAE) obtained with L1 and L2 based
kernels, respectively, using randomized (filled symbols) and sorted (open symbols) Coulomb matrix representation. The
Wasserstein metric is permutation invariant and the MAE obtained with it is given by squares.

define the Wasserstein-based kernel as

k(x,y) = e−αW1(x,y). (4)

Here, we note that other kernel functions or representations could be used in combination with the
Wasserstein metric just as well.

All QML models of atomization energies of QM9 molecules [25] were trained using KRR with 5-fold
cross-validation for hyperparameter optimization, and tested on 2000 out-of-sample molecules.

3. Results and discussion

First, we illustrate the issue of smoothness by subjecting an innocent organic molecule to drastic distortions.
More specifically, and as shown in figure 2, consider the energy E as a function of continuous displacement d
(in steps of 0.01) of some central carbon atom along an axis orthogonal to the molecular plane. The molecule
used in this example is drawn randomly from the QM9 dataset1. Corresponding Lennard-Jones potential is
calculated using the LJ formula where all parameters are set to 1 independent of atom type. Furthermore, we
have normalized the curves with respect to the highest energy of obtained results. The energies are smooth,
while CM based QML model predictions (after training on 10 instances drawn at random) using L1 are
discontinuous. Even after increasing the training set for the L1 model to 80 instances, the discontinuity at
d≈ 0.5 is retained, indicating that lack of learning. It is non trivial to figure out what the exact cause is for the
initial discontinuity, mainly due to the highly dependent variables in the CM representation. The carbon
atom that is being extracted is bonded to two nitrogen atoms and one carbon atom. However, there is
another carbon–nitrogen bond in the molecule with initially a longer bond length that is not bonded to the
extracted carbon atom. The extraction of the carbon atom stretches the bonds and around d≈ 0.5 the order

1dsgdb9nsd_030 000.xyz.
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swaps, which could be the reason for the first discontinuity in the curve. As pointed out above, the main
benefit of equation (4) is thatW1 is invariant under permutations of row- and column-indices of the
adjacency matrix. When applied to the model system from figure 2, which showed the typical indexing
problem with the Laplacian kernel and L1-norm, theW1 metric yields smooth energies as a function of
displacement. Two aspects are noteworthy: First, it is apparent that the predictions are smooth
(differentiable) across the full range of displacements and do not exhibit any discontinuities that affected the
standard kernels in combination with the sorted Coulomb matrix. Second, a training data set including only
10 reference points is sufficient to give accurate results. These numerical results clearly indicate that the use
of the Wasserstein metric in the kernel cures the indexing problem and alleviates the associated low
prediction quality and data efficiency.

To further investigate the performance of Wasserstein based kernels as in equation (4) in QMLmodels, we
have turned to the classic benchmark of atomization energies of organic molecules in the QM9 data set [25].
After training on up to 10k molecules, randomly sampled from the entire QM9 data set, learning curves are
presented in figure 3. Results for L2 and L1 based kernels are in line with observations made in reference [13]:
For sorted as well as for randomly indexed CMs the L1 based QML model exhibits lower off-sets than the L2
based model. Not surprisingly, use of sorted CMs also results in smaller off-sets than for random CMs.
However, theW1 based metric results in the same learning curve after being applied to random as well as to
sorted CMs. Its overall learning curve off-set and slope indicates same (even slightly better) performance as
the L1 norm applied to the sorted CM, reaching ~ 6 kcal mol−1 after training on 10k instances.

4. Conclusions

Considering the findings for the continuous atomic displacement as well as the QM9 molecules, the
Wasserstein metric enables the generation of QML models which achieve (a) data-efficient learning and (b)
smooth target function estimates. While all our numerical evidence has relied on the CM, we emphasize that
the observed solution of the indexing problem and the simultaneous improvement of the predictions by
using the Wasserstein kernel is not inherently specific to the CM representation. In fact, the Wasserstein
metric can readily be tested with other QML models relying on any graph-based representation. This could
be particularly relevant in the context of recent work on learning force-fields or electronic properties, relying
on inverse distances rather than the CM representation. [47–50]

To summarize, we have presented the Wasserstein metric as an index-invariant way to measure distances
between molecular graph-based representations. Our numerical findings indicate that the resulting QML
models combine smoothness with data efficiency in learning. Future work will explore the various possible
combinations of kernel functions, Wasserstein metric, and representations other than the CM. All methods
used in this work are now also available in the QMLCODE package. [51]
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[41] Bartók A P, Kondor R and Csányi G 2013 On representing chemical environments Phys. Rev. B 87 184115

6

https://doi.org/10.1063/1.5043213
https://doi.org/10.1063/1.5043213
https://doi.org/10.2533/chimia.2019.972
https://doi.org/10.2533/chimia.2019.972
https://doi.org/10.1063/1.5091842
https://doi.org/10.1063/1.5091842
https://doi.org/10.1007/978-3-319-42913-7_68-1
https://doi.org/10.1038/s41570-020-0189-9
https://doi.org/10.1038/s41570-020-0189-9
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1088/1367-2630/15/9/095003
https://doi.org/10.1088/1367-2630/15/9/095003
https://doi.org/10.1021/ct400195d
https://doi.org/10.1021/ct400195d
https://doi.org/10.1038/srep02810
https://doi.org/10.1038/srep02810
https://doi.org/10.1039/C6CP00415F
https://doi.org/10.1039/C6CP00415F
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1002/anie.201709686
https://doi.org/10.1002/anie.201709686
https://doi.org/10.1038/nmat4613
https://doi.org/10.1038/nmat4613
https://doi.org/10.1103/PhysRevLett.117.135502
https://doi.org/10.1103/PhysRevLett.117.135502
https://doi.org/10.1002/qua.24912
https://doi.org/10.1002/qua.24912
http://arxiv.org/abs/1307.2918 
https://doi.org/10.1038/432823a
https://doi.org/10.1038/432823a
https://doi.org/10.1002/qua.24375
https://doi.org/10.1002/qua.24375
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1021/acs.jpclett.5b00831
https://doi.org/10.1021/acs.jpclett.5b00831
https://doi.org/10.1021/acs.jctc.7b00577
https://doi.org/10.1021/acs.jctc.7b00577
https://doi.org/10.1063/1.5020441
https://doi.org/10.1063/1.5020441
https://doi.org/10.1063/1.5020710
https://doi.org/10.1063/1.5020710
https://doi.org/10.1063/1.5023798
https://doi.org/10.1063/1.5023798
https://doi.org/10.1063/1.470984
https://doi.org/10.1063/1.470984
https://doi.org/10.1063/1.4929527
https://doi.org/10.1063/1.4929527
https://doi.org/10.1021/acs.jcim.7b00090
https://doi.org/10.1021/acs.jcim.7b00090
https://doi.org/10.1002/qua.24917
https://doi.org/10.1002/qua.24917
http://arxiv.org/abs/1503.07406 
https://doi.org/10.1021/acs.jctc.8b01285
https://doi.org/10.1021/acs.jctc.8b01285
https://doi.org/10.1002/advs.201801367
https://doi.org/10.1002/advs.201801367
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.3553717
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevB.87.184115


Mach. Learn.: Sci. Technol. 1 (2020) 03LT01

[42] Frogner C, Zhang C, Mobahi H, Araya-Polo M and Poggio T A 2015 Learning with a Wasserstein loss Advances in Neural
Information Processing Systems 28 eds C Cortes et al (Red Hook, NY: Curran Associates, Inc.) pp 2053–61

[43] Montavon G, Müller K-R and Cuturi M 2015 Wasserstein training of Boltzmann machines Advances in Neural Information
Processing Systems 29 eds D D Lee et al (Red Hook, NY: Curran Associates, Inc.) pp 3718–26

[44] Rabin J, Ferradans S and Papadakis N 2014 Adaptive color transfer with relaxed optimal transport in 2014 IEEE Int. Conf. on Image
Processing (ICIP) pp 4852–6 (New York: IEEE)

[45] Ramdas A, Trillos N G and Cuturi M 2017 On Wasserstein two-sample testing and related families of nonparametric
tests Entropy 19 47

[46] dsgdb9nsd_030000.xyz.
[47] Chmiela S, Sauceda H E, Müller K-R and Tkatchenko A 2018 Towards exact molecular dynamics simulations with

machine-learned force fields Nat. Commun. 9 3887
[48] Chmiela S, Sauceda H E, Poltavsky I, Müller K-R and Tkatchenko A 2019 sGDML: Constructing accurate and data efficient

molecular force fields using machine learning Comput. Phys. Commun. 240 38–45
[49] Westermayr J, Faber F A, Christensen A S, von Lilienfeld O A and Marquetand P 2020 Neural networks and kernel ridge regression

for excited states dynamics of CH2NH2
+: From single-state to multi-state representations and multi-property machine learning

modelsMach. Learn.: Sci. Technol., 1 025009
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