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Abstract

In this thesis, density-functional theory (DFT) is discussed and implemented using nu-
merical methods. The Kohn–Sham equations are solved for the standard local-density
approximation (LDA), which is based on the homogeneous electron gas exchange-
correlation energy. The resulting ground state energies of atoms up till and including
Neon (atomic number Z = 10) are calculated. The calculated ground state energies
are typically within 2% above the experimental and theoretically known ground state
energies, apart from Hydrogen, where the erroneous self-interaction is most appar-
ent. Next, a generalisation of the local-density approach is analysed, in terms of the
parameter q, where q = 4/3 is equivalent with standard LDA. The resulting Kohn–
Sham equations converge to the Hartree equations for q ↓ 1 and q → ∞, apart from
a constant in the first limit. In between these limits we have DFT with exchange
energy functional. It is investigated what value of q leads to an optimal prediction
of the ground state energy, where optimal means equivalent to the theoretically or
experimentally known values. For numerical purposes, we want to be close to the the-
oretical optimum. For larger atomic numbers, the q-value that for which the optimal
ground state energy is achieved seem to converge to 4/3. It is also checked whether
the ionisation energy prediction and the total energy prediction can be optimal at the
same time. There is a trade-off between the accuracy for the total energy and the
ionisation energy. By decreasing q starting from q = 4/3, such that the total energy
prediction decreases by 1% with respect to the optimal total energy, the ionisation
energy prediction can get significantly closer to experimentally known values by at
least 10%. No q-value is found for which both the ionisation and total energy are
optimal. With this framework the performance of different correlation potentials can
be compared in a measure as the distance to the optimum.
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Chapter 1

Introduction

Many processes in your cells depend on electron transfer, without this no biology or life would exist.
Electrons are the reason for radiation, which is useful in everyday life in the form of light and enables
us to create many advanced technologies, for instance semi-conductors. The stability of atoms and their
binding energy is also determined by the electronic structure. Especially the outer electrons are essential
in chemistry, there the binding strength of the electrons in atoms or molecules determines many of the
material properties. Basically, electrons are everywhere. That is why it is very important to have a good
understanding of the electronic structure. The objective for me is to accurately determine ground states
and the influence of exchange interactions on this. The ground state is a minimal energy configuration
of a given molecule or atom. To get insight in the electron distribution of the atoms, we must refer
to electronic structure theory. We will introduce a mathematical method known as density-functional
theory, it is developed by Kohn and Sham in 1964. The main idea on which this theory was build is that
the total of all electrons behaves like a glue, or mush, and not as independent electrons. In 1998, the
Nobel Prize in Chemistry was divided between Walter Kohn for his development of density-functional
theory and John A. Pople for his development of computational methods. This method is very popular
as it has a good balance between accuracy and computational cost. A conclusion of the results is given
in Chapter 5.

In Chapter 2, we start with an introduction to electronic structure theory, the theory of atoms and
molecules. Our focus will be on atoms, for which several approximation methods are introduced based
on the electron density. The approximation that we study is density-functional theory (DFT) where the
exchange-correlation is described by the local-density approximation (LDA), here the exchange energy of
a homogeneous electron gas is used to describe an inhomogeneous system. DFT is based on the fact that
all properties of a many-particle system can be deduced as a functional of the ground state density and
is used to determine the ground state of many-particle systems, in our case atoms. The ground state is
the minimal energy state for the particles. After the necessary theory has been established, in Chapter
3 it is applied to a numerical algorithm that solves the eigenfunctions and eigenenergies of an atomic
system using the LDA formalism. The main goal will be to analyse the physical properties and accuracy
of the LDA algorithm for a generalised exchange-term. The results for the LDA ground state atoms
are given in Chapter 4 and serve as a check for the numerical method. After that a generalised form of
the exchange-potential is analysed, which is named LDAq. We investigate the total energy, ionisation
energy as well as the wave functions themselves. This is done for two limiting cases of the value q and
an intermediate regime.
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Chapter 2

Electronic structure theory

Solving the time-independent Schrödinger equation for a molecular system is not trivial. An exact
solution exists only for Hydrogen consisting of one electron and one proton. For a general molecule,
which of a collection of atoms and electrons, approximations are necessary to obtain answers. We
start by introducing the Hamiltonian for a general molecule. After that, several approximations will be
introduced in order to arrive at a solution. These include the Born–Oppenheimer approximation, where
the wave functions of the atomic nuclei and electrons are separated. Because the mass of the electrons is
much smaller than the nucleur mass, this only induces a relatively small error. After that, the Hartree–
Fock method and density-functional theory is discussed. Both methods rely on the variational principle
using functional derivatives to obtain ground state energies.

2.1 Electronic structure theory

We define the Hamiltonian operator for a molecule with M nuclei, each with atomic number Zα and
mass Mα and α ∈ {1, ...,M}, together with N electrons as [1]:

H =−
M∑
α=1

ℏ2

2Mα
∇2

α −
N∑
i=1

ℏ2

2me
∇2

i −
N∑
i=1

M∑
α=1

(
e2

4πϵ0

)
Zα

|ri −Rα|
(2.1)

+
∑
α<β

(
e2

4πϵ0

)
ZαZβ

|Rβ −Rα|
+
∑
i<j

(
e2

4πϵ0

)
1

|ri − rj |
,

where ℏ is the reduced Planck’s constant. A brief introduction of the Schrödinger equation is given in
Appendix A. The mass of the electron is given by the constant me and the elementary charge unit e
represents the charge of a single proton; the charge of a single electron is −e. The constant ϵ0 is the
vacuum permittivity. The coordinates of the i-th electron are given by ri ∈ R3 for i ∈ {1, ..., N}, similarly
Rα ∈ R3 denotes the position of the α-th nucleus. It is beneficial to rewrite (2.1) using Hartree units,
where we set me = ℏ = e = 1

4πϵ0
= 1. Using this (2.1) simplifies to:

H = Tnuc + Tel + Vel,nuc + Vnuc,nuc + Vel,el, (2.2)

where the individual terms are defined as
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Tnuc = −
M∑
α=1

1

2Mα
∇2

α, (2.3)

Tel = −
N∑
i=1

1

2
∇2

i , (2.4)

Vel,nuc = −
N∑
i=1

M∑
α=1

Zα

|Rα − ri|
, (2.5)

Vnuc,nuc =
∑
α<β

ZαZβ

|Rα −Rβ |
, (2.6)

Vel,el =
∑
i<j

1

|ri − rj |
. (2.7)

(2.8)

The expression (2.3) denotes the kinetic energy of all the nuclei. Similarly, expression (2.4) denotes
the kinetic energy of all the electrons. Expressions (2.5), (2.6) and (2.7) describe the electron-nucleus
attraction, nucleus-nucleus repulsion and electron-electron repulsion respectively. The mechanism for the
last three terms is the Coulomb interaction between charged particles. The interaction between similar
charged particles is repulsive, oppositely charges particles have an attractive interaction.

2.2 The Born–Oppenheimer approximation

Solving the time-independent Schrödinger equation with the Hamiltonian given by (2.2) is a difficult
task. A solution would be of the form Ψ(R, r) ∈ L2(R3(M+N)), with R = (R1, ...,RM ) ∈ R3M and
r = (r1, ..., rN ) ∈ R3N and depends on all the spatial degrees of freedom of all the individual nuclei and
electrons. The Born–Oppenheimer approximation is based on the fact that the nucleur mass is at least
an order 103 times larger than the electron mass [2]. Due to their larger mass, the nuclei have a much
higher inertia and therefore adapt slowly to the motion of their surroundings. However, the electrons
adapt (almost) immediately, so that in the reference frame of the electrons, the nuclei can be regarded
as immobile. This is the starting point of the Born–Oppenheimer approximation. We assume the total
wave function Ψ(R, r) can be split in a function describing the nucleur wave function Ψnuc(r) and an
electronic wave function Ψel(r;R):

Ψ(R, r) = Ψnuc(r)Ψel(r;R). (2.9)

The semi-colon is there to stress that the electronic wave function depends parametrically on R. The
parametric dependence is assumed because the electrons adapt immediately to the motion of the nuclei.
With this Ansatz (2.9), the electronic wave function satisfies the clamped nuclei Schrödinger equation,
which reads

[Tel + Vel,nuc(r;R) + Vel,el(r)] Ψel(r;R) = Eel(R)Ψel(r;R). (2.10)

The left-hand side of (2.10) defines the electronic Hamiltonian Hel(r;R):

Hel(r,R) = Tel + Vel,nuc(r;R) + Vel,el(r). (2.11)

The eigenvalue problem (2.10) must be solved to find the eigenfunctions Ψel(r;R) and the eigenvalues
Eel(R) ∈ R3M . Here, the nuclei are not coupled with the dynamics of the electrons due to the parametric
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dependence. This makes that the eigenvalues depend on the coordinates of all the nuclei positions. On
top of this, we also assume that the electrons are in the ground state. That is, they occupy the lowest
eigenvalue Eel(R) for a given R, which we denote by E0

el(R). Therefore, we define

Eeff
el (R) := E0

el(R). (2.12)

The function Eeff
el (R) is the effective electronic field in which the nuclei move. Note that it does not

depends on the positions of the electrons. The effective electronic field is considered the potential energy
of the nuclear motion. With this, the nuclear Schrödinger equation, which is obeyed by the wave function
Ψnuc(r) reads

[Tnuc + Vnuc,nuc(R) + Eel(R)] Ψnuc(r) = EnucΨnuc(r). (2.13)

The nucleur Hamiltonian in (2.13) consists of the kinetic energy of the nuclei and an effective potential,
which we describe by

V eff
nuc(R) = Vnuc,nuc(R) + Eeff

el (R). (2.14)

The nuclear wave function Ψnuc(r) as well as the nuclear eigenenergy Enuc ∈ R can be solved from the
nuclear Schrödinger equation. In the remainder of this chapter, we introduce additional approximation
methods known as Hatree–Fock theory and density-functional theory (DFT) to arrive at solutions of
the Schrödinger equation with solely the electronic Hamiltonian (2.11). We will be working with atoms
consisting of a single nucleus, such that there is no nucleus-nucleus repulsion and fix the position of this
nucleus at the origin. In the reference frame of the electrons, the parametric dependence on the nucleus
position can be removed. From now on, we thus solve (2.10) and drop the electron subscript el as well
as the R dependence. The atomic we consider is described by the atomic number Z.

2.3 Hartree–Fock theory

Using the Born–Oppenheimer approximation, it is still difficult to solve the Schrödinger equation and find
the wave function Ψ(r1, ..., rN ) with ri ∈ R3 for i ∈ {1, ..., N} from the electronic Hamiltonian presented
in (2.10). That is because the electrons are correlated. In 1927, Hartree proposed an approximation
known as the Hartree product, where for N electrons the wave function is given by a product of N
single-electron orbitals ϕi ∈ L2(R3) for i ∈ {1, ..., N}[3] :

Ψ(r1, ..., rN ) =

N∏
i=1

ϕi(ri). (2.15)

The imposed condition on the single-electron orbitals is that they are mutually orthonormal, i.e.:

∫
R3

drϕ∗i (r)ϕj(r) = δij . (2.16)

This orthonormalility can be used to make the expectation values we will calculate easier, as some term
lead to a zero contribution. The wave function (2.15) does, however, not agree with antisymmetrization
of the electrons. To incorporate this, we permute all the orbital labels by introducing a permutation
p ∈ SN . The symmetric group SN consists of all the permutations on the set {1, ..., N}. Let τ(p) be
the number of pair exchanges needed for the permutation. The sign of the permutation can then be
expressed as sgn(p) = (−1)τ(p). A linear combination of Hartree products can be combined to form a
wave function that is antisymmetric and may be written as
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Ψ(r1, ..., rN ) =
1√
N !

∑
p∈Sn

(−1)τ(p)ϕp(1)(r1) . . . ϕp(N)(rN ), (2.17)

where the factor 1/
√
N ! takes care of the normalisation. Expression (2.17) is equal to writing the wave

function in a Slater determinant. To simplify the Hamiltonian (2.11), we use the shorthand notation
ri = |ri| introduce the single-electron operator hi for i ∈ {1, ..., N} as:

hi = −
1

2
∇2

i −
Z1

ri
. (2.18)

By using the operators hi := hi(ri), which do commute due to absence of the electron-electron interaction,
the Hamiltonian (2.11) becomes

H =

N∑
i=1

hi +
∑
i<j

1

rij
. (2.19)

In order to find the single-electron orbitals, we employ the variational principle [4]. The Hartree–Fock
energy EHF is calculated by the expectation value of the Hamiltonian expressed in (2.19)

EHF = ⟨Ψ|H|Ψ⟩ =
N∑
i=1

⟨Ψ|hi|Ψ⟩+
∑
i<j

⟨Ψ| 1
rij
|Ψ⟩ . (2.20)

We compute both contributions in (2.20) to the energy separately by filling in the Hartree ansatz (2.17).
Given some i ∈ {1, ..., N} and p, p′ ∈ SN , the expectation value ⟨Ψ|hi|Ψ⟩ consists of (N !)2 terms (N !
being the order of the symmetric group SN ), which all have the same shape

1

N !
(−1)τ(p)+τ(p′) ⟨ϕp(1)(r1) . . . ϕp(N)(rN )|hi |ϕp′(1)(r1) . . . ϕp′(N)(rN )⟩ . (2.21)

Note that the operator hi works on ri. A non-zero value appears only when both permutations are
exactly the same. If the permutations are slightly different, the result will be zero due to orthonomality.
If both permutations are the same, (−1)τ(p)+τ(p′) = (−1)2τ(p) = 1. Given that p(k) = p′(k) for all
k ∈ {1, ..., N}, suppose that p(i) = p′(i) = j for some i, j ∈ {1, ..., N}. Then (2.21) reduces to

1

N !
⟨ϕj(ri)|hi|ϕj(ri)⟩ . (2.22)

Note that we need to take into account all options for j ∈ {1, ..., N}, which can by summing over j in
(2.22). To account for the degrees of freedom of permutation p = p′ where only p(i) = p′(i) = j is fixed,
we incorporate another (N − 1)! contributions; the size of the permutation group SN−1. Combining the
arguments above, we calculate:

N∑
i=1

⟨Ψ|hi|Ψ⟩ =
N∑
i=1

(N − 1)!

N∑
j=1

1

N !
⟨ϕj(ri)|hi|ϕj(ri)⟩ . (2.23)

There is no ri dependence inside the sum (2.23) anymore , where an integration over ri is performed.
Therefore, the sum over i evaluates to N . The factorials cancel and expression (2.23) evaluates to
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N∑
i=1

⟨Ψ|hi|Ψ⟩ =
N∑
j=1

⟨ϕj(ri)|hi|ϕj(ri)⟩ . (2.24)

By reproducing similar arguments, the second term of (2.20) can be evaluated. Here, the first case
where p = p′ again leads to a non-zero contribution, but a second possibility exists as well when p and
p′ differ for two values. For example when p(i) = p′(j) and p(j) = p′(i) and for all k ∈ {1, ..., N} \ {i, j}:
p(k) = p′(k). The operator 1

rij
works on both ri and rj , so the integral does not vanish. The first case

covers an expression for the Coulomb energy of the interacting electrons, the second case an exchange
energy. Combining results with (2.24), the total energy functional for the antisymmetrized Hartree wave
function is

EHF =

N∑
j=1

⟨ϕj(ri)|hi|ϕj(ri)⟩

+
1

2

N∑
i=1

N∑
j=1

(
⟨ϕi(rj)ϕj(ri)|

1

rij
|ϕi(rj)ϕj(ri)⟩ − ⟨ϕi(rj)ϕj(ri)|

1

rij
|ϕj(rj)ϕi(ri)⟩

)
. (2.25)

The goal is to minimize EHF[ϕi] with respect to ϕ∗i (ri) under the constraint that ⟨ϕi|ϕj⟩ = δij for the
obitals to remain orthonormal. The variables ri are actually dummy variables and are from now on
replaced by r. This variational procedure can be executed by introducing the Lagrange multipliers ϵij
to satisfy the constraint:

δ

δϕ∗i

EHF[ϕi]−
N∑
i=1

N∑
j=1

ϵij [⟨ϕi|ϕj⟩ − δij ]

 = 0. (2.26)

Performing the functional derivative leads to the Hartree–Fock equations:[
−1

2
∇2 − Z

r
+

∫
R3

dr′
n(r′)

|r− r′|

]
ϕi(r)−

N∑
j=1

∫
R3

dr′
ϕ∗j (r

′)ϕi(r
′)

|r− r′|
ϕj(r) = ϵiϕi(r), (2.27)

ρ(r) =

N∑
i=1

|ϕi(r)|2. (2.28)

From the variational method, we yield the Hartree–Fock equations, a system of N coupled equations for
the N single-electron orbitals (2.27). These individual eigenfunctions contribute to the electron density
via (2.28) and by construction they form a solution for which the total energy is minimized whilst
satisfying the antisymmetric property of electrons.

2.4 Density-functional theory

For an atom with N electrons it is necessary to keep track of 3N coordinates. Density-functional theory
(DFT) is based on a reduction of dimensionality of the original many-body problem, and consists of
keeping track of an electron density ρ(r). It turns out that every property of interacting particles can be
viewed as a functional of the ground-state density ρ0(r). The ground-state density is the density that
minimizes the energy. The underlying reason for this was established in 1964 by Hohenberg and Kohn
and stated in the next theorems.
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2.4.1 Hohenberg–Kohn theorems

The Hohenberg–Kohn theorems splits the energy functional in a universally valid functional describing
electron-electron interaction and kinetic energy [5]. The system dependent functional is captured in the
general external potential vext(r).

Theorem 1 (First Hohenberg–Kohn theorem). The external potential v := vext(r) is a unique functional,
up to a constant, of the ground-state electron density ρ0(r).

Proof. The theorem is proven by reductio ad absurdum. Assume there is another external potential v′(r)
where (v−v′) ̸= constant) that gives rise to the same ground-state density ρ0(r). Both potentials belong
to distinct Hamiltonians H ′(r) and H(r) with distinct wave functions ψ′(r) and ψ(r) and energies E′

and E. Using the variational principle,

E′ = ⟨ψ′|H ′|ψ′⟩ < ⟨ψ|H ′|ψ⟩ = ⟨ψ|H + v′ − v|ψ⟩ , (2.29)

so that for the energy we find

E′ < E +

∫
dr[v′ − v]ρ(r). (2.30)

By changing primed and unprimed, similarly we find that

E < E′ +

∫
dr[v − v′]ρ(r). (2.31)

Together this leads to

E + E′ < E + E′, (2.32)

which is a contradiction.

From Theorem 1, it follows that the electron density uniquely determines the Hamiltonian operator.
This is because the Hamiltonian is specified by the number of electrons and the external potential. The
Hamiltonian itself determines the whole system, so that every electronic property can be viewed as a
functional of the ground-state density ρ0(r).

Variation in the universal energy functional Ev[ρ(r)] can be performed and the resulting ground state-
energy E0 is the minimum of the energy functional. A proof follows from the Rayleigh-Ritz principle
and is given in [6].

It is worthwhile to notice that the Hohenberg–Kohn theorems do not give an explicit method to obtain the
electron ground state. The difficulty is finding F [ρ], which cannot be described by an exact functional
in general. Kohn and Sham devised a method for carrying out these calculations that is known as
density-functional theory (DFT) and this is described in the next section.

2.4.2 Kohn–Sham formulation

Consider the Hamiltonian for our atomic system (2.11). If we want to use the Hohenberg–Kohn theorems,
an expression for the functional F [ρ] is necessary. Given a certain external potential vext(r), the energy
functional thus can be defined as
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E[ρ] = T [ρ] + Vee[ρ] +

∫
R3

ρ(r)vext(r)dr. (2.33)

In (2.33), the kinetic energy functional T [ρ] and electron-electron functional Vee[ρ] are added to form the
universal functional F [ρ]. This part is universal as it does not depend on the external potential. The
challenge with the energy expression (2.33) is that it is difficult to get an accurate description of the
kinetic energy functional T [ρ] for a many-electron system. Instead of solving the problem for interaction
particles, Kohn and Sham introduced an system of non-interaction particles which has the same electron
density as the real system [7]. Using the single-particle orbitals ϕi, the density is described by the sum
of single-particle densities:

ρ(r) =

N∑
i=1

|ϕi(r)|2. (2.34)

The kinetic energy functional for this non-interacting system can be established as the sum over the
expectation value over single particle kinetic energies as

Ts[ρ] =

N∑
i=1

∫
R3

drϕ∗i (r)(−
1

2
∇2)ϕi(r). (2.35)

When the translation from the interaction kinetic energy T [ρ] to the non-interacting energy Ts[ρ] is
made, this induces an unknown error. This error T [ρ]− Ts[ρ] and other unknown contributions are put
in the exchange-correlation (XC) functional. It describes the exchange energy and correlation energy of
the many-electron system, which are purely quantum mechanical effects. The total energy functional is
then

E[ρ] = Ts[ρ] +

∫
R3

ρ(r)vext(r)dr+
1

2

∫
R3

∫
R3

ρ(r)ρ(r′)

|r− r′|
drdr′ + EXC[ρ]. (2.36)

The third term from (2.36) is the Hartree energy also denoted by EH[ρ], it is the functional for the
electron-electron interactions. According to the second Hohenberg–Kohn theorem, the orbitals can be
varied so that a ground-state energy is found from the ground-state density, similarly to the Hartree–Fock
process. Again, the condition for the single-particle orbitals is that they are orthonormal. The resulting
Kohn–Sham equations looks like

(
−1

2
∇2 + vext(r) + VH[ρ](r) + VXC[ρ](r)

)
ϕi(r) = ϵiϕi(r), (2.37)

where

VXC(r) =
δEXC[ρ]

δρ
. (2.38)

The Kohn–Sham equations are a method, similarly to Hartree–Fock, to reduce a many-electron system
to a set of single-electron orbitals. The eigenvalues here do not have a specific meaning as single particle
energies because the system itself cannot be simply described as a collection of single particles. These
eigenvalues are the Lagrange multipliers to ensure that the total number of electrons is N . Once we have
solved the Kohn–Sham equations, the ground state orbitals ϕi(r) and thereby the density ρ(r) is known.
With this, the total energy can be calculated by employing (2.36). To write the total energy in terms of
the sum over Kohn–Sham eigenvalues, we multiply (2.37) by ϕ∗i (r) and integrate over R3. Add up the
result for each eigenvalue whilst making use of (2.34) results in
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N∑
i=1

ϵi =

N∑
i=1

∫
R3

drϕ∗i (r)(−
1

2
∇2)ϕi(r)+

∫
R3

drρ(r)vext(r)+

∫
R3

drdr′
ρ(r)ρ(r′)

|r− r′|
+

∫
R3

drVXC(r)ρ(r). (2.39)

By comparing (2.36) with (2.39), the total energy can be written in terms of the Kohn–Sham eigenvalues:

E[ρ] =

N∑
i=1

ϵi − EH [ρ] + (EXC[ρ]− VXC(r)). (2.40)

In the Kohn–Sham formulation, an exact solution of an interacting electron system can be found in
theory. In practice, this does not work due to the exchange and correlation potential, for which an exact
form is not generally known. In certain systems, an exact formulation of the exchange part is known,
for example the homogeneous electron gas described in Sec. ??.

2.4.3 Local-density approximation

The main interest in density-functional theory is to find an accurate description for the exchange-
correlation functional, which needs to be approximated by some method. Here, we discuss the local-
density approximation or LDA for short, which is widely used in DFT. It is one of the simplest approx-
imations that can be made for the unknown exchange-correlation functional. But it is also remarkably
succesful for a wide range of systems delivering high accuracy results [8]. To arrive at LDA, the exchange-
correlation potential is often decomposed into the exchange and correlation parts as

EXC = EX + EC. (2.41)

Both parts can now be treated seperately. Starting with the exchange term, we want to use our knowledge
of the homogeneous electron gas to get an approximate expression for the exchange functional. We
suppose that locally the system has the same exchange energy per electron as the homogeneous electron
gas (HEG). The exchange energy of the homogeneous electron gas can be analytically calculated and
reads

εx(ρ) = −
3

4

(
3ρ

π

)1/3

. (2.42)

This exchange energy per electron is multiplied by the number of electrons in a small volume, which is
ρ(r)dr, and integrated over R3 to obtain the total exchange energy of the system,

EX[ρ] =

∫
R3

ρ(r)ϵX(ρ(r))dr. (2.43)

For mathematical purposes [9], we want to investigate a generalisation of (2.43) and (2.42) expressed in
terms of the exponent q ∈ [1,∞):

EX [ρ] =
λ

q

∫
R3

ρ(r)qdr, (2.44)

VX(ρ(r)) = λρ(r)q−1. (2.45)

9



Here λ ∈ R is a constant and for λ =
(
3
π

)1/3
and q = 4/3 we have the same exchange energy as the

homogeneous electron gas. From a physical perspective, the exponent q = 4
3 is thus very interesting.

The correlation energy is not exactly known, several methods exist to approximate it. We will use one of
the more popular choices by Vosko–Wilk expressed in the Wigner–Seitz radius [10]. The Wigner–Seitz
radius is the radius of a sphere with a volume equal to the volume of an electron. It is a local property
related to the local density by

4

3
πr3s =

1

ρ
. (2.46)

Vosko–Wilk have calculated the energy of the homogeneous electron gas for a wide range of densities
and used Monte Carlo techniques to get an approximation for the correlation energy:

ϵC(rs) =
A

2

{
log

(
x2

X(x)

)
+ 2

b

Q
atan(

Q

2x+ b
)− bx0

X(x0)

[
log

(
(x− x0)2

X(x)

)
+

2(b+ 2x0)

Q
atan(

Q

2x+ b
)

]}
,

(2.47)

where x =
√
rs, X(x) = x2 + bx+ c and Q =

√
4c− b2 with parameters A = 0.0621814, x0 = −0.10498,

b = 3.72744 and c = 12.9352. The exchange energy functional is then written analogously to (2.43) as

EC[ρ] =

∫
R3

ρ(r)ϵC(ρ(r))dr. (2.48)

The correlation potential can be calculated with functional derivatives and equals

VC(rs) =
δEC [ρ(r)]

δρ(r)
= ϵc −

1

6
A

c(x− x0)− bxx0
(x− x0)(x2 + bx+ c)

. (2.49)

Together with the exchange potential (2.42), the full exchange-correlation potential inside the Kohn–
Sham equations is approximated using LDA. Thereby, all necessary ingredients in order to solve the
Kohn–Sham equations are known (approximately). Next, we want to actually start solving the Kohn–
Sham equations, for which we use numerical methods in the next chapter.
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Chapter 3

Numerical implementation

The Kohn–Sham equations are self-consistent as the Hartree potential (3.21) depends on the electron
density, which itself depends on the Hartree potential via the Kohn–Sham equations (2.37). A self-
consistent solution is a solution leading to a density, which in turn gives rise to the same potential. A
brief overview of the elements necessary to solve such differential equations is given, starting with a
numerical method for both the Kohn–Sham equations and the Hartree potential. We let the numerical
method work on a logarithmic grid with more points around the origin. Finally the connection between
the individual elements is treated giving rise to the correct solution method that we have implemented
in Python.

3.1 Numerov’s method

In this thesis, we use Numerov’s method, which is a numerical stepping method that can be e applied
to differential equations of the specific form

d2f(r)

dr2
= g(r)f(r) + s(r). (3.1)

We call (3.1) a Numerov type equation and assume that f ∈ C5[0,∞), g, s ∈ C3[0,∞) and r ∈ [0,∞).
The functions g(r) and s(r) are supposed to be known and we want to solve for f(r). To derive the
numerical scheme that belongs to the Numerov-type equation, we expand f(r ± h) in a Taylor series
around f(r) for some h > 0:

f(r ± h) = f(r)± hdf(r)
dr

+
h2

2

d2f(r)

dr2
± h3

3!

d3f(r)

dr3
+
h4

4!

d4f(r)

dr4
± h5

5!

d5f(r)

dr5
+O(h6). (3.2)

Adding f(r + h) and f(r − h) gives

d2f(r)

dr2
=
f(r + h)− 2f(r) + f(r − h)

h2
− h2

12

d4f(r)

dr4
+O(h6). (3.3)

An expression for the fourth-order derivative in (3.3) can be found by differentiating (3.1) twice:

d4f(r)

dr4
=

d2 (g(r)f(r))

dr2
+

d2s(r)

dr2
. (3.4)
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The second-order derivatives in (3.4) can be expanded in a similar fashion to obtain:

d4f(r)

dr4
=
f(r + h)g(r + h)− 2f(r)g(r) + f(r − h)g(r − h)

h2
+
s(r + h)− 2s(r) + s(r − h)

h2
) +O(h4).

(3.5)

Expression (3.5) can subsequently be substituted in (3.3), which itself is again substituted in (3.1) to
find the numerical scheme. We discretize the variable r into M points to form a linear grid

rm := mh, (3.6)

where m ∈ {1, ...,M} and h denotes the step-size. Furthermore, let us define fm := f(rm), gm := g(rm)
and sm := s(rm). The numerical scheme then reads [11]

(
1− h2

12
gm+1

)
fm+1+

(
1− h2

12
gm−1

)
fm−1−

(
2 +

10h2

12
gm

)
fm =

h2

12
(sm+1 + 10sm + sm−1)+O(h6).

(3.7)

The derivation that is explained in this section works because the right-hand side of the Numerov-type
equation does not depend on the derivative of f . The result is a stepping algorithm that can solve fi
based on the previous two values fi−1 and fi−2 for i ∈ {3, ...,M}, which is sixth-order accurate.

3.2 Logarithmic grid

Numerov’s method as introduced in Sec. 3.1 assumes an equal spacing in the grid for the r−coordinates.
Because of the singularities in the Coulomb interaction close to the origin, the chance for large derivatives
is larger in the region of small r. To match this numerically, it is beneficial for the accuracy to increase
the number of points close to r = 0. For large r, the number of points can be reduced to minimize
the computational cost. A logarithmic grid fulfills these properties. It is however non-trivial to apply a
logarithmic grid due to the nonuniform spacing. In order to solve (3.1) on a logarithmic grid for f(r), we
proceed and show an alternative differential equation defined on a uniform grid. At the end, the solution
of the alternative problem is connected to the solution of (3.1) on a logarithmic grid. To find the correct
‘alternative problem’, let us start by introducing a coordinate transformation from the variable r to a
new variable u ∈ [0,∞) where we use the following relations throughout this section:

r = r(u) = α(eu − 1) ←→ u = u(r) = ln
( r
α
+ 1
)
, (3.8)

with α ∈ (0,∞) a constant. We willdefine a uniformly spaced grid in terms of the variable u for m ∈ Z:

um := mh. (3.9)

This is accompanied by a logarithmic grid r∗m:

r∗m := α(eum − 1). (3.10)

Our objective is a function f̃(u), which can be solved numerically on the uniformly spaced grid um,
allowing us to use Numerov’s method. For that, the differential equation for f̃(u) must also satisfy the
shape of a Numerov-type equation, with yet unknown functions s̃(u) and g̃(u). Once f̃(u) is known, we
must translate it to f(r), the solution of (3.1). We define a relation between f(r) and f̃(u) [12]:
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f(r) := αeu/2f̃(u). (3.11)

By using the chain rule for second derivatives we have

d2f(r)

dr2
=

d2f(r)

du2

(
du

dr

)2

+
df(r)

du

d2u

dr2
=

αeu/2

(r + α)2

(
d2f̃(u)

du2
− 1

4
f̃(u)

)
. (3.12)

Note that here the terms df̃(u)
du cancel out, so that it does not depend on the first derivative and definition

(3.11) works. That means it will lead us to a Numerov-type equation. This Numerov-type equation for
the function f̃(u) can be deduced by substitution of (3.11) and (3.12) in (3.1). We find

d2f̃(u)

du2
= g̃(u)f̃(u) + s̃(u), (3.13)

for which the relations for g̃(u) and s̃(u) are given by:

g̃(u) = (r + α)2g(r) +
1

4
, (3.14)

s̃(u) =
(r + α)2

αeu/2
s(r). (3.15)

In order to solve the differential equation (3.1) on a logarithmic grid, we perform the following steps:

1. State the Numerov-type equation to be solved with known g(r) and s(r), (3.1);

2. Calculate g̃(u) and s̃(u) using (3.14) and (3.15);

3. Solve f̃(um) on the uniform grid um with Numerov’s method (3.13)

4. Calculate f(r∗m) from (3.11).

The final result is f(r∗m) has a logarithmic grid spacing with more points close to the origin.

3.3 Radial Kohn–Sham equations

We want to study the behaviour of atoms via the Kohn–Sham equations (2.37), which we solve numer-
ically. In this case, the general external potential is given by vext(r) = − Z

|r| . For simplicity, let us now

introduce the effective potential Veff(r) for this specific problem as

Veff(r) = −
Z

|r|
+ VH(r) + VXC(r). (3.16)

With the same quantum numbers n, l andm (See Appendix A.3) that are used for 3D quantummechanics,
the Kohn–Sham equations (2.37) transform and becomes

− 1

2
∇2ϕn,l,m(r) + Veff(r)ϕn,l,m(r) = εn,l,mϕn,l,m(r). (3.17)
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The effective potential is assumed to be spherically symmetric, so that we can write Veff(r) = Veff(r).
Due to this spherical symmetry, we adopt spherical coordinates (r, θ, φ) and look for separable solutions
of the shape

ϕn,l,m(r, θ, φ) = Rn,l(r)Yl,m(θ, φ). (3.18)

Substitution of (3.18) into (3.17) leads to an angular wave equation for Yl,m(θ, φ) and a radial equation for
Rn,l(r), Appendix A.3. The potential Veff(r) only affects the radial equation due to spherical symmetry.
Upon introducing un,l(r) = rRn,l(r), (3.17) becomes

− 1

2

d2un,l(r)

dr2
+

[
Veff(r) +

l(l + 1)

2r2

]
= εn,lun,l(r). (3.19)

Equation (3.19) is solved numerically with the Numerov algorithm. The total energy functional in
spherical coordinates transforms from (2.40) to:

E =
∑
n,l

2(2l + 1)εn,lfn,l +

∫
R
dr4πr2ρ̃(r)

[
−1

2

UH(r)

r
+ (Exc − Vxc)

]
. (3.20)

The summation over n, l is bounded and determined by the occupation of the electron shells, which
depends on the specific atom.

3.4 Poisson equation

The Hartree potential in the Kohn–Sham equations (2.37) is given by:

VH(r) =

∫
R3

ρ(r′)

|r− r′|
dr′. (3.21)

Instead of doing the integration, it is more efficient to solve the corresponding differential equation where
we make use of the property ∇2 1

|r| = −4πδ(r), this leads to the following differential equation:

∇2VH(r) = −4πρ(r). (3.22)

Because of spherical symmetry, this Laplacian reduces to an ordinary 1D derivative because the Hartree
potential only depends on the radial coordinate r. Upon introducing U(r) = VH(r)r and the radial
density ρ̃(r), it becomes:

d2U(r)

dr2
= −4πrρ̃(r). (3.23)

The boundary conditions can be derived from physical arguments. First of all, the potential needs to
be finite at r = 0, i.e. VH(0) < ∞. This implies that U(0) = 0. The second boundary condition can be
derived from charge conservation. The total charge N of the electrons is given by the integral

N =

∫
R3

ρ(r)dr. (3.24)
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For r large enough all the charge should be confined. This allows us to estimate the distance 1
|r−r′| in

(3.21) by using the cosine law

1

|r− r′|
=

1

r

1

1−
∣∣ r′
r

∣∣ = 1

r

(
1− 2

r′ · r
|r|2

+

(
|r′|
|r|

)2
)−1/2

=
1

r

1√
1 + ε

, (3.25)

where ε = −2 r′·r
|r|2 +

(
|r′|
|r|

)2
. By applying the Binomial series1 to (3.25), it can be deduced that

1

|r− r′|
=

1

r
+O

(
r′

r2

)
as r →∞. (3.26)

For this expansion, we have used the relation r′ · r ≤ |r′||r| := r′r and used the big-O notation. We write
f(x) = O(g(x)) as x→∞ provided that |f(x)| ≤ K|g(x)| for all x ≥ x0 for some constant K ∈ R+ with
x0 ∈ R. The Hartree equation (3.21) can be estimated in the limit r →∞ employing (3.26):

VH(r) = lim
r→∞

1

r

∫
R3

drρ(r). (3.27)

Comparing (3.27) with (3.24), the second boundary condition is determined to be:

lim
r→∞

U(r) = N. (3.28)

The boundary condition for numerical purposes is described in terms of the variable rmax, which is the
maximal value of the radial grid and reads U(rmax) = N . In general, rmax should be large enough
such that the distance function (3.26) is well described by the first term of the expansion. Also, rmax

should be physically large enough in order for it to be reasonable to assume that all charge is confined
in 3D space bounded by rmax. Due to the self-consistency, the Hartree potential needs to be calculated
again upon changing the density until the solution is self-consistent. To do so, we introduce a Poisson
solver that works on the same logarithmic grid (3.10) and makes use of the Numerov numerical scheme
presented in (3.7). The Numerov integration method, as introduced in Sec. 3.1, calculates the value in
the new mesh points from start to end or vice versa. To satisfy both boundary conditions, we solve a
different initial value problem Ũ(r) solving the same differential equation (3.23) with different boundary
conditions Ũ(0) = 0 and Ũ ′(0) = 1. This is easier for the stepping algorithm, which starts from the
origin. These By adding a homogeneous solution of (3.23), the choice of the constant allows us to match
the true solution U(r) to the correct boundary condition as expressed by (3.28) together with U(0) = 0.
The solutions reads

U(r) = Ũ(r) + r
N − Ũ(rmax)

rmax
. (3.29)

To see why (3.29) is a solution with the correct boundary conditions, we must first remark that it is indeed
a solution. This is the case, because Ũ(r) is a solution (3.23) and the second term consists of a constant
times r, which evaluates to 0 upon differentiating twice. Filling in r = 0, we obtain U(0) = Ũ(0) = 0.
Filling in rmax results in U(r) = Ũ(rmax) +N − Ũ(rmax) = N .

1Bionomial series: (1 + x)s =
∑∞

n=0

(s
n

)
xn [13].
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3.5 Self-consistent field

Now that we have a Poisson solver together with a numerical method for the Kohn–Sham equations, the
task is to combine this to find ground states. The self-consistent field method is an iterative method
where we take an approximate solution of the electron density from which the Hartree and exchange-
correlation potential is calculated. From these potentials the new electron density can be calculated
via the Kohn–Sham equations and the process repeats itself. To explain the implementation of the
self-consistent field (SCF) process [14], we rewrite the radial Kohn–Sham equations here as

(
−1

2
∇2 + vext(r) + VH[ρ

in(r)](r) + VXC[ρ
in(r)](r) +

l(l + 1)

2r2

)
un,l(r) = ϵn,lun,l(r), (3.30)

ρout(r) =
1

4π

∑
n,l

2(2l + 1)fn,l
|un,l(r)|
r2

2

. (3.31)

The coefficients 0 ≤ fn,l ≤ 1 represent the occupation fraction of the eigenfunction with quantum
numbers n and l. The factor 2 in Eq. (3.31) takes into account the spin degeneracy and (2l + 1)
compensates for the degeneracy in the quantum number m = −l,−l + 1, ..., l − 1, l, where l > 0. More
detail about the quantum number is given in Appendix A.3. Because it is the radial electron density, a
division by (4πr2) is performed. Equations (3.30) and (3.31) together define a non-linear map [15];

K : L1(R)→ L1(R); (3.32)

K[ρin] = ρout. (3.33)

To investigate existence of solutions of the non-linear map K we state the Banach fixed-point theorem.

Theorem 2 (Banach). For X a Banach space, let B : X → X be a nonlinear mapping satisfying:

||B(u)− B(w)|| ≤ γ||u− w|| ∀u,w ∈ X. (3.34)

for γ < 1. Then B has exactly one fixed point.

If the Kohn–Sham map K with the L2-norm satisfies Theorem 2 locally around the initial density, we
have exactly one solution. In general this is not the case for the map K. Still, we aim for a process
to find an approximation to the fixed point ρ∗(r) of this map, which may not be unique, such that
K[ρ∗(r)] = ρ∗(r). To do so, we construct a sequence {ρin1 , ρin2 , ..., ρink } with k ∈ Z and introduce the
fixed-point iteration:

ρini+1 := ρouti = K[ρini ]. (3.35)

The stopping criterion is based on the total energy, once this has the acquired accuracy, denoted by the
accuracy paramter ε, the sequence can be ended. The total energies are calculated by (3.20) and once
|Ein

i+1 − Ein
i | < ε for some ε > 0 the SCF loops stops and convergence is achieved. Instead of (3.35), we

introduce a new fixed point iteration with linear admixing:

ρini+1 = (1− κ)ρini + κK[ρini ], κ ∈ (0, 1]. (3.36)

It is proven that for the fixed-point iteration presented in (3.36), assuming that the map K is non-
expansive (γ = 1), there always exist a κ such that the iteration converges [16]. It is typically assumed
that the map K is non-expansive. Based on the linearly admixed fixed-point iteration, the implemented
SCF process is described with use of a flowchart. The initial density we use is described by the function:
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ρin(r) =
N4

64π
e−pr/2. (3.37)

It can be checked N =
∫∞
0
r2ρin(r)dr. The initial density thus agrees with the number of particles.

Initiate density
ρin(r), energy Ein

(3.37), (3.20)

Calculate Veff(r)
(3.16)

Solve Kohn–Sham equations
(3.30)

Calculate ρout(r)
(3.31)

Calculate total en-
ergy Eout from ρout(r)

(3.20)

Construct new ρin(r)
(3.36)

|Eout − Ein| < ε

ρout(r) is the solution

No

Yes

Figure 3.1: Flowchart for the solution method of the self-consistent Kohn–Sham equations.
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Chapter 4

Results and discussion

In this chapter, the results of the LDA and LDAq algorithm will be shown and discussed. We start
with Hydrogen and standard LDA, where q = 4/3. The total energies, Kohn–Sham potential and
radial wavefunctions are compared to the analytical solution to test the accuracy and correctness of the
numerical method. Next, the total energies for atoms up till atomic number Z = 10 are calculated with
standard LDA and compared to known values. After that, the generalised local-density approximation
is analysed for two extreme cases and the intermediate regime around q = 4/3. The ionisation energy,
total energy as well as the wave functions will be covered.
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4.1 Standard LDA

We run the DFT calculation for Hydrogen and compare it to the exact solution. The accuracy parameter
of the SCF-loop is set at ϵ = 1e−5 Hartree. Convergence of the solutions was achieved in 35 iterations of
the SCF-loop. A plot of the various contributions to the Kohn–Sham potential and the radial probability
is given in Fig. 4.1 and Fig. 4.2.

Figure 4.1: Kohn–Sham potential together with its components, Hartree, Coulomb, exchange and cor-
relation potential shown against radial distance r for Hydrogen atom.

Figure 4.2: Radial probability r2(R(r))2 as function of the radial distance r for the DFT calculation
compared against the exact solution for Hydrogen atom.

From Fig. 4.1, it can be seen that the Hartree potential does not quite cancel with the exchange-
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correlation potential through which the self-interaction becomes apparent. As a result the Kohn-Sham
potential is slightly above the Coulomb potential, which indicates that the bound states will shift up
with respect to the analytical ground state energy of Hydrogen (−0.5 Hartree) that corresponds to the
Coulomb potential. The LDA calculation predicts a ground state of −0.4456 Hartree, which is in line
with our intuition. A plot of the radial probability distribution for the LDA calculation is given in
Fig. 4.2, together with the exact result. The LDA calculation gives a result slightly different from the
exact result, which is expected as the calculated ground state energy is higher. The weight in the radial
probability is shifted to the right for the LDA calculation with respect to the analytical result. This can
be explained by the erroneous self-interaction which is repulsive.

The total binding energy for atoms up to and including Z = 10 is predicted by LDA. The results are
summarized in Table 4.1 in the column LDA and compared to experimentally known values.

Atom Z Experiment1 LDA

H 1 −0.5 2 −0.4456
He 2 −2.9034 −2.8504
Be 4 −14.7833 −14.5349
C 6 −37.8558 −37.6305
Ne 10 −129.054 −129.0547 3

1 Energies retrieved from NIST database [17]
2 Exact energy [4]
3 Parameters (N = 1200, rmax = 45, κ = 0.4)

Table 4.1: Total energies Etot in Hartree units, comparison between values known from theory and
experiment and LDA result. Used parameters: (N = 1000, rmax = 60, κ = 0.4)

4.2 Generalized local-density approximation

We analyze results by using the generalization of the exchange energy in LDAq given by (2.44) For
Hydrogen, we establish two limiting cases, the first one is q ↓ 1 and the second limit is q → ∞. After
that the intermediate regime is treated for various atoms in the periodic table and different q-values
which includes the physical value q = 4

3 in the HEG. Since we are mainly interested in the scaling with

q, we take λ = λHEG =
(
3
π

)1/3
. A different constant λ would scale the exchange potential by a constant.

We plot the potentials of the LDA output for q = 1.03 and q = 7/2 in Fig. 4.3a and Fig. 4.3b. These give
us an idea of what happens in both limiting cases. The results are shown without correlation potential.

(a) q = 1.03. (b) q = 7/2

Figure 4.3: Kohn–Sham potential together with its components, Hartree, Coulomb, exchange potential
shown against radial distance r for Hydrogen atom

Upon taking the limit q ↓ 1, the exchange potential is given by:

20



Vx[ρ(r)] = − lim
q↓1

λρ(r)q−1 = −λ. (4.1)

Now take the limit q →∞, then the exchange potential is given by:

Vx[ρ(r)] = − lim
q→∞

λρ(r)q−1 = 0. (4.2)

For both cases, set Vc[ρ(r)] = 0. These limiting cases agree with our numerical output in Fig. 4.3a and
Fig. 4.3b. Upon choosing q smaller or bigger, the exchange potential becomes constant in both cases.
The resulting equations we get for both system can be combined into a single equation:

[
−1

2
∇2 − Z

r
+

∫
R3

dr′
ρ(r′)

|r− r′|
+ c

]
ϕi(r) = ϵiϕi(r). (4.3)

The constant c ∈ {−λ, 0} corresponds to the limit q ↓ 1 or q →∞. Equations (4.3) are the Hartree–Fock
equations (2.27) where the exchange term is set to 0. In the case c = −λ, a constant is added to the
Hartree equations. In principle, the difference in the eigenvalues would thus be different by this constant
λ.We numerically check convergence of the eigenvalues in both limits by choosing q-values slightly above
1 and large q-values. Next to that, we can set the exchange potential to the values −λ and 0 respectively,
which corresponds to taking the limit. The difference between the eigenvalues of both limits is calculated

to be 0.947. This is slightly off with respect to the constant λ =
(
3
π

)1/3 ≈ 0.985. Theoretically, the
constant c cannot change the eigenfunctions, the reason why the eigenvalues do not converge to the exact
constant λ is likely due to numerical artefacts. These may include the finite rmax and number of points
N .

We remark that in the LDAq algorithm, taking the limits q ↓ 1 and q →∞ results in the same system,
apart from a constant −λ. In both cases, the exchange interaction is not a functional anymore. In
between both limits, the physical value q = 4

3 lies and we have the local-density approximation.

4.3 Intermediate regime

We have seen that the two limits for q are connected and basically equivalent, up to a constant. Now
we want to turn our focus on the intermediate regime, which for our purposes is a region around q = 4

3
represented by 1.1 ≤ q ≤ 1.6. Between the two limits (Sec. 4.2), the Kohn–Sham potential shifts from
below the Coulomb potential to finally above the Coulomb potential. Somewhere in the intermediate
regime, the LDAq algorithm gives a prediction for the total energy which equals the real experimentally
known value. To investigate what q value is optimal given an atomic number Z, a heat map is made.
For a range of values q, the total energy output of the LDAq algorithm is divided by the experimentally
known values [17]. From the ratio, the optimal q value can be obtained and made visual. Theoretically,
the optimal ratio is 1. we cannot achieve this exactly with LDAq, but aim for a ratio close to 1.
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Figure 4.4: Heat map representing the ratio Etot

Eexp
for a range of q values and atomic numbers Z

From Fig. 4.4 it becomes apparent that for larger atomic numbers near Z = 10, the ratio is close to 1
around q = 4

3 , based on the HEG. The system with more electrons might behave more uniform, which
would explain why it is better resembled by the homogeneous electron gas. For Hydrogen (Z = 1), the
prediction is quite bad in comparison to bigger atoms. This is due to the self-interaction which induces
the biggest error in Hydrogen as it only consists of one electron. The ratio of the total energy does,
however, not give the full picture. Suppose we tune our q such that the prediction of the LDAq algorithm
is close to the optimal for a fixed Z. The total energy is then calculated with high precision, but other
properties might be lost. Based on Janak’s theorem, the ionisation energy I(Z) can be related to the
highest occupied Kohn–Sham orbital eigenenergy [18]. It follow from Janak’s theorem that

− ϵmax(N) = I(Z), (4.4)

where ϵmax(N) is the highest occupied Kohn–Sham eigenenergy. Our LDAq algorithm calculates all orbital
eigenenergies, which can again be compared with theoretical and/or experimentally known ionisation
energies [17]. We define the ratio − ϵmax

I(Z) and investigate whether this ratio and the total energy ratio can

be optimal at the same time. A scatter plot is made of the ratio − ϵmax

I(Z) against Etot

Eexp
, with and without

correlation potential for Z = 4 and Z = 10. Here, the theoretical optimum is the point (1, 1). It is
however not clear if we can approach this optimum where both ratios equal 1. For numerical purposes,
we define optimal as having the smallest Euclidian distance between the points (− ϵmax

I(Z) ,
Etot

Eexp
) and (1, 1).
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Figure 4.5: Scatter plot of the ratio − ϵmax

I(Z) against Etot

Eexp
for atomic number Z = 4, with and without

correlation potential. Each point corresponds to a different q ∈ {1.1, ...1.6}

In Fig. 4.5, q = 4/3 value is marked by the red dot. The optimal point is marked green and is attained
at a value 1.22 when the correlation potential is turned off and q = 1.25 with the correlation potential
turned on. We are interested in a region where both the ionisation energy and the total energy are
close to experimentally known values. This is made visual by the dotted straight lines. Including the
correlation potential, there exist values of q for which 0.9 < ϵmax

I(Z) < 1.1 and 0.98 < Etot

Eexp
< 1.02 at the

same time. When the correlation potential is turned off, the accuracy decreases as the distance between
predicted ratios and the optimal point becomes larger. In this framework, the accuracy of different
correlation potentials could also be investigated. Notice that the error in the ionisation energy ratio is
typically larger than the total energy ratio. Because of this, a small decrease in accuracy in the total
energy ratio can result in a big improvement for the ionisation energy ratio, which is visualised in the
curves. Also, we remark that the total energy ratio has two optima where the ratio becomes one, in the
case where Z = 3 or Z = 4. This was already concluded from the heat map in Fig. 4.4. A similar scatter
plot is made for Z = 10.
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Figure 4.6: Scatter plot of the ratio − ϵmax

I(Z) against Etot

Eexp
for atomic number Z = 10, with and without

correlation potential. Each point corresponds to a different q ∈ {1.1, ...1.6}

In Fig. 4.6, the points corresponding to the physical value q = 4
3 are again marked by the red dot. For

larger total energy ratios, the dots are separated by a difference ∆q = 0.01 up until q = 1.6. For smaller
total energy ratios, q decreases in steps ∆q towards q = 1.1. For Z = 4, we observed that there were
two optimal solutions. This is not the case anymore for larger Z. For smaller values q = 1.01, the total
energy ratio without correlation potential was 0.969. The blue dots in Fig. 4.6 tends to an asymptote
around the total energy ratio at the value 0.969 for q ↓ 1. It would be interesting to know whether there
exists a correlation potential with goes through the optimal point (1, 1). If so, what does this say about
the physical properties and how does this behaviour change with respect to the atomic number Z? We
also observe that the curves in Fig. 4.5 and Fig. 4.6 look to be symmetric with respect to straight line
with some positive slope.

4.3.1 Norms

The purpose of this section is to check whether assumptions made in [9] are physical. There, it is
proven that a system consisting of the time dependent Kohn–Sham equations coupled with nuclear
dynamics has a unique solution for q ≥ 7

2 , λ ∈ R and some time τ > 0, where the Kohn–Sham orbitals
ϕn ∈ C0([0, τ ], H2(R3;C)). For further details of this theorem and proof, we refer to [9]. In contrast,
we consider the time-independent Kohn–Sham equations and can only make statements for a fixed time.
We numerically check whether the obtained solutions of the LDAq algorithm agree with the initial
assumption at t = 0 by checking the L2, H1 and H2 norms of the first Kohn–Sham eigenfunction ϕ1 for
various q. If a blow-up occurs, this might indicate the assumptions are too strict. If not, the assumptions
are like to be realistic at t = 0 by numerical validation, no statement about later times can be made
though. The norms are calculated from the radial Kohn–Sham eigenfunctions using spherical symmetry:

||ϕ1||2L2 =

∫
R≥0

dr4πr2ϕ∗1(r)ϕ1(r). (4.5)

The H1- and H2-norms are calculated using the definitions (A.7) and (A.8), again using spherical
symmetry and multiplying by 4πr2.
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Z q ||ϕ1||L2 ||ϕ1||H1 ||ϕ1||H2

1 1.03 1.0 1.60 1.89
1 4/3 1.0 1.68 2.10
1 7/2 1.0 1.53 1.77
1 10000 1.0 1.54 1.77

Table 4.2: Calculation of the L2-, H1- and H2-norms for different q values.

All the norms are bounded and no blow-up phenomenon is encountered. Also, the L2-norm evaluates to
1 for a single-electron orbital, as should be due to normalisation.
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Chapter 5

Conclusion

The goal of this thesis was to investigate the physical properties of a generalised local-density approx-
imation in density-functional theory. The developed LDA code gives results for the total energy that
is in good agreement with known theoretical and experimental results. The self-interaction remains a
problem, which is the biggest issue for Hydrogen, for which the predicted total energy is 10% higher.
For Z ∈ {2, ..., 10}, total energies are within 2% accuracy. Convergence of the self-consistent loop was
usually achieved within 50 iterations.

The generalisation of the exchange interaction depending on the parameter q > 1 and constant λ ∈ R
is captured in the LDAq code. When the correlation term is set to 0 and in the limit where q ↓ 1 and
q → ∞, the Kohn–Sham equations reduced to the Hartree equations, with and without an additional
constant −λ respectively. It was also checked numerically that the exchange potential converges to a
constant in both limiting cases. Although the Kohn–Sham equations and the Hartree equations are
derived from different assumptions, a connection between both can be made. For intermediate q-values,
we arrive back at the local-density approximation.

From the analysis of the homogeneous electron gas we know that the physical value is q = 4
3 . For other

non-homogeneous systems, like atoms, there is no exact value for q. A better prediction might result
from a different choice of the parameter q. To investigate this, for 60 q-values between 1.1 and 1.6,
the LDAq algorithm’s output is divided by the theoretically or experimentally known total energy. The
resulting ratio is visualized in a heat map for q against atoms number Z ∈ {1, ..., 10}. We conclude that
for Z approaching 10 in integer steps, the optimal ratio (= 1) is attained for values of q approaching 4

3
from above. For larger Z, the density might becomes more and more uniform, therefore the homogeneous
electron gas value q = 4

3 better describes the atomic system. For Z = 1 and Z = 2, the optimal ratio
is taken at a value q = 1.23 and q = 1.21 respectively. This results from the erroneous self-interaction,
which is most apparent in Hydrogen and Helium. Via the heat map, an optimal q-value can be chosen so
that the total energy is approximated in a best possible way, after which extrapolation methods might
predict results for higher values of Z. To see if this is useful, we must make sure that other properties
are not destroyed by scanning over q. Via Janak’s theorem, the ionisation energy is linked to the highest
occupied Kohn–Sham eigenenergies. This defines an ionisation energy ratio, which is visualised in a
scatter plot against the total energy ratio. There is a trade-off between the accuracy in the total energy
and the ionisation energy. A small decrease in accuracy of the total energy ratio around 1% can lead
to a big increase in the ionisation energy ratio of at least 10%. We propose that a better correlation
potential might shift results closer to the theoretical optima where both ratios equal 1.

Several norms have been calculated for various q, i.e. the L2-, H1- and H2-norms. All norms remain
finite and no blow-up phenomena is observed. The assumptions for the single-electron orbitals being in
the corresponding spaces thus seem valid.
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Appendix A

Concepts from quantum mechanics

A.1 Hilbert space

We consider a vector space H. An inner product space is a vector space with a defined inner product,
that is a map

⟨·, ·⟩ : H×H → C (A.1)

that satisfies the properties

1. linearity in the second argument:

⟨v, αw + βz⟩ = α ⟨v, w⟩+ β ⟨v, z⟩

2. conjugate symmetry: ⟨w, v⟩ = ⟨v, w⟩∗

3. positive definiteness: ⟨v, v⟩ > 0 for v ̸= 0

for any v, w, z ∈ H and α, β ∈ C. This inner product defines a norm on H given by the map || · || : H →
[0,∞) where

||v|| = ⟨v, v⟩1/2 . (A.2)

If the inner product space is complete with respect to the introduced norm, then H is a Hilbert space.
The phase space in quantum mechanics is always a Hilbert space. One example of a Hilbert spaces that
we will use are the L2-space:

L2(Rd) = {ψ : Rd → C|
∫
Rd

|ψ|2 ≤ ∞}. (A.3)

The inner product that makes this a Hilbert space is

⟨ψ, ϕ⟩L2 =

∫
Rd

ψ∗(x)ϕ(x)dx, (A.4)
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with x ∈ Rd and ψ, ϕ ∈ L2(Rd). We use the notation ||ψ||L2 to denote the L2-norm with respect to the
inner product in (A.4).

Another example of a Hilbert space is the Sobolev space of order n, n = 1, 2, 3, ..., which is defined as:

Hn(Rd) = {ψ ∈ L2(Rd) | ∂αψ ∈ L2(Rd) ∀α, |α| ≤ n}. (A.5)

Here, the index α is a multi-index α = (α1, ..., αd), consisting of non-negative integers where |α| =∑d
i=1 αi. The term ∂α can be written out using the multi-indices to ∂α1

x1
· · · ∂αd

xd
where ∂α1

x1
= ∂α1

∂x
α1
1

. The

Sobolev space Hn(Rd) is the functional space where all derivatives up to order n lie in L2(Rd). The
inner product defined on this space is:

⟨ψ, ϕ⟩Hn =
∑

0≤|α|≤n

⟨∂αψ, ∂αϕ⟩L2 , (A.6)

for ψ, ϕ ∈ Hn(Rd). In this thesis we will work with H1 = H1(Rd) and H2 = H2(Rd), which have
corresponding norms

||ψ||H1 =
√
||ψ||2L2 + ||∇ψ||2L2 , (A.7)

||ψ||H2 =
√
||ψ||2L2 + ||∇2ψ||2L2 . (A.8)

The wave functions are normalised in the L2-norm to 1 in order to be interpreted as a probability
distribution.

A.2 Schrödinger equation

The goal in quantum mechanics is to find the wave functions that govern the motion of particles in space
and time. It is denoted by ψ(x, t), for x ∈ R3 and t ∈ R denoting the position and time coordinates
respectively. It must satisfy the Schrödinger equation [2]:

iℏ
∂

∂t
ψ = Hψ, (A.9)

where the right-hand side is the Hamiltonian operator given by

Hψ = − ℏ2

2m
∇2ψ + V ψ. (A.10)

The constant m denotes the mass of the particle and ℏ is Planck’s constant. It is a fundamental constant
in nature, its value is ℏ = 1.054571817 · 10−34 Js. Given suitable initial conditions, for example ψ(x, 0),
the Schrödinger equation determines the motion ψ(x, t) for all t ∈ R+. The state space for the wave
functions is the space of square-integrable functions over x ∈ R3:

L2(R3) := {ψ : R3 → C|
∫
R3

|ψ(x)|2dx <∞}. (A.11)
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The wave functions need to satisfy A.11 for |ψ(x, t)|2 to be interpreted as a probability distribution.
Once we have a normalised solution, it must stay normalised in time. For this, the Hamiltonian operator
H must be self-adjoint. This important property is captured in the next theorem.

Theorem 3. Consider the initial value problem A.9 together with the initial condition ψ0 ∈ L2(R3).
Solutions ψ(t) ∈ D(H) conserve probability if and only if H is self-adjoint.

Proof. Suppose ψ(t) ∈ D(H) solves the initial value problem A.9 with ψ0. Compute

d

dt
⟨ψ,ψ⟩ =

〈
ψ̇, ψ

〉
+
〈
ψ, ψ̇

〉
=

〈
1

iℏ
Hψ,ψ

〉
+

〈
ψ,

1

iℏ
Hψ

〉
(A.12)

=
1

iℏ
[⟨ψ,Hψ⟩ − ⟨Hψ,ψ⟩] = 0. (A.13)

In the last step we have used self-adjointness of the Hamiltonian operator. The probability distribution
is thus conserved in time.

A.3 Time-independent Schrödinger equation

For a general time-independent potential V , the Schrödinger equation (A.9) can be solved by separation
of variables leading to the time-independent Schrödinger equation:

ℏ2

2m
∇2 + V ψ = Eψ, (A.14)

where ψ = ψ(x) with x ∈ R3. From now on, we drop the time dependence in the wave function ψ. If
wanted, it can be added by multiplying with a factor e−iEt/ℏ. Throughout this thesis, we solve (A.14) for
time-independent potentials. Furthermore, we assume central potentials, where V (x) = V (|x|). Adopting
spherical coordinates (r, θ, ϕ), we look for solutions ψ(r, θ, ϕ) = R(r)Y (θ, ϕ) such that Equation (A.14)
splits in a radial wave equation and an angular equation. The discrete solutions are label by the three
quantum numbers n, l and m. The quantum number n determines the energy of the state, l and m
relate to the angular momentum. In terms of the function u(r) := rR(r), the radial equation reads [4]

− 1

2

d2u

dr2
+

[
V +

l(l + 1)

2r2

]
u = Eu. (A.15)

The electrons are subject to Pauli exclusion principle, which states that identical electrons cannot occupy
the same state given by the quantum numbers (n, l,m). We consider a system of spin-free identical
electrons and do not take into account spin. Because electrons can have spin up or spin down, 2 electrons
can occupy the same quantum state (spin degeneracy). The electronic shells are filled according to the
periodic table. For a given n, the quantum number l can take the possible values l = 0, 1, ..., n− 1. For
each l, the degeneracy in m accounts for another 2l+1 possibilities. As an example, take Neon which has
atomic number Z = 10 and is surrounded by 10 electrons. The n = 1 shell gives room for two electrons,
for n = 2 we can have both l = 0 and l = 1. Again two electrons occupy the n = 2 shell with l = 0, but
another 6 electrons have quantum number l = 1, after which the second shell is filled.

A.4 Functional derivatives

There exist two kinds of functional derivatives, the Fréchet and Gâteaux derivative. The Fréchet deriva-
tive is a generalisation of the total derivative in functional analysis. We are mainly interested in the
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Gâteaux derivative, which is a generalisation of a partial derivative, because the derivative in density-
functional theory is a Gâteaux derivative [19]. Consider two complete normed vector spaces (i.e. Banach
spaces) X and Y and functional F : X → Y . If there exists a linear functional F ′[x0] ∈ X, x0 ∈ X, such
that

lim
τ→0

F [x0 + τx]− F [x0]
τ

= F ′[x0] for all x ∈ X, (A.16)

with scalar τ , then F ′[x0] is called the Gâteaux derivative of F at x0 [20]. A Hilbert space is an example
for a Banach space. In our case, we work with a specific Hilbert space and set X = Y = L2(Rd) and let
x ∈ Rd. We denote the Gâteaux derivative also by g(x) and introduce the short-hand notation:

δF [f ]

δf(x)
= g(x), (A.17)

which will be used throughout this thesis.
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