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1 Introduction to the Project

”The world is not made of molecules, the world is made of stories” - Muriel Rukeyser
For the sake of this project the world is made of molecules, the project focuses on optimizing the structures of
individual molecules by minimizing their total energy in the ground state. Code has been developed over the
past four months to facilitate this optimization process. The initial step of creating this code involved moving the
atoms of an arbitrary molecule a distance δ in the x, y, and z directions.

By performing this movement for every atom of the molecule at distances δ and −δ, numerical derivatives can
be computed for each atom using central difference (or any other first-order numerical method). The numerical
derivative for atom i in direction x is given by (dx)i = (Eatom;i(x+ δ)− Eatom;i(x− δ)) /2δ.

These numerical derivatives in the x, y, and z directions are then combined into a vector to obtain the energy
gradients for each atom in the molecule. These gradients are particularly useful as they closely relate to the forces
acting upon each individual atom, denoted by Fon atom = −∇E = (dx, dy, dz)T . Minimizing these forces helps to
stabilize the molecule, making it valuable for identifying stable molecular structures.

The minimization process is handled by scipy.optimize.minimize [3], which is the optimizer of choice for this
project. This calculator takes in the energy, energy gradient of a molecule-structure and the initial structure itself,
and performs calculations to obtain a lower energy value by making slight adjustments to the atom configuration.
The way these atoms are adjusted is done using a numerical method. The numerical method that will be discussed
here are: BFGS, CG, SLSQP, and trust-constraint. The chosen method determines the approach used for shifting
the molecules during the optimization process. As the methods are iterative, multiple iterations are required by
the calculator to achieve an optimized molecule.

Furthermore, this document will explore the code implementation for performing these optimizations, as well as
discuss some of the optimization methods employed. The performance of these methods will also be evaluated.

Finally, we will attempt to address several questions, such as whether the methods yield an optimal structure,
if any of the numerical methods are superior for optimizing molecular geometries, and whether there are more
reliable or less reliable methods. Additionally, we will explore the possibility of optimizing excited state energy
and provide insights on the feasibility of this type of optimization.
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2 Groundstate vs Excited State

To illustrate the distinction between ground-state energies and excited state energies, we will explore a particle-in-
a-box-model in this section. This model provides a straightforward framework for calculations and offers potential
values for the particle’s energy and wavefunction. It is important to note that this example simplifies the energy
calculations compared to the complexities involved in working with molecules.

2.1 Defining the Potential Energy V

For this example, we adopt the approach described in [7], where the potential energy of the particle within the box
is defined as V (x) = 0. Outside the box, i.e., for x < 0 or x > L, V (x) = ∞, ensuring that the particle does not
reside at the walls or outside the box. It is worth noting that the particle’s movement is restricted to the x-axis.

0 L

Particle

x

L

0

Figure 1: Figure illustrating a particle in a box as described above

Based on this scenario, we will explore the potential energy states of the particle and examine the corresponding
wavefunction denoted as ψ and the squared magnitude, ψ2. Analyzing ψ2 allows us to better understand the
probability distribution and likely locations of the particle.

2.2 Solving Schrödinger’s Equation

The time-independent Schrödinger’s equation for a particle with mass m, moving in one direction with energy E,
is given by:

− h2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = E[ψ(x)] (1)

where:

• ℏ represents the reduced Planck constant, defined as ℏ = h
2π , with h being the Planck constant.

• m is the mass of the particle.

• ψ(x) denotes the stationary, time-independent wavefunction.

• V (x) represents the potential energy as a function of position.

• E corresponds to the energy of the particle, which is a real number.

In our model where V (x) = 0, the equation simplifies to:

− h2

2m

d2ψ(x)

dx2
= E[ψ(x)] (2)
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The general solution to this equation is given by:

ψ(x) = A sin(kx) +B cos(kx) (3)

where A, B, and k are constants.

2.3 Defining the Wavefunction

To apply boundary conditions to the system, we use the fact that finding the particle at x = 0 or x = L is
impossible due to the infinite potential energy at those points. This constraint leads to the following condition:

A sin(k · 0) +B cos(k · 0) = B = 0 (4)

Hence, in our case B needs to be 0 to fullfill the boundary conditions which gives ψ(x) = A sin(kx)

To determine the value of k, we differentiate the wavefunction with respect to x:

dψ

dx
= kA cos(kx) (5)

d2ψ

dx2
= −k2A sin(kx) (6)

By substituting the wavefunction ψ into Equation 6, we obtain:

d2ψ

dx2
= −k2ψ (7)

Comparing this result with the Schrödinger equation, we find:

k =

(
8π2mE

h2

)1/2

(8)

Substituting the value of k back into our wavefunction, we have:

ψ(x) = A sin

((
8π2mE

h2

)1/2

x

)
(9)

Next, we determine the value of A by applying the normalization condition. Since the probability of finding the
particle inside the box is 1, the integral of ψ2 over the box must equal 1:∫ L

0

ψ2(x)dx = 1 ⇐⇒ A2

∫ L

0

sin2
(nπx
L

)
dx = 1 (10)

The solution to this integral can be found in an integral table, yielding:

A =

√
2

L
(11)

Thus, the normalized wavefunction becomes:

ψ(x) =

√
2

L
sin
(nπ
L
x
)
, where 0 < x < L (12)

Note that this the wavefunction is different for different values of n.

The allowed energies can be determined by solving for E in Equation 2 which gives:

En =
n2h2

8mL2
(13)

These energies are always greater than 0, given that n ∈ N \ {0} and h is a constant with h > 0. It is important
to note that we assume m,L ∈ R.
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Figure 2: Wave functions at n = 1 and the
n = 2 energy levels.

Figure 3: Probability of finding the particle at position x
for energy levels n = 1 and n = 2.

Both these pictures are taken from [7].

Now, this is relevant since I will be using xtp tools to calculate the ground-state energies, corresponding to n = 1.
Additionally, xtp tools will be used to compute singlet energies, which represent higher energy state ( we will take
n = 2 in section 5). Note that not all higher energy states are singlet states.

2.4 Quantum Mechanics of Interacting Electrons

The particle-in-a-box system discussed above introduces the concept of discrete energies and ground and excited
states. However, when applying Schrödinger’s equation to molecules, several challenges arise:

The wavefunction becomes a function of the positions of all the electronic and nuclear coordinates. The potential
is formed by Coulomb interactions among all charged particles. Due to these complexities, it is difficult to
find analytical solutions for steric effects*, and even numerical solutions are challenging to obtain. To address
these challenges, approximate theories have been developed. However, these approximate methods come with
limitations and are not universally applicable. One such theory is the GW-BSE method, which combines the GW
approximation and the Bethe-Salpeter equation to calculate electronic properties and excitations in molecules.

By employing the GW-BSE method, we can obtain insights into the electronic structure, electronic properties, and
excited states of molecules. This computational approach allows for a more accurate description of the behavior
of electrons and their interactions within a molecular system.

Overall, the GW-BSE method serves as a valuable tool in understanding and predicting the electronic properties
and excitations in molecular geometries. It enables researchers to study complex systems and obtain information
that may not be accessible through analytical or simpler computational methods. These methods will be used for
computing the energy of the molecules, which will be done using xtp tools of votca [1] and for a paper about this
subject we cite: [10].

*steric effects: non-bonding interactions acting on the molecule affecting the shape
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3 Optimization methods

This chapter discusses four numerical methods utilized by scipy.optimize.minimize, hereafter referred to as
scipy.minimize. These methods are employed to iteratively search for an improved molecule structure. Specifi-
cally, they operate by taking the total energy and some form of gradient calculation as input at each step.

3.1 Used variables and notation

In the following sections, we explore the numerical methods from an analytical perspective. To establish a common
framework, we introduce the following variables:

• H−1
k : This represents the approximation of the Hessian at iteration k in the subsequent sections. It is

important to note that H−1
k is not used to denote the analytical Hessian, as the analytical Hessian cannot

be computed for our specific problem.

• Generally, the methods seek a direction along which a more optimal solution can be found, denoted by d.

We will clarify the notation used throughout the discussion:

• ∥.∥ denotes the l2 norm. In the three-dimensional case, it is defined as follows: ∥(x1, x2, x3)∥ =
√
x21 + x22 + x23

• ∥.∥∞ represents the infinity norm. In the three-dimensional case, it is defined as: ∥(x1, x2, x3)∥∞ =
max(|x1|, |x2|, |x3|)

• (x,y) denotes the dot product of vectors x and y.

• Boldface math symbols, such as x, indicate vectors.

• In the upcoming sections, the subscript k is used to denote a variable or vector at the k-th iteration of the
algorithm.

3.2 Broyden-Fletcher-Goldfarb-Shanno algorithm

To explain how the Broyden-Fletcher-Goldfarb-Shanno algorithm works (from now on referred to as BFGS), we
will closely follow the explanations provided in Nocedal and Wright’s book on numerical optimization [8].

We start by describing the quadratic model of the objective function evaluated at xk, where f(xk) denotes our
energy calculated at iteration k, and ∇f(xk) is our gradient at the same iteration which are calculated using xtp
tools of votca [1], f and ∇f will also we used in the coming sections where these will mean the same. We will
start by stating the objective function, which is the function we are going to try to minimize as a sub-problem to
minimizing f(xk):

mk(dk) = f(xk) +∇f(xk)dk +
1

2
dT
kH−1

k dk (14)

Here, H−1
k is an n×n positive semi-definite (PSD) symmetric matrix (The Hessian does satisfy these assumptions)

that will be updated at every iteration. Now, the minimizer dk can be written down as:

dk = −H−1
k ∇f(xk) (15)

Here, −H−1
k is guessed (initially) by scipy.minimize, and ∇f(xk) is computed using numerical derivatives by

my code (as explained in Section 4.3). The new iterate xk+1 is updated in the following way:

xk+1 = xk + αkdk (16)

Here, the step-length αk has to satisfy Wolfe’s condition.

Now, guessing this H−1
k at every iteration, there is an algorithm that does this in the following manner:
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H−1
k+1αkdk = ∇f(xk+1)−∇f(xk) (17)

To simplify notation, we introduce the following variables:

sk = xk+1 − xk = αkdk and yk = ∇f(xk+1)−∇f(xk) (18)

Using this notation, we end up with the following equation, which is called the secant equation:

H−1
k+1sk = yk (19)

Given sk and yk using Equation (19), we have that the PSD symmetric matrix H−1
k+1 maps sk into yk, which is

only possible if:

sTk yk > 0 (20)

This so-called curvature condition turns out to hold for convex and non-convex functions.

It turns out that when Equation (20) holds, Equation (19) always has infinite solutions for H−1
k+1. To determine a

unique solution for H−1
k+1, we impose another condition, which is that H−1

k+1 has to be in some manner closest to
Hk. Using this approach, we arrive at the following optimization problem:

min
H−1

k+1

∥H−1
k+1 −H

−1
k ∥

Subject to: H−1
k+1 =

(
H−1

k+1

)T
, H−1

k+1sk = yk

This problem turns out to have the unique solution:

H−1
k+1 = (I − ρkyks

T
k )H−1

k (I − ρkskyT
k ) + ρkyky

T
k (21)

Here,

ρk =
1

yT
k sk

(22)

This is called the DFP update formula.

For the implementation of the method, a few more pieces have to come together. One of these is finding the
search direction (aforementioned dk) using matrix-vector multiplications. This can be done using the Sherman-
Morrison-Woodbury formula as descrbibed in subsection 8.2. We derive the following expression for the updating
of the inverse Hessian approximation Hk = H−1

k :

H−1
k+1 = H−1

k −
H−1

k yky
T
kH

−1
k

yT
kH

−1
k yk

+
sks

T
k

yT
k sk

(23)

We note one important thing here that the last two terms of Equation (23) are rank-one matrices, so that Hk

undergoes a rank-two modification. This is a very nice concept of quasi-Newton method updating: Rather than
recalculating the Hessian (or inverse Hessian) at every iteration, the algorithm combines information about the
current Hessian with the new information from the objective function to get a new approximation of the updated
Hessian.
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Algorithm 1 Algorithm BFGS

1: k ← 0
2: While ∥∇f(xk)∥ > tol
3: Compute search direction: dk = −H−1f(xk)
4: Set xk+1 = xk + αkdk, where αk is computed from a line-search procedure
5: which has to satisfy Wolfe’s condition as mentioned in subsection 8.1.
6: Define sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk), compute H−1

k

7: Compute Hk+1 using (24)
8: k ← k + 1

Figure 4: BFGS algorithm as given in [8]

The actual BFGS statement is found when making a change in argument that led to Equation (21). Instead of
imposing conditions on H−1

k , we impose condition on the inverse H−1
k . In this case, the updated H−1

k+1 still needs
to satisfy the secant equation:

H−1
k+1yk = sk (24)

Now using the similar argument that we want to find a unique solution Hk+1 closest to Hk, which leads to the
BFGS Hessian inverse updating formula:

H−1
k+1 = (I − ρkskyT

k )H
−1
k (I − ρkyks

T
k ) + ρksks

T
k (25)

Starting the method:

Now the last issue is making an initial guess for H0. Now for this, there is no easy solution. Sometimes an
educated guess can be made based on x0. When this does not seem feasible, the identity matrix (or a multiple of
the identity matrix) can (and will) be chosen.

3.2.1 Convergence criteria:

The convergence criteria employed by scipy.minimize are convergence criteria on the gradient and on the step
size. The first is that:

∥∇f(xk)∥ > tol

And for the step size, we have the criteria of Wolfe’s condition as mentioned in subsection 8.1. Unsuccessful
convergence, as in Table 1, is mostly due to Wolfe’s condition coming up with no possible step size (which might
also indicate our solution being optimal in some manner).

3.2.2 Algorithm described:

To make the algorithm more clear, we will describe the algorithm shortly below:

Given a starting point x0, initial Hessian approximation H−1
0 , and convergence tolerance tol, we have: Once this

algorithm converged, we have the minimum point xmin = xk.

This is a brief description of how the BFGS method works. The actual implementation in scipy.minimize might
contain additional steps or modifications to improve performance or handle specific scenarios.
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3.3 Conjugate Gradients

This explanation of the conjugate gradients method (referred to as CG) closely follows Shewchuk (1994) [9] for
the first part and Hestenes (1952) [5] for the second part. In general, CG is a method used to solve equations of
the form:

Ax = b, (26)

where A represents the Hessian matrix and b denotes the forces acting on the atoms (our gradient).

Assuming that A is symmetric and positive semi-definite, we can minimize the energy function f(x) of a molecule
by finding the solution to Ax = b. To explain this, we employ the quadratic form:

f(x) =
1

2
xTAx− bTx+ c. (27)

To minimize f(x), setting ∇f(x) to zero is useful. By substituting this into (27), we obtain:

∇f(x) = 1

2
ATx+

1

2
Ax− b. (28)

Simplifying this equation based on the assumption of symmetry in A, we have:

∇f(x) = Ax− b. (29)

Setting ∇f(x) to zero yields the equation Ax = b.

In the context of our specific problem, we assume that A is an approximation of the inverse Hessian denoted
by H−1

k . The inverse Hessian satisfies the aforementioned assumptions, making it suitable for our purposes. In
practice, this comparison also holds.

Now, we will introduce and explain the formulas involved in using the CG method:

d0 = r0 = b−H−1
k x0, (30)

αk =
rTk rk

dT
kH

−1
k dk

, (31)

rk+1 = rk − αkH−1
k dk, (32)

βk+1 =
rTk+1rk+1

rTk rk
, (33)

dk+1 = rk+1 + βk+1dk, (34)

xk+1 = xk + αkdk. (35)

For efficient convergence, we solve the sub-problem H−1
k x = b′, where H−1

k is an n × n matrix, and b′
k =

−∇f(xk) − H−1
k x0. We solve this sub-problem first to obtain orthogonal dk and rk for k > 0, which leads to

faster and usually better convergence compared to our initial problem. We solve the problem by following these
two steps:

Initial step:

We take an estimate x0 of our solution x and compute the residual r0 and directions d0 using (30).

General steps:

After determining the estimate xk with k ≥ 1, the residual rk, and the direction dk, we can compute solutions to
the modified problem, rk+1 and dk+1, using equations (31) through (35).

This provides a solution x to the problem H−1
k x = b′

i as follows:

x =

k−1∑
i=0

(di,b
′
i)

(H−1
i di,di)

· di (36)

Although using this formula might be practical for smaller systems, it is preferred to use equations (31) through
(35) since storing the di values may not be computationally costly.

In [4], there is a helpful diagram illustrating the CG algorithm, which describes these steps iteratively (see Figure
5).
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Set: ,  
and 

Step length:  

(Or line search for non-quadratic problems)

New design point: 

Gradient at new design point: 

Coefficient calculation:  

(Or other  equations for non-quadratic problems)

Direction for next iteration: 

set: 

 ?

Terminate succesfully

Yes

No

Figure 5: Diagram illustrating how CG works (Figure recreated from [4]).
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3.4 SLSQP

We will refer to the works of [4] and [2] for this section on SLSQP.

Sequential Least Squares Programming (SLSQP) is a method used to solve multi-objective optimization problems
(MOPs) of the form:

min
x∈Rn

f(x) =


f1(x)
f2(x)

...
fK(x)

 subject to h(x) =


h1(x)
h2(x)

...
hN (x)

 = 0 and g(x) =


g1(x)
g2(x)
. . .

gP (x)

 ≤ 0 (37)

In our specific case, the second constraint g(x) ≤ 0 is unnecessary. Thus, we take h(x) = g(x) = ∇f(x). This
allows us to transform the problem into:

min
x∈Rn

f(x) , subject to: ∇f(x) = 0 (38)

Similar to the BFGS and CG methods, we use an objective function derived from the standard Lagrangian:

L(xk, λk) = f(xk) + λTk∇f(xk) (39)

Here, λ denotes the Lagrange multipliers for equality constraints.

The algorithm applies Newton’s method to the Karahn-Kuhn-Tucker (KKT) conditions to find the next optimal
point. This involves solving the system:

(
∂2Lk

∂x2

)
k
∆x+

(
∂∇f(x)

∂x

)T
k
λk+1 = −

(
∂f(x)
∂x

)
k(

∂∇f(x)
∂x

)
k
dk = −∇f(x)

(40)

Here, dk = x− xk and λk+1 are the unknowns. Solving (40)

is equivalent to solving the problem:

Minimize
1

2
dT
k

(
∂2L(x, λk)

∂x2

)
k

dk +

(
∂f(x)

∂x

)T

k

dk

Subject to

(
∂∇f(x)
∂x

)
k

dk = −∇f(xk)

(41)

Solving (41) provides a direction dk that can be used for a line search to achieve an improvement in the objective
function.

3.4.1 Using Least Squares to find Lagrange multipliers

The Lagrange multipliers are necessary for local convergence analysis and Hessian approximation through BFGS.
We consider the problem as formulated in (38), with the Lagrangian:

L(x, λ) = f(x) + λT∇f(x) (42)

Assuming we are near the optimal solution at xk, if the gradients ∂f(xk)
∂x and ∂∇f(xk)

∂x have been obtained, then
∂L(xk,λ)

∂x should be close to 0 because:

∂L(xk, λk)

∂x
=
∂f(xk)

∂x
+ λTk

∂∇f(xk)

∂x
≈ 0 (43)

However, an λk that satisfies ∂L(xk,λk)
∂x = 0 may not exist. To find an λk that minimizes the derivative of L as

closely as possible, we use Least Squares. This leads to the following expression for λk:
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λk = −

[
n∑

i=1

(
∂∇f(xk)

∂xi

)2
]−1 n∑

i=1

(
∂f(xk)

∂xi
· ∂∇f(xk)

∂xi

)

= −

[(
∂∇f(xk)

∂x

)T (
∂∇f(xk)

∂x

)]−1(
∂∇f(xk)

∂x

)T (
∂f(xk)

∂x

) (44)

This concludes the process of finding the Lagrange multipliers λk.

3.4.2 Merit function

To determine whether the line search applied to (41) actually leads to an improvement, we use a merit function.
According to [4], the line search can be seen as the merit function of the line search. In our case, the merit function
is given by:

ϕ(x; ρ) = f(x) + ρ
(
∥∇f(x)∥+ ∥g+(x)∥

)
with ρ > 0 (45)

The term ∥g+(x)∥ represents the norm of the vector that contains all the values for which the constraint g(x) ≤ 0
is violated. Since this constraint is not important in our case, we will disregard this term.

3.4.3 Convergence criteria

The convergence criteria for the SLSQP method are as follows:

∥∇f(xk)∥ < tol (46)

If the norm of the gradient is sufficiently small, we can conclude successful convergence. Another convergence
criterion is based on the maximum absolute value of the constraint violation being smaller than a user-defined
tolerance, which can be expressed as:

∥∇f(xk)∥∞ < tol (47)

This criterion is more stringent than equation (46), so in our particular case, we can omit this constraint.

Another convergence criterion is based on the change in the objective function being significantly small, indicating
successful convergence:

|f(xk+1)− f(xk)| < tol (48)

These are the convergence criteria used in the SLSQP method. Which are mentioned in [4] and [2].
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3.5 Trust-Constraint

This method is a combination of methods, but in our case, we use the equality constrained part of this method.
It is an implementation of the Byrd-Omojokun Trust-Region SQP method described in [6]. We will now discuss
this method as described in [6]. The method is used to optimize equality constrained problems of the form:

min
x∈Rm


f1(x)
f2(x)

...
fK(x)

 = min
x∈Rm

f(x) s.t. ∇f(x) =


∇f1(x)
∇f2(x)

...
∇fN (x)

 = 0 (49)

Notes: If second derivatives of f and h are not provided, BFGS or l-BFGS approximations are provided by the
code.

We will first introduce some notation:

A(x) = [∇f1(x),∇f2(x), . . . ,∇fM (x)] (50)

And note that the Lagrangian problem of (49) is: L(x, λ) = f(x) − λT f(x), where λ is the vector of Lagrange
multipliers.

Now we start explaining the algorithm. The algorithm starts by trying to solve for d using xk, △k (the trust
radius), and λk:

min
d∈Rm

dT gk +
1

2
dT∇d2

kL(xk, λk)d (51)

Subject to: AT
k d+ f(xk) = 0, (52)

∥d∥ ≤ △k (53)

But our constraint (53) may prevent the algorithm from finding a proper solution to (52). Hence, to use the
algorithm as described above, we need a relaxation parameter ξ ∈ (0, 1) which we use to find vk, the vertical
subproblem:

min
v∈Rm

∥AT
k v +∇f(xk)∥ (54)

Subject to: ∥v∥ ≤ ξ△k, (55)

Although the above problem has a number of solutions, it can be shown that a solution vk can

be expressed as a linear combination of the columns of Ak, which allows us to decouple this sub-problem from the
next one.

Using the vk we found above, we modify (52) as follows:

AT
k dk = AT

k vk (56)

This modification ensures that the feasible region for dk is not empty, with dk = vk as a valid solution.

Having formulated our algorithm, we proceed to determine dk using the following steps. This algorithm utilizes
a complementary matrix Zk to the matrix Ak such that AT

k Zk = 0. We define dk = vk + Zkuk, where uk at
iteration k is calculated by solving the following optimization problem:

min
u∈RM−m

(
gk∇2

xLkvk

)T
)Zku+

1

2
uTZT

k ∇2
xLkZku (57)

Subject to: ∥Zku∥ ≤
√
△2

k − ∥vk∥2 (58)

We then set
xk+1 = xk + dk (59)
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3.5.1 Updating Lagrange Multipliers

At each iteration, we also update the Lagrange multipliers in an iterative way using the following equation:

(AT
k+1Ak+1)λk+1 = AT

k+1∇f(xk+1) (60)

This linear system is then solved using CG or sparse Cholesky. The accuracy of the first-order KKT measure
∥gkAkλk∥∞ needs to be good enough. When CG is used, the residuals of (60) become smaller than 10−2 ·
max{∥∇f(x)∥∞, ∥gkAkλk∥∞}.

3.5.2 Merit Function

To determine whether a step dk makes a sufficient amount of progress, we use a merit function. The merit function
used by the algorithm in [6] is:

ϕ(d, µ) = dT∇f(xk) +
1

2
dT∇2

kL(xk)d+ µ∥AT
k d+∇f(x)∥ (61)

Where µ > 0 is called the penalty parameter.

Since we still need to choose how our penalty parameter µ is chosen we will set up a framework for this. This
process start by setting up an alternative merit function in which we use replace f by the model objective as in
(51) and linearize the constraints given in (61) this gives:

ϕ̂(dk, µ) = dT
k g(xk) +

1

2
dT
kWkdk + µ∥AT

k dk +∇f(xk)∥ (62)

Where Wk denotes ∇2L(xk, λk) or atleast an l-BFGS approximation to it. Now we define p red as:

p red = ϕ̂(0, µ)− ˆϕ(dk, µ)

= −dT
k g(xk)−

1

2
dT
kWkdk + µ(∥∇f(xk))∥ − ∥AT

k dk +∇f(xk))∥)
(63)

We now compute an trial value for µ which we call µ+:

µ+ = max

{
uk, 0.1 +

dkg(xk) +
1
2d

T
kWkdk

∥∇f(xk))∥ − ∥AT
k vk +∇f(xk))∥

}
(64)

The equation (64) cannot be used in general as the penalty parameter (which is the term of (63): (∥∇f(xk))∥ −
∥AT

k dk +∇f(xk))∥)) can become positive when vk = 0 which implies that ∇f(xk)) = 0) in this case (64) cannot
be used as p red becomes positive from the decrease that dk makes in the horizontal subproblem (57)-(57).

Before accepting this as uk+1 we check whether the actual reduction in merit function is sufficient using a red:

a red = ϕ(xk, µ
+)− ϕ(xk + dk, µ

+)

= f(xk) + f(xk + dk) + µ+(∥∇f(xk))∥ − ∥∇f (xk + dk) ∥)
(65)

If a red ≥ η p red, then dk is accepted and uk+1 is set to µ+. Otherwise some second-order procedure could be
used, these are mentioned in (4.7) of [6].

16



Algorithm 2 Algorithm of trust-constr in our case (Byrd-Omojokun algorithm)

1: k ← 0
2: Loop
3: Compute fk,∇f(xk)), gk, Ak and Zk

4: Compute multipliers λk
5: if ∥gk −Akλk∥∞ < tol and ∥∇f(xk))∥∞ < tol , then stop
6: Compute vk by solving the vertical sub-problem: (54)-(55)
7: Compute ∇2Lk(xk, λk) or update the l-BFGS approximation
8: Compute uk by solving the horizontal sub-problem: (57)-(58)
9: Set dk = vk + Zkuk

10: Compute the actual reduction in the merit function a red
11: and the predicted reduction p red
12: if a red

p red > η
13: Then set xk = xk + dk, △k+1 ≥ △k

14: Else set xk+1 = xk, △k+1 ≤ ∥dk∥
15: k ← k + 1

Figure 6: General algorithm of trust constraint as given in [6]

Algorithm 3 Trust-region update algorithm

1: if a red
p red ≤ 0.9

2: then △k+1 = max{10∥dk∥,△k}
3: else if a red

p red ≤ 0.3

4: then △k+1 = max{2∥dk∥,△k}
5: Else
6: △k+1 = △k

Figure 7: a Trust region update formula from [6]

3.5.3 Algorithm

Constants tol > 0 and µ ∈ (0, 1) are given and choose x0 and △0 > 0 The algorithm above is a quick description
of what we have talked about in this section.

Lastly we will discuss an effective algorithm for updating the trust region △: This algorithm is able to drastically
improve convergence rates with more often than not little harm. Hence implementing algorithm is likely a good
idea. Many more trust-region updates are possible but we refrain from talking about more of these algorithms
here.
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4 Code Overview

In this section, I will provide an overview of the work done for this project, focusing on the code and implemen-
tations.

4.1 Directory Structure

Understanding the file structure is crucial for comprehending the code. It facilitates easy access to the generated
data. The following diagram illustrates the file structure:

Test_votca

Output MoleculesInput

central

Molecule_0 Molecule_1 Molecule_2

x_output y_output z_output

H2O

H2O_-x.xyz H2O_+x.xyz

H2O_-x.orb H2O_-x.orb

optimization_BFGS.trj

H2O.xyz H2O.xyz

options.xml

H2O.orb

Figure 8: File structure diagram

In the diagram, square brackets represent directories, and rounded brackets represent files. The files generated by
other files are denoted by a single arrow. For example, the files x output, y output, and z output are generated
inside the directories molecule 0, molecule 1, and molecule 2. Additionally, within each of the sub-directories
x output, y output, and z output, we have generated the ±x, ±y, and ±z files (assuming the method is central).

4.2 XYZ Files

Another essential aspect is the structure of an .xyz file, which follows this general format:

3

Water molecule

O 0.00000 0.00000 0.12957

H 0.00000 0.83199 -0.51828

H 0.00000 -0.83199 -0.51828

Figure 9: Example of an .xyz file structure

The first line denotes the number of atoms. The second line is a name given to the molecule. The subsequent lines
provide the atom positions in Cartesian coordinates. Therefore, .xyz files can describe various types of molecules.

To generate the ±x, ±y, and ±z files, ±δ is added to either the x, y, or z direction. For example, adding δ in the
x-direction generates the +x file, while adding −δ generates the −x file.
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4.3 Calculating Gradients

To calculate the gradients of the atoms, xtp tools is used on the ±x, ±y, and ±z files to obtain the final energies
for these configurations. The gradient calculation is performed as follows:

∇f =


Emolecule(x+δ)−Emolecule(x−δ)

2δ

Emolecule(y+δ)−Emolecule(y−δ)
2δ

Emolecule(z+δ)−Emolecule(z−δ)
2δ

 =

dxdy
dz

 (66)

Now the gradients have been computed for a single iteration.

4.4 Running xtp tools

To execute xtp tools, a system call is made to the xtp tools executable. Here is an example of the code:

command = ["xtp_tools -e dftgwbse -t {} -o options.xml -c job_name={}".format(num_threads , file)]

process = subprocess.Popen(command , cwd="test_votca", shell=True)

Figure 10: Example of a system call to xtp tools

The command line arguments in more detail are as follows:

• xtp tools: Specifies the use of xtp tools.

• -e dftgwbse: Specifies the use of the dftgwbse calculator.

• -t num threads: Specifies the number of threads used for calculations. Increasing this number can improve
performance for large molecules.

• -o options.xml: Specifies the options file used by xtp tools. Further details on the options will be discussed
later.

• -c job name=file: Specifies the file path for the desired input file. Note that the .orb file associated with
the xtp tools run is also located in the same directory as this file.

Once these calculations are executed and all the ±x, ±y, and ±z files are generated, we are ready to extract the
final energies from the .orb files.
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4.5 Extracting Energies from .orb Files

The .orb files are compressed HDF5 databases. To access them, they are loaded into an HDF5 database. The
following code snippet demonstrates how to extract the qm energy, which represents the total final energy calcu-
lated:

with h5py.File(file_path , "r") as f:

group = f['QMdata ']
qm_energy_dict[i][key] = group.attrs['qm_energy '][0]

Figure 11: Code snippet to create the energy dictionary

The qm energy dict is the final piece of the puzzle for computing the gradients, as mentioned in Equation 66.
The corresponding final energy is assigned to this key. For example, considering H2O +z.orb, the extension is
removed, and the final +z letters are used as the key. When calculating the gradients, the energy for the +z case
can be retrieved using the +z key.

4.6 Updating Files

During the gradient calculation iterations, instead of saving all H2O ±direction.xyz files, they are overwritten
with the new ones required for the current iteration’s gradient calculations. The same process is followed for the
H2O.orb file generated in the ”input” directory at each iteration. The same applies to all the ±x, ±y, and ±z
files in each of the molecule directories.

4.7 Implementing scipy.optimize.minimize

Now the implementation of the scipy.minimize function will be explained:

result = scipy.optimize.minimize(energy , x0, jac=gradients , method=num_method , tol=tolerance)

Figure 12: call to scipy.minimize

The three main inputs that change in each iteration are energy, x0, and gradients. The value of x0 is determined
by the numerical method used, which will be discussed further in Section 3. The two aspects that we actively
influence in each calculation are the energy and gradient calculations, as discussed above. However, there is a
challenge: we have been working with .xyz files, but the scipy.minimize function only accepts arrays as input.
To address this, we perform the following conversion:

Energy(x0) Convert  array to
.xyz format

make system call to
compute energies

input energy into
minize (as number)

Gradients(x0) Convert  array to
.xyz format

make appropriate calculations
to compute gradients

input gradients into
minize (as array)

Output is a number
by default

Output is the correct
array by default

Figure 13: Example of energy and gradient calls

Essentially, we convert an .xyz file into an array of atom positions. In the array form, we lose some information,
such as the number of atoms (although we will assume this for simplicity) and the molecule name. However, this
information can easily be retrieved by referring to the input file corresponding to the calculation.
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4.8 Output and Trajectory File

Another crucial aspect to consider is the output format. First we look at the terminal’s output. The initial part
of the output, structured by the code, appears as follows:

Molecule Name: H2O

Numerical method used: BFGS

Number of threads used: 6

Tolerance of the method used for termination constraints: 1e-07

BSE singlet energy added to total energy in each iteration: False

Starting optimization:

2023-06-14 21:15:44 - Iteration 0

Total energy: -76.36335878152408

Gradients: [[ 1.57029945e-09 1.27897692e-10 1.52547273e-01]

[ 7.10542736e-12 1.09516851e-01 -7.62736504e-02]

[-7.10542736e-12 -1.09516851e-01 -7.62736523e-02]]

Atom positions: [[ 0. 0. 0.12957]

[ 0. 0.83199 -0.51828]

[ 0. -0.83199 -0.51828]]

Figure 14: First part of generated output

The important settings used are mentioned at the beginning of the output. The optimization process starts
afterward. At each iteration, the time, total energy, gradients, and atom positions are displayed. If no gradients
are calculated for a particular iteration (which can happen), or if the atom positions are not updated, it will be
mentioned accordingly.

After the optimization process is completed, the following output is generated by scipy.minimize:

Total energy: -76.37736973661914

Message: Desired error not necessarily achieved due to precision loss.

Success: False

Status: 2

Fun: -76.37736973661914

x: [-2.502e-09 2.348e-09 8.621e-02 4.312e-09 7.649e-01

-4.966e-01 -1.614e-09 -7.649e-01 -4.966e-01]

Nit: 9

Jac: [ 7.105e-12 -3.197e-10 3.800e-03 -7.105e-11 4.321e-03

-1.900e-03 4.263e-11 -4.321e-03 -1.900e-03]

Hess_inv: [[ 1.000e+00 1.443e-12 ... -1.455e-07 4.223e-08]

[ 1.443e-12 1.000e+00 ... 3.772e-07 -9.478e-08]

...

[-1.455e-07 3.772e-07 ... 6.269e-01 -3.628e-02]

[ 4.223e-08 -9.478e-08 ... -3.628e-02 8.445e-01]]

Nfev: 50

Njev: 41

Figure 15: Final part of output

Most of the output is self-explanatory, but there are a few details that require further explanation:

• Success: This indicates whether success was achieved, and the determination of success is method-specific.

• Fun: This is the best value achieved by the objective function.

• Jac: This is the estimate of the Jacobian, which is not used in our calculations.

• Hess inv: This is the estimate of the inverse Hessian matrix.

• Nfev: This indicates the number of times the objective function was evaluated.

• Njev: This represents the number of iterations where the gradients were calculated. These iterations typically
take longer than the Nfev iterations.
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Another important part of the output is the trajectory file, which contains all the iterations of the .xyz file used
during the optimization process. Therefore, the trajectory file is essentially a collection of Figure 9 files combined
together.
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5 Planarization of NH3

In this section, we will explore an interesting phenomenon known as the planarization of NH3 (ammonia). This
phenomenon occurs when singlet excited state energies are incorporated into the total energies used for both gra-
dient calculations and energy calculations. After implementing these singlet energies, we initiate the optimization
process, and the planarization of NH3 becomes evident quite quickly:

Figure 16: Regular NH3 structure
Figure 17: Optimized NH3 structure with excited state
energies

As observed, the NH3 molecule appears to flatten in the optimized structure. This phenomenon is referred to as
the planarization of NH3/ammonia. It is an intriguing behavior, and we will now delve into explaining it.

To comprehend the planarization, we start by discussing the ground state structure of NH3, where we will also
visualize the lone pair of electrons:

Figure 18: Ground state structure of NH3

In an ideal scenario, the hydrogen atoms would prefer to be as far away from each other as possible. However, in
the above structure, the hydrogen atoms are closer to each other than they ideally should be. This is attributed to
the repulsion exerted by the lone pair of electrons, which pushes the hydrogen atoms away. At a certain point, the
force exerted by the lone pair pushing the hydrogen atoms is counterbalanced by the natural repulsion between
the hydrogen atoms, resulting in the structure depicted in Figure 18.

Now, when we consider singlet states of the molecule, by definition, all electrons are paired in bonds. Therefore,
there is no force impeding the hydrogen atoms from moving as far away from each other as the bonds allow. This
leads to the planar structure shown in Figure 16.

The occurrence of this planarization is an indication that my code optimizes structures in a correct manner.
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6 Analysis of methods in practice

For the following analysis, we will use data obtained from calculations performed by my code to evaluate the
advantages and disadvantages of different methods. We will begin by presenting a general table for comparison:

Molecule method Succes nfev njev final energy (Hartree) bondlength (angstrom) angle (degrees)

CO2 BFGS FALSE 22 11 -188,350686 1.37 180.0
CO2 CG FALSE 38 26 -188,02072 1.74 180.0
CO2 SLSQP TRUE 13 2 -118,350692* 1.37/1.773 180.0
CO2 trust-constr TRUE 29 29 -188,427181 1.27 180.0

H2O BFGS FALSE 50 41 -76,377369 0.96 105.4
H2O CG FALSE 41 29 -76,376698 0.96 109.3
H2O SLSQP TRUE 17 5 -76,377382 0.96 105.1
H2O trust-constr TRUE 25 25 -76,375628 0.96 108.6

CO BFGS FALSE 47 35 -113,230708* 1.11 180.0
CO CG FALSE 127 115 -113,230708* 6.4 180.0
CO SLSQP TRUE 128 14 -113,230708* 9.7 180.0
CO trust-constr TRUE 26 26 -113,230708* 2.83 180.0

NH3 BFGS FALSE 31 19 -56,511478 1.02 109.4
NH3 CG FALSE 53 42 -56,513123 1.01 109.5
NH3 SLSQP TRUE 49 22 -56,513123* 1.01 109.5
NH3 trust-constr TRUE 31 31 -56,511216 1.0 109.5

Table 1: Table of final energy of methods. * denotes problem with convergence

Some important notes about this table:

The tested molecules are CO, CO2, NH3, and H2O. Final energies were computed using xtp tools and optimized
using scipy.minimize with the BFGS, CG, SLSQP, and trust-constraint methods. Each method provides a
success indication and a status indication, which are method-specific parameters. nfev (in our case) denotes an
iteration where the energy was recomputed, while njev (in our case) denotes an iteration where the gradient was
recomputed for the modified molecule. On average, energy calculations take around 20 seconds, while gradient
calculations take around 3 minutes.

The lowest final energies for each molecule are highlighted in bold in the table.

The bond lengths and angles for the molecules were measured as depicted in the following diagram:

Figure 19: Figure showing how bond lengths and angles were measured

It is worth mentioning that the initial .xyz structures used were pre-optimized structures of H2O, CO, CO2, and
NH3, with bond lengths increased by 10

Now, we will discuss some measures for evaluating the performance of the methods. One possible measure could
be the number of times the lowest energy structure was found. However, no definitive conclusion can be drawn
from this measure since SLSQP, CG, and trust-constraint methods each find the optimal structure once (excluding
* calculations).

Another measure could be the average computation time. To assess this, we computed the average time for nfev
iterations and njev computations. This provides an approximate computation time per method per molecule. The
following table shows the average computation times, excluding * calculations:
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BFGS avg CG avg SLSQP avg trust-constr avg
5893 7993 2140 4480

Table 2: Average computation times sorted per method

From the table, it can be seen that SLSQP has the lowest average computation time. However, it should be noted
that SLSQP has only one valid calculation for this average time computation. The second-best method in terms
of average computation time is trust-constraint. Based on these performance measures, trust-constraint would be
the recommended method. However, it is important to note that no definitive conclusions can be drawn based on
this dataset.

Another measure that could be considered is the success rate provided by scipy.minimize. However, since the
definition of success and convergence varies for each method, it is not used as a performance measure in this
analysis.

6.1 H2O results

This section presents an analysis of the energy progress for each method used in order to gain a better understanding
of their performance. We begin by examining a graph depicting the energy progress:

Figure 20: Energy for different iterations sorted by each method

As observed, all energies converge to a value close to -76.38, indicating that all methods reach a similar region.
BFGS demonstrates a more aggressive behavior during the initial iterations, while CG shows fewer spikes in this
particular case. SLSQP converges quickly with a low number of iterations, leading to the lowest final energy.
Trust-constraint shows a few aggressive spikes initially but stabilizes and achieves successful convergence.

To provide further clarity on the energy progress, we include a graph showing the progression of the gradient
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norms for each method:

Figure 21: Gradient norms (log-scaled) for different iterations sorted by each method

Due to the presence of numerous outliers in the dataset, we have opted to utilize a logarithmic scale for the graph.
This approach offers the advantage of visualizing outliers, although it can slightly complicate interpretation.

When comparing different methods, it is evident that the norms for CG consistently exceed those of any other
method. However, this consistent disparity in norms does not appear to have a significant impact on the overall
energy progress, altough large norm changes do result in spikes in the energy for CG. For BFGS this does not
seem to hold, the substantial spike just before iteration 20, does not seem to translate into a spike in the energy.

SLSQP consistently exhibits small norms, likely contributing to the rapid convergence. The correlation between
small norms and an optimal structure suggests that these norms play a crucial role. In contrast, the norms for
trust-constraint exhibit larger values, hovering in between 1 and 0.1. Interestingly, significant differences in norms
do not appear to significantly influence the progression of energy.
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6.2 CO2 results

Similar to the H2O results, we will discuss the CO2 results by examining the progress of the energy at each
iteration for each method:

Figure 22: Energy for different iterations sorted by each method

In the analysis of CO2, we observe larger variations in energy compared to the analysis of H2O. Several notable
observations can be made. Firstly, in the CG method, there is a consistent late spike in energy. Additionally, the
graph for SLSQP appears to diverge towards the end. However, it is important to note that this divergence is a
result of non-convergence issues, which will be discussed further in the upcoming section.

It is worth mentioning that the trust-constraint method demonstrates the most stable progression of energy, with
a minimal number of spikes. This observation is consistent with what we observed in Figure 20.

Furthermore, it is important to acknowledge the presence of missing values in our analysis. These missing values
are a result of extreme outliers (deviating by a factor of +10), which were intentionally removed to provide a clearer
representation of the progression of the individual methods. At the end of the SLSQP-line, we also removed some
even more extreme outliers (+20 in magnitude).

in the CO2 analysis, the graph below provides further insights:
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Figure 23: Gradient norms (log-scaled) for different iterations sorted by each method

First of all we note that there are far more outliers in the CO2 norms, ranging from 18 to 200. This suggests
that gradient norms may not be the best indicator for analyzing energy progress. However, it is worth noting that
lower gradients correspond to lower final energies, indicating a potential correlation between gradient norms and
energy progress in the final iterations. Which might suggest that gradient norm is an indicator of minimal energy
(which is also what we expect since −∇E = F ).

Furthermore, it is evident from the graph that gradient norms do not approach zero. This behavior may be
attributed to the precision of the gradient computations. Additionally, the displayed energies for the SLSQP
methods are inaccurate, as will be explained in the following section.

6.3 Non-convergence problems

In this section, we will address a problem in the code and propose a possible solution. As discussed in subsec-
tion 4.5, the code currently uses xtp tools to calculate energies and generate .orb files containing the final energy
values. However, the code does not check whether xtp tools successfully converges and generates a new .orb file.
Consequently, if xtp tools fails to converge, the last .orb file will not be replaced, and the code will not optimize
such structures.

To address this issue, a mechanism should be implemented to check for successful convergence of xtp tools. If
non-convergence is detected, certain input parameters could be adjusted to potentially solve the problem. The
following parameters are possible candidates for modification:

• Basisset and Auxbasisset in the options.xml file used as input for the xtp tools calculations.

• Recalculating the gradient with a different delta to generate a new structure closer to convergence, thus
increasing the chances of successful convergence by xtp tools.
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• Modifying the way scipy.minimize selects new structures during the optimization process.

These adjustments could potentially address the non-convergence problem and allow for optimization of structures
that previously encountered convergence issues.
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7 Conclusion

This section will be dedicated to answering the questions posed in the introduction as best as possible. First of
all, are there numerical methods which seem to perform better than others? This question can be answered in
a variety of ways. Firstly, note that there is a lack of sufficient data to draw a conclusive comparison between
different methods, considering that almost half of the recorded data is invalid. One method, SLSQP, appears to
be less reliable based on the collected data. Out of the four molecules tested with SLSQP, it only converged once.
However, due to the small size of the data set, this result cannot rule out SLSQP from being an effective method.
All other methods exhibit similar reliability based on this data.

The excited state optimization of NH3 proceeded flawlessly for all methods. However, it is important to note the
presence of code issues that are discussed in subsection 6.3. It is not possible to conclude that the success of NH3
calculations implies the effectiveness of these calculations for all types of molecules.

Lastly, we will discuss the identification of optimal structures. All methods, except BFGS, were able to find
optimal structures. Nonetheless, determining whether these ”optimal” structures are close to the truly optimized
structures is challenging.
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8 Appendix

8.1 Wolfe’s condition

Wolfe’s condition is primarily used to determine whether a line-search method provided a sufficient amount of
objective function decrease. It can be measured using the following inequality:

f(xk + αkdk) ≤ f(xk) + c1αk∇f(xk)
Tdk (67)

where c1 is a constant in the range (0, 1). This inequality ensures that the reduction in the objective function f is
proportional to the step length αk and the directional derivative ∇f(xk)dk. The right-hand side of Equation 67
can be denoted by l(αk), which represents a linear function. The slope of this linear function is c1∇f(xk)

Tdk. We
consider αk > 0 to be an appropriate value when Equation 67 is satisfied. In practice, a small value of c1, such as
10−4, is commonly used. The default value in the scipy.minimize implementation is 10−4 (we used the default
values in our calculations).

However, the condition Equation 67 alone is not sufficient to ensure that the algorithm makes significant progress.
To address this, a second condition called the curvature condition is introduced:

∇f(xk + αkdk)
T dk ≥ c2∇f(xk)

Tdk (68)

Here, c2 is a constant chosen such that c1 < c2 < 1. The left-hand side of Equation 68 can be denoted as ϕ′(α),
representing the derivative of the left-hand side of Equation 67 (denoted as ϕ(α)). The curvature condition ensures
that the slope of ϕ at αk is greater than c2ϕ

′(0).

The figure below illustrates the step lengths that satisfy Wolfe’s condition:

Figure 24: Step-lengths satisfying Wolfe’s condition (picture from Nocedal and Wright, Numerical Optimization,
2006)

This visual representation provides a clearer understanding of what Wolfe’s condition considers acceptable values
for αk. A strongly negative slope of ϕ′(αk) indicates that larger step sizes (αk) can lead to improvement. On
the other hand, when ϕ′(αk) approaches zero, it suggests that there is little room for improvement in the current
search direction, and the line search may be terminated. The constant value c2 typically has default values of
0.1 and 0.9, depending on the method used to determine the search direction. In summary, Wolfe’s condition
ensures the selection of an appropriate step size αk for a corresponding line search with direction dk, requiring the
satisfaction of the following two inequalities:

f(xk + αkdk) ≤ f(xk) + c1αk∇f(xk)
Tdk

∇f(xk + αkdk)
Tdk ≥ c2∇f(xk)

Tdk

(69)
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8.2 Sherman–Morrison–Woodbury formula

The Sherman–Morrison–Woodbury formula, described by Bindel and Demmel in ”Matrix computations” (2009),
provides a solution to the equation A+ uvT when a factorization of A already exists.

The formula is derived using block Gaussian elimination. To compute (A + uvT )x, we typically first compute
ξ = vTx, and then (A + uvT )x = Ax + uξ. Therefore, to solve the equation (A + uvT )x = b, we can express it
as an extended system:

(
A u
vT −1

)(
x
ξ

)
=

(
b
0

)
(70)

By factorizing A, we obtain:

(
A u
vT −1

)
=

(
I 0

vTA 1

)(
A u
0 −1− vTA−1u

)
(71)

We apply forward substitution with the block lower triangular factor:

y = b

η = −vTA−1y
(72)

Then, we apply backward substitution with the block upper triangular factor:

ξ =
(
−1− vTA−1u

)−1
η

x = A−1(y − uξ)

Combining all the algebraic steps, we find:

x =

[
A−1 − A−1uvTA−1

1 + vTA−1u

]
b (73)

This formula is known as the Sherman–Morrison formula.
The generalization of this formula to the rank-n case is called the Sherman–Morrison–Woodbury formula and is
described as follows:

(A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1 (74)

8.3 Code
import os

import h5py

import numpy as np

import subprocess

import xml.etree.ElementTree as ET

from time import time

from typing import List , Tuple

import scipy

import openpyxl

import argparse

import datetime

# create a timer decorater in order to log execution times:

def timer_func(func):

def wrap_func(*args , ** kwargs):

t1 = time()

result = func(*args , ** kwargs)

t2 = time()

print(f'Function {func.__name__!r} executed in {(t2-t1):.4f}s')
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return result

return wrap_func

class XYZFile:

"""

This XYZFile class is used in combination with XYZfileManager

in order to read and modify .xyz sub -folder files (possibly other filetypes )

and output the read/modified files into an possibly different sub folder.

This XYZFile class deals with reading and modifying the files.

"""

def __init__(self , file_path: str):

self.file_path = file_path

self.atom_list = []

with open(file_path) as f:

self.num_atoms = int(f.readline ().strip ())

self.comment = f.readline ().strip ()

for line in f:

atom_data = line.split ()

self.atom_list.append (( atom_data[0], float(atom_data[1]), float(atom_data[2]),

float(atom_data[3])))

def modify_coordinates(self , direction: str , delta: float , atom_number: int):

"""

This function is able change the individual atom positions within the molecule in which

we change the atoms position

in a 'x', 'y' or 'z' direction .

In order to change this position we must first choose a atom in which we want to change

the x,y or z directions

this is done using the atom_number parameter in which we choose an integer 0,1,... , n-1

where the molecule has n atoms.

this numbering is done by the .xyz file structure hence the first atom we find in this .

xyz file is atom 0.

"""

for i, atom in enumerate(self.atom_list):

if i == atom_number:

if direction == 'x':
self.atom_list[i] = (atom[0], atom[1]+delta , atom[2], atom[3])

elif direction == 'y':
self.atom_list[i] = (atom[0], atom[1], atom[2]+delta , atom[3])

elif direction == 'z':
self.atom_list[i] = (atom[0], atom[1], atom[2], atom[3]+delta)

def write_xyz_file(self , output_path: str , name_suffix=None):

"""

This function is used to write a (modified) file into a new file

with a new position and a possibly new name (suffix) in the later created folder

structure .

"""

if name_suffix is not None:

file_name , file_ext = os.path.splitext(os.path.basename(output_path))

output_path = os.path.join(os.path.dirname(output_path), f"{file_name}_{name_suffix}{

file_ext}")

with open(output_path , 'w') as f:

f.write(str(self.num_atoms) + '\n')
f.write(self.comment + '\n')
for atom in self.atom_list:

f.write('{} {:12.6f} {:12.6f} {:12.6f}\n'.format(atom[0], atom[1], atom[2], atom[

3]))

class XYZFileManager:

"""

The XYZFileManager class is used to link sub(-sub) folders to each other at which point we

can

output possibly modified .xyz files (also possibly other types with some modifications ) into

the output_file path.

Which is done in order to then run possible other calculations which in our case means

running xtp tools using

system calls.

"""

def __init__(self , input_dir: str , output_dir: str):

self.input_dir = input_dir
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self.output_dir = output_dir

def get_xyz_files(self):

"""

This function is able to get all .xyz files in a specified folder it also finds possible

.xyz files in sub(-sub) folders.

"""

xyz_files = []

for root , dirs , files in os.walk(self.input_dir):

for file in files:

if file.endswith('.xyz'):
xyz_files.append(os.path.join(root , file))

return xyz_files

def modify_xyz_file(self , direction: str , delta: float , atom_number: int , input_file ,

name_suffix=None):

"""

This function uses the . modify_coordinates and . write_xyz_file in order to modify and

write the

changed .xyz file into a new position which is specified by the output_path parameter

during the initialization of the

XYZFileManager class.

For information about the input of the parameters : direction , delta , atom_number ,

name_suffix go to

the XYZFile class and look at . modify_coordinates and . write_xyz_file

"""

self.input_file = input_file

file = XYZFile(self.input_file)

file.modify_coordinates(direction , delta , atom_number)

output_path = os.path.join(self.output_dir , os.path.relpath(self.input_file , self.

input_dir))

file.write_xyz_file(output_path , name_suffix=name_suffix)

class ComputeGradients:

"""

Compute an numerical gradient of an input molecule using a delta change in x,y and z

direction

"""

def __init__(self , input_file: str , output_dir: str , delta: float , method: str):

self.input_file = input_file

self.output_dir = output_dir

self.input_dir = os.path.dirname(self.input_file)

self.delta = delta

self.method = method

# forward , backward or central finite difference :

if self.method in ['forward ', 'backward ', 'central ']:
pass

else:

raise ValueError('method is not valid ')

# find file name and number of atoms in order to generate folder structure:

self.molecule_name = os.path.splitext(os.path.basename(self.input_file))[0]

self.XYZ = XYZFile(self.input_file)

self.num_atoms = self.XYZ.num_atoms

def generate_calculation_files(self):

"""

This function is able to calculate the energy gradients based on small changes in atom

positions x,y or z

of a molecule.

"""

# We will start by generating the file structure in which we will place the files

# which we want to generate in order to use xtp_tools.

# an if statement is necessary since otherwise an error is raised that the directories

already exist

if os.path.exists(self.output_dir+'/{}/{}'.format(self.molecule_name ,self.method)):
pass

else:

print("creating necessary subfolders")

# change directory to the one which we want to add files

os.chdir(self.output_dir)
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# create the main directory for the molecule

os.makedirs("{}".format(self.molecule_name), exist_ok=True)

os.makedirs("{}/{}".format(self.molecule_name ,self.method), exist_ok=True) # could be

made for each delta by adding (+'
delta ')!

output_path = "{}/{}".format(self.molecule_name ,self.method)

# create subfolders :

for i in range(0, self.num_atoms):

os.makedirs("{}/{}/molecule_{}".format(self.molecule_name , self.method , i),

exist_ok=True)

# create x_output , y_output and z_output directories for the molecule_i

directories

for direction in ["x", "y", "z"]:

os.makedirs("{}/{}/molecule_{}/{}_output".format(self.molecule_name , self.

method , i, direction),

exist_ok=True)

# --------

# generate /pm delta files in each direction for each molecule:

for i in range(0,self.num_atoms):

manager0 = XYZFileManager(self.input_dir ,self.output_dir+"/{}/{}/molecule_{}/x_output

".format(self.molecule_name ,self.

method ,i))

manager1 = XYZFileManager(self.input_dir ,self.output_dir+"/{}/{}/molecule_{}/y_output

".format(self.molecule_name ,self.

method ,i))

manager2 = XYZFileManager(self.input_dir ,self.output_dir+"/{}/{}/molecule_{}/z_output

".format(self.molecule_name ,self.

method ,i))

if self.method in ['backward ','central ']:
manager0.modify_xyz_file('x', -self.delta , i, self.input_file , '-x')
manager1.modify_xyz_file('y', -self.delta , i, self.input_file , '-y')
manager2.modify_xyz_file('z', -self.delta , i, self.input_file , '-z')

if self.method in ['forward ','central ']:
manager0.modify_xyz_file('x', self.delta , i, self.input_file , '+x')
manager1.modify_xyz_file('y', self.delta , i, self.input_file , '+y')
manager2.modify_xyz_file('z', self.delta , i, self.input_file , '+z')

# make seperate case for 'backward ' and 'forward ' methods.

# I chose to put this original file in the x_output map arbitrarily

if self.method in ['backward ','forward ']:
manager0.modify_xyz_file('x', 0, 0,self.input_file ,'og')

def get_gradients_xyz(self , input_file): #, input_file : str ,output_dir : str):

"""

Should read .orb output files and be able to assign \pm direction properly to a variable

which we can then use to calculate \

nabla E

"""

global num_threads

self.input_file = input_file

# find .xyz files for each molecule:

new_xyz_files = []

for i in range(self.num_atoms):

manager = XYZFileManager(self.output_dir+"/{}/{}/molecule_{}".format(self.

molecule_name ,self.method ,i),"")

new_xyz_files.append(manager.get_xyz_files ())

# removes '.xyz' extensions and 'test_votca/' prefix from new_xyz_files for input into

command/ xtp_tools

for i in range(self.num_atoms):

j = 0

for file in new_xyz_files[i]:

file = os.path.splitext(file)[0]

new_xyz_files[i][j] = file.removeprefix("test_votca/")

j += 1

# run xtp tools on all files on all files in new_xyz_files

for i in range(self.num_atoms):

for file in new_xyz_files[i]:

command = ["xtp_tools -e dftgwbse -t {} -o options.xml -c job_name={}".format(

num_threads , file)]
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process = subprocess.Popen(command , cwd = "test_votca", shell = True , stdout=

subprocess.DEVNULL , stderr=

subprocess.DEVNULL)

process.wait()

# read out input file in order to gain information abount number of atoms:

molecule_name = os.path.splitext(os.path.basename(self.input_file))[0]

XYZ = XYZFile(self.input_file)

num_atoms = XYZ.num_atoms

# find .orb files for each molecule:

output_file_paths = [[] for _ in range(self.num_atoms)]

for i in range(self.num_atoms):

for dirpath , dirnames , filenames in os.walk("test_votca/output"+"/{}/{}/molecule_{}".

format(self.molecule_name ,self.

method ,i)):

for filename in filenames:

if filename.endswith('.orb'):
fullpath = os.path.join(dirpath , filename)

output_file_paths[i].append(fullpath)

qm_energy_dict = {}

for i in range(self.num_atoms):

qm_energy_dict[i] = {}

for j, file_path in enumerate(output_file_paths[i]):

key = file_path[-6:-4]

with h5py.File(file_path , "r") as f:

group = f['QMdata ']
if add_bse:

bse_singlet = group['BSE_singlet ']
eigenvalues_data= bse_singlet['eigenvalues ']
eigenvalue = eigenvalues_data[()][0]

qm_energy_dict[i][key] = group.attrs['qm_energy '][0] + eigenvalue[0]

else:

qm_energy_dict[i][key] = group.attrs['qm_energy '][0]

gradientE = []

px = []

py = []

pz = []

mx = []

my= []

mz = []

if self.method in ['forward ', 'central ']:
# This if statement is necessary since otherwise i get an '+x' key error

if '+x' in qm_energy_dict[1]:

for i in range(self.num_atoms):

px.append(qm_energy_dict[i]['+x'])
py.append(qm_energy_dict[i]['+y'])
pz.append(qm_energy_dict[i]['+z'])

if self.method in ['backward ', 'central ']:
if '-x' in qm_energy_dict[1]:

for i in range(self.num_atoms):

mx.append(qm_energy_dict[i]['-x'])
my.append(qm_energy_dict[i]['-y'])
mz.append(qm_energy_dict[i]['-z'])

if self.method in ['backward ','forward ']:
og = qm_energy_dict[3]['og']

gradients = np.zeros((0, 3))

if self.method in ['backward ']:
for i in range(self.num_atoms):

gradx = (og-mx[i])/self.delta

grady = (og-my[i])/self.delta

gradz = (og-mz[i])/self.delta

gradients = np.vstack ((gradients ,np.array([gradx ,grady ,gradz])))

if self.method in ['central ']:
for i in range(self.num_atoms):

gradx = (px[i]-mx[i])/(2*self.delta)
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grady = (py[i]-my[i])/(2*self.delta)

gradz = (pz[i]-mz[i])/(2*self.delta)

gradients = np.vstack ((gradients ,np.array([gradx ,grady ,gradz])))

if self.method in ['forward ']:
for i in range(self.num_atoms):

gradx = (px[i]-og)/(self.delta)

grady = (py[i]-og)/(self.delta)

gradz = (pz[i]-og)/(self.delta)

gradients = np.vstack ((gradients ,np.array([gradx ,grady ,gradz])))

return gradients

def get_array_from_xyz(self , input_file):

self.input_file = input_file

self.array = np.zeros((0, 3))

with open(input_file) as f:

self.num_atoms = int(f.readline ().strip ())

self.comment = f.readline ().strip ()

for line in f:

atom_data = line.split ()

self.array = np.vstack ((self.array ,[float(atom_data[1]), float(atom_data[2]),

float(atom_data[3])]))

return self.array

def get_xyz_from_array(self , array , output_subfolder= None):

"""

Takes as input an input file path ( input_file ), an array of coordinates which we want to

place into the input_file and an

location output_subfolder .

In which the updated .xyz file is placed.

"""

self.array = array

self.output_subfolder = output_subfolder

if self.output_subfolder == None:

self.output_subfolder = "test_votca/input"

# Extract the directory and filename from the input path

input_directory = os.path.dirname(self.input_file)

input_file_name = os.path.basename(self.input_file)

# Read the existing XYZ file

with open(self.input_file , 'r') as f:

lines = f.readlines ()

# Update the atom coordinates

num_atoms = int(lines[0])

if num_atoms*3 != self.array.shape[0]:

print("Number of atoms in the input file and array do not match!, {}, {}".format(

num_atoms , self.array.shape[0]))

return

j = 0

for i in range(num_atoms):

lines[i + 2] = f"{lines[i + 2].split ()[0]} {self.array[3*j]:.6f} {self.array[1+3*j]:.

6f} {self.array[2+3*j]:.6f}\n"

j += 1

# Create the output subfolder if it doesn 't exist

output_directory = self.output_subfolder

os.makedirs(output_directory , exist_ok=True)

# Construct the output file path within the subfolder

output_xyz_path = os.path.join(output_directory , input_file_name)

# Write the modified XYZ file

with open(output_xyz_path , 'w') as f:

f.writelines(lines)

def get_gradients_array(self , array):

"""

Takes an array as input and outputs gradients of the atoms which

are represented by this array (note which atoms is dependent on the input_file )

"""

self.array = array

xyz_file = self.get_xyz_from_array(self.input_file)
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gradients = self.get_gradients_xyz(xyz_file)

return gradients

def on_modified(self , event):

if not event.is_directory and event.src_path == self.source_file:

print(f"File '{self.source_file}' modified. Copying to '{self.destination_folder} '.")
shutil.copy2(self.source_file , self.destination_folder)

counter = 0

def compute_energy(self , array):

"""

Computes the energy of an molecule with given array input

"""

global add_bse

global num_threads

self.generate_calculation_files ()

self.array = array

self.get_xyz_from_array(self.array)

calculations_directory = "test_votca/input"

# make distinction since energy is plainly calculated in the 'forward '/'backward ' case

if self.method == 'central ':
command = ["xtp_tools -e dftgwbse -t {} -o options.xml -c job_name=input/{}".format(

num_threads ,self.molecule_name)]

process = subprocess.Popen(command , cwd = "test_votca", shell = True , stdout=

subprocess.DEVNULL , stderr=

subprocess.DEVNULL)

process.wait()

with h5py.File(calculations_directory+"/{}.orb".format(self.molecule_name).format(self.

molecule_name , self.method , self.

molecule_name), "r") as f:

group = f['QMdata ']
if add_bse:

bse_singlet = group['BSE_singlet ']
eigenvalues_data= bse_singlet['eigenvalues ']
eigenvalue = eigenvalues_data[()][0]

tot_energy = group.attrs['qm_energy '][0] + eigenvalue[0]

print(group.attrs['qm_energy '][0], eigenvalue[0])

else:

tot_energy = group.attrs['qm_energy '][0]

return tot_energy

def compute_gradients(self , array):

"""

Combines methods in class in order to get calculations .

"""

self.array = self.get_gradients_xyz(self.input_file)

return self.array

counter = 0

def energy(array):

global molecule_name

global method

global delta

global counter

global num_method

if add_bse:

opt_file_path = "test_votca/output/{}/{}/optimization_{}_BSE.trj".format(molecule_name ,

method , num_method)

else:

opt_file_path = "test_votca/output/{}/{}/optimization_{}.trj".format(molecule_name ,

method , num_method)

file_path = "test_votca/input/{}.xyz".format(molecule_name)

if counter > 0:

print("\n", flush = True)

else:

print("\n", flush= True)

print("starting optimization :", flush = True)

# empty trajectory file:

command = ["rm {}".format(opt_file_path)]
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empty_trj_file = subprocess.Popen(command , shell=True , stdout=subprocess.DEVNULL , stderr=

subprocess.DEVNULL)

empty_trj_file.wait()

# Get the current date and time

current_datetime = datetime.datetime.now()

# Format the date and time as a string

formatted_datetime = current_datetime.strftime("%Y-%m-%d %H:%M:%S")

print( "{} - iteration {}".format(formatted_datetime , counter), flush = True)

counter += 1

energy = ComputeGradients("test_votca/input/{}.xyz".format(molecule_name),"test_votca/output"

,delta ,method)

energy = energy.compute_energy(array)

print("total energy : {}".format(energy), flush = True)

# the next lines are used to write a trajectory for the optimization .

with open(file_path , 'r') as file:

xyz_content = file.read()

with open(opt_file_path , 'a') as opt_file:

opt_file.write(xyz_content)

return energy

def gradients(array):

global delta

global method

global molecule_name

gradients = ComputeGradients("test_votca/input/{}.xyz".format(molecule_name),"test_votca/

output",delta ,method)

gradients = gradients.compute_gradients(array)

print("gradients : {}".format(gradients), flush = True)

gradients = gradients.flatten ()

print("atom positions : {}".format(array.reshape(-1,3)), flush = True)

return gradients

x0 = np.zeros((0, 3))

x0 = np.vstack ((x0 ,[0,0,0.11779]))

x0 = np.vstack ((x0 ,[0,0.75545 ,-0.47116]))

x0 = np.vstack ((x0 ,[0,-0.75545 ,0.47116]))

x0 = x0.flatten ()

# Create an argument parser

parser = argparse.ArgumentParser(description='Script description ')

# Add arguments to the parser

parser.add_argument('molecule_name ', type=str , help='Name of the molecule ')
parser.add_argument('num_method ', type=str , help='Name of the numerical method ')
parser.add_argument('num_threads ', type=int , help='Number of threads to use')
parser.add_argument('tolerance ', type=float , help='accepted tolerances in methods ')
parser.add_argument('-add_bse ', action='store_true ', help='Flag to add BSE singlet energy ')

# Parse the command -line arguments

args = parser.parse_args ()

# Access the arguments

molecule_name = args.molecule_name

num_method = args.num_method

num_threads = args.num_threads

tolerance = args.tolerance

add_bse = args.add_bse

print('Molecule Name:', molecule_name)

print('Numerical method used:', num_method)

print('Number of threads used:', num_threads)

print('Tolerance of the method used for termination constraints:', tolerance)

print('BSE singlet energy added to total energy in each iteration:', add_bse)

method = "central"

delta = 0.001

getarray = ComputeGradients("test_votca/molecules/{}.xyz".format(molecule_name),"test_votca/

output",delta ,method)

x0 = getarray.get_array_from_xyz("test_votca/molecules/{}.xyz".format(molecule_name))

x0 = x0.flatten ()

result = scipy.optimize.minimize(energy , x0, jac=gradients , method=num_method , tol=tolerance)

# Print the result

print(result , flush = True)
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# flush in the print statements makes it so that output is shown in terminal

input_dir = "test_votca/input"

output_dir = "test_votca/output"

# this function is able to change the options.xml file within python

def edit_xml(file_path: str , job_name= None , charge= None , spin= None , basisset= None ,

auxbasisset= None , functional= None , tasks=None ,

gwbse=None):

tree = ET.parse(file_path)

root = tree.getroot ()

if job_name:

job_name_ph = root.find('dftgwbse/job_name ')
job_name_ph.text = job_name

if charge:

charge_ph = root.find('dftgwbse/dftpackage/charge ')
charge_ph = charge

if spin:

spin_ph = root.find('dftgwbse/dftpackage/')
spin_ph = spin

if basisset:

basisset_ph = root.find('dftgwbse/dftpackage/basisset ')
basisset_ph = basisset

if auxbasisset:

auxbasisset_ph = root.find('dftgwbse/dftpackage/auxbasisset ')
auxbasisset_ph = auxbasisset

if functional:

functional_ph = root.find('dftgwbse/dftpackage/functional ')
functional_ph = functional

if tasks:

tasks_ph = root.find('dftgwbse/dftpackage/tasks ')
tasks_ph = tasks

if gwbse:

gwbse_ph = root.find('dftgwbse/dftpackage/gwbse ')
gwbse_ph = gwbse

tree.write(file_path)

# edit_xml('test_votca /options.xml ', 'molecules ')
# this works and changes job_name to molecules

Abstract
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