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1 Introduction

This bachelor thesis aims to introduce quantum mechanics to mathematicians with a basic

understanding of functional analysis. Physicists often have their own style and notation,

that can be difficult to understand for the average pure mathematician. Yet mathematics is

fundamental to quantum mechanics, and much of our understanding of quantum mechan-

ics follows directly from the mathematical models used to describe quantum mechanics.

Conversely, quantum mechanics has had a strong influence on the development of some

mathematical fields, including spectral theory and the theory of Hilbert spaces. So much

so that quantum mechanics sometimes has dedicated chapters in pure functional analysis

courses. This makes quantum mechanics a prime example of the real-world application of

abstract mathematics. This thesis will outline what quantum mechanics is, why it was de-

veloped, and what mathematical concepts and tools are used to build and understand the

Schrödinger model of Quantum mechanics.

This thesis will begin by providing a brief historical background to the development of

the quantum mechanical model. In the chapter that follows, we will briefly provide some

physical insights to inform and justify the assumptions and requirements of the model,

before properly defining the necessary mathematical definitions, theorems, and concepts to

build the model and describe solutions to the model. In chapter 4 we will use this knowledge

to model the free electron, meaning an electron that is not subject to any outside forces.

This free electron model will then be compared to how a similar free particle might behave

in classical Newtonian mechanics.
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2 Physical Background

The birth of quantum mechanics as we know it is commonly attributed to Max Planck’s

early 20th century work into black body radiation [1]. His research related to understanding

how objects, specifically idealized non reflective object, radiate light at different frequencies

depending on their temperature. At this point, light was understood to consist of continu-

ous waves with frequencies on a spectrum. The classical model of radiation predicted that

black bodies would generate light at all frequencies. The energy released was predicted by

the models to be arbitrarily high at high frequencies, a concept called the ultraviolet catas-

trophe. However, this catastrophe did not show up in experiments, implying a limitation

of the model. Planck’s work aimed to adjust the traditional model to account for this by

introducing a limiting term. His model was successful, but as a result of his model he pos-

tulated that the energy of light was released only as multiples of some elemental quantity.

To him this was just a theoretical solution, but Einstein then used it to create the concept

of photons [2]. He postulated that the energy of light came in localized packets with a

proper momentum, despite the wave being spread over larger space. This concept became

known as wave-particle duality. The energy of photons interacts with the world as if they

are particles, yet they also followed Maxwell’s wave theory. This concept turned out to

extend to many other small particles, including electrons.

A famous experiment that shows the intriguing behavior of these wave particles is the

double slit experiment. This experiment was first performed by Thomas Young in the early

19th century and was the impetus to considering light as waves rather than particles. The

experiment has been repeated many times, and in the early 20th century it was used to

show that electrons indeed also behave both as waves and particles. At the time it was

not yet possible to individually register photons and electrons during the experiment, but

with modern technology this can be done.[3] The principle of the experiment is as follows.

Some electron source, or light source, is set up across from a screen that can observe the

electrons. In between the source and observing screen we place a second screen containing

two slits. The electrons can pass this second screen only through the two slits. A classical

particle model would predict that the electrons would move from the source, through one of

the two slits, onto two spots, or allowing for error, bands, on the observing screen, one for

each slit respectively. Furthermore, if we close either slit, we should be able to see that the

projection on the screen is the same as the combined contributions of both slits separately.

However, this is not what happens. Instead we see an interference pattern emerge. Despite

the intensity of both slits independently being high in some spots of the screen, the electrons

seem to cancel each other out, allowing the intensity in such a spot with both slits open to

still be low. What is even more strange is that when electrons are released and observed

individually, the location they hit seems to still follow a distribution with this interference

pattern. Apparently, the location of these electrons is dictated directly by some wave-like
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property.

Based on this experiment we draw two important conclusions. First is that the behavior

of electrons, even individually, is inherently random, and not just a result of experimental

error. The second is that the probability distribution of the location of this electron is

dictated by some underlying wave-like property.

While this wave-particle duality was a hot topic, Erwin Schrödinger decided to try and

create a proper three-dimensional wave equation to try and model the wave mechanics of

these particles. This led to what is known as the Schrödinger equation. Although this

was not the only attempt at describing this wave-like property, it did lead to the prevailing

model of quantum mechanics. This model is what we hope to present in this paper.
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3 The Schrödinger Model

3.1 Physical Requirements

In this section we briefly lay out some of the physical assumptions and physical insights

that motivate the construction of the Schrödinger model of quantum mechanics. This way

we can propose some key requirements and assumptions of the model and its relevant so-

lutions, before we properly define and analyse the system mathematically. As this thesis

intends to present the Schrödinger model in a mathematical light, some of these physical

assumptions may be taken for granted, without discussing the physical reasoning behind

these assumptions in detail.

The mathematics used in this thesis will build primarily on knowledge of functional anal-

ysis. The reader is expected to have some of this knowledge handy, but can consult Erwin

Kreyszig’s book titled Introductory Functional Analysis with Applications [4] for much of

this assumed knowledge. The structure of the physics will largely follow the guidelines set

out in the early chapters of Gustafson and Sigal’s ‘Mathematical Concepts of Quantum

Mechanics’ [5].

In nature many tiny particles, if not all particles, seem to display a random behavior.

We call such random particles, like photons or electrons, quantum particles. Although there

is an inherent randomness to these particles, there does appear to be some underlying de-

terministic behavior that dictates the probability distributions of these particles. Quantum

mechanics attempts to describe this underlying wave-like behavior, thus allowing us to make

predictions about the location and behavior of quantum particles as they evolve over time.

We model the behaviour of these particles using wave functions (or state vectors): complex-

valued functions ψ(x), where x ∈ R3 denotes a location in space. The complex nature of

these functions will allow the model to express wave-like properties, like oscillations or the

interference pattern between overlapping waves.

Definition 3.1. A mapping ψ is called a wave function if it is a square-integrable mapping

such that
ψ : R3 → C,

x 7→ ψ(x),
(1)

∫
R3

|ψ(x)|2dx <∞. (2)

The wave function is used to describe and predict the state of our quantum particle. Thus

there has to be a way to derive an appropriate probability distribution for the particle’s

position from this wave function. This probability distribution is given by the function

f = |ψ|2:
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P (a particle is in some region S in space) =

∫
S

|ψ(x)|2dx.

We can easily see how an interference pattern could emerge from this model. Say for

instance that some particle is governed by a wave state combining two components, ψ(x) =

ψ1(x) + ψ2(x) where ψ1(x) = i and ψ2(x) = −i. Then the combined wave function at

point x is ψ(x) = 0. Then clearly |ψ(x)|2 = 0 6= 2 = |ψ1(x)|2 + |ψ2(x)|2. In this case the

components of the wave function corresponding to ψ1 and ψ2 interfere in x, in fact they

cancel each other.

The requirement that |ψ|2 forms a probability distribution for the particle imposes the

additional requirement of normalization:∫
R3

|ψ(x)|2dx = 1. (3)

This normalization requirement turns out to be very useful, in that it allows us to restrict

ourselves to wave functions that are square-integrable. We use this to justify restricting

ourselves to equivalence classes under this square-integral norm, as we will discuss in a bit.

Definition 3.2. A function f : R3 → C is called square-integrable, if its square-integral,

given by ∫
R3

|f(x)|2dx, (4)

exists (and is finite).

The square-integral norm is the squareroot of this square-integral:

||ψ|| :=

√∫
R3

|ψ(x)|2dx. (5)

The set of all such wave functions is the set

L2(R3) = {ψ : R3 → C|
∫
R3

|ψ(x)|2dx <∞}.

Sadly, this set L2(R3) does not form a very convenient space to work in for our purpose,

because the square-integral is not a proper norm in this set. For example, one might come

up with a pair of wave functions that are equal everywhere except in some finite set of

points {x0...xn}. Their difference then is non-zero only on finite points in space, so that its

square-integral is 0, which violates one of the key properties of norms. Yet, these functions

will be physically indistinguishable. We use this reasoning to justify instead considering

the Lebesgue space (or Lp space) L2(R3), where functions that agree almost everywhere

are considered equivalent, thus allowing us to use the square root of the square-integral as
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its norm. Technically speaking, this means that elements of L2(R3) are equivalence classes,

instead of individual functions as we usually see them. Technically speaking, this means

that often ψ(x) is not even necessarily well-defined [6, p38]. As a result of this, we aim to

express solutions and proofs in the form of Lebesgue integrals. Crucial to these notations is

the following lemma.

Lemma 3.1 (Equality). [4, Lemma 3.8.2] If for some φ1, φ2 ∈ X some inner product space

〈φ1, ψ〉 = 〈φ2, ψ〉 for all ψ ∈ X, then φ1 = φ2.

If we know the state of some quantum particle at some point in time t0, in the form of

a wave function, ψ0 ∈ L2(R3), we would like to be able to describe how the state of the

particle changes over time. As such, we will usually consider time-dependent wave functions,

ψ(x, t) : R3 × R→ C. These functions effectively form subsets of the function space, where

ψ(·, t) is the wave function that denotes the state of a particle at time t,

ψ(·, t) : R3 → C
x 7→ ψ(x, t).

(6)

Although we assume that there is randomness in the expression of the particles that these

wave functions describe, the wave function itself is assumed to be subject to the causality

principle: the future states of the system can be fully predicted based on the current state of

the system. Similarly, although we have seen in the interference pattern that the contribution

of multiple alternatives do not sum properly, we assume that the wave function does follow

this principle, called the superposition principle. These assumptions allow us to consider an

evolution equation
d

dt
ψ = Aψ (7)

for some linear operator A. Furthermore, the system needs to match our understanding

of physics on a larger scale, which informs us of what the operator A should look like.

According to classical mechanics, the evolution of a system is described by Newton’s laws

of motion. In quantum mechanics, we find Schrödinger’s equation:

i~
∂

∂t
ψ(x, t) = − ~2

2m
∆xψ(x, t) + V (x)ψ(x, t), (8)

where ~ is the Planck constant, m is the mass of the particle, ∆x =
∑
i
∂2

∂x2
i

is called the

Laplace operator and represents the kinetic energy of the system, and V (x) is a multipli-

cation operator that represents the energy potentials of the system. We call the operator

H = − ~2

2m∆x + V (x) the Schrödinger operator of a system, and it is indeed linear.

The behavior of these wave functions comes together in the Cauchy problem, or otherwise
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known as the initial value problem,i~ ∂
∂tψ(x, t) = − ~2

2m∆xψ(x, t) + V (x)ψ(x, t)

ψ(x, t0) = ψ0(x).
(9)

The solutions of this Cauchy problem are the objects of interest to us.
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3.2 Operator Theory

Now that we have a well-defined mathematical basis of what wave functions are and the

spaces they are in, we would like to start gathering the tools necessary to further construct

and analyse the dynamics of the model. Does the Cauchy problem (9) have solutions, what

would these solutions look like, and in what ways do they match our expectations from the

physical reality? Some of these key analytical tools will be presented in this section. We

begin by describing the space of compactly supported smooth functions. As we discussed in

the previous section, L2(R3) is a set of equivalence classes. Furthermore, as we will see, quite

a few of the most important operators will not be well-defined on all of L2(R3). Therefore,

we will define a convenient dense subset that we can use to prove most of our theorems, and

then extend these to our Hilbert space L2(R3).

Definition 3.3. the linear space, or vector space, of compactly supported smooth functions

from R3 to C is C∞c (R3). Thus, it is the set of all functions φ such that,

i) φ : R3 → C,
ii) foreach φ there is a U ⊂ R3 bounded and closed s.t. ∀x ∈ U c : φ(x) = 0,

iii) ∂k

∂xik
ψ exists for any k ∈ N, i ∈ {1, 2, 3}.

(10)

Because these functions are smooth and compactly supported, all such functions are

square-integrable. In fact C∞c (R3) forms a normed space with the square-integral as its

norm. Before we prove this, we take this one step further.

Lemma 3.2. The linear space of continuously differentiable compact functions C∞c (R3)

forms an inner product space under the inner product

〈·, ·〉 : C∞c (R3)× C∞c (R3) → C
ψ, φ 7→

∫
R3 ψ(x)φ(x)dx,

(11)

where a indicates the complex conjugate of a ∈ C. Henceforth we will use C∞c (R3) to indicate

both this inner product space and linear space. Similarly we the inner product on L2(R3) is

defined as

〈·, ·〉 : L2(R3)× L2(R3) → C
ψ, φ 7→

∫
R3 ψ(x)φ(x)dx.

(12)

The norm induced by this inner product then indeed is the square root of the square-

integral,

||ψ||2 = 〈ψ,ψ〉 =

∫
R3

ψ(x)ψ(x)dx =

∫
R3

|ψ(x)|2dx. (13)

Although this space C∞c (R3) is an inner product space, it is not a Hilbert space, as it is
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not closed. One can easily construct a series of functions with infinitely increasing supports.

Luckily, inner product spaces can be completed. Recall,

Theorem 3.3. For any inner product space X, there exists a Hilbert space H and an

isomorphism A from X onto a dense subspace W ⊂ H. The space H is unique except for

isomorphisms. [4, Thm 3.2.3]

This completion of C∞c (R3) under this inner product forms the Hilbert space that quan-

tum mechanics works in, L2(R3).

Lemma 3.4. The inner product space C∞c (R3) is a dense subspace, and L2(R3) is its

completion under the square-integral norm 5.

The proof to this lemma is far from simple, and is usually proven with the help of the

convolution of functions defined later in this chapter. A detailed proof can be found in G.

Folland’s ‘A Guide to Advanced Real Analysis’ [7, Prop 6.4]. Generally speaking, the proof

approximates functions in L2(R3) by a sequence of smooth functions that are generated

using standard smooth functions called mollifiers. Sequences of such mollifiers approximate

0 functions with singular discontinuities. An example of such a mollifier is the function

ψ(x) =

e
1

|x|2−1 if |x| < 1

0 otherwise.

Recall The Cauchy problem 9i~ ∂
∂tψ(x, t) = − ~2

2m∆xψ(x, t) + V (x)ψ(x, t) = Hψ(x, t)

ψ(x, t0) = ψ0(x).

We call H the Schrödinger operator of a given system, and is assumed to be a linear operator

H : D(H) ⊂ L2(R3)→ L2(R3).

As it turns out, the proper existence of solutions to the Cauchy problem is dependent on

a concept called self-adjointness. Roughly speaking, self-adjointness combines symmetry,

with some features that usually come with boundedness. In section 3.3 self-adjointness

will be shown to be needed to conserve the trait that |ψ(t, ·)|2 behaves as a probability

distribution at all points in time, as well as being necessary to define the exponential of a

linear operator, which we will do at the end of this section.

Self-adjointness may be familiar to the reader for bounded operators. There it is a fairly

simple concept.
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Definition 3.4. A bounded linear operator T : H → H on some Hilbert space H, with

inner product 〈·, ·〉, is self-adjoint, if the operator is equal to its Hilbert-adjoint operator,

T = T ∗. Where the Hilbert-adjoint operator T ∗ is defined, s.t. 〈Tx, y〉 = 〈x, T ∗y〉 for all

x, y ∈ H.

For bounded linear operators, self-adjointness is equivalent to the operator T being

symmetric and defined on, and to the whole Hilbert space H.[4, Thm. 3.10.1]

Alternatively, we can use the following theorem to show that symmetric operators defined

on dense subsets of some Hilbert spaceH can be extended to construct self-adjoint operators.

Theorem 3.5 (Bounded linear extensions.). Let T : D(T ) ⊂ X → Y be a bounded linear

operator, where Y is Banach. Then T has an extension T : D(T ) → Y , so that its closure

T is defined on all of X, D(T ) = X. [4, Thm. 2.7.11]

Where closed refers to the following,

Definition 3.5. A linear operator T : D(T ) ⊂ H → H, where H is a complex Hilbert space,

then T is closed if and only if

xn → x and Txn → y in H (14)

implies that Tx = y. [4, Def. 10.3.2]

Sadly, the constraint of considering bounded operators is too strong of a limitation. In

quantum mechanics, the Laplacian operator ∆x for example plays a major role in our model,

yet is clearly not bounded. Although it is densely defined on C∞c (R3) ⊂ L2(R3), we quickly

run into domain issues when trying to apply the ideas of bounded self-adjointness to this

unbounded operator, as it is explicitly undefined on many elements of L2(R3). The following

theorem shows how central such domain issues can be for unbounded operators.

Theorem 3.6 (Hellinger-Toeplitz). If a linear operator T is defined on all of a complex

Hilbert Space H , and is Symmetrical, then T is bounded. [4, Thm. 10.1.1]

Conversely, unbounded symmetrical operators can only be defined on a subset of a

complex Hilbert Space, and not the whole Hilbert space.

Theorem 3.7 (Closure of a symmetric operator). Let T : D(T ) ⊂ X → H be a linear

symmetric operator, and D(T ) is dense in X, then it has a unique closure. [4, Thm. 10.3.5]

We will need to find a way to extend the definition of self-adjointness to unbounded

operators, while maintaining some of the relevant features, like symmetry and how it relates

to elements to the rest of the Hilbert space.
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Definition 3.6. A Linear operator A : D(A) ⊂ H → H, for some Hilbert space H is called

Self-Adjoint if it is symmetric, densely defined on H and R(A+ z) = H for all z ∈ C \ R.

Notice that for bounded self-adjoint operators, by the definition of the adjoint operator,

R(A) = H. So it is easy to see how this definition overlaps with the previous one in the

case of bounded operators.

The property that R(A + z) = H for complex z might seem like somewhat of an unin-

tuitive distinction to make, and in fact self-adjointness in mathematics is generally defined

through the Hilbert-adjoint operator instead (eg. [4, def. 10.2.5]). However, our definition

more directly satisfies our needs in this thesis, as it will allow us to define the exponential of

an operator at the end of this chapter. To get to a definition of the exponent of operators, we

begin by defining the Resolvent operator, which can be used to define sequences of bounded

operators that converge to some unbounded operator A.

Definition 3.7. Given a self-adjoint operator A, we define the Resolvent operator Rλ, for

λ ∈ R, λ 6= 0 by

Rλ(A) := (A− λI)−1 (15)

Proof. To prove that the resolvent operator is well-defined for all self-adjoint operators, we

use the theorem that linear operators are invertible if and only if their null space is {0}, or

(A+ iλ)ψ = 0⇐⇒ ψ = 0. [4, Thm. 2.6.10]

Let some φ ∈ D(A), and some z ∈ C, µ, λ ∈ R so that z = λ+ iµ where µ 6= 0. We would

like to show that ||(A + z)φ|| > 0 for φ 6= 0. Consider ‖(A + z)φ‖2 = 〈(A + z)φ, (A + z)φ〉
= 〈(A+ λ+ iµ)φ, (A+ λ+ iµ)φ〉. Because (A+ λ) is symmetrical, and (iµ) = −iµ, we can

rewrite this as

〈(A+ λ+ iµ)φ, (A+ λ+ iµ)φ〉 = 〈(A+ λ+ iµ)(A+ λ− iµ)φ, φ〉

= 〈(A+ λ)(A+ λ)φ, φ〉+ 〈(A+ λ)(iµ)φ, φ〉

− 〈(A+ λ)(iµ)φ, φ〉+ 〈(iµ)(−iµ)φ, φ〉

= ||(A+ λ)φ||2 + ||µφ||2

≥ ||µφ||2.

So: ‖(A + z)φ‖2 ≥ ||µφ||2, and thus, since µ was assumed to be non zero, if φ 6= 0,

(A+z)φ 6= 0. Using the inverse operator theorem mentioned above, this proves that (A+z)

is invertible. If we consider z = −λi, the Resolvent operator Rλ(A) exists.

Furthermore, since the Resolvent operator is defined on all ofH for self-adjoint operators,

by the Hellinger-Toeplitz theorem 3.6, it is bounded. From the proof of the existence of the
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resolvent operator, we can also deduce an upper bound estimate, by plugging ψ = (A+z)ψ,

for z = iλ in the final inequality. Although this proof is not sufficient to show that this

upper bound is also the norm, we can still use it as an estimate.

||Rλ(A)φ|| ≤ 1

|λ|
||φ|| for λ 6= 0 (16)

Resolvent operators are very important in spectral theory. For us, the fact that they are

bounded linear operators with a domain on all of H will be of great use to help us define

the exponential of operators.

Lemma 3.8. For any unbounded self-adjoint operator A, the family of operators defines

bounded operators

Aλ :=
1

2
λ2
(
(A+ iλ)−1 + (A− iλ)−1

)
for λ > 0, (17)

such that

Aλ → A as λ→∞.

A proof for this lemma can be found in the mathematical supplement 6.2.

Definition 3.8. Let A a bounded self-adjoint operator. we define the exponential operator

of A as

eiAλ :=

∞∑
n=0

1

n!
(iAλ)n. (18)

Definition 3.9. Let A an unbounded self-adjoint operator. we define the exponential

operator of A as

eiAψ := lim
λ→∞

eiAλψ, (19)

where eiAλψ is defined according to the definition for bounded operators.

We will prove that the limit statement 19 converges in the Mathematical Supplement,

lemma 6.3.

Using the upper bound of 16, we can show that the exponential in both the bounded

case 18, and by extension in the unbounded case 19 are both bounded. thus allowing us to

extend its definition to all of L2(R3), using the bounded linear extension theorem 3.5.
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3.3 Solutions in the Schrödinger Model

Now that we have outlined some important tools in section 3.2, we will use them to analyze

the solutions of our Cauchy problem 9, and check these solutions on the physical require-

ments outlined in 3.1. As stated in the previous section, Self-Adjointness will be a key factor

in finding solutions that meet those requirements.

Again, recall the Cauchy Problem,i~ ∂
∂tψ(x, t) = − ~2

2m∆xψ(x, t) + V (x)ψ(x, t) = Hψ(x, t)

ψ(x, t0) = ψ0(x).

We begin by considering the concept of Conservation of probability. Given that a given

solution |ψ(x, t)|2 needs to function as a probability distribution at any point in time t, we

should analyse for our Cauchy problem if or under what conditions the square-integral of

the solution remains 1. So, given ||ψ0|| = 1, we must have that ||ψ(x, t)|| is constant over

time.

Theorem 3.9. A solution ψ(x, t) to the Cauchy problem 9 conserves probability if

d

dt
||ψ(x, t)|| = d

dt

∫
R3

|ψ(x, t)|2dx = 0. (20)

This is true, iff the Schrödinger operator H is symmetric.

Proof. Using the chain rule, d
dt (ψ(x, t)ψ(x, t)) = ψ(x, t) ddtψ(x, t) + ψ(x, t) ddtψ(x, t), we can

rewrite our earlier equality (16),

d

dt
〈ψ,ψ〉 = 〈ψ̇, ψ〉+ 〈ψ, ψ̇〉 = 〈 1

ih
Hψ,ψ〉+ 〈ψ, 1

ih
Hψ〉 =

1

ih
(〈Hψ,ψ〉 − 〈ψ,Hψ〉) = 0.

The final equality here is implies that indeed

d

dt
||ψ(x, t)|| = 0⇐⇒ 〈Hψ,ψ〉 = 〈ψ,Hψ〉

Thus H being symmetric is sufficient to conserve probability.

Symmetry is not only sufficient, but necessary. This is because 〈Hψ,ψ〉 = 〈ψ,Hψ〉 for

all ψ ∈ H is sufficient to show symmetry. This can be proven using what is known as the

Polarization identity. Although the finding is very useful, the proof is very detailed and not

particularly interesting, so we refer to [6, Lemma 2.1] for a proof of this statement.

Conservation of probability allows us to prove that for Self-Adjoint operators H, the

solution to the Cauchy-problem both conserves probability, and is a unique solution. This
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is referred to as Existence of Dynamics. Self-Adjointness of the Schrödinger operator is a

necessary and sufficient condition for the Existence of Dynamics.

Proof. To prove the uniqueness of solutions, consider ψ1(x, t), ψ2(x, t) both solutions to

the Cauchy problem with H self-adjoint. Then, ψ1(x, 0) − ψ2(x, 0) = ψ0 − ψ0 = 0. Using

linearity of H, i~ d
dt (ψ1 − ψ2)(t) = H(ψ1 − ψ2)(t), so that ψ1 − ψ2 is a solution to the

Schrödinger equation, and thus conserves probability. Then indeed ||ψ1−ψ2||(t) = 0 for all

t. So the solutions are the equivalent.

Having now established that the Cauchy problem, given the Schrödinger operator is self-

adjoint, has a unique solution that conserves probability, we would like to show that we can

use the exponential of an operator to define this unique solution. This solution is given by

ψ(x, t) = U(t)ψ0(x) = e−
it
~ Hψ0(x). (21)

Theorem 3.10. For self adjoint operators H, the operator U(t) = e−itH/~ according to

our definition 3.9 forms a unique family of solutions of bounded operators that define the

solutions to the cauchy problem. These operators have the following properties,

i~
∂

∂t
U(t)ψ = HU(t)ψ = U(t)Hψ on the domain D(

∂

∂t
U(t)) = D(H), (22)

U(0) = I (23)

U(t)U(s) = U(t+ s), (24)

||U(t)ψ|| = ||ψ||, and (25)

U(t)ψ → ψ as t→ 0. (26)

The properties 22 and 23 combine to show that this indeed forms the evolution operator

of our Cauchy problem.

Operators that have properties 23 - 25 are commonly referred to as ’one-parameter

unitary operators’ in spectral theory, and 26 is referred to as strong continuity of an operator.

[8, Def 10.11]

The remainder of this section is dedicated to proving the above theorem. Although it

is quite long and might hurt the reading experience, the use of equality lemma 3.1 is well

demonstrated in this section. We begin by providing a proof that these properties are true

for bounded self-adjoint operators A.

Proof. Consider A, a bounded self adjoint operator on D(A) = L2(R3), and the exponential

U(t) := e−itA/~ =

∞∑
n

1

n!
(− i

~
tA)n. (27)
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i U(t) satisfies equation 8. Consider some ψ ∈ D(A) = L2(R3). By definition,

i~
d

dt
U(t)ψ = i~

d

dt

∞∑
n=0

1

n!
(− i

~
tA)nψ.

To bring the differential operator into the sum, we point out that the convergence of

i~
∑ ∂

∂t

1

n!
(− i

~
tA)nψ = A

∑ 1

n!
(− i

~
tA)nψ

is uniform on any interval t ∈ [a, b], since

||A
∑ 1

n!
(−itA)nψ|| ≤ ||A||

∑ 1

n!
|t|n||A||n = ||A||e|t|||A|| ≤ ||A||eM ||A|| <∞

for M the maximum of |t| on some interval [a, b]. This allows for the use of the uniform

convergence theorem [9, Thm 8.3.5], so that indeed

i~
d

dt
U(t)ψ = i~

d

dt

∞∑
n=0

1

n!
(− i

~
tA)nψ = i~

∞∑
n=0

d

dt

1

n!
(− i

~
tA)nψ

.

Furthermore, since Anψ is constant with respect to t, we can differentiate the terms

as follows,

i~
∞∑
n=0

d

dt

1

n!
(− i

~
tA)nψ = i~

∞∑
n=0

n

n!
tn−1(− i

~
A)nψ = A

∞∑
n=0

1

n!
(− i

~
tA)nψ

=

∞∑
n=0

1

n!
(− i

~
tA)nψA.

Which proves the equality 22.

ii U(0) = I follows directly from the definition of U(t).

iii the proof that U(t)U(s) = U(t+s) follows a very similar line of reasoning to the proof

for the similar statement for the traditional exponential function on R. First we use

the binomial distribution to split (t+ s)n into multiple terms, then we use the Cauchy

product to split the sums, so that

U(t+ s) =

∞∑
n

1

n!

(
− i
~

(t+ s)A

)n
=

∞∑
n

1

n!

( ∞∑
k

(
n

k

)
tksn−k

)
(− i

~
A)n

=

∞∑
n

1

n!
tn(− i

~
A)n

∞∑
m

1

n!
sm(− i

~
A)m = U(t)U(s).
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iv ||U(t)ψ|| = ||ψ||. Since U(0) = I, and U(t)ψ is a solution to the equation 22 with self

adjoint A, we can use the proof of theorem 3.9 to show that ||U(t)ψ|| is constant over

time, thus U(t) is unitary for all t.

v U(t)ψ → ψ as t → 0. Since we have proven equation 22, and 23, the fundamental

theorem of calculus can be applied, so that

U(t)ψ − ψ = U(t)ψ − U(0)ψ =

∫ t

0

d

dt
U(s)ψds =

∫ t

0

1

i~
U(s)Aψds. (28)

which indeed converges to 0 as t→ 0.

Now that we have proven theorem 3.10, for bounded self-adjoint operators A, we will

proof that the theorem also holds for unbounded self-adjoint operators.

Proof. Consider an unbounded self-adjoint operator H on D(H). Define for t ∈ R

U(t) := e−
it
~ H = lim

λ→∞
e−

it
~ Hλ (29)

where Hλ is defined according to equation 17.

i We will prove that 8 holds for U(t), H, by using the equivalence relation under the

inner product of L2(R3) explicitly, as discussed in lemma 3.1, to deal with limit issues.

Notice also that the statement for operators implies that it works specifically for their

respective domains, and so D( ∂∂tU(t)) = D(U(t)A). Thus we will show that for any

φ ∈ D(H): 〈φ, i~ ∂
∂tU(t)ψ〉 = 〈φ,HU(t)ψ〉. This domain restriction of φ is justified by

the fact that H is self-adjoint.

Consider

i~
∂

∂t
〈φ,U(t)ψ〉 = i~

∂

∂t
〈φ, lim

λ→∞
e−itHλ/~ψ〉, (30)

We can bring the limit statement out of the integral using the dominated convergence

theorem, and, as we have seen in the bounded case, ∂
∂te
−itHλ/~ converges uniformly,

so we can again use the uniform convergence theorem to exchange the limits, so that

i~
∂

∂t
〈φ,U(t)ψ〉 = i~

∂

∂t
lim
λ→∞

〈φ, e−itHλ/~ψ〉 = i~ lim
λ→∞

〈φ, ∂
∂t
e−itHλ/~ψ〉 = i~ lim

λ→∞
〈φ, ∂

∂t
e−itHλ/~ψ〉,

(31)

and again, using the proof that 8 holds for bounded self -adjoint operators, we find

that

i~
∂

∂t
〈φ,U(t)ψ〉 = lim

λ→∞
〈φ,Hλe

−itHλ/~ψ〉. (32)
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To finish this proof, we first note that Hλe
−itHλ/~ψ = e−itHλ/~Hλψ and thus, for

ψ ∈ D(H),

lim
λ→
〈φ,Hλe

−itHλ/~ψ〉 = lim
λ→∞

〈φ, e−itHλ/~Hλψ〉, (33)

and we can bring the limit into the integral using dominated convergence theorem, so

that indeed

i~
∂

∂t
〈φ,U(t)ψ〉 = 〈φ,HU(t)ψ〉 = 〈ψ,U(t)Hψ〉. (34)

Furthermore, to recognise that this is also the full domain of ∂
∂tU(t), we note that

otherwise limλ→∞Hλ was a proper symmetric extension of H, which violates the

self-adjointness of H.

So indeed the equation 8 holds.

ii U(0) = I, equation 23 is clearly true, since for t = 0

lim
λ→∞

e−i0Hλ = lim
λ→∞

I = I. (35)

iii We will again proof equation 24 using equality. Consider some ψ, φ ∈ L2(R3). Using

dominated convergence, we can show that

〈φ,U(t+ s)ψ〉 = lim
λ→∞

〈φ, e−i(t+s)Hλ/~ψ〉. (36)

As we have seen that equation 24 in the bounded case, we can split this exponent, so

that

〈φ,U(t+ s)ψ〉 = lim
λ→∞

〈φ, e−itHλ/~e−isHλ/~ψ〉 = lim
λ→∞

〈eitHλ/~φ, e−isHλ/~ψ〉 = . (37)

Now, since eitHλ/~φe−isHλ/~ψ is simply a multiplication of sequences that are known

to converge, we can again use the dominated convergence theorem to bring the limit

into the integral, so that

〈φ,U(t+ s)ψ〉 = 〈U(−t)φ,U(s)ψ〉. (38)

To complete the proof, we point out that by writing U(−t) as its limit statement, and

bringing this to the other side of the inner product, shows that indeed U(−t) = U(t)∗,

so that we find

〈φ,U(t+ s)ψ〉 = 〈φ,U(t)U(s)ψ〉, (39)

completing the proof by equality 3.1.

iv Following the previous proof of equation 24 we can use that U(t)∗ = U(−t), as well
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as the fact that U(−t)U(t) = U(0) = I to show proof that indeed

||U(t)ψ|| = 〈U(t)ψ,U(t)ψ〉 = 〈ψ,U(−t)U(t)ψ〉 = 〈ψ,ψ〉 = ||ψ||, (40)

proving the property of 25

v U(t)ψ → ψ as t → 0 (strongly continuous). We will proof this for ψ ∈ D(H), then

by the fact that D(H) is dense in L2(R3), and that U(t) is bounded, this property

extends to L2(R3).

Consider some φ, ψ ∈ D(H) the function f(t) = 〈φ,U(t)ψ〉. As we have seen in the

proof of property 8, f(t)′ exists on D(H). By the fundamental theorem of calculus,

we know that

f(t)− f(0) =

∫ t

0

f(s)′ds, (41)

which goes to 0 as t→ 0. Thus indeed 〈φ,U(t)ψ〉 → 〈φ, ψ〉. This proofs that U(t)ψ →
ψ as t→ 0 in L2(R3).
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3.4 Fourier Transforms

We now know and have properly defined solutions to the Cauchy problem. However, doing

calculations with the operators in equation 21 is far from straightforward, forcing us to deal

with complex limit statements. To get the solutions as an expression of the initial value ψ0,

we turn to Fourier transforms. The Fourier Transform is an invertible operator on L2(R3),

that has very convenient mappings of differential operators like the Laplacian operator ∆,

allowing us to redefine our solutions in the form of integral operators. This makes it a very

important operator in the field of Quantum Mechanics.

Definition 3.10. Integral operators are linear operators K such that for some kernel func-

tion k(x, y) : R3 × R3 → C

Kψ(x) = 〈ψ, k(x, .)〉 =

∫
R3

k(x, y)ψ(y)dy. (42)

Given k(x, y) ∈ L2(R3 × R3), the integral operator K is a bounded operator on L2(R3).

Definition 3.11. The Fourier transform of a wave function ψ ∈ L1(R3) ∩ L2(R3) is given

by

Fψ(x) = (2π~)−3/2

∫
R3

ψ(y)e−
i
~y·xdy, (43)

where ‘·’ is the dot product on R3.

The existence and boundedness of the Fourier Transform on L1(R3) is quite straightfor-

ward. On L2(R3) however it is harder to prove, but here too it is bounded. This can be

proven in multiple ways, most directly by what is known as the Plancherel Theorem. [8,

A.18]

Since C∞c (R3) is dense in L2(R3), as well as consisting of functions that are integrable,

we can use the bounded linear extension theorem 3.5 to define F : L2(R3) → L2(R3). The

adjoint operator F ∗ is then its inverse, given by

F−1ψ(x) = (2π~)−3/2

∫
R3

ψ(y)e
i
~y·xdy. (44)

The usefulness of the Fourier transform lies in how it maps the differential operators, and

how it allows us to define integral operators on L2(R3).

Consider the operator p = −i~∇x, and some function ψ ∈ D(∆). We can use the proof

that ∆x is symmetrical (6.1) on its domain D(∆) ⊂ L2(R3), so that

F (pψ)(x) = (2π~)−3/2

∫
R3

(−i~∇y)ψ(y)e−
i
~x·ydy = (2π~)−3/2

∫
R3

ψ(y)(−i~∇y)e−
i
~x·ydy

= xFψ(x).

20



And similarly, consider |p|2ψ = −~2∆xψ, where |.| is the vector norm |k|2 =
∑
n k

2
n,

where n = 3,

F (|p|2ψ)(x) = (2π~)−3/2

∫
R3

(−~2∆y)ψ(y)e−
i
~x·ydy

= (2π~)−3/2

∫
R3

ψ(y)(−~2∆y)e−
i
~x·ydy

= |x|2Fψ(x).

(45)

We can use this to easily construct operators as sums of p or |p|2, as long as the sum
∑
n kn

converges in R3 or R respectively.

Consider g(k), a function such that g(k) :=
∑∞
n an|k|2n, n ∈ N. Then we can define the

operator g(p) on L1(R3) ∩ L2(R3) by

F (g(p)ψ)(k) =

∞∑
n

an|k|2nF (ψ)(k) = g(k)Fψ(k), (46)

and taking the inverse Fourier transform to find g(p)ψ.

Definition 3.12. Given a function g(k) on R3 such that g(k) =
∑∞
n an|k|2n, n ∈ N, then

the operator g(p) on L1(R3) ∩ L2(R3) is defined by

g(p)ψ(x) := F−1(gFψ)(x). (47)

To get an expression for such an operator in integral operator form, we now define the

convolution of functions.

Definition 3.13. Consider functions f , g ∈ L2(R3), then the convolution of f and g is

given by

(f ∗ g)(x) :=

∫
R3

f(y)g(y − x)dy. (48)

The convolution of function under the Fourier transform has a few useful properties.

Most notably are the following:

F (f ∗ g) = (2π~)3/2F (f)F (g), and, (49)

F (fg) = (2π~)−3/2F (f) ∗ F (g). (50)

We can use these properties to rewrite the operator g(p) above as an integral operator,

F−1F (g(p)ψ)(x) = F−1[g(k)Fψ(k)](x) = (2π~)−3/2(F−1g ∗ ψ)(x), (51)

which defines a direct expression for the operator as a function of ψ.
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4 Free Electron

We will sketch an idea of how quantum mechanics differs from the way we view problems

compared to the approach of Classical Mechanics. This difference will be outlined by ana-

lyzing the respective models of a free electron, an electron that is not subject to any outside

forces or potentials.

4.1 Classical Particle

In classical mechanics we can usually simplify particles as consisting of a constant mass, m,

usually centered around a single coordinate in space, the ‘center of mass’. We consider this

coordinate, denotated by x, to represent the position of our particle in space. We can track

this position in space as a function over time:

x : R −→ R3

t 7−→ x(t)

Considering the location as a function of time allows us to consider the motion of the electron

in our model. The velocity of this particle is then given by

v(t) = ẋ(t), or, v(t) = d
dtx(t), and its acceleration by a(t) = ẍ(t) or a(t) = d2

dt2x(t).

Classical mechanics has models for the acceleration and velocity of this particle that we

can use here. Newton’s laws, the laws of motion, and the law of inertia show us that, in

the problem of our free electron, where there is no outside force applied to our electron,

the acceleration of the electron is 0. Using Newton’s second law of motion, where the force

applied is assumed to be 0, the mass is assumed to be constant, we find for t ∈ R

F =
d

dt
mv(t) = ma(t) =⇒ ma(t) = 0 (52)

We can use this acceleration of 0 to give a better description of the velocity and the position

of our electron over time. We call this the evolution of our function x. For example, giving

a starting position x0 ∈ R3 at time t0 ∈ R, we could describe the position of our electron at

time t ∈ R by ẋ(t) =
∫ t
t0

0ds

x(t) =
∫ t
t0
ẋ(t0)ds

=⇒

ẋ(t) = ẋ(t0)

x(t) = ẋ(t0)t+ x0

, (53)

or, given some initial velocity v0 = ẋ(t0):v(t) = v0

x(t) = x0 + v0t
(54)
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So now we have a system that fully predicts the position and speed of our electron at

any point in time, given some initial position and velocity.

4.2 Quantum Particle

Now we will analyse and model the same problem, using Schrödinger’s model for Quantum

Mechanics.

In classical mechanics, we made the assumption that the electron occupied a single point

in space, and modeled this location by the function x(t) : R→ R3. In quantum mechanics,

we can not simplify the problem to a single coordinate, instead we model the ‘location’ of

an electron in the form of a wave function ψ(x) : R3 → C, ψ(x) ∈ L2(R3) that we can use

to extrapolate the probability of finding the electron in some space, using the probability

distribution function

|ψ(x, t)|. (55)

The state of the electron however may not be constant, so we would like to track the

state of the electron as it changes over time, as we did in the classical model. So we consider

time dependent functions, where the wave function at time t ∈ R is ψ(·, t) : R3 → C,

ψ(., t) ∈ L2(R3). We assume to know the state of the electron at some point in time, t0:

ψ(x, t0) = ψ0(x). (56)

Furthermore, we assume that the function |ψ0(x)|2 is a probability distribution that predicts

where the electron will express itself at time 0. Thus,
∫
R3 |ψ0(x)|2dx = ||ψ0||2 = 1.

In classical mechanics, we used Newton’s laws to describe how our system might evolve

over time. Now, we use Schrödinger’s equation 8 instead. In the case of the free electron,

the wave function is not subject to any energy potential, so V (x) = 0. The Cauchy-Problem,

or initial-value problem of our free electron problem then isi~ ∂
∂tψ(x, t) = − ~2

2m∆xψ(x, t),

ψ(x, t0) = ψ0(x).
(57)

To find the solution to this Cauchy-Problem, we define the Schrödinger operator of this

system H0:

H0 = − ~2

2m
∆x. (58)

This linear operator is a scalar multiple of −∆x, as such it is an unbounded and self-adjoint

linear operator. A proof that −∆x is unbounded and self-adjoint can be found in the

mathematical Supplement 6.1.

It follows from the theorem on conservation of probability 3.9 that the evolution equation

of the Cauchy-problem then conserves probability, and the dynamics exist. Thus for any
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solution ψ, |ψ(., t)|2 functions as a proper probability distribution for any t, describing where

the electron can be detected in space at that time. Furthermore, we have seen that for a self

adjoint Schrödinger operator, the solution to this Cauchy-problem is the unique solution

given by

ψ(x, t) = U(t− t0)ψ0(x) (59)

where U(t) = e−itH0/~.

The solution of the Cauchy-problem 57 is thus a wave function:

ψ(x, t) = e−
i
~ (t−t0)H0ψ0(x) (60)

Using the property U(t)U(s) = U(t+s) described in theorem 3.10, we can arbitrarily choose

any starting time t∗0, by considering instead the initial value ψ∗0 = U(t∗0− t0)ψt0 . Thus going

forward we will for simplicity assume t0 = 0.

Can we find an expression for this function? Although the operator U(t) is well defined,

the limit statement is not an expression of our solution in terms of ψ0. Instead, we would

like to find the integral operator form of our solution. To find such an expression we will

use Fourier Transforms.

Consider the function

g(k) = e−
it

2m~ |k|
2

=

∞∑
n=0

1

n!
(
it

2m~
|k|2)n (61)

where k ∈ R3, and |k|2 is
∑
k2
i , i ∈ {1, 2, 3}. This function g is called a Gaussian function,

or simply Gaussian.

Then, as we saw in 3.12, we can define the operator g(p), where p = −i~∇x, |p|2 =

−~2∆x, using the Fourier transform:

g(p)ψ(x) = F−1(g(x)Fψ(x)) so that

g(p) = e
−it~
2m ∆x

(62)

defines the same operator on D(∆) as the operator U(t). Using equation 51, we find that

this solution can be expressed as

g(p)ψ = (2π~)−3/2(F−1g ∗ ψ). (63)

The inverse Fourier transform of the Gaussian is known [10, sec 12.3] to be

F−1g(x) = (
it

m
)−3/2e−

im
2ht |x|.
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Using equation 63 we are left with the following representation of the solution:

ψ(x, t) = U(t)ψ0(x) = (2π~
it

m
)−3/2

∫
R3

e
im
2~t |x−y|

2

ψ0(y)dy. (64)

To conclude this section, we would like to show that under the right circumstances,

this wave function has comparable behavior to what we would expect given the classical

model. Namely, we point out that if the Fourier transform of the initial condition is localized

around some point k0 ∈ R3, then our solution is localized around x = vt for some v. We

say that a (wave) function is localized around k if there is some small neighborhood, say

Br(k) = {x ∈ R3||x− k| ≤ r} around point k, such that the wave function approaches 0 at

an at most exponential rate outside of this neighborhood.

We rewrite equation 64 to show this. Using |x− y|2 = |x|2 − 2(x · y) + |y|2, we can split

the exponent so that

ψ(x, t) = (2π~
it

m
)−3/2

∫
R3

e
im
2~t |x|

2

e−
im
~t (x·y)e

im
2~t |y|

2

ψ0(y)dy.

Now we define for t ∈ R \ {0}, ψt(y) := ei
m|y|2
2~t ψ(y), so that

ψ(x, t) = (2π~
it

m
)−3/2e

im
2~t |x|

2

∫
R3

e−
i
~ (mt x·y)e−

im
2~t |y|

2

ψ0(y)dy

= (
it

m
)−3/2e

im
2~t |x|

2

Fψt(
m

t
x).

(65)

We would like to show that if Fψ(k) is localized around k0, Fψt(k) is also localized

around k0, because then we can clearly see that ψ(x, t) is indeed localized around k0 = m
t x.

To show this localization, we show that

ψt = e
im
2t~ |·|

2

ψ → ψ as t→∞. (66)

in L2(R3). First we note that ψt(y) clearly converges point wise, in fact it converges abso-

lutely,

|e im2t~ |y|
2

ψ(y)− ψ(y)| = |(e im2t~ |y|
2

− 1)ψ(y)| ≤ |e im2t~ |y|
2

− 1||ψ(y)| ≤ |ψ(y)|. (67)

Furthermore, since |e im2t~ |·|2 | = 1, we can use the Dominated convergence theorem [6, Thm

A.19] to show that

lim
t→∞

Fψt(k) = lim
t→∞

(2π~)−3/2

∫
R3

e−
i
~k·xe

im
2t~ |x|

2

ψ(y)dy

= (2π~)−3/2

∫
R3

e−
i
~k·xψ(y)dy = Fψ(k),

(68)
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thus Fψt is indeed localized around k0 for high t. Using this, we can see that the function

in equation 65 is localized around k0 = m
t x, or x = k0

m t. Which matches the classical

description of a particles evolution, with v = k0
m .
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5 Conclusion

In this thesis, we have outlined the basic Schrödinger model of quantum mechanics using

mathematical theory, focused specifically on functional analysis and applied this to the

problem of a free electron. We began by considering some key physical insights to justify

the model in general terms, and then used theory on Hilbert spaces to define the model

mathematically. Then we provided an overview the necessary operator theory to describe

solutions for the model. Specifically, we noticed that self-adjointness of such operators was

a key component in finding such solutions. We used this theory to define solutions in the

form of exponentials of operators 3.9. Then we used theory on Fourier transforms to find

expressions for such solutions.

Using this overview of the mathematics behind the Schrödinger model of quantum me-

chanics we attempted to describe the behavior of a free electron and contrast it with the

classical view on the behavior of particles. This left us with the expression 64. As discussed,

unlike the classical view of particles, the solution to the Schrödinger model came in the form

of a wave function, that we use to describe the electron in a probabilistic sense. However,

we showed how this description for the free electron could still match our ideas in classical

mechanics to some degree.

Sadly, some details have been skipped over in this report. Notably, the equivalence

between our used definition of self-adjointness and the prevailing definition in mathematical

literature is not proven. Similarly, some complex proofs involving the denseness of C∞c (R3)

and the definition of L2(R3) have been only touched on. Luckily, interested readers can

find more information to these issues in our frequently used sources [6][8][7]. We have also

avoided using Spectral theory, which severely limits what this thesis can cover. We refer to

[4][6][8] for an in-depth look at this theory.

27



6 Mathematical Supplement

Lemma 6.1. The Laplacian operator is symmetrical on C∞c (R3), and has a unique self-

adjoint closure on L2(R3). We say that the Laplacian operator is essentially self adjoint.

Proof. This proof roughly follows the work of [11]. First we will prove that the Laplacian

is symmetrical on C∞c (R3), so we prove that, for any ψ, φ ∈ D(∆):

〈∆ψ, φ〉 = 〈ψ,∆φ〉.

Let φ, ψ ∈ C∞c (R3). As they are both compactly supported, ∃U ⊂ R3 an open subset,

with smooth bounds, s.t. φ, ψ are 0 on U c, the compliment of U . Their derivatives are also

0 on U c.

Applying Green’s First Identity [10, 7.1], to ψ, φ, we know that∫
U

ψ(x)∆φ(x) +∇ψ(x) · ∇φ(x)dx =

∫
∂U

ψ(s)(∇φ(s) · ~n)ds, (69)

where ∂U is the boundary set of U , ~n is a directed normal vector.

This is effectively integration by parts in higher dimensions. Notice however that φ, ψ

and their derivatives are explicitly 0 on ∂U , and as a result, the integral on the right equals

0. As a result, we find that for our functions ψ, φ∫
U

ψ(x)∆φ(x) +∇ψ(x) · ∇φ(x)dx = 0.

Applying this same trick twice, we see that,∫
U

ψ(x)∆φ(x)dx = −
∫
U

∇ψ(x) · ∇φ(x)dx =

∫
U

∆ψ(x)φ(x)dx.

Since we have defined ψ and φ to both be equivalent to 0 outside of the set U , these

statements imply that ∫
R3

ψ(x)∆φ(x)dx =

∫
R3

∆ψ(x)φ(x)dx.

Using the fact that ∆φ = ∆φ, this proves symmetry of the Laplacian on C∞c (R3).

Now that we have proven that the Laplacian on C∞c (R3) is symmetric, we can use

the Closure theorem for symmetric operators 3.7 to show that there is a symmetric closed

operator that extends this Laplacian. Unless specified otherwise, as we do in this proof,

when refer to the Laplacian on D(∆) ⊂ L2(R3), this closure is what we refer to. To prove

our lemma, we need to show that this closed operator is self-adjoint. This proof comes in
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two parts, first we need to show that there is for any sequence (φn) ⊂ C∞c (R3),

(∆ + i)φn → ψ (70)

implies that φn converges to some φ in L2(R3). Then, since ∆ is closed, (∆ + i)φ = ψ.

Second, we need to prove that the range of the Laplacian on C∞c (R3) is dense in L2(R3),

so that such a convergent sequence exists for every element of L2(R3).

Let some sequence (φn) ⊂ C∞c (R3), such that

(∆ + i)φn → ψ (71)

as n→∞. Then φn is Cauchy and for m > n,

||(∆ + i)(φn − φm)|| → 0

as n,m→∞. Using that ∆ is symmetric, we can show that

||(∆ + i)(φn − φm)||2 = 〈(∆ + i)(φn − φm), (∆ + i)(φn − φm)〉

= 〈(∆− i)(∆ + i)(φn − φm), (φn − φm)〉

= 〈(∆2 + 1)(φn − φm), (φn − φm)〉

= ||∆(φn − φm)||2 + ||ψn − ψm||2 → 0,

and thus indeed ||ψn − ψm||2 → 0, thus (ψn) is Cauchy and converges in L2(R3).

To prove that the range of the Laplacian on C∞c (R3) is dense in L2(R3), we show that

its orthogonal complement is {0}, or equivalently, that for φ ∈ C∞c (R3),

〈φ, (∆ + i)ψ〉 = 0 for all ψ ∈ C∞c (R3) =⇒ φ = 0. (72)

Consider such a φ, then by the symmetry of the Laplacian,

〈φ, (∆ + i)ψ〉 = 〈(∆− i)φ, ψ〉 = 0 (73)

for all ψ ∈ C∞c (R3). By equivalence, we know that (∆− i)φ = 0, and thus iφ = ∆φ. Using

the Fourier transform (3.11), we can see that this is only possible for φ = 0, since the system

F (zφ)(x) = zFφ(x)

F (∆φ)(x) = − 1

~2
|x|2Fφ(x)

only has the solution φ = 0.
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Lemma 6.2. For any unbounded self-adjoint operator A, the family of operators defined by

Aλ :=
1

2
λ2
(
(A+ iλ)−1 + (A− iλ)−1

)
for λ > 0, (74)

for λ ∈ R, λ 6= 0, are bounded operators such that

Aλ → A as λ→∞. (75)

Proof. To prove this, we will construct some Bλ, such that Aλ = BλA on D(A). Then, by

showing that Bλ → I as λ→∞, we prove our initial claim.

Let A a self-adjoint operator, then R(A + iλ) = H for any λ ∈ R, λ 6= 0, where H is

some hilbert space. Then, for any φ ∈ D(A), we can find some ψ1, ψ2 ∈ H, such that(A+ iλ)ψ1 = Aφ

(A− iλ)ψ2 = Aφ.
(76)

We can solve for ψ1 and ψ2 in this equation using two slightly different methods. Firstly,

since the resolvent operator exists and is bounded and linear (3.7), we can see thatψ1 = (A+ iλ)−1Aφ

ψ2 = (A− iλ)−1Aφ,
(77)

and thus we find that

(ψ1 − ψ2) =
(
(A+ iλ)−1 − (A− iλ)−1

)
Aφ. (78)

Alternatively, we can solve the equations 76 for ψ1, ψ2 as follows. First we consider for

ψ2 that,

(A− iλ)ψ2 = Aφ− iλφ+ iλφ = (A− iλ)φ+ iλφ,

and again using the resolvent operator (3.7), we see that

ψ2 = φ+ (A− iλ)−1iλφ = φ+ iλ(A− iλ)−1φ. (79)

Similarly, we can show that

ψ1 = φ− iλ(A+ iλ)−1φ. (80)

Combining equations 80 and 79 we can find an second equality,

ψ1 − ψ2 = −iλ
(
(A+ iλ)−1 + (A− iλ)−1

)
φ, (81)
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which, comparing it to our definition of Aλ, implies that

Aλφ =
1

2
iλ(ψ1 − ψ2). (82)

Plugging our first equation 78 into this equality, we find that

Aλφ =
1

2
iλ(ψ1 − ψ2) =

1

2
iλ
(
(A+ iλ)−1 − (A− iλ)−1

)
Aφ. (83)

Thus we construct the operator

Bλ :=
1

2
iλ
(
(A+ iλ)−1 − (A− iλ)−1

)
, (84)

such that Aλ = BλA.

Now we would like to show that this Bλ → I as λ→∞ on D(A).

Using the equations 79, 80, we now consider,

1

2
(ψ1 + ψ2) =

1

2

(
2φ− iλ(A+ iλ)−1φ+ iλ(A+ iλ)−1φ

)
= Iφ−Bλφ = (I −Bλ)φ,

which tells us that if ψ1 +ψ2 converges to 0, Bλ indeed converges to I on D(A). We consider

ψ1 + ψ2 using equations 77, to find

1

2
(ψ1 + ψ2) =

1

2

(
(A+ iλ)−1 + (A− iλ)−1

)
Aφ,

which is easier to evaluate as λ→∞. Using the upper bound for the resolvent operator 16,

we find that

||(I −Bλ)φ|| = ||1
2

(
(A+ iλ)−1 + (A− iλ)−1

)
Aφ|| ≤ 1

|λ|
||Aψ|| → 0 (85)

as λ→∞, proving the lemma.

Lemma 6.3. Let A an unbounded linear operator, then the family of operators

eiA := lim
λ→∞

eiAλ (86)

, where Aλ is defined by 17 is well-defined.

Proof. We prove this lemma by showing that eiAλ is a cauchy family, meaning that

||eiAλ − eiAλ′ || → 0 as λ, λ′ →∞, λ′ > λ. (87)
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We begin by recognising that eiAλ is an operator that satisfies the properties outlined in

theorem 3.10, up to the use of a constant ~, thus satisfying properties 22 and 24. As such

we can use the fundamental theorem of calculus to show that

eiA
′
λψ − eiAλψ =

∫ 1

0

∂

∂s
eisAλ′ ei(1−s)Aλds,

and using the chain rule

eiA
′
λψ − eiAλψ =

∫ 1

0

(iAλ′ − iAλ)eisAλ′ ei(1−s)Aλψds.

To evaluate the limit of this family, we consider

||eiAλ − eiAλ′ψ||2 = ||
∫ 1

0

eisAλei(1−s)Aλ′ i(Aλ −Aλ′)ψds||2

≤
∫ 1

0

||eisAλei(1−s)Aλ′ i(Aλ −Aλ′)ψ||2ds.
(88)

This inequality holds, because the norm on the right hand side is continuous over time,

as we have seen proving theorem 3.10 for bounded operators, and thus is Riemann integrable

in s. We will show that the inequality is true below. Consider

f(s, x) = eisAλei(1−s)Aλ′ i(Aλ −Aλ′)ψ(x),

then∫
R3

|
∫ 1

0

f(s, x)ds|2dx ≤
∫
R3

∫ 1

0

|f(s, x)|2dsdx =

∫ 1

0

∫
R3

|f(s, x)|2dxds =

∫ 1

0

||f(s, .)||ds.

Proving the inequality in equation 88.

Furthermore, since eiAλ meets the property of equation 25 in theorem 3.10,

||eiAλ − eiAλ′ψ||2 ≤
∫ 1

0

||eisAλei(1−s)Aλ′ i(Aλ −Aλ′)ψ||2ds =

∫ 1

0

||(Aλ −Aλ′)ψ||2ds

= ||(Aλ −Aλ′)ψ||2.
(89)

We have shown in lemma 6.2 that Aλ indeed converges on DA, thus eiAλ also converges on

this domain, proving the lemma.
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