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Abstract. Generalized mode-coupling theory (GMCT) is a first-principles-
based and systematically correctable framework to predict the complex relaxation
dynamics of glass-forming materials. The formal theory amounts to a hierarchy
of infinitely many coupled integro-differential equations, which may be approx-
imated using a suitable finite-order closure relation. Although previous studies
have suggested that finite-order GMCT leads to well-defined solutions, and that
the hierarchy converges as the closure level increases, no rigorous and general
result in this direction is known. Here we unambiguously establish the existence
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and uniqueness of solutions to generic, schematic GMCT hierarchies that are
closed at arbitrary finite order. We consider two types of commonly invoked
closure approximations, namely mean-field and exponential closures. We also
distinguish explicitly between overdamped and underdamped glassy dynamics,
corresponding to hierarchies of first-order and second-order integro-differential
equations, respectively. We find that truncated GMCT hierarchies closed under
an exponential closure conform to previously developed mathematical theories,
both in the overdamped and underdamped case, such that the existence of a
unique solution can be readily inferred. Self-consistent mean-field closures, how-
ever, of which the well-known standard-MCT closure approximation is a special
case, warrant additional arguments for mathematical rigor. We demonstrate that
the existence of a priori bounds on the solution is sufficient to also prove that
unique solutions exist for such self-consistent hierarchies. To complete our analy-
sis, we present simple arguments to show that these a priori bounds must exist,
motivated by the physical interpretation of the GMCT solutions as density cor-
relation functions. Overall, our work contributes to the theoretical justification
of GMCT for studies of the glass transition, placing this hierarchical framework
on a firmer mathematical footing.

Keywords: mode coupling theory, exact results, slow relaxation, glassy dynam-
ics, aging
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1. Introduction

One of the major challenges in condensed matter physics is to understand the relaxation
dynamics of glass-forming materials, such as supercooled liquids and dense colloidal
suspensions [1–3]. Arguably the most striking feature of glass formation is that the
viscosity or relaxation time grows by many orders of magnitude upon mild variations
in the temperature or density [3, 4]; yet at the same time only weak changes in the
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material’s structural properties are observed [5, 6]. It is this apparent disconnect between
structural and dynamical properties that lies at the heart of the glass transition problem.
Indeed, after decades of research, a direct, causal, and quantitative link between the
structure and the dynamics of glass-forming materials is still lacking [5, 7–12].

Mode-coupling theory (MCT) is the only strictly first-principles, microscopically
based theory that seeks to predict dynamic phenomena related to the glass transition
using only structural information as input [2, 13, 14]. Briefly, MCT amounts to a time-
dependent integro-differential equation for the so-called intermediate scattering function
F (k, t), i.e., a dynamic two-point correlation function which probes correlations in the
density field for a given wavevector k and time t. This equation is governed by a memory
kernel that, to leading order, is written as an (a priori unknown) dynamic four-point
density correlation function. MCT ad hoc factorizes this four-point correlator into a
product of two two-point density correlators F (q, t) and F (k − q, t), thereby yielding
a closed set of coupled equations for the intermediate scattering functions at all possi-
ble wavevectors. Once the required structural information is given as MCT input—in
the simplest form only the static structure factor S(k) ≡ F (k, 0)—the theory can then
be solved self-consistently, thus effectively translating structural properties [S(k)] into
dynamical [F (k, t)] ones [15].

Despite MCT’s uncontrolled factorization approximation for the four-point corre-
lators in the memory kernel, the theory has been remarkably successful in capturing
important aspects of glassy dynamics. For example, MCT correctly predicts the emer-
gence of a plateau in F (k, t) upon supercooling, stretched exponential behavior, a
time-temperature superposition principle, non-trivial scaling laws for the short-,
intermediate- and long-time dynamics of F (k, t), and complex reentrance phenomena
[2, 16]. Quantitatively accurate predictions for F (k, t) can also be obtained by means of
a rescaling of temperature and density in the weakly to moderately supercooled regime
[17]. However, due to the factorization approximation, MCT also suffers from several
pathologies: the theory generally grossly overestimates the glass transition temperature,
underestimates the violation of the Stokes-Einstein relation in the supercooled regime
[18], and fails to account for Arrhenius-type behavior and the concept of fragility [19].
Furthermore, MCT does not become exact in the mean-field limit of infinite spatial
dimensions [20–22].

In order to remedy MCT’s main uncontrolled approximation, i.e. the ad hoc fac-
torization of the four-point density correlators, Szamel proposed a new framework now
referred to as generalized MCT (GMCT) [23]. Within GMCT, formally exact equations
of motion for the (unknown) four-point correlators are derived, which yield a new
integro-differential equation with a memory kernel that is dominated by six-point density
correlators; these six-point correlators are subsequently governed by eight-point density
correlation functions, and so on. This hierarchical approach can, in principle, be con-
tinued up to arbitrary order. Previous work has shown that applying the factorization
closure at the level of the six- and eight-point correlators, respectively, systematically
improves the location at which the dynamical transition is predicted [23, 24]. Con-
tinuing this procedure indefinitely extends GMCT to an infinite hierarchy of coupled
integro-differential equations as obtained in [25].
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Since, in general, no analytic solution to the infinite GMCT framework is known, a
closure relation must be imposed at a finite level of the hierarchy so as to obtain a finite
system that can be solved numerically. It is appealing to assume that such a hierarchy
will converge with increasing closure level; however, there is no explicit small parameter
in the theory which a priori warrants the neglect of higher order correlations, and hence
it is not clear whether convergence can be generally achieved. The authors of [25] studied
this question both numerically and analytically for so-called schematic GMCT frame-
works, i.e. simplified versions of the full microscopic theory in which only one wavevector
is included [26, 27]. They considered two kinds of finite-order closure approximations,
referred to as exponential and mean-field closures, respectively. Remarkably, it was found
that all studied GMCT hierarchies converge uniformly with increasing closure level. For
one specific schematic hierarchy with a known analytic infinite-order solution [28], this
uniform convergence could also be proven mathematically. Although these results are
based on schematic GMCT models only, it is plausible that the fully microscopic frame-
work shows similar convergence behavior; for standard MCT, it has already been firmly
established that schematic models share many mathematical and physical properties
with the wavevector-dependent theory [2]. Indeed, all other reported numerical GMCT
studies to date, either schematic or fully wavevector-dependent, have also suggested a
systematic convergence of the GMCT hierarchy.

Here, we contribute to the theoretical justification of GMCT by rigorously establish-
ing the existence and uniqueness of solutions for generic, schematic GMCT hierarchies.
Specifically, we will demonstrate that for both underdamped and overdamped dynamics,
and for both exponential and mean-field closures applied at arbitrary order, a unique
(time-dependent) solution exists. After briefly recapitulating the microscopic founda-
tions of schematic GMCT in section 2, we introduce the general integro-differential
equations and closures relevant to schematic GMCT in section 3. We will distinguish
between the overdamped dynamics in section 4 and the full underdamped dynamics in
section 5. The equations for these different regimes have received different treatments in
the mathematical literature. Previous studies have, however, not considered the applica-
bility of these results to finite-order hierarchies as obtained in schematic GMCT under
various closures. We show that exponential closures fit perfectly in previously devel-
oped studies, whereas mean-field closures require a new mathematical treatment for the
case of underdamped dynamics. Therefore, in section 5, we will introduce the modifi-
cations needed to complement previously published mathematical studies and we will
construct complementary arguments to also establish existence and uniqueness of mean-
field closure solutions. To this end, we assume the existence of a priori bounds on the
density correlation functions, which will be motivated based on the physical background
of GMCT. Finally, we summarize the main results and contributions of this paper in
section 6.

2. Microscopic GMCT

We first introduce the basic quantities and equations studied in microscopic (wavevector-
dependent) MCT and GMCT; for more details, see e.g. [15, 16]. For a system of N
particles with positions r1(t), . . . , rN (t) at time t, the local density at a point r in space
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is given by

ρ(r, t) =
N∑
j=1

δ(r− rj(t)),

where δ(r− rj) denotes the delta function. The Fourier transform yields the density
modes as a function of wavevector k,

ρ(k, t) =

N∑
j=1

e−ikrj(t).

The intermediate scattering function F (k, t) is the time-dependent autocorrelation
function of these density modes,

F (k, t) =
1

N
〈ρ(−k, 0)ρ(k, t)〉, (1)

with the brackets denoting a canonical ensemble average. Using the definition of
the static structure factor S(k) = 1

N
〈ρ(k, 0)ρ(−k, 0)〉, the dynamic density correlation

functions can be normalized as

φ(k, t) = F (k, t)/S(k). (2)

The relaxation time of this function is a measure for the glassiness of the system,
and hence it constitutes the key property predicted by standard MCT. In higher-order
GMCT, the 2l-point density correlation functions φl are also considered,

φl(k1, . . . ,kl, t)

=
〈ρ(−k1, 0) . . . ρ(−kl, 0)ρ(k1, t) . . . ρ(kl, t)〉
〈ρ(−k1, 0) . . . ρ(−kl, 0)ρ (k1, 0) . . . ρ(kl, 0)〉

. (3)

Note that these multi-point correlation functions probe density correlations over l dis-
tinct wavevectors. In the GMCT framework of [16, 23], these satisfy the equations of
motion

φ̈l(k1, . . . ,kl, t) + νφ̇l(k1, . . . ,kl, t)

+ Ωl
2(k1, . . . ,kl)φl(k1, . . . ,kl, t)

+

∫ t

0

Ml(k1, . . . ,kl, t− τ)φ̇l(k1, . . . ,kl, τ)dτ = 0, (4)

where the dots denote time derivatives, ν represents a friction coefficient accounting for
short-time dynamics, and the Ωl are bare frequencies given by

Ωl
2(k1, . . . ,kl) =

kBT

m

[
|k1|2
S(k1)

+ · · ·+ |kl|2
S(kl)

]
, (5)
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with kB the Boltzmann constant, T the temperature and m the particle mass. The
memory kernels Ml in equation (4) are given by

Ml(k1, . . . ,kl, t) =
ρkBT

16mπ3

l∑
i=1

Ωl
2(ki)

Ωl
2(k1, . . . ,kl)

×
∫

|Ṽ q,ki−q
|2S(q)S(ki − q)

× φl+1(q,k1 − qδi,1, . . . ,kl − qδi,l, t)dq, (6)

where ρ is the bulk density, δi,j is the Kronecker delta, and the static vertices Ṽ q,ki−q

are given by

Ṽ q,ki−q = k−1
i [(ki · q)c(q) + ki · (ki − q)c(|ki − q|)] , (7)

with ki = |ki| and c(q) = ρ−1[1− 1/S(q)] the direct correlation function [29]. Note in
equation (6) the explicit coupling of all wavevectors via the integral over q, and the
appearance of the 2(l + 1)-density correlator φl+1 in the equation of motion for φl. Hence,
all dynamic multi-point density correlators are hierarchically coupled. The GMCT
hierarchy of equations (4)–(7) may subsequently be closed at arbitrary order, which
will be discussed in more detail in section 3; the closure approximation φ2(k1,k2, t) ≈
φ1(k1, t)φ(k2, t) naturally recovers the standard MCT equations.

As explained in [16], the above microscopic GMCT equations are based on two
remaining approximations: (i) so-called off-diagonal dynamic multi-point correlators are
neglected, i.e. a set of l distinct density modes at time 0 is correlated only with the
same set of wavevectors at time t (see equation (3)), and (ii) all static multi-point
density correlations, i.e. higher-order generalizations of the static structure factor, are
factorized into products of S(k). That is, all relevant microstructural information of the
system is assumed to be contained in S(k), but in principle one may also include higher-
order structural correlators as additional theory input. Both of these approximations are
implicitly also employed in standard MCT; importantly, the key improvement of GMCT
is to avoid the factorization for the dynamic multi-point correlators φl in the memory
kernel. The final GMCT equations of motion, equation (4), are subject to the boundary

conditions φl(k1, . . . ,kl, t = 0) = 1 and φ̇l(k1, . . . ,kl, t = 0) = 0 for all l.

3. Schematic GMCT

Schematic mode-coupling theories reduce the full equations of motion to a simpler form
by dropping all explicit wavevector dependence [26, 27]. As discussed by Bengtzelius
et al [26], the memory kernel is dominated by the main peak of the static structure
factor and, since the bifurcation point is the same in a scalar-valued theory, a schematic
approach that neglects all other wavevectors is justified. A similar argument can also
be made for higher-order GMCT; more details on this analysis will be presented in a
separate publication. Within schematic GMCT, the correlation functions φl(k1, . . . ,kl, t)
are approximated by ψl in the following infinite hierarchy of underdamped coupled
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integro-differential equations [25, 28]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ̈l(t) + ζψ̇l(t) + μlψl(t)

+λl

∫ t

0

ψl+1(t− τ)ψ̇l(τ)dτ = 0,

ψl(0) = 1, ψ̇l(0) = 0.

(8)

Mathematically, at each level l ∈ N in the hierarchy, ψl(t) is a real-valued function
defined on [0,∞). Further, ζ > 0 is an effective friction coefficient and μl represents a
frequency for the schematic approximation to GMCT, which is positive in accordance
with the frequencies of equation (5). All λl > 0 represent the effective memory kernel
weight in the equation at level l, effectuating a replacement of Ml given in equation (6)
by λlψl+1. In the overdamped limit, assuming the second-order time derivative can be
neglected in comparison to the other terms and rescaling to ζ = 1, the equations take
the form

⎧⎨
⎩
ψ̇l(t) + μlψl(t) + λl

∫ t

0

ψl+1(t− τ)ψ̇l(τ)dτ = 0,

ψl(0) = 1.

(9)

In [14], the study of different choices of the parameters μl and λl reveals that
infinite-order schematic GMCT can predict avoided, discontinuous, and continuous glass
transitions. Moreover, it was shown that the predictions of schematic standard MCT
can also be reproduced by a full GMCT hierarchy by fitting the parameters to a certain
plateau height and relaxation time.

In the absence of an analytic solution as l →∞, a closure approximation must be
used to obtain a finite system of equations that can be solved numerically. A closure
at level L means that we presuppose a specific formula for ψL+1 in terms of ψ1, . . . ,ψL,
which closes the systems of equation (8) or equation (9) for the first L unknowns.
Previous work has established, both numerically for structural glass formers [16, 30]
and analytically for specific schematic models [14, 25, 28], that the predictions for the
density correlators ψ1 manifestly converge for increasing closure levels.

We will consider from a mathematical point of view two closures which are now
commonly used in the GMCT literature [16, 25, 28]. Firstly, the so-called exponential
closure assumes that

ψL+1 ≡ 0. (10)

Note that this is essentially a simple truncation of the hierarchy. With this closure,
one then finds immediately for ψL in equation (9) the explicit formula ψL(t) = e−μLt.
Secondly, we will consider so-called mean-field closures of the form

ψL+1 =
L∏
l=1

(ψl)
pl (11)
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where for l = 1, 2, . . . ,L the pl are chosen in N ∪ {0} such that

L∑
l=1

l · pl = L+ 1.

Note that this always leads to a self-consistent set of GMCT equations. A typical
example of a mean-field closure is

ψL+1 = ψ1ψL. (12)

When L = 1, the only possibility p1 = 2 corresponds to the standard-MCT-based F 2

model of [27]. Finally, we mention that earlier GMCT studies [16, 25] suggest that the
exponential and mean-field closures at a given order constitute a lower and upper bound
to the infinite-order solution, respectively.

We note that the hierarchies (8) and (9), when closed at some level L, can be cast
in the form of the equations of schematic standard MCT generalized to vector-valued
functions. In this case the memory kernel ML at level L is suitably defined in terms
of ψ1, . . . ,ψL to translate the closure relation chosen. We shall introduce this nota-
tion when recalling the more abstract setting of [31] in section 5. Since there is no
structural difference in the integro-differential equations, mathematical results often gen-
eralize from scalar- to vector- or matrix-valued variants of the standard MCT equation
[31–33].

To determine whether a unique solution exists for both types of GMCT closures at
arbitrary (but finite) order, and for both overdamped and underdamped dynamics, we
build upon earlier mathematical studies of coupled integro-differential equations. Since
these previous works have used different techniques for first- and second-order integro-
differential equations, the treatment of the over- and underdamped GMCT equations
requires different conditions to be checked. Therefore, the existence and uniqueness
questions for the systems of equations (8) and (9) are discussed separately in the next
sections.

We note that previous work by Franosch has also obtained the existence of long-time
limits for correlation functions described by the mode-coupling theory [34]. These results
might be generalized to GMCT. Finally, let us also note that existence and uniqueness
for solutions to some classes of mode-coupling equations was obtained by Haussmann by
means of the convergence of an iteration sequence, sharing similarities with the analysis
that we mention in section 4 [35]. The possible extension of this analysis to GMCT is
not considered in the present paper.

4. Overdamped dynamics

We first turn our attention to an existence and uniqueness result of solutions for the
overdamped system of equation (9) with one of the closures at some level L as described
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above. A closely related system was studied by Götze and Sjögren in [32], where the
system is written in the form

⎧⎨
⎩
ψ̇n(t) = −μnψn(t)−

∫ t

0

mn(t− τ)ψ̇n(τ)dτ ,

ψn(0) = 1.

(13)

Here, the kernel function mn is of the form mn(t) = Gn(ψ1(t), . . . ,ψL(t)) for some
functions Gn describing the coupling and the closure chosen (we detail the case of
equation (12) below). By an iteration procedure for a linearized equation in the case
L = 1, studied via the Laplace transform, it is proved in [32] that a unique solution
exists in the class C1([0, T ],R) for arbitrary final times T > 0 under the condition that
the corresponding one-dimensional kernel function G1 is absolutely monotone on an
interval [0, 1 + δ) for some δ > 0. This one-dimensional case corresponds to the explicit
proof for schematic MCT, where indeed L = 1 and ψ2 = ψ1

2 is the standard F 2 model,
studied, for example, in [27]. The same method of proof applies to each of the L compo-
nents of equation (13) that represents schematic GMCT. Götze et al [32] provided the
existence of unique solutions ψ1, . . . ,ψL in C1([0, T ],R) for arbitrary times T > 0 under
the condition that G1, . . . ,GL all be absolutely monotone in each of their L variables on
[0, 1 + δ)L for some δ > 0, i.e., for all 1 � l � L,

for all j1, . . . , jL ∈ N andx1, . . . , xL ∈ [0, 1 + δ ) :

∂j1

∂x1
j1
. . .

∂jL

∂xL
jL
Gl(x1, . . . , xL) � 0.

(14)

These conditions are clearly satisfied for both the exponential and mean-field closures
of the GMCT hierarchy, since these closures yield monomial functions with positive coef-
ficients for the Gl. For example, the mean-field closure of equation (12) is described by
Gl(x1, . . . , xL) = λlxl+1 if 1 � l � L− 1 and GL(x1, . . . , xL) = λLx1xL. All partial deriva-
tives are positive if x1, . . . , xL are positive, which yields the condition (14). Hence the
existence and uniqueness question for overdamped GMCT at arbitrary order is fully
covered by the theorem of [32].

Let us note that the exponential closure, included in the above analysis for com-
pleteness, can also be studied differently. Indeed, since equation (10) yields an explicit
expression for ψL, the memory kernel of equation (13) is explicit at level L− 1 and the
theory of integral equations can be applied to obtain a solution ψL−1 that is sufficiently
well behaved to make the same theory apply to the equation at level L− 2. One iterates
this reasoning and finally concludes by existence and uniqueness for ψ1.

It is also known that the exponential closure leads via the Laplace transform to a
truncated continued fraction representation for the Laplace transform of ψ1, which can
also be used to infer more properties of the solution. For studies that explicitly treat
the Laplace transform, we refer to [32, 33, 35].
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5. Underdamped dynamics

Let us now turn to the underdamped system of equation (8) closed at some level L.
To simplify notation, the vector-valued analogue of equation (8) is introduced below in
equation (17). Since the structure of the integro-differential equation is unchanged, the
mathematical analysis of the vector-valued variant of schematic MCT is indeed a direct
generalization of the scalar case in [32]. In [31], only underdamped dynamics for the
vector case are treated. We note that Franosch and Voigtmann extended the analyses
of [32] to matrix-valued MCT for the study of mixtures [33].

First we consider for Ψ = (ψ1, . . . ,ψL) the integro-differential equation
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λΨ̈(t) + Ψ̇(t) + Ψ(t)

+

∫ t

0

m (Ψ(t− τ)) Ψ̇(τ)dτ = f(t),

Ψ(0) = Ψ0, Ψ̇(0) = Ψ1,

(15)

where Ψ0 and Ψ1 are arbitrary vectors in R
L, m ∈ C1(RL,RL×L) and f ∈ C([0,∞),RL).

The following local existence and uniqueness result is proved in [31]: there exists a
(usually unknown) T > 0 and a unique solution Ψ of class C2 on the interval [0,T ]
satisfying equation (15). This local result is extended to global existence and uniqueness
up to arbitrary T > 0 under the following condition of linear growth:

There exists c > 0 such that∀x, y ∈ R
L :

|m(x)y| � c(1 + |x|)|y|.
(16)

We will now describe the tools used in the proof of [31], in order to intro-
duce the modifications needed for the application to the system of equation (8).
Equation (15) is written in the form (L+N )Ψ = (f , Ψ0, Ψ1) with the linear operator

L :Ψ �→ (λΨ̈ + Ψ̇ + Ψ,Ψ(0), Ψ̇(0)) and the non-linear operator N defined by (NΨ)(t) =(∫ t

0 m (Ψ(t− τ)) Ψ̇(τ)dτ , 0, 0
)
. The fact that L is a one-to-one mapping between Ψ

and the initial conditions is a well-known fact from the study of ordinary differential
equations. Fredholm theory, the abstract functional analytic theory developed for the
study of integral equations, is used in [31] to establish invertibility of the perturbed
operator L+N . The invertibility of L+N for functions Ψ defined on a time interval
[0,T ] translates precisely to the existence of a unique solution to equation (15) on [0,T ]
for arbitrary f, Ψ0 and Ψ1. The theory of [36] allows to deduce the invertibility from
estimates on L and N , which is the approach followed in [31].

In order to fully describe equation (8), all these results need to be extended to the
system ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

λΨ̈(t) + Ψ̇(t) + ωΨ(t)

+

∫ t

0

m (Ψ(t− τ)) Ψ̇(τ)dτ = f(t),

Ψ(0) = Ψ0, Ψ̇(0) = Ψ1,

(17)
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where ω is a constant diagonal L× L matrix with positive diagonal entries. Indeed,
taking

ω =

⎛
⎝μ1 0

. . .

0 μL

⎞
⎠ , m(Ψ) =

⎛
⎝λ1ψ2 0

. . .

0 λLψL+1

⎞
⎠

with f ≡ 0 and the initial conditions

Ψ0 = (1, . . . , 1), Ψ1 = (0, . . . , 0)

leads to the equations of schematic GMCT introduced in section 3, equation (8).
To establish existence and uniqueness for underdamped GMCT, we recognize that

the above modifications amount to replacing the operator L by a new linear operator
Lω,

LωΨ = (λΨ̈ + Ψ̇ + ωΨ,Ψ(0), Ψ̇(0)).

Since all μl are positive, this introduces no difficulties in obtaining the same estimates as
used in [31] to show invertibility of the operator Lω +N . For the exponential closures,
existence of a unique global solution then follows directly, since m can in this case
be written as m(x) = diag(λ1x2,λ2x3, . . . ,λL−1xL, 0) and clearly satisfies the linearity
condition (16) by virtue of the Cauchy–Schwarz inequality. We note, however, that the
exponential closure can again be treated iteratively following the comments at the end
of section 4.

In the case of any mean-field closure, however, condition (16) is violated due to
a product term in the assumption for ψL+1, e.g. ψ1 · ψL for the mean-field closure of
equation (12). Therefore we construct an additional argument to complement the math-
ematical literature with the needs of the physical setting of the mean-field closure. The
argument relies on a bound on Ψ, which will be motivated for the specific context of
GMCT below by equations (18)–(20). We can then cut off the kernel function m to
overcome the violation of condition (16) by the following procedure.

To be precise in our argument, we first state the two hypotheses that we shall use on
top of the existence and uniqueness results of [31]. We fix a mean-field closure relation
and thereby the kernel function m in equation (17). We suppose that an a priori bound
exist for solutions of equation (17), hypothesis (H1):

There exists a constantB > 0 such that,

if Ψ solves equation (17) on [0,T ], we have

|Ψ(t)| � B, t ∈ [0,T ].

(H1)

The constant B is supposed to be independent of T .
We note that such a bound is by no means obvious from a mathematical point of

view, based solely on equation (17) itself, but can be expected to exist for all physical sit-
uations. Intuitively, this is because all the correlation functions φl(k1, . . . ,kl, t) measure
correlations in the density fluctuations over time with respect to the initial configura-
tion; moreover, they are normalized by virtue of equation (3). On more mathematical
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grounds, due to the Cauchy–Schwarz inequality, one has for any l:

〈ρ(−k1, 0) . . . ρ(−kl, 0)ρ(k1, t) . . . ρ(kl, t)〉2

� 〈ρ(−k1, 0) . . . ρ(−kl, 0)ρ(k1, 0) . . . ρ(kl, 0)〉·
× 〈ρ(−k1, t) . . . ρ(−kl, t)ρ(k1, t) . . . ρ(kl, t)〉. (18)

Since the propagator commutes with the Hamiltonian, it holds that

ρ(−k1, t) . . . ρ(−kl, t)ρ(k1, t) . . . ρ(kl, t)〉
= 〈ρ(−k1, 0) . . . ρ(−kl, 0)ρ(k1, 0) . . . ρ(kl, 0)〉, (19)

so equation (18) simplifies to

|〈ρ(−k1, 0) . . . ρ(−kl, 0)ρ(k1, t) . . . ρ(kl, t)〉|
� |〈ρ(−k1, 0) . . . ρ(−kl, 0)ρ(k1, 0) . . . ρ(kl, 0)〉|. (20)

According to equation (3), this implies |φl(k1, . . . ,kl, t)| � 1. Now ψ1(t), . . . ,ψL(t) are
to be interpreted as the wavevector-independent approximations of the φl at the main
peak of the static structure factor, so we extend these bounds to uniform bounds on the
ψl(t).

To circumvent the nonlinear character of mean-field closures, we introduce a smooth
cut-off function χ :RL → R, compactly supported with 0 � χ � 1, equal to 1 on [−B,B]L

and identically zero outside the box [−B − 1,B + 1]L. Our second hypothesis is that
replacing the kernel m by the cut-off kernel χm does not affect the existence of a priori
bounds:

If in equation (17),m is replaced byχm,

hypothesis (H1) still holds for the new system

with the same constantB.

(H2)

The motivation for this hypothesis is that the GMCT does not ‘see’ any changes in
the kernel function m(ψ1, . . . ,ψL) if it is cut off for values that are never reached by
ψ1, . . . ,ψL. Mathematically, however, hypotheses (H1) and (H2) are not equivalent.

For the existence proof under hypotheses (H1) and (H2) we now start from a local
solution Ψ to equation (17) on [0,T ] for a T > 0. The existence of such a T and the
existence and uniqueness of a corresponding solution Ψ are guaranteed by the local result
of [31]. Let χ be defined as above. Then the function χm satisfies condition (16). For
example, in the case of the closure of equation (12) we have explicitly for any x, y ∈ R

L:

χ(x)m(x)y =

⎛
⎜⎜⎜⎜⎝

λ1χ(x)x2y1
λ2χ(x)x3y2

...
λL−1χ(x)xLyL−1

λLχ(x)x1xLyL

⎞
⎟⎟⎟⎟⎠ (21)
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and the only non-linearity occurs with respect to x in the last component. This nonlinear
contribution can now be seen to be compliant with condition (16), since we have

|λLχ(x)x1xLyL| � λL · (B + 1)|xL| · |yL|
� λL(B + 1)|x| · |y|, (22)

exploiting that |χ(x)x1| � 1 · (B + 1) when |x1| � B + 1 and χ(x)x1 ≡ 0 when |x1| >
B + 1.

As a result, there exists a unique global solution Ψ to the cut-off variant of
equation (17), that is,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

λΨ̈(t) + Ψ̇(t) + ωΨ(t)

+

∫ t

0

(χm) (Ψ(t− τ)) Ψ̇(τ)dτ = f(t),

Ψ(0) = (1, . . . , 1), Ψ̇(0) = (0, . . . , 0)

(23)

However, by introducing the cut-off function χ, we changed the equation that is solved
and Ψ and Ψ could be different functions on the time interval [0,T ] (where Ψ is defined).
To compare the two, we combine the a priori bound of hypothesis (H1) with the very
definition of χ to see that χ(Ψ(t))m(Ψ(t)) is equal to m(Ψ(t)) for t in [0,T ]. Hence Ψ
also solves equation (23) on [0,T ] and Ψ coincides with Ψ on this interval by uniqueness
of Ψ.

For global existence, it remains to be seen that Ψ is in fact a global solution to
the original problem of equation (17). This is where we need to invoke hypothesis (H2).
Then we have |Ψ(t)| � B for all t. This implies that χ(Ψ(t))m(Ψ(t)) reduces to m(Ψ(t))
for all t and the global solution Ψ to equation (23) is also seen to be a global solution
to the schematic GMCT system of equation (17).

This argument has to be generalized to arbitrary mean-field closures (as opposed
to the single example of equation (12) explicitly treated above). We observe that
equation (22) can indeed be generalized to any mean-field closure in order to establish
the condition (16), using hypothesis (H1) to obtain bounds on the schematic correlators
ψl (which play the role of x in equation (22)). The remainder of the argument can be
used unchanged to obtain global existence and uniqueness for equation (8) under the
additional assumption of a priori bounds as expressed by hypotheses (H1) and (H2).

Finally, this procedure of constructing a global solution by means of a cut-off kernel
does not guarantee uniqueness of the global solution. To obtain uniqueness, we can drop
hypotheses (H1) and (H2) by again invoking the results proved in [31]. There, uniqueness
is proved for arbitrary locally Lipschitz continuous kernels m. This is true for any mean-
field or exponential closure because these lead to continuously differentiable kernels m,
which are in particular locally Lipschitz continuous.

6. Conclusion

This paper investigates whether unique mathematical solutions can exist for coupled
integro-differential equations as encountered in generalized mode-coupling theory of
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the glass transition. We have considered GMCT hierarchies with both overdamped
and underdamped dynamics, closed under either an exponential or mean-field closure
approximation at finite order. In the case of overdamped dynamics, equation (9), we
have seen that both the exponential closure and any type of mean-field closure lead
to kernel functions that meet the hypotheses of the work in [32] and we conclude that
the existence and uniqueness theory is mathematically completely rigorous for these
closures. This is a fundamental theoretical result for GMCT studies where the system
of equation (9) is solved numerically in the absence of analytical solutions [19, 25].

In the case of underdamped GMCT dynamics, equation (8), the same result is
obtained for exponential closures by applying the work of [31]. For mean-field closures,
however, the hypotheses provided in the theorem concerned are violated as a result of
product terms in equation (11). In this case, only a local existence result can be deduced,
which does not necessarily hold for arbitrarily large final times.

A consideration of the physical origins of the GMCT equations leads toward a pos-
sible remedy for this incompatibility with the mathematical literature. Starting from
the definition of the density correlations of interest, we have derived a bound on the
schematic density correlator φl(k, t). Inspired by this result, we propose an argument
based on an a priori bound on solutions of the system of equation (8). Adapting the
equations in a way that exploits this bound, allows us to verify the hypotheses of [31]
and to obtain global existence and uniqueness of solutions also for mean-field closures.
It has to be pointed out, however, that such an a priori bound is not evident from a
strictly mathematical point of view, and complementary mathematical studies could aim
to derive one based solely on equation (8) in order to render this argument completely
rigorous.

Another very interesting property of GMCT mentioned in the Introduction is its
potential convergence to an analytical solution at infinite level [25]. A general result
in this direction is unknown to the authors (except for one special case [28] for which
existence and uniform convergence as L→∞ were proved [25]) and would be a valuable
additional result for the rigorous justification of GMCT. We note that from a numerical
perspective, the considerable effort required for the high dimensional solution could be
partly minimized by using more efficient integration techniques such as an optimized
wavevector grid [37].

To conclude, the rigorous results obtained above are important theoretical founda-
tions for the study of the structure-dynamics link in glass-forming matter, for which
GMCT at increasing order is a promising, systematically correctable, and fully first-
principles-based theory. Our results are fundamental for present and future studies that
investigate the GMCT solutions often numerically, when analytical results are not avail-
able, as a means to study e.g. fragility and tunability of liquid models in schematic
GMCT [14, 19, 25]. Existence and uniqueness of solutions is then essential.
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