
 Eindhoven University of Technology

BACHELOR

KMC modelling of light induced halide segregation in perovskite solar cells

van Belois, Allard

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/908b2454-9ab9-4889-8b03-293fe80b354a

Bachelor Final Project

KMC modelling of light induced halide
segregation in perovskite solar cells

June 14, 2021

Allard van Belois

1356852

Bachelor Applied Physics and Bachelor Applied Mathematics

Supervisors:
Prof. Dr. P.A. Bobbert (Applied Physics)

Dr. S. Tao (Applied Physics)
Dr. B. Baumeier (Applied Mathematics)

Z. Chen MSc (Applied Physics)
R.H.J. Gerritsen MSc (Applied Mathematics)

Eindhoven, June 14, 2021

Abstract

Halide perovskites are currently researched for solar energy applications due to their high efficiency
and tunable band gap. This material, however, faces instability issues under illumination, as the mixed
halides segregate. The segregation leads to iodine rich zones, which have a lower band gap. The segrega-
tion is assumed to be powered by this lowering of the band gap as the excited charge carriers funnelled to
these low band gap regions reduce their free energy. The segregation is believed to be vacancy-mediated
halide diffusion that is prone to segregation. In this thesis, a current kMC model and code used to
simulate this halide segregation are looked at. The current code showed issues with speed as well as
scaling for the amount of unit cells. The current kMC code runs systems of 12x12x12 unit cells in the
order of days and the simulation time scales quadratically with number of unit cells. The amount of
memory needed to run the simulations also scales quadratically and has been problematic. In this thesis
a new code is developed and shown to linearise the simulation time with respect to the number of sites.
Furthermore, the code is able to simulate systems of size 20x20x20 within half an hour, which is a huge
improvement to the weeks that the simulation with the Python code would take. These results have been
achieved by restructuring the code and parallelising parts of the calculation. The code and model are
shown to perform most efficiently for showing segregation in regards to simulation time for low numbers
of vacancies, as the amount of vacancies is shown not to correlate with the required steps for segregation
to occur. However, unexpected results have been produced, as the iodine rich zones stopped growing
in this model, while the experimental observations produce opposing results. It is hypothesised this
behaviour is due to the small simulation box, however, this needs to be looked into before conclusions
can be drawn from the model.

1

Contents

1 Introduction 4
1.1 Perovskite solar cells . 4
1.2 Light-induced segregation . 5
1.3 Modelling . 6
1.4 Scope and contents of the thesis . 6

2 Theory 8
2.1 Thermodynamics . 8
2.2 Kinetic Monte Carlo . 9
2.3 Random Number Generator . 10

3 Model Set-Up 11
3.1 General Set-Up . 11
3.2 Rate . 11
3.3 Energy . 11
3.4 Assumption justification . 12

3.4.1 Coinciding events . 12
3.4.2 Halide diffusion . 12
3.4.3 Carrier influence . 13
3.4.4 Memoryless processes . 13

3.5 Parameters . 13
3.5.1 Simulation steps . 13
3.5.2 Size of the model . 13
3.5.3 Vacancy concentrations . 14
3.5.4 Energy parameters . 14

4 Code 15
4.1 Python Code . 15
4.2 C++ Code . 17

4.2.1 Topology and next event list . 18
4.2.2 Time . 19
4.2.3 Parallelisation . 19
4.2.4 Information Retention and Summing . 19

4.3 Performance . 19
4.3.1 Direct comparison . 20
4.3.2 Order of algorithms . 20
4.3.3 Test case . 24
4.3.4 Further speed improvements . 24
4.3.5 File export reduction . 25
4.3.6 Set-up linearisation . 25
4.3.7 Parallelisation . 26

5 Modelling Results 27
5.1 Method and Data Analysis . 27

5.1.1 Segregation measure . 27
5.1.2 Visualisation . 27

5.2 Band gap radius . 29
5.3 Carrier density . 30
5.4 Halide ratio . 33
5.5 Vacancy density . 33

6 Conclusion and outlook 36
6.1 Outlook . 36

2

A Table of parameters 40

B Manual code 41

1 Introduction
The current energy transition from fossil fuels to renewable alternatives relies on the innovation of green
technologies that make renewable energy more efficient [1]. Within solar energy technology, perovskite solar
cells have shown promising results with a rapid efficiency increase from 15% in 2013 to 25% in 2020 and
lower costs than the conventional SiO2 based solar cells, which has a maximal efficiency of 27.6% [2, 3].
Furthermore, perovskites do not need rare earth metals to reach such high efficiencies, which makes them
more widely available for the coming decades [2]. In this thesis a problem concerning segregation of the
halides in mixed halide perovskite cells is investigated. In this section, the perovskite solar cells, the problem
and the investigation method are discussed.

1.1 Perovskite solar cells

In perovskite solar cells the photo-active layer is the perovskite crystal. Perovskites are a group of crystals
that have the general chemical composition of ABX3, where A is an organic or inorganic cation, B is a metal
cation and X is a halide anion. Note that each component can be a mix throughout the crystal, i.e. A
can be a mixture of methylammonium and caesium. In solar applications these metal-halide perovskites are
studied for their efficiency. One of the advantages in metal-halide perovskites is the tunability of the band
gap by compositional alloying at X sites. This makes mixed halide perovskites useful for the applications in
tandem solar cells, which are solar cells with two stacked photoactive layers with different band gaps. In this
research the tunable perovskite methylammonium lead bromine iodine (MAPBI) is modelled. The closely
resembling methylammonium lead iodide (MAPI) is shown in Figure 1.

Figure 1: A schematic drawing of a methylammonium lead iodide (MAPI) crystal. In the centre the methy-
lammonium ion (brown/grey) is depicted, surrounded by octahedrons of halide ions (purple) with lead ions
(green) in the centre. For MAPBI, the halide ions are either iodine or bromine. The purple lines depict the
nearest neighbour’s relation between halides. Source: Eames et al. (2015) [4].

Perovskite solar cells convert sunlight into electric energy. The perovskite absorbs a photon, which creates an
electron hole pair. These charge carriers are drawn to opposite sides by an anode and cathode respectively.
The energy that an excited charge carrier has, depends on the band gap of the absorbent layer. The band
gap also determines accordingly what wavelengths of light are absorbed. What wavelengths are absorbed is
relevant for the efficiency of the cell [5]. Furthermore, highly efficient multi-junction cells are possible if the
absorbing spectra of the multiple cells do not overlap starkly [6, 7]. As stated before MAPBI has a tunable
band gap. The band gap of MAPBI increases continuously from 1.57 eV to 2.29 eV with an increasing
concentration of bromine [8, 9, 10].

4

1.2 Light-induced segregation

An issue that mixed halide perovskites face is the segregation of halides under illumination. The band gap of
the solar is only well-tuned if the halides are mixed homogeneously throughout the crystal. The segregation
of the halides leads to domains with different band gaps, which leads to a lower efficiency and loss of the band
gap tunability. When MAPBI is exposed to continuous illumination, it is observed that zones of high iodine
concentration arise from the mixed phase [9, 11, 12, 13]. In Figure 2 a schematic of the light induced halide
segregation in mixed halide perovskites is shown. The segregation can be observed in photo-luminescence
experiments. A MAPBI crystal is illuminated and the light that is re-emitted is measured. The energy of
this re-emitted light corresponds to the band gap of the regrouped photocarrier’s location in the crystal.
It is observed that suddenly all re-emitted light starkly red shifts, which strongly suggests that the iodine
rich phases behave as carrier traps [11, 12, 13]. The photocarriers hop to the zones with lower band gaps
and remain there, until they decay and emit light with energy equal to the local band gap. This so called
funnelling effect causes these photocarriers to lower their free energy and make the solar cell lose efficiency.
The segregation reverses when the cell is placed in the dark afterwards, which suggests that the phenomena
is of a thermodynamic nature [14].

Figure 2: A schematic drawing of light induced halide segregation. The red zones in the light represent
iodine rich regions where the band gap is lower, while the green zones represent bromine rich zones where
the band gap is higher. The transition from the mixed phase in the dark to the segregated phase in the light
is a reversible process. Source: Brennan et al. (2017) [15].

Light-induced segregation can be explained by the lowering of free energy of the charge carriers. When
charge carriers get excited, they funnel to regions with lower band gaps within the crystal[11, 12]. The free
energy is reduced by this funnelling behaviour. When iodine-rich region grow, the free energy of the system
is further reduced, leading to phase separation. Other theories about the driving force of the growth of iodine
rich zones include that illumination creates polaron-induced strain gradients [16], or that local electric fields
are formed by electron-hole pairs at the surface [17] or in the film [18], or that the carrier formation has a
strong gradient in the thickness [19]. These theories do not, however, account for the observed illumination
threshold [12]. Therefore, in this research it is assumed that the lowering of free energy of the carriers are
the driving force behind the segregation of the halides, since it does account for the illumination threshold
[14].

The segregation mechanism is assumed to be vacancy-guided halide diffusion. Vacancies are empty halide
sites throughout perovskite crystals that are caused by impurities [20, 21]. The neighbouring halide ions can
move into this vacancy and as such, change the local concentration of bromine and iodine and band gap [20,
21]. In Figure 1, this is equivalent to a halide moving from one halide site to another site connected with
a purple line. In dark conditions, the halides randomly diffuse through the crystal and a perfect mixture is
obtained. In illuminated conditions, however, jumps that lower the local band gap, and as such lower the

5

free energy of the funnelling charge carriers, occur at a higher rate [9, 12]. The lowering of the local band
gap is equivalent to increasing the local iodine concentration or lowering the local bromine concentration,
hence this results in iodine and bromine segregation.

1.3 Modelling

To test whether the theory concerning vacancy-guided halide diffusion matches experiments, a kinetic Monte
Carlo (kMC) model is used. The kMC model in this thesis is a continuation of previous models [16, 9, 22].
The model assumes that the segregation is driven by the lowering of free energy due to the funnelling be-
haviour of photocarriers. In this model it is assumed that these carriers instantaneously diffuse such that
they follow Boltzmann statistics. The charge carrier density is sufficiently low for Boltzmann statistics to
better describe the system than Fermi-Dirac. The lowering of free energy only occurs if the local band gap
changes due to different concentrations of bromine and iodine ions. Therefore, in this model the fraction
bromine of the halide ions within a sphere around each lead ion is taken and the band gap of an infinite crys-
tal with equal concentration is assigned to the lead ion. The radius of this sphere is an arbitrary parameter,
since no method of deriving it is known and matching to experiments has not been possible. The radius is
assumed to be somewhere between 1.5 and 4 times the length of a unit cell. The current models simulate
a cubic system of 12x12x12 unit cells with periodic boundary conditions to imitate an infinite crystal. The
experimentally observed segregation takes in the order of seconds. Simulating this would currently take an
enormous amount of computation time. For this reason, photocarrier density are taken at higher levels than
real situations as it is hypothesised that this speeds up the segregation. The vacancy density in the model is
also higher than realistic values, since otherwise no vacancies would be present in the simulation box, which
are relatively small in comparison to solar cells.
The goal of this model is to match experimental observations and thermodynamic theory and make pre-
dictions about halide segregation. To achieve this goal, larger simulation boxes need to be simulated to
prevent the periodic boundary conditions from influencing the results. The radius used for the total band
gap is sometimes over a third of the box, which makes it unlikely or nearly impossible to have multiple
iodine rich zones forming simultaneously. For this thesis a 20x20x20 unit cells simulation is set as a mini-
mum goal. Besides periodic boundary conditions interfering, the model is random and therefore statistically
sound conclusions require multiple runs. The current code, however, limits the possibilities to get rid of these
interferences. The current code takes days to simulate a single 12x12x12 system. Furthermore, the time it
takes to simulate, scales quadratically with the number of unit cells in the box. As an example, a single
simulation of 20x20x20 unit cells would take months. Moreover, as running a single simulation of 12x12x12
takes a matter of days, producing statistically significant results by having multiple runs is computationally
costly.
In this thesis the current model is reimplemented with a different approach, which reduces the computational
costs of running the simulation and therefore speed up the simulation. Furthermore, the main calculations
are parallelised such that a multithreaded simulation is possible. Moreover, the code is rewritten in C++ in
stead of Python to enhance the performance further. It is attempted to linearise the simulation time as a
function of the amount of unit cells to make simulation of larger boxes possible within reasonable amounts
of time.

1.4 Scope and contents of the thesis

In this thesis the kMC modelling of light induced halide segregation in MAPBI is discussed. The goal is
to create a code that can simulate systems of 20x20x20 unit cells within a reasonable time, i.e. an hour,
and that scales well with increasing number of unit cells. Furthermore, the behaviour of the model for
different parameters, like the illumination, local band gap radius and number of vacancies, with respect to
the experimental observations and thermodynamic theory is also looked into. To achieve these goals, first
in Section 2 the thermodynamic theory of thermodynamics of the segregation is discussed, as well as the
mathematical background of kMC modelling. Next in Section 3 the model is elaborated, along with the
assumptions and all governing equations. The parameters of the model are explained as well with their
respective range of values. In Section 4 the current implementation in Python is elaborated, then the C++
code that has been written for this thesis is discussed, for which the most important improvements with
respect to the Python code are highlighted. The performance on speed and scaling of the two implementations
is then compared and discussed. In Section 5 first the method of data analysis is discussed, as well as the

6

visualisation techniques. Then some results of the model are discussed to verify the viability of the model
as well as a recommendation on how the model should be used. It is attempted to find a relation between
the parameters of the model and segregation. Some future research suggestions are given as well. Finally
in Section 6 the value and improvements of the model is summarised and final recommendations on the
following research are given.

7

2 Theory

2.1 Thermodynamics

The behaviour of halide segregation is predicted by a unified thermodynamical theory [14]. In this theory
it is shown that, in accordance to experimental results, MAPBI is stable in the dark at room temperature.
The experimentally observed threshold illumination level is shown to be in accordance to the theory, where
a threshold photocarrier density is shown to exist. In the unified theory the behaviour of the perovskite is
seen as the joint effect of two driving mechanisms. On the one hand, there is the segregating effect caused
by the free energy lowering demixing. On the other, there is the mixing effect of entropy which also lowers
the free energy. By determining an equation for the free energy and using the equation for the mixing
free energy, the spinodal and binodals can be determined in the concentration of bromine and temperature
phase diagram. With these known, the stable, metastable and unstable regions in the phase diagram can be
determined. The influence of the illumination level can clearly be seen in in Figure 3. With illumination, high
concentrations of bromine become metastable at room temperature. The lower limit for what concentration
of bromine is stable decreases with increasing illumination. It is shown that at illumination equivalent to
one sun, concentrations above roughly 50% are unstable. The theory also suggests the existence of a triple
point, at which three different phases can coexist. This triple point has yet to be experimentally observed.
The model described in this thesis uses the same assumptions about the mechanism of segregation. It is
therefore interesting to see whether the model produces corresponding results for what phases are stable.
This not done in this thesis, but could be done by using photocarrier densities equivalent to those from
Figure 3 with different bromine concentrations and temperatures.

2 0 0

2 5 0

3 0 0

3 5 0

1 5 0

Te
mp

era
tur

e,
T (

K)

 D a r ka 1 0 - 9 / f . u .b

0 0 . 2 0 . 4 0 . 6 0 . 8

2 0 0

2 5 0

3 0 0

1 5 0
B r o m i n e c o n c e n t r a t i o n , x

 1 0 - 7 / f . u .c

0 0 . 2 0 . 4 0 . 6 0 . 8 1

 1 0 - 5 / f . u .d

Figure 3: The temperature bromine concentration phase diagrams for MAPBI at different levels of photo-
carrier densities n=0 (dark), 10-9, 10-7, and 10-5 per formula unit (f.u.). Red lines: spinodals separating
the metastable (grey) and unstable (pink) regions. Full blue and green lines: binodals separating the sta-
ble (white) and metastable regions, with the blue (green) lines indicating the compositional (light-induced)
binodals. When entering the metastable region by crossing the compositional (light-induced) binodals, nu-
cleation of a phase with a Br concentration indicated by the dashed blue (green) lines becomes favourable.
The dots indicate the possible coexistence of three phases: the parent phase (black dots) and two types of
nucleated phases with different Br concentration (blue and green dots). Source figure and description: Chen
et al. (2021) [14].

8

2.2 Kinetic Monte Carlo

The system is modelled with a kinetic Monte Carlo (kMC) model, in which the transitions within the system
are randomly sampled. In this halide segregation case all transitions are hops of halide ions to a vacancy.
For this case it is assumed that the system can be modelled as a continuous time Markov chain. For a
continuous time Markov chain it holds that

P ((Xn, tn)|(Xn−1, tn−1), ..., (X0, t0)) = P ((Xn, tn)|(Xn−1, tn−1)) , (1)

where Xn and tn represent the state of the system at time step n ∈ N. It means that the probability of each
hop occurring and the time it takes for a hop to occur only depends on the state the system is currently in.
Since each hop occurring by itself is memoryless, the arrival time of each hop behaves as an exponentially
distributed random variable. The cumulative distribution function of an exponentially distributed random
variable for some hop i is given by

F (t;λ) =

{
1− exp (−λt) t ≥ 0

0 t < 0,
(2)

where λ is called the rate of the process and t is the time since the last hop. In a system where n independent
hops could occur with rates λi, i = 1, ..., n, the time until one hop occurs has the cumulative distribution
function as shown in Equation (2) with rate λtot =

∑n
i=1 λi. This is because

P (A hop has occurred before time t) = 1− P (No hop has occurred before time t)

= 1−Πn
i=1(1− F (t;λi))

= 1−Πn
i=1 exp (−λit)

= 1− exp (−λtott).

(3)

So the time for a hop behaves as an exponential random variable with as rate the sum of the rates of all
possible hops. Now for the probability that it was event k occurring at time t when it is known that a hop
occurred at t, the density functions need to be considered. The density function of an exponential random
variable with rate λ is given by

f(t;λ) =

{
λ exp (−λt) t ≥ 0

0 t < 0.
(4)

The probability that hop k occurred at time t given that the first hop occurs at time t is, by Bayes’ theorem,
given by

P (hop k occurs at time t|The first hop occurs at time t) =
exp (−(λtot − λk)t) · f(t;λk)

f(t;λtot)

=
exp (−(λtot − λk)t) · λk exp(−λkt)

λtot exp(−λtott)

=
λk
λtot

.

(5)

Note that the probability that no other hop occurs before and at time t is equal to the product of one minus
the cumulative function for all other processes, which is given by

(1− F (t;λk)) ·
N∏
i=1

(1− F (t;λi)) = exp (−(λtot − λk) · t) (6)

9

So by combining the exponential distribution with rate λtot to draw a time and the probabilities per event
as given by Equation (5), the model behaves the same as if all events were tracked as separate random
variables. This fact is useful for coding the model, as will be explained in Section 4.

2.3 Random Number Generator

The hops in the model are probabilistic. To implement such probabilities into a functioning model a random
number generator (RNG) is needed. In essence an RNG produces a sequence of numbers that cannot be
predicted any better than by probability.

In practice there are two kinds of RNGs. The first kind is a true RNG that draws its random number by
using random processes in nature. The decay of particles or the measuring of particles’ quantum states are
examples of random processes in nature that can be used to draw a random number. For these examples
it would be measuring the time for the decay to take place or attaching a number to a certain state. The
drawn number can then be transformed to fit the desired probability density range. For example, the decay-
ing particle follows an exponential distribution and its density can be transformed to fit a uniform density [23].

The other kind of RNG is a pseudorandom number generator (PRNG). These generators do not use a true
random process, but an algorithm to determine the numbers of the sequence. This means that the sequence
is deterministic, hence the pseudorandomness. A good PRNG has two important properties. The first prop-
erty is that the dependence of the next number in the sequence is minimalised. The second property is that
the sequence does not repeat quickly, so the period must be long. A PRNG uses a seed, usually a number,
to determine the sequence. The randomness of the PRNG can be improved by using a true RNG to draw
the seed number. The PRNG can be designed such that the range fits the requirements, for example a 64
bit PRNG can be used as a uniform distribution from 0 to 1 with in total 264 different outcomes. This
sufficiently approximates continuous number drawing for most cases.

Since high speed simulating is one of the main objectives of this thesis and the code will be run on regular
servers or computers, it has been opted to use a PRNG. The Mersenne twister is the most used PRNG for
kMC due to its humongous period of 219937 − 1, a Mersenne prime. Its algorithm is also implemented in
C++, which makes it easily available and widely applicable. When it was first implemented into C, it was
four time faster than the standard random() function of C [24]. However, there are some things to consider
when using this PRNG. If two (P)RNGs are required, which is often the case for Monte Carlo simulations,
a protocol needs to be followed in order to obtain sufficiently independent random numbers [24]. The seed
that is used should also be drawn randomly if statistically sound measurements are to obtained from the
simulations. It is good practice to use a true RNG to generate such a seed [25]. Another reason a PRNG is
used is for repeatability. When the same seed and parameters are used the code runs the same every time.
This can be useful as a multitude of runs can be run with saving minimal data and only the runs that segre-
gate or show interesting outcomes are repeated. During the repetition of the simulation the configuration is
saved more often. The possibility to exactly repeat simulations is also useful as the results can be reviewed
and verified.

10

3 Model Set-Up
In this section the model is set up. The underlying mechanics are elaborated upon in Section 3.1, then
the assumptions that are made in the model are elaborated and justified in Section 3.4, and finally the
parameters of the model are listed and some system size indications are given in Section 3.5

3.1 General Set-Up

The model describes the halide diffusion in a crystal of MAPBI. A schematic drawing of MAPBI can be seen
in Figure 1. The halides are depicted by purple spheres, for which the nearest neighbours are connected by
purple lines. The modelled crystal is assumed to be a cuboid of unit cells with periodic boundary conditions.
These periodic boundary conditions allow for the model to behave more like a large system, such as a solar
cell, while keeping the computational costs low.

In this model of MAPb(I1-xBrx)3(1-y), the I and Br ions move around, while the methylammonium and lead
ions are assumed to be stationary. In this model y is defined as the concentration of vacancies by assuming a
certain number of halide sites to be empty. The vacancies play a crucial role in transporting halide ions. The
halide ions at the nearest neighbour sites can hop into the vacant halide site. This creates a new vacancy at
the previous position of the moved halide, which continues the process. Such hops change the energy of the
system. In Section 3.2 and Section 3.3 the rates and energy changes of the hops are elaborated.

3.2 Rate

It is assumed that the hops’ arrival times behave as a Poisson point process. The rate of each hop depends
on the energy difference that the hop causes, where free-energy-lowering hops are assumed to have higher
rates. As such the rate for each hop between vacancy at halide site h and a halide ion at halide site j is
given by

kh,j = k0 exp

(
−∆Etot + Ebound

kbT

)
, (7)

where k0 (s-1) is a tunable prefactor rate, ∆Etot (eV) is the difference in total energy, which is defined in
Equation (8) and Ebound (eV) is the energy barrier of each halide ion which needs to be overcome for a
hop to occur, which is assumed to be 0.25 eV for both iodine and bromine. In reality, the energy barrier of
iodine is higher than that of bromine, but exact values are not known [26]. The (free) energy difference of
the system is defined as

∆Etot = Etot, after − Etot, before, (8)

where Etot, after and Etot, before are the energies of the state after and before the hop respectively. Equation
(10) in Section 3.3 gives the free energy of the system and is elaborated in that section.
To determine the time before a single hop occurs, the rates of all possible hops are summed. Hence, the
total rate of the next hop ktot is given by the sum of the rates of all possible next events:

ktot =
∑
(h,j)

kh,j , (9)

where (h, j) is the index pair of the vacancy halide pairs for which a swap can occur. With this total rate
the time passed before the next event passes is, as determined in Section 2.2, exponentially distributed with
rate ktot. The expected value of the time is 1

ktot
, so when more vacancies are present the time before the next

event is expected to reduce. To model for roughly the same time, the number of steps needs to scale with
the number of vacancies, as the time per event scales roughly with the reciprocal of the number of vacancies.

3.3 Energy

The rate depends on the (free) energy of the system, which is determined by the charge carriers’ energy.
Under illumination charge carriers form in the perovskite crystal, which is the light active layer in a perovskite
based solar cell. This means that charge carriers get excited by the incoming light. These charge carriers
have free energy and, as most systems in nature, the system tends to lower the free energy. The free energy
of a charge carrier depends on their positions and the band gap of the system. Note that charge carriers
usually behave as described by Fermi-Dirac statistics. In this model, however, it is assumed that the charge

11

carrier density is low enough for the charge carriers to not interact. Therefore, the system is described by
Boltzmann statistics. With ncarr the number of charge carriers in the system, the total energy is then given
by

Etot = ncar

N∑
i=1

Egap,i · wi, (10)

where N is the number of lead ions (and therefore unit cells), Egap,i is the band gap at lead site i, which
will be fully defined below, and wi is the Boltzmann weight of the local band gap at site i, which is given by

wi =
exp (−Egap,i/(kBT))∑N
j=1 exp (−Egap,j/(kBT))

, (11)

where kB is the Boltzmann constant. From Equation (11), it can be seen that sites with smaller band
gaps have a higher Boltzmann weight. This corresponds to a larger probability that a charge carrier is in
the state corresponding to the band gap. Therefore, lower band gaps have more influence for the total energy.

The band gap of a certain position is based around the lead ion. To find the band gap for each lead site,
it is assumed that a local band gap exists for which the lead ion is the centre. This local band depends on
the concentrations of bromine and iodine around the lead site. The concentration is taken of a sphere with
radius reg around each lead ion, the so called energy ball. The radius is in this thesis an arbitrary parameter,
as it is not yet known what value best corresponds to reality. In this thesis it has been researched what
influence the value of reg has on segregation with respect to the size of the iodine rich zones. Vacancies have
been shown to have no effect on the local band gap [9], and as such the concentration of bromine in the
sphere centred around lead ion i is defined as

ci =
NBr,i

NBr,i +NI,i
, (12)

where NBr and NI are the number of bromine and iodine ions in the sphere, respectively. It has been assumed
that the band gap at the centre of the sphere is equal to the band gap of a homogeneous infinite crystal with
equal concentration. The local band gap for each local band gap i is then given by [22, 27]

Egap,i = 1.57 + 0.39ci + 0.33c2i , (13)

where ci is the concentration of Br for each local band gap i.

3.4 Assumption justification

The model makes some non-trivial assumptions. In this section these assumptions are justified and elabo-
rated. The necessity of these assumptions is discussed to shed light on their influence and for reasonable
future improvements of the model regarding these assumptions.

3.4.1 Coinciding events

In the model it is assumed that no two hops occur at the same time. Since the time in reality is continuous,
the probability of two hops occurring simultaneously is zero for a finite amount of finite rate possible hops
[28]. This assumption also only holds if the hop can be considered instantaneous. This is assumed in the
process of halide diffusion and fits the experimental observations as elaborated below.

3.4.2 Halide diffusion

The assumed theory of how ions diffuse through the crystal is that the halide ions hop to an adjacent vacancy.
This is supported by the measured barrier energies of iodine and bromine in the crystal [15]. The hopping is
nearly instantaneous, opposite to interstitial hopping, which is shown to be less fitting to the measurements
than vacancy hopping [4, 29]. It also means that only halides adjacent to the vacancy site can diffuse into the
vacancy site. This is supported by the significantly higher bound energy for all halides at a larger distance
from the vacancy than the nearest neighbour distance [30].

12

3.4.3 Carrier influence

The whole model is built around the assumption that the potential lowering of free energy for the charge
carriers influences the diffusion of halide ions. It is known that charge carriers move to low band gap regions,
which in this model corresponds to iodine rich zones [27, 11, 12]. This moving of photo carriers to low
band gap zones is observed in photoluminescence experiments. It is assumed that the initial funnelling is
instantaneous. It is observed that the funnelling is, sufficiently, rapid [12], which justifies this assumption.
This assumption rids the model of the process of the production and funnelling of carriers, which is complex.
The model also assumes that the carriers are produced homogeneously throughout the crystal, which is
reasonable for a thin crystal.

3.4.4 Memoryless processes

The model is based on a point-based Poisson process. In such processes the rates are only dependent on the
current situation, which means that the process is memoryless. This assumption can be justified by the fact
that no information can be saved in the state of the system about previous states. Therefore, the system
must be memoryless. The rate of these processes are based on the Arrhenius equation, which is given by

k = A exp (−Eact/kBT) , (14)

where k is the rate of the process, A is the base rate, Eact the activation energy for the process. The
Arrhenius equation is an equation that is used for the rate of chemical reactions. Since the moving of ions
is also a chemical reaction, the use of the Arrhenius equation is warranted.

3.5 Parameters

In this section all parameters of the model are listed and elaborated. The parameters are subdivided in
simulation, size, halide and energy parameters. An overview table of the parameters can be found in
Appendix A.

3.5.1 Simulation steps

The simulation specific parameters are the maximal amount of steps, Nstep, and, optionally, the maximal
amount of time simulated, tmax. The number of steps before segregation occurs scales with the number of
sites, as more halide ions can be diffused before iodine rich zones form. The maximal time concerns the time
that is modelled. It is a useful parameter if the level of clustering after a fixed time needs to be studied.
Note that the prefactor k0 in Equation (7) scales with the time passed in the model. In this model k0 is
assumed to be in the order of magnitude of phonon frequencies, which have order 1012 s-1 [31]. The maximal
number of steps differs for different model sizes. For an 8x8x8 or 12x12x12 model the maximal number of
steps is in the order of 105 steps and for a 20x20x20 model the maximal number of steps is in the order of
106.

3.5.2 Size of the model

The model represents a crystal, which consists of repeating unit cells. The number of unit cells in the
three spatial directions are nx, ny and nz respectively. The periodic boundary conditions are such that
the model behaves more like an infinite crystal, but with a small number of unit cells in a direction, side
effects could occur. This is why in this research the size of the model is increased with respect to the tested
12x12x12 configuration of Jaysankar et al. (2018) [9] to 20x20x20. The total number of halide sites is equal
to 3 · nx · ny · nz, as there are three halide sites in each unit cell, and the number of lead sites is equal to
nx · ny · nz. Some relevant examples are given in Table 1 below.

13

Table 1: Some relevant sizes and the number of unit cells and sites.

Size: nx x ny x nz Unit cells and lead sites Halides sites
4x4x4 64 192
6x6x6 216 648
8x8x8 512 1536
12x12x12 1728 5184
16x16x16 4096 12288
20x20x20 8000 24000

This model is made for MAPBI, which has cubic conventional cells. The model, however, could be used for
different crystals which have different sizes. In this research the edge length of the unit cell is 6.28 Å in
the x-, y- and z-direction [32]. This distance is referred to as a ’unit’ for simplicity’s sake. Note that the
distance between two nearest neighbours for halides is equal to 1

sqrt2 unit, so 4.44 Å. Only halide sites at
this distance, called rcut, can interact for a swap in this model.

3.5.3 Vacancy concentrations

The concentrations of the halides can differ between crystals, since the band gap is tuned by altering the
concentration. In this model the number of bromine and iodine ions, nBr and nI respectively, can be adjusted.
The number of vacancies nvac is also an important parameter, since only with vacancies present a region
can alter its arrangement. The number of bromine, iodine and vacancies must add up to the number of
sites in the model. In the simulations the number of vacancies in this model are taken higher than realistic
conditions have as realistic vacancy densities would correspond to zero or one vacancy is an 8x8x8 box.
Therefore, 0.5% up to, for some extreme case, 40% of the halide sites are taken to be a vacancy, the exact
values for each simulation are indicated in the figure description.

3.5.4 Energy parameters

The rate of each swap is based on the energy difference and barrier energy. The barrier energy Eb is the
energy required for an ion to jump. In this research it is assumed that both iodine and bromine have a
barrier energy of 0.25 eV. It is known that bromine has a lower barrier energy than iodine, but no exact
values are known [26]. Therefore, they are assumed to have the same value for simplicity’s sake.
The difference of energy between and after a swap scales linearly with the number of light-generated charge
carriers ncar. This value depends on the illumination strength, so in dark conditions it would be zero. It
also scales with the volume of the box. The charge carrier density is, just like the vacancy concentration,
taken significantly larger than realistic situations to make the effect of clustering stronger and reduce com-
putational costs to see effects. The number of charge carriers per unit cell used in this model is between
10−3 and 10−1, while realistically the number is somewhere between 10−9 and 10−4 [22].
The band gap is determined based on the local concentration of bromine. The region for which the concen-
tration is taken is a sphere with radius reg centred on the lead ion. This value is between roughly 1.5 and 4
times the distance between nearest halide neighbours, so roughly between 6 Å and 20 Å.
The number of charge carriers in each energy level depend on temperature T , as well as the rate of each
swap. The perovskite cells are meant for use in atmospheric conditions, so a temperature of 300 K is used.
Lower temperatures would slow down the swaps and therefore the clustering effect.

14

4 Code
The model as described in Section 3 had been implemented in a Python script by combining pieces of code
from different projects. The code produced the predicted results and hence it was useful as a tool in research.
The code was however not optimised, which limited the practicality in simulating larger systems or performing
multiple simulations of smaller systems to produce statistically significant results. The optimisation in this
research is mainly focused on improving the speed of the code. The model has been rewritten in C++
along with some modifications to further speed up the model. C++ has been chosen because of its high
performance when it comes to speed, especially in comparison with Python. The main difference between the
two is that Python is a dynamically typed, interpreted language, while C++ is a statically typed, compiled
language. Dynamically typed means that the type of variable does not need to be declared before executing,
while statistically typed means that the variable type has to be declared. A compiled language means that
before executing the file, a binary file is made by the compiler. The binary file can directly be executed by
the processors without an interpreter programme in between. With the interpreted language, however, the
code interpreted while it is run. Therefore, no efficiency algorithms can be applied, which can be done while
compiling. Python is therefore an easy language to write in and good for executing simple tasks, while C++
is better suited for computationally heavy tasks, like a large kMC model, but it takes more time and effort to
program. In this section, the Python code and C++ code are explained with the use of a flow chart. Next,
the improvements that have been implemented in the C++ code are elaborated. Finally, the performance
of the Python and C++ code are compared, along with some suggestions for future improvements.

4.1 Python Code

In this section the Python code is explained with the use of the flow chart depicted in Figure 4.

15

Set-Up

Create
Simulation Box

Shuffle bromine,
iodine and
vacancies

Create
Cells

Create Neighbourhood
tables HaTable
and PbTable

Simulation Steps

Determine all
possible swaps

Find energy
of system after

each swap

Determine rate of
each swap and

total rate

Pick event,
update tables,

energy and time

Step # ==
integer*SnapStep

_

Step # <
NStep

False

False

Save halide
configuration and

local concentrations

True

True

Figure 4: Flow chart of the Python code. The code is subdivided into the set-up and the simulation loop,
of which the last one is where the actual hopping and data collection occurs.

The code has two distinct sections, the set-up, which is run once, and the simulation steps, which is run
Nstep times in a loop. In the set-up, first the simulation box is created. The simulation box contains all
coordinates of the lead and halide sites, which are saved in two separate lists. Next, so called cells are created.
These divide up the volume of the simulation box into smaller blocks. By knowing that the distance between
two blocks is larger than reg, all combinations of halide and lead sites from both boxes do not need to be
considered when determining whether they are within reg of each other, which is relevant for determining
the local band gap, or rcut, which is for possible sites that can be hopped to from each site.
The halide coordinate list is then shuffled and added to the box. The first nvac halides sites are the vacancies,
then the next nBr bromine and finally nI iodine. The halide type for each index remains constant throughout
the simulation, while the coordinates change. Using the cells, the halide and lead tables are constructed.
In the halide table (HaTable) for each halide site the other halide sites within rcut, the maximal hopping
distance, are marked. Note that on both the horizontal and vertical all halide sites are given, so a square,
symmetric table is made. The combinations that satisfy the distance criterium are marked with a 1, the
others with a 0. The amount of information that is retained in this step is large, which is most likely part
of the reason of the performance of the system. Similarly, in the lead table (PbTable) for each lead site the
halide sites within reg are marked. The energy of the system is then calculated by calculating the band gap
for each site by counting the number of bromine and iodine close to each lead site and using Equation 13.
This concludes the set-up phase of the simulation.

16

Next, the actual simulation starts. The simulation consists of a loop that is repeated Nstep times. In this
loop first the possible hops for the vacancies are determined by getting the information from the HaTable

for the vacancy sites. Note that a vacancy cannot hop to another vacancy site, so these combinations are
ignored. For each possible hop the hop is performed in the table, the energy is recalculated and the hop is
reversed. Next, the rate for each hop is determined and the total rate is calculated. The event is picked
and the energy, time and tables are updated. The table gets updated by switching the information of the
relevant vacancy column with the relevant halide column and same for the rows. For every SnapStep step
the state of each halide site is added to a file.

4.2 C++ Code

In this section the C++ code is explained with the use of the flow chart depicted in Figure 5. The most
significant differences between the Python code and the C++ code are listed.

Simulator: Set-Up

Create box with
halide and lead

positions

Shuffle order of
iodine, bromine
and vacancies.

Create nbList
and egList

Precompute
neighbourCount and

band gaps

Start

Simulator: Hops

Copy Topology
for multithread

Divide vacancies
over the threads

Make list of vacancy
indices and precompute

energy

Find all hops
for vacancyN

threads

Combine next events
from threads,

calculate total rate

Pick next event and
execute it. Update
topologies, halide

counts and energy.

Step # <
NStep

Save halide
configuration and

local concentrations
False

True

Step # ==
integer*SnapStep

_

For each hop,
calculate local
partial sums,

swap and
calculate local

sum again

For each hop,
calculate local
partial sums,

swap and
calculate local

sum again

Calculate
energy

differences,
rate and

swap back

Calculate
energy

differences,
rate and

swap back

N
threads

N
threads

True

Find all hops
for vacancy

False

End

Figure 5: Flow chart of the C++ code. Like the Python code, the code is subdivided into a set-up and
simulation loop.

The C++ code is based around the indices for each site. Every halide and every lead site has a fixed index
by which it can easily be identified. Information about the sites can be saved in a vector such that the index
of the site matches the position within the vector.

To start, the simulation box is created. Similar to the Python code, the box is rectangular and has nxnynz
lead sites and 3nxnynz halide sites. The coordinates of each site are saved in two vectors, the halidePositions
and leadPositions vector.
In the next block, a vector with iodine, bromine and vacancy elements is created, the halideTypes vector.
The number of iodine, bromine and vacancies in this vector is determined by the input of the model, this
way every site has a unique type. This vector is shuffled to create a random starting position. Note that the

17

first element of the halidePositions has the type indicated by the first element of the halideTypes vector and
so on.
The following block indicates the making of four neighbour lists, the nblist and three so called egLists. A
neighbour list is a vector that contains a vector for each site with all indices of sites that are within a fixed
distance and are of the right type, so lead or halide. The first neighbour list is the nbList. This list contains
for each halide site the indices of the nearest halide site neighbours and thus the sites with which a vacancy
at a site can swap. The second and third neighbour lists are the energyHaPbList and the energyPbHaList.
The energyHaPbList contains the list of indices of lead sites that are within the band gap radius for each
halide site and the energyPbHaList the exact inverse, for every lead site the indices of the halide sites.
These are used to count the bromine and iodine ions to calculate the local bromine concentration for each
lead ion. The last neighbour list is the energyHaHaList and does not serve a purpose within the programme
itself, but is used to make the visualisation of the system more easy. The energyHaHaList contains for each
halide site the indices of halide sites within the band gap radius from it. It is a good indication for the local
band gap for nearby lead sites and shows the formation of iodine rich regions.
Making use of the egLists, in the next step the neighbourCount is computed. This vector keeps track of
the number of iodine, bromine and vacancies at the sites within the band gap radius reg of each lead site.
The band gap and the corresponding exponent are calculated as well and saved in another vector. This step
concludes the set-up of the code.
Next, the code enters the run phase. Before the transitions start, the indices of the vacancies are saved
in the positions vector. This way the possible transition can easily be determined by looking only at the
neighbours of the vacancies. The positions vector gets updated after each hop. The energy of the system is
computed by using Equation 10 with the use of the precomputed band gaps and exponents.
Next, the code enters the simulation loop. This loop is performed for Nstep steps. It starts with copying
the topology for the different threads. The different threads each calculate the rate for the possible hops for
the vacancies, but to do so, they temporarily alter the topology. To prevent mix-ups when multiple threads
alter the topology and thus get wrong energies, each thread gets its own topology copy. When each thread
has received a topology copy, the vacancies get as evenly as possible divided over the threads.
The possible hops for each vacancy are determined by looking whether its neighbours, saved in the nbList,
are not another vacancy. If that is not the case, the energy difference of the hop is determined. To prevent
the recalculation of the band gap for unaffected regions and to prevent calculating a sum over each site when
most parts of the sum do not change, only for the regions within reg of the two halide sites of the swap
are taken into account in the calculation. This is an improvement over the Python code, where the band
gaps, exponential and sums are recalculated for the whole crystal. The rate of each hop is calculated and
saved with the energy difference and indices of the halide sites in question. This information of the different
threads are then recombined to calculate the total rate. With this information, the hop that is going to
occur is determined using the PRNG. Then all information of the system is updated, like the topology, time
and energy.
The configuration of the system is saved for every SnapStep step, for example every thousandth step. For
each halide site, the halide type, coordinates and bromine and iodine number of its energy ball is saved in
a comma separated file (csv). After the information is saved, the loop starts over again until the desired
number of hops has been done.

4.2.1 Topology and next event list

The Python code differs from the C++ code in the way the topology is treated. In the Python code the
nearest neighbours are saved in a table. The halide sites are ordered such that the vacancies are always the
first in the list. In the table for all halides is stated whether every other halide is a nearest neighbour and
when a transition occurs, all this information has to be transferred to the new table. The memory required
for the table scaled by n2cell, where ncell (-) is the number of unit cells in the simulation. In the C++ code
the sites are labelled by an index by putting them in a vector, the C++ array equivalent, and not reordering
the list while running the simulation. The information of what each halide site contains is also stored in a
vector of equal length, such that the same index for both vectors corresponds to the same site. The nearest
neighbours of all sites are stored in a vector of vectors, such that the vector at the index has the indices
of its nearest neighbours. This is done in the set-up and does not change during the simulation loop. The
information that was saved in the table is saved in the C++ code in these vectors that scale linearly with

18

ncell. Note that the required memory for the Python code does not depend on reg, while the number of
entries in the egList does scale roughly cubic with reg. However, the information retained is always lower
in the C++ code, regardless of reg, and reg does not necessarily scale with the size of the simulation box,
especially for large simulations, so the C++ code uses less memory even though it scales with a higher factor.

4.2.2 Time

In the Python code and the other previous models the time each step in the model takes is the reciprocal of
the total rate [22, 9]. This is the expected value of the exponential distribution with the rate sum as rate.
Over a large number of steps the use of the expected value is a reasonable simplification. However, since the
rate might change over time in the model, the simplification might no longer be accurate. Therefore it has
been opted to use the RNG to draw a time from an exponential distribution with the rate sum as rate. The
drawing of the time using the RNG takes more time than taking the reciprocal of the rate sum, so if the
exact time passed in the simulation is not vital and speed of simulation is, taking the expected value could
be useful.

4.2.3 Parallelisation

In the model multiple vacancies are present and all have different possible swaps. In the Python code
all vacancies were done is series, such that the system has to wait on the previous vacancy calculation to
start with the next. In the C++ code the program divides the vacancies over multiple threads, which each
calculate the rates for its possible swaps, after which the possible swaps are recombined and the next event
is determined. Each thread is run on a separate core of the processor. The system can therefore speed up
with a factor of little less than the number of threads, as picking the next event only occurs at a single
processor. This is factor is limited by Amdahl’s law, which states that a programme can only speed up
to a certain factor due to not properly parallelisable parts of the programme.The parallelisation requires
some more memory as the rate of each step depends on the whole topology and while calculating the rate,
the topology is temporarily adjusted. If multiple threads adjust the same topology, errors will occur. The
topology is therefore copied for each thread and altered after the final event. These small extra steps result
in a slightly lower factor than the number of threads.

4.2.4 Information Retention and Summing

To determine the rate of a swap for each lead site the band gap and corresponding exponent need to be known.
In the Python code the bromine concentration, band gap and its corresponding exponent are recalculated for
all lead sites each step. When a swap occurs at distances larger than the band gap radius from both relevant
halide sites, these values do not change. In the C++ code it is therefore implemented that only for the lead
sites that are close enough to the swap these values are recalculated. As can be seen in Equation (11) the
sum of all the band gap exponents needs to be calculated. Large portions of the sum do not change after a
swap. Therefore the sum of the relevant region is calculated before and after the swap and the difference is
subtracted from the previous sum. The value of the new sum is also added to the Next Event List such that
the information remains available and does not need to recalculated when this swap, or event, is actually
performed. Something similar holds for the sum in Equation (10), as the only value that changes for lead
sites sufficiently far away from a swap is the sum in the denominator. Therefore the value of the band gap
times the exponent is also saved and the sum is altered like that of the sum of exponents.
To determine for which lead sites the band gap changes, a neighbourlist is used. For every halide site, all
lead sites within the band gap radius are added to a vector and saved as such. When the rate for a swap
is determined, only for the lead sites that are in the list of at least one of these halide sites the band gap is
recalculated and so on.
The volume of interest for each halide site is a fraction of the total volume, so using this method the
computational costs are reduced significantly by both reducing the recalculation of costly exponents as by
reducing the summing.

4.3 Performance

One of the main goals of this thesis is to improve upon the Python code when it comes to speed. In this
section the Python code and the C++ code are compared on speed. It is shown that the C++ code performs
better for three configurations. Then the scaling for the C++ code and Python code are compared. The
code of C++ is then further characterised. The relation between the required time for the simulation and

19

the different parameters is determined. Finally, some suggestions are made for further improvements of the
C++ code.

4.3.1 Direct comparison

First, for three cases the improvement in time is shown. For three smaller boxes of 4x4x4, 6x6x6, and 8x8x8
unit cells and with the same parameters the Python and C++ code is run on the same computer with a
single thread. The total simulation time of these simulations are given in Table 2.

Table 2: A direct comparison of the simulation time between Python and the C++ code. The time for all
simulations are given as well as the factor that the C++ code is faster. Simulation parameters: nvac = 4,
nI : nBr = 50 : 50, reg = 1.51, Nstep = 105, SnapStep = 103.

Size: nxxnyxnz Simulation time Python (s) Simulation time C++ (s) Factor
4x4x4 35.49 0.700 50.7
6x6x6 110.70 0.761 145
8x8x8 344.58 0.839 410

The factor that the C++ code is faster increases with the size of the simulation box, this will be further
explained in Section 4.3.2. For the system of 8x8x8 unit cells the C++ is 410 times faster than the Python
code without parallelisation. This is a good baseline for how much faster the C++ code is, as the scaling
of both codes is compared later on. With this baseline, when the C++ code scales better than the Python
code, it can be concluded that the C++ code is better for every reasonable configuration.

4.3.2 Order of algorithms

The time the simulation runs depends on the parameters of the simulation, like the size of the system or the
number of modelled steps.

Number of sites

One of the main issues the Python code faced was the rapid growth of simulation time as the simulation
box increases in numbers of unit cells. This relation can clearly be seen in Figure 6, where the set-up and
simulation time are plotted against number of unit cells in the simulation box. The fits are both polynomials
of order two. The total time has a quadratic relation with number of unit cells, while the set-up’s is linear.
This means the most time consuming simulation steps’ time have a quadratic relation with the number of
unit cells. For larger systems this quickly becomes problematic.

20

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 00

2 0

4 0

6 0

8 0

1 0 0

1 2 0

 T o t a l
 S e t - u p

Tim
e (

s)

U n i t C e l l (-)

Figure 6: The set-up and total simulation time against the number of unit cells in the simulation box for the
Python code. The total time is fitted with an order two polynomial fit, the set-up with a linear fit. nvac = 4,
nI : nBr = 70 : 30, Nstep = 10 · 103

The C++ code saves the positions of the vacancies and the different neighbour lists in a vector and not in a
table. This method was designed to be less computationally costly, especially for larger systems. The results
suggest that this method works as designed, as can be seen in Figure 7. The order two polynomial fit for
the total time shows no (positive) quadratic relation for the total time, but does so for the set-up time. For
large systems the simulation steps do not take up significantly more time if the other parameters, like the
number of vacancies, stay the same. The quadratic relation that can be seen for the set-up time in Figure
7b can be explained by the way the neighbour lists are constructed. The distance between each pair of sites,
lead and/or halide, is determined and compared with reg and rcut. This is the most time consuming part
of the set-up. The number of pairs scales quadratically with the number of unit cells, hence the observed
quadratic relation for the set-up time.

The goal to linearise the simulation time unit cell relations has been partially succeeded. The total time scales
for small numbers linearly, but the set-up time does not. For larger systems the ratio between set-up and
total will be larger, which means the total time will also, significantly, scale quadratically. The linearisation
of the set-up time is, however, easily possible, as will be elaborated in Section 4.3.4.

Number of vacancies

The number of vacancies in the simulation box are increased with the goal to lessen the number of steps
required to observe segregation. This however comes with a trade-off for the time, as can be seen in Figure
8. The simulation time is linear with the number of vacancies for the three sizes. This means that the
increase of the number of vacancies does not necessarily improve the simulation time. The relation between
the number of steps required for segregation to occur and the number of vacancies is discussed in Section
5.5.
For the 4x4x4 case the time is a little less than linear for high number of vacancies. This can be explained by
the exceptionally high concentration of vacancies, 60 vacancies is roughly 30%, which means less transitions
are possible and therefore less energy and rate calculations are performed.

21

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

 T o t a l
 S e t - u pTim

e (
s)

U n i t C e l l (-)

(a) The total and set-up time in seconds against number of unit cells for constant
number of vacancies. Fit with an order two polynomial fit.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0

0 , 0 0

0 , 0 2

0 , 0 4

0 , 0 6

0 , 0 8

0 , 1 0

Tim
e (

s)

U n i t C e l l (-)

(b) The set-up time against the number of unit cells for constant number of va-
cancies. Fit with an order two polynomial fit.

Figure 7: For the C++ code the set-up and total simulation time against the number of unit cells in the
simulation box. Both are fitted with an order two polynomial. In Figure 7a it can be seen that the total time
is nearly linear, the square factor parameter is negative, which cannot hold for large number of unit cells.
In Figure 7b it can bee seen that the set-up time goes quadratic with the number of unit cells. Simulation
parameters: nvac = 4, nI : nBr = 70 : 30, Nstep = 10 · 103.

22

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
0

1

2

3

4

5

6

7

 4 x 4 x 4
 6 x 6 x 6
 8 x 8 x 8

Tim
e (

s)

V a c a n c i e s (-)

Figure 8: The simulation time against the number of vacancies for three differently sized simulation boxes.
For the three simulation box sizes the simulation time is approximately linear with respect to the number of
vacancies. The 4x4x4 case has a slower increase for high numbers of vacancies which can be explained by the
exceptionally high concentration of vacancies, which means less transitions are possible and less calculations
are performed. Simulation parameters: nI : nBr = 70 : 30, reg = 1.8 unit, Nstep = 10 ·104, number of threads
is 10.

Size energy ball

The model uses the energy ball, with radius reg, to calculate the local band gap. The C++ code also uses
the information of the corresponding neighbour list, egList, to prevent the recalculation of the band gap
for all lead sites. For the lead sites within this distance from a (possible) swap the band gap needs to be
recalculated, but the other sites’ band gap are not affected. This means a large decrease of unnecessary
calculations, but also that the amount of calculations that are actually performed does depend on reg. This
relation can be seen in Figure 9. The data is fitted with an order three polynomial, which fits well. This
makes sense as the number of lead sites for which recalculation is required scales with the volume of the
energy ball, which is cubic with reg.

23

0 4 8 1 2 1 6 2 0 2 4

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

Tim
e (

s)

R a d i u s (Å)

Figure 9: The simulation time against the radius of the energy ball reg with an order three polynomial fit.
Simulation parameters: 8x8x8, nI : nBr = 50 : 50, nvac = 15, Nstep = 4 · 105.

What value of reg is best for simulating reality is not known, but is useful to know what the effect is on the
simulation time. The effect of reg on the segregation is discussed in Section 5.

4.3.3 Test case

The goal of a 20x20x20 unit cells simulation was set as a proof of concept for scaling. A 20x20x20 unit cells
simulation with parameters nvac = 10, nI : nBr = 70 : 30, reg = 2.3 unit, Nstep = 3 · 105, SnapStep=103, and
two threads were used. These parameters are around the standard values, so form a reasonable view for the
simulation time. The total simulation of this simulation is 231 s, the set-up is 20 s. This was performed on
a regular laptop, which shows that the 20x20x20 unit cells simulations are possible at a large scale. It also
shows that for 20x20x20 unit cells the set-up time is not a bottle neck for the simulation time.

4.3.4 Further speed improvements

Precalculation exponents

The first proposed improvement is the precalculation of the band gap exponents. The calculation of an
exponential is slow on a computer as a high order Taylor approximation is used. Therefore it can be useful
to minimise the number of times an exponential is calculated. This can be done specifically for the band
gap exponent exp (−Egap,i/(kBT)). As the temperature T remains constant, only the band gap needs to be
looked at. The band gap of a lead site is calculated by taking the ratio of bromine and the total number of
halide ions within the energy ball of the lead site. Since the number of halides per energy ball is limited,
the number of different concentrations, and hence band gaps, is also limited. An upper limit for the number
of different band gaps can be found as follows. The number of bromine in the energy ball is capped by the
number of halide sites within the energy ball neg. Note that every energy ball contains the same number of
halide sites due to the periodic symmetry of the crystal. Similarly, the number of iodine within the energy
ball is also capped by neg. Hence the number of different combinations of bromine and iodine, and therefore
the number of different band gaps, is limited by (neg + 1)2. The exact number of possibilities will be lower
since the number of bromine and iodine added together also needs to be lower than neg and the amount of
vacancies, sites without bromine and iodine, is also limited. Hence the number of precalculated exponents
is less than (neg + 1)2.

24

This upper limit can be compared with an estimate of the number of band gap exponents that are calculated
during the simulation. As the simulation runs, the band gap and its corresponding exponent is recalculated
for every lead site whose energy ball overlaps with either the vacancy’s site or the site it would be swapping
with. This would mean roughly 8 · neg band gap exponents are calculated for every vacancy during each
step. So roughly the number of calculated band gap exponents would be around 8 ·Nstep ·neg ·nvac. Since in
a typical experiment 8 ·Nstep · nvac >> neg, the number of calculated band gap exponents could be reduced
with orders of magnitude. Note that this is only because the time it takes for a value to be found in the
memory is orders of magnitude faster than calculating an exponent. By profiling it was seen that roughly
20% of the time is used for calculating the exponentials for band gaps. So the precalculation is estimated
to result in roughly a 10-15% reduction in simulation time, which is a significant time save for what still
remains possible. It would also be relatively simple and little time consuming to implement in the code.
The exponent that is used to calculate the rate of each possible transition, as seen in Equation (7), cannot
be as easily precalculated. This is due to the vast number of different energy difference that can occur in
the simulation. It is therefore not worthwhile to pursue the precalculation of the rate.

4.3.5 File export reduction

In the current code the profiling shows that a significant portion of the time is spent on saving text files
with the configuration information, around 15% of the time. The number of output files could possibly be
reduced by first determining what configurations are useful to save, as now just every configuration with an
arbitrary number of steps as interval is saved. This could be done by finding some kind of measure that the
programme can determine whether a file needs to be saved, by recognising the start of the segregation for
example. It would also help with the processing of the data afterwards, which is not taken into account in
the simulation time. Less, but more interesting files to analyse would mean a more time efficient analysis
for researchers. The amount of time saved would in the simulation time be at most 10%, but the reduced
analysis time would be more relevant, however, hard to estimate.

4.3.6 Set-up linearisation

As can be seen in Section 4.3.2 the set-up time of the code is currently quadratic with the number of unit cells.
This is due to how the neighbour lists are constructed. The neighbour lists are determined by calculating the
distance between every pair of halide and/or lead site and checking if it is less than rcut or reg. The number
of pairs scales quadraticly with the number of unit cells, which causes the quadratic relation between set-up
time and number of unit cells. The Python code solves this problem by dividing the system into cells, such
that if the cell is at a greater distance than reg, all sites within the cell do not need to be considered. Since
the distance calculations are the most time consuming function within the set-up, by using the cells the code
will perform linearly with the number of sites. To implement this method would be relatively simple, as the
blue print of this method is already present in the Python code and transfers, most likely, quite well to the
C++ code.
If the code is to be used for even greater simulation boxes, a different method could be used. In earlier stages
of writing the code, another method of determining the neighbour list that is fully linear with the number of
unit cells was attempted. First, another box of d2regexd2regexd2rege is constructed, where dae is the ceiling
function, centred around the origin. Next, all sites within reg are determined, such that for any site in the
actual simulation box (x, y, z) the sites that are within reg are known by coordinates by subtracting the
coordinates from the original box from (x, y, z). Then functions that can determine the index of the site by
its coordinate (and type) determines the indices of all sites in the neighbour list(s).
This second method linearises the relation between the set-up time and the number of unit cells, which is
why it was attempted. It was however incorrectly implemented, as faulty neighbour lists were produced
via this method. Since the set-up of the code is currently for the target 20x20x20 unit cells box around 20
seconds on a regular laptop, it was deemed not worthwhile to pursue further in this thesis. If the code is
to be used for systems of around 40x40x40 unit cells, the set-up time would take around 60 times as much
as for the 20x20x20 system. Then it might be worth pursuing either the previously attempted or another
linearisation method of the set-up. The method is far from impossible to implement, but some time needs
to be spend on it. Quite possibly, however, the actual simulation steps will still be the bottle neck, although
this does depend on the other parameters of the desired simulation.

25

4.3.7 Parallelisation

The simulation time for large numbers of vacancies has been greatly reduced due to the parallelisation of the
energy and rate calculations. It can however be further improved by using different algorithms to parallelise.
Over 20% of the time is now spend on copying the nextEventList from the different threads to a single list,
which is not parallelisable. Therefore, the maximal gain by further parallelisation following Amdahl’s law is
limited. There are possibilities to improve the parallelisation such that further time saving can be achieved
for the energy and rate calculations.
The set-up is currently not parallelised, it is all run on a single thread. The distance calculations could,
however, be parallelised quite easily as it has been done before. The sites could be divided over the threads
and as such calculate the distance parallel. It could reduce the set-up time with the same factor as for the
simulation steps, slightly lower than the number of threads.

26

5 Modelling Results

5.1 Method and Data Analysis

The code can run for any number of steps and due to the (pseudo)random nature, outcomes might deviate
for different numbers of steps. The hypothesis is that at a moment in time due to a series of random events
the right configuration for nucleation occurs, after which the segregation occurs relatively quick. Since the
computing power is limited, decisions on when to export the configuration and when to stop the simulation
need to be made. The parameters of the model, like the number of charge carriers and number of vacancies,
are also taken larger than in realistic situations to let the nucleation occur quicker in the simulation to save
computing power.

5.1.1 Segregation measure

The model outputs the state of the system for every SnapStep time steps. To determine whether there
is significant segregation, a measure is needed. What is expected to be observed are iodine rich regions.
The concentration of iodine is expected to be high, up to a certain distance and then quickly drop of to
the concentration as expected in a well mixed situation. To test this hypothesis, dark conditions are used
as a baseline. The average concentration between the centre and a particular distance, depending on the
simulation parameters, can be used to determine what influence the light has on segregation.

5.1.2 Visualisation

To visualise the system the open source software ParaView is used. The coordinate of every halide site along
with its type and the local number of bromine and iodine are loaded into the programme which can represent
the state of each site in 3D. An example of a visualisation in ParaView is depicted in Figure 10, which shows
two different visualisations of the halide sites for the same state. In Figure 10a the halide type at each site is
shown. In Figure 10b the number of iodine ions within reg from each site is depicted. With the visualisation
method from Figure 10a it is non-trivial to detect iodine rich zones, while the visualisation method of Figure
10b clearly shows different concentrations of iodine and an iodine rich zone is visually present. The number
of ions within reg from each site is a value that has no meaning outside visualisation.

To give a quantitative graph of the system, plots of the discrete radial distribution are used. The discrete
radial distribution at distance dn is defined as the the fraction iodine for the halide sites at distances between
dn and dn+1, dn < dn+1. dn and dn+1 are defined such that the number of halide sites is non-zero. In this
research, dn and dn+1 are at equal distance for all n. The fraction iodine cI is defined as

cI =
NI

NI +NBr
, (15)

where NBr and NI are the number of bromine and iodine ions in the range dn to dn+1 from the centre. The
radial distribution is found using a Python script and the graphs are made with the Matplotlib package. In
an iodine rich zone, it is expected that the fraction iodine close to the centre is close to 1 and drops to the
mixed state fraction far from the centre. An example of such a graph is shown in Figure 11.

27

(a) The halide sites and its type are shown. White, red
and green spheres represent bromine, iodine and vacancy
respectively at that site.

(b) The halide sites and the number of iodine ions within a
distance of reg from the site are shown. Dark red indicates
high number, while dark blue low numbers of iodine.

Figure 10: Two examples of visualisations of an 8 by 8 by 8 system in ParaView. In 10a the ion type is
shown, while in 10b the number of iodine ions within reg from each site is shown. An iodine rich region can
be seen in both visualisations. The dark red region in 10b is an iodine rich region, it can also be seen at the
same location in 10a, mainly by the lack of white spheres.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.5

0.6

0.7

0.8

0.9

1.0

Io
di

ne
 fr

ac
tio

n
(-)

Figure 11: An example of a radial distribution plot. It shows the fraction of iodine of the halides per
distance from the centre of the most iodine rich zone. In this simulation reg = 2.3. The iodine rich zone
extends to somewhere between 2.5 and 3, as the fraction at that distance drops under the overall fraction
of iodine. The fraction of iodine of the total simulation box can usually be seen by the average fraction at
a distance of multiple reg, in this case the overall iodine fraction is 0.7. Simulation parameters: nvac = 4,
nI : nBr = 70 : 30, reg = 2.3, Nstep = 3.0 · 105.

An iodine rich zone is not precisely defined, however, in this research for the edge of the iodine zone is, as
a rule of thumb, the minimal distance for which the iodine fraction is equal to that of the whole crystal.
This leaves undefined how strongly segregated the system is, e.g. if the iodine fraction is 1 or 0.5 within the

28

iodine rich zone for an overall fraction of 0.3. To deal with this variation, if the iodine fraction is higher for
one zone than the other, then it is said to be more strongly segregated. An iodine rich zone is therefore also
not automatically a sign of segregation, as variation is present throughout the crystal. The most iodine rich
zones are selected when processing the data, so a dark simulation is a good reference point, as no segregation
is present at these temperatures.

5.2 Band gap radius

The radius of the energy ball reg, or band gap radius, determines what region is considered when calculating
the local band gap. The band gap radius is a parameter that cannot be found experimentally or be deduced
from theory. It is therefore interesting to see what influence changing this parameter has on segregation. To
determine the influence of reg some simulations for different values of reg are run for sufficiently high Nstep

such that the radial distribution does not change drastically anymore. It is found by trial and error that for
the 8x8x8 simulation with ncar = 20 and nI : nBr = 70 : 30, nvac = 15 Nstep = 4 · 105 is sufficiently high
for 1.3 ≤ reg ≤ 3.5. The average radial distribution of the most iodine rich zone between step 3.49 · 105 and
3.99 · 105 for different reg is shown in Figure 12.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from center zone (unit)

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

r=1.3
r=1.5
r=1.8
r=2
r=2.3
r=2.5
r=2.8
r=3
r=3.5

Figure 12: The averaged radial distribution for different values of reg for high number of charge carriers. The
average of the radial distributions are taken from 3.49 · 105 to 3.99 · 105 with intervals of 0.01 · 105. There
is a clear increase of radius of the iodine rich zone for larger values of reg, as for small values (orange and
blue) the percentage drops quickly at ca. 1.3 units from the centre, while for larger values (grey and olive)
the percentage of iodine remains high for a distance over 2 units. The ratio nI : nBr = 70 : 30 makes sure
that the drop is not due to a lack of available iodine to have high percentages at more units. Simulation
parameters: 8x8x8, nvac = 15, nI : nBr = 70 : 30, ncar = 20, Nstep = 4 · 105.

The size of the iodine rich zone can be seen in Figure 12 to grow in size with increasing reg, but the size
of the zone is never larger than the corresponding reg. This is a remarkable result as iodine rich zones are
hypothesised to grow after a so called nucleus has randomly formed. This cannot be seen in these results. To
verify this observation and determine whether it is not caused by the averaging, the progression for reg = 1.5,
2, 2.5, 3 units is shown in Figure 13.

29

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)
r = 1.5 unit

Step = 349,000
Step = 374,000
Step = 399,000

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

r = 2 unit
Step = 349,000
Step = 374,000
Step = 399,000

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

r = 2.5 unit
Step = 349,000
Step = 374,000
Step = 399,000

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

r = 3 unit
Step = 349,000
Step = 374,000
Step = 399,000

(d)

Figure 13: The radial distribution at three different time steps when segregation is present for reg =
1.5, 2, 2.5, 3. The fraction of iodine drops of to the crystal iodine fraction of 0.7 quickly when the dis-
tance from the centre is larger than reg, which underwrites the statement that no iodine rich zones have a
significantly larger radius than reg. Simulation parameters: 8x8x8, nvac = 15, nI : nBr = 70 : 30, ncar = 20,
Nstep = 4 · 105.

No increase of radius of the iodine rich zone over time can be seen in the four graphs in Figure 13. This
could be a results of the limited box size in the simulation. Possibly the iodine rich zone would grow if the
box was larger, as more iodine would be present in the box. Therefore, larger simulations would be useful to
run in the future. It is also interesting to note that the iodine rich zones are not fully iodine or fully stable
over time. The percentage of bromine around the centre of the iodine rich zone varies over 10% for reg = 1.5,
3 units. This is even with a relatively high number of carriers, for which strong, and therefore more stable,
segregation is expected.

5.3 Carrier density

The carrier density of the system influences what energy difference is caused by the halide hopping into
a vacancy. With large energy differences, which correspond to high carrier densities and therefore strong
illumination, faster and possibly stronger segregation is expected. The radial distribution is averaged for
1.49 · 105 to 1.99 · 105 steps, with an interval of 0.01 · 105 steps. The results are shown in Figure 14.

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre iodine rich zone (unit)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

n = 0
n = 2
n = 5
n = 8
n = 12
n = 13
n = 15
n = 20
n = 30

Figure 14: The averaged radial distribution between Nstep 1.49 ·105 to 1.99 ·105 steps and interval of 0.01 ·105

steps for different numbers of charge carriers. The segregation, i.e. high concentrations close to the centre,
are seen for high numbers of charge carriers, while for low values these are not seen. For these low charge
carrier cases they resemble the control experiment with zero charge carriers, the dark situation. Simulation
parameters: 8x8x8, nvac = 15, nI : nBr = 70 : 30, reg = 2.3 unit.

For low charge carrier numbers, and hence densities, the radial distributions resemble that of the dark case
at ncar = 0. For the higher cases the averaged radial distribution show an increase in iodine concentration
for distances up to ca. reg, which suggests that higher charge carrier densities cause stronger and more stable
segregation. The segregation for ncar ≥ 12 were checked to be fully segregated, i.e. no significant increase
or decrease occurred for Nstep > 2 · 105. The other hypothesis with respect to the charge carrier densities
is that higher numbers cause faster segregation. In Figure 14 the segregation is complete for every case, at
less steps this is not the case and the segregation is in progress for lower numbers of carrier density. This is
shown in Figure 15, where the averaged radial distribution over 0.3 · 105 to 0.34 · 105 steps and interval of
0.01 · 105 steps is shown. Clearly, the fully segregated cases of Figure 14 are not all fully segregated and a
progression with higher numbers of charge carriers can be seen in the radial distribution for these steps.

To understand why the averaging done in Figure 14 and Figure 15 is useful, the radial distribution for
single steps at different numbers of steps are shown in Figure 16. The segregation is basically complete, but
deviations occur for every distance at specific time steps. The averaging shows how stable the segregation
is. It shows that some bromine remains in the fully segregated regions due to the randomness of the process.
In Figure 14 higher numbers of carriers correlate with on average less bromine mixed in which corresponds
to a higher level of segregation.

31

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre iodine rich zone (unit)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

n = 0
n = 12
n = 15
n = 20
n = 30

Figure 15: The averaged radial distribution between 0.3 ·105 to 0.34 ·105 and interval of 0.01 ·105 for different
numbers of charge carriers. For all but the dark case the system has shown segregation at Nstep = 4 · 105,
as shown in Figure 14. Here it shows that higher charge carrier numbers lead to quicker segregation, as for
the higher charge carrier numbers, the segregation already has occurred and not for the lower charge carrier
numbers. Simulation parameters: 8x8x8, nvac = 15, nI : nBr = 30 : 70, reg = 2.3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

Step = 50,000
Step = 100,000
Step = 120,000
Step = 150,000
Step = 160,000
Step = 199,000

Figure 16: The progression of segregation for ncar = 20. At some point the segregation does not further
progress, but random deviation do occur. This can be seen by the deviations at every measured distance. The
averaging helps in the visualisation when comparing different charge carrier numbers. Simulation parameters:
8x8x8, nvac = 15, nI : nBr = 30 : 70, reg = 2.3 unit.

32

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

I:Br = 30:70
I:Br = 40:60
I:Br = 50:50
I:Br = 60:40
I:Br = 70:30

Figure 17: The radial distribution for fully segregated systems with varying ratios of bromine to iodine. The
segregation is stronger for higher concentrations of iodine. The Simulation parameters: 8x8x8, ncar = 20,
nvac = 15, reg = 2.3 unit Nstep = 3.5 · 105 to 4.0 · 105

5.4 Halide ratio

Segregation is hypothesised to be activated by a randomly occurring, relatively, iodine rich zone. When
the concentration of iodine is higher in the model, these iodine rich zones are bound to occur more often.
There is also less bromine in the system to randomly be diffused into the iodine rich zone. In Figure 17 the
average radial distribution for Nstep = 3.5 · 105 to 4.0 · 105 with an interval of 0.1 · 105 is shown for different
concentrations, when they are fully segregated.

For higher concentrations of iodine in the simulation, less bromine diffuses into the iodine rich zone as
expected. This implies that the iodine rich zones for lower concentrations of iodine are less stable and it
would be interesting to see whether tuning of both the charge carrier density and iodine concentration could
lead to mixed and demixed stable situations in the model and whether there is some turning point that can
be found.

5.5 Vacancy density

One of the parameters that is set higher in the model than realistic values is the vacancy density. The
concept behind this parameter picking is that more vacancies leads to faster segregation in experiments.
While this might be true for the time that is simulated, it is looked into what number of steps are required
for segregation to occur. The hypothesis that less steps are required for higher numbers of vacancies is tested
by plotting the radial density for different numbers of vacancies at certain time steps, as is done in Figure
18. It can be seen that the required number of steps for segregation does not appear to correlate with the
number of vacancies in the simulations. It appears that the iodine rich zones are less stable for really high
numbers of vacancies, as can be seen by comparing the sixty vacancies case to the others in Figure 18e and
Figure 18f. No physical conclusions can be drawn from this, as these situations will not occur in realistic
situations, but are nevertheless remarkable as they go against the hypothesis.

33

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

n = 2
n = 4
n = 8
n = 10
n = 18
n = 26
n = 30
n = 60

(a) Nstep = 5 · 103 to 10 · 103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

n = 2
n = 4
n = 8
n = 10
n = 18
n = 26
n = 30
n = 60

(b) Nstep = 25 · 103 to 30 · 103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

n = 2
n = 4
n = 8
n = 10
n = 18
n = 26
n = 30
n = 60

(c) Nstep = 45 · 103 to 50 · 103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

n = 2
n = 4
n = 8
n = 10
n = 18
n = 26
n = 30
n = 60

(d) Nstep = 95 · 103 to 100 · 103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

n = 2
n = 4
n = 8
n = 10
n = 18
n = 26
n = 30
n = 60

(e) Nstep = 145 · 103 to 150 · 103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

n = 2
n = 4
n = 8
n = 10
n = 18
n = 26
n = 30
n = 60

(f) Nstep = 345 · 103 to 350 · 103

Figure 18: The radial distribution of iodine for different numbers of vacancies, each at different time steps.
he radial distribution of five time steps, spaced by 103, is averaged in these plots. The segregation can be
seen as more simulation steps are performed. Interestingly, the number of vacancies does not have any clear
influence on what rate with respect to the number of steps this occurs. The original concentration of iodine
is 0.3.

As seen in Section 4.3.2, the simulation time is roughly linear with the number of vacancies. It is therefore
highly useful to note that the number of steps required before segregation occurs does not seem to depend
on the number of vacancies within the simulation. It would mean that a low number of vacancies is enough
to simulate the crystal, which saves significant simulation time and computation power. The simulations

34

are performed for 8x8x8 unit cells, so there might be a lower limit for the number of vacancies that cannot
be seen in this relatively small simulation. It is also likely that for systems like 20x20x20 unit cells multiple
iodine rich zones can form in a single simulation. With a single vacancy, this is unlikely.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

n = 2
n = 4
n = 8
n = 10
n = 18
n = 26
n = 30
n = 60

(a) Nstep = 5 · 103 to 9 · 103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

n = 2
n = 4
n = 8
n = 10
n = 18
n = 26
n = 30
n = 60

(b) Nstep = 15 · 103 to 19 · 103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Io
di

ne
 (-

)

n = 2
n = 4
n = 8
n = 10
n = 18
n = 26
n = 30
n = 60

(c) Nstep = 25 · 103 to 29 · 103

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance from centre zone (unit)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Fr

ac
tio

n
Io

di
ne

 (-
)

n = 2
n = 4
n = 8
n = 10
n = 18
n = 26
n = 30
n = 60

(d) Nstep = 45 · 103 to 49 · 103

Figure 19: The averaged radial distribution of iodine for different numbers of vacancies, each at different time
steps. The radial distribution of five time steps, spaced by 103, is averaged in these plots. The segregation
can be seen as more simulation steps are performed. Interestingly, the number of vacancies does not have
any clear influence on what rate with respect to the number of steps this occurs. The original concentration
of iodine is 0.7. The results are similar to that of an original concentration of 0.3.

Note that the simulation time increases with a higher number of vacancies, but the time that is simulated,
i.e. the modelled real life equivalent, is proportional to the inverse of the number of vacancies. This kind of
simulations can be used to test the time simulated for segregation to occur for more vacancies decreases in
future research.

35

6 Conclusion and outlook
Perovskite solar cells have shown great potential for high efficiency solar cells. Especially mixed halide
perovskites are of interest for their application in tandem solar cells due to their tunable band gap . However,
perovskite solar cells face stability issues, one of which is light-induced halide segregation in mixed halide
perovskites. This segregation is not well understood, although some models exist. One on these models
cannot produce useful results due to speed and scaling issues of the code. This project’s goal was to improve
upon the current code by making it faster and scale for larger systems. By restructuring the code, switching
from Python to C++, and parallelising the rate calculation, the project goal has been achieved. In the
verification of the model some behaviour not corresponding to experimental observations has been seen.

It is shown that the C++ code is 410 times faster for a single threaded simulation than the Python code, for
a simulation with 8x8x8 unit cells. This is used as a base case for the comparison between the C++ code
and Python.

The Python code showed issues for scaling with the number of unit cells and this is confirmed, as the
simulation time scales quadratically with the number of unit cells. The C++ code shows improvement on
scaling as the total simulation time is linear with the number of unit cells in the simulation box. The set-up
time of the C++ code does, however, show a quadratic relation with the number of unit cells. This could
potentially be relevant for systems larger than 20x20x20 unit cells, as for 20x20x20 unit cells it was shown
to still be less than 10% of the total simulation time, which means that it does not influence the simulation
starkly. Since the C++ code has been shown to perform in linear time for the number of unit cells, excluding
the set-up time, and the Python code performs quadratically, the base factor of 410 is expected to only
increase for larger systems than 8x8x8 unit cells. As an example, the simulation for 20x20x20 unit cells
would take weeks with the Python code and only minutes with the C++ code.

The C++ code performs linearly with the number of vacancies, while the number of steps required to see
segregation does not appear to correlate with the number of vacancies in the model. The parallelisation of
the simulation steps makes that the total simulation time increase, caused by more vacancies, can be largely
counteracted by using multiple threads. The factor that using multiple threads speeds up the simulation is
slightly below the number of threads, which is due to Amdahl’s law, since, among other things, the copying
of the nextEventList of each thread and the single thread tasks like picking the next event cannot be
properly parallelised. For small numbers of vacancies, these effects are larger. Furthermore, this only works
if all threads perform roughly equal work. All threads perform roughly equal work in the simulation steps
if the number of vacancies is divisible by the number of threads. The cores are then used the most efficient.
It is therefore recommended to perform simulations with a low number of vacancies or a larger number of
vacancies that is a multiple of the number of threads used.

Further speed and scaling improvements are possible. It is estimated that a speed increase of ca. 30% for
systems larger or equal to 20x20x20 unit cells can be achieved by implementing the improvements regarding
the precalculation of the exponentials, the linearisation of the set-up and improving the parallelisation. These
improvements are most likely not highly time consuming. Improvements further than 30% are most likely
more time consuming to implement than time saving and therefore not worthwhile.

The behaviour of the model has also been looked at. The expected increase of segregation for increasing
photocarriers has been shown. For some photocarrier densities no increase has been shown, which indicates
a minimal photocarrier density in the system, but this has not been shown thoroughly and requires further
investigation. An unexpected result was the lack of growth of the iodine rich zones, while this is expected by
the thermodynamic theory or the experimental observations. The iodine rich zones did not grow significantly
larger than reg, hence more research is required into this model before this model can be used to draw
conclusions about the halide segregation in MAPBI.

6.1 Outlook

The goal of this thesis is about improving the code and performing some simple verification of the model.
Therefore, the actual application of the code will happen after this project. A more thorough verification
of the model, for example by matching the results of the code with the experimental observations, is also
recommended before using the code and model to draw conclusions about the behaviour of MAPBI under

36

illumination. Unexpected behaviour like the lack of growth of the iodine rich zones needs to be understood
or gotten rid of before the model can be used for predictions.

The C++ code has been shown to function best for large systems with low vacancy densities, although with
higher vacancy densities the parallelisation of the simulation loop can resolve this. For low vacancy densities
the set-up becomes the bottle neck, which means that parallelisation of the set-up would be worthwhile.
The current set-up is far from optimised as for the set goal of 20x20x20, the set-up is not the bottle neck.
The finding that the number of vacancies does not influence the required number of steps was also done late
in the project, so high vacancy density optimisation was prioritised. The parallelisation of large parts of
the set-up is a relatively simple task, with the distance calculations for each pair of sites being the bottle
neck. The sites can easily be divided over the different threads, especially if the ’dividing the box into cells’
principle of the Python code is implemented. For the details of this method, see Section 4.1 and Section
4.3.4.

The low vacancy densities and large systems resemble the experimental circumstances. It would be interesting
to see if, with carrier densities resembling experiment, the observed segregation also occurs. In Section 5.3
for low carrier density, still higher than realistic, no segregation is seen, but it might be the case that with
longer simulation times or different seeds the segregation would occur. By repeating the experiment for
different seeds and with large numbers of steps, this can be investigated.

The unified theory proposed in Chen et al. (2021) produces predictions that can be tested with this model
[14], once it matches experimental results. The thermodynamic theory that is proposed predicts when halide
segregation occurs and when no halide segregation occurs for a multitude of bromine concentrations and
illumination levels, and these circumstances can all be tested with this model and code.

Since only roughly every 1000th configuration is saved to save computing power and time, the exact config-
uration for which the system starts to segregate cannot be determined. An advantage of the use of a seeded
PRNG is that the exact same run can be repeated with more configurations being saved around the moment
of segregation. Using this method the exact requirements for segregation, according to the model, can be
studied by first having an exploratory run with large intervals between each saved configuration and then a
finer run with smaller intervals.

2D perovskites are an upcoming research topic due to their lack of light-induced halide segregation [33]. The
code can be altered to model 2D perovskites and further the understanding of why 2D perovskites are so
stable.

37

References

[1] Nicola Armaroli and Vincenzo Balzani. “Solar electricity and solar fuels: status and perspectives in the
context of the energy transition”. In: Chemistry–A European Journal 22.1 (2016), pp. 32–57.

[2] Patrick Tonui et al. “Perovskites photovoltaic solar cells: An overview of current status”. In: Renewable
and Sustainable Energy Reviews 91 (2018), pp. 1025–1044.

[3] NREL NREL. Best Research-Cell Efficiency. 2020.
[4] Christopher Eames et al. “Ionic transport in hybrid lead iodide perovskite solar cells”. In: Nature

communications 6.1 (2015), pp. 1–8.
[5] S Guha et al. “Band-gap profiling for improving the efficiency of amorphous silicon alloy solar cells”.

In: Applied Physics Letters 54.23 (1989), pp. 2330–2332.
[6] Masafumi Yamaguchi et al. “Multi-junction III–V solar cells: current status and future potential”. In:

Solar Energy 79.1 (2005), pp. 78–85.
[7] Martin A Green and Stuart R Wenham. “Novel parallel multijunction solar cell”. In: Applied Physics

Letters 65.23 (1994), pp. 2907–2909.
[8] Byung-wook Park et al. “Chemical engineering of methylammonium lead iodide/bromide perovskites:

tuning of opto-electronic properties and photovoltaic performance”. In: Journal of Materials Chemistry
A 3.43 (2015), pp. 21760–21771.

[9] Manoj Jaysankar et al. “Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells”.
In: ACS Energy Letters 4.1 (2018), pp. 259–264.

[10] Yousra El Ajjouri et al. “Tunable Wide-Bandgap Monohalide Perovskites”. In: Advanced Optical Ma-
terials 8.17 (2020), p. 2000423.

[11] Eric T Hoke et al. “Reversible photo-induced trap formation in mixed-halide hybrid perovskites for
photovoltaics”. In: Chemical Science 6.1 (2015), pp. 613–617.

[12] Sergiu Draguta et al. “Rationalizing the light-induced phase separation of mixed halide organic–
inorganic perovskites”. In: Nature communications 8.1 (2017), pp. 1–8.

[13] Xi Wang et al. “Suppressed phase separation of mixed-halide perovskites confined in endotaxial ma-
trices”. In: Nature communications 10.1 (2019), pp. 1–7.

[14] Zehua Chen et al. “Unified theory for light-induced halide segregation in mixed halide perovskites”.
In: Nature Communications 12.1 (2021), pp. 1–10.

[15] Michael C Brennan et al. “Light-induced anion phase segregation in mixed halide perovskites”. In:
ACS Energy Letters 3.1 (2017), pp. 204–213.

[16] Connor G Bischak et al. “Origin of reversible photoinduced phase separation in hybrid perovskites”.
In: Nano letters 17.2 (2017), pp. 1028–1033.

[17] Alexander J Knight et al. “Electronic traps and phase segregation in lead mixed-halide perovskite”.
In: ACS Energy Letters 4.1 (2018), pp. 75–84.

[18] Rebecca A Belisle et al. “Impact of surfaces on photoinduced halide segregation in mixed-halide per-
ovskites”. In: ACS Energy Letters 3.11 (2018), pp. 2694–2700.

[19] Alex J Barker et al. “Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin
films”. In: ACS Energy Letters 2.6 (2017), pp. 1416–1424.

[20] Denis Barboni and Roger A De Souza. “The thermodynamics and kinetics of iodine vacancies in the
hybrid perovskite methylammonium lead iodide”. In: Energy & Environmental Science 11.11 (2018),
pp. 3266–3274.

[21] Cheng Li et al. “Unravelling the role of vacancies in lead halide perovskite through electrical switching
of photoluminescence”. In: Nature communications 9.1 (2018), pp. 1–8.

[22] Anthony Ruth et al. “Vacancy-mediated anion photosegregation kinetics in mixed halide hybrid per-
ovskites: coupled kinetic Monte Carlo and optical measurements”. In: ACS Energy Letters 3.10 (2018),
pp. 2321–2328.

[23] Luc Devroye. “Sample-based non-uniform random variate generation”. In: Proceedings of the 18th
conference on Winter simulation. 1986, pp. 260–265.

[24] Makoto Matsumoto and Takuji Nishimura. “Dynamic creation of pseudorandom number generators”.
In: Monte-Carlo and Quasi-Monte Carlo Methods 1998. Springer, 2000, pp. 56–69.

[25] David Jones. “Good Practice in (Pseudo) Random Number Generation for Bioinformatics Applica-
tions”. In: (2010).

38

[26] Lucie McGovern et al. “Understanding the stability of MAPbBr3 versus MAPbI3: Suppression of
methylammonium migration and reduction of halide migration”. In: The journal of physical chemistry
letters 11.17 (2020), pp. 7127–7132.

[27] Dane W DeQuilettes et al. “Photoluminescence lifetimes exceeding 8 µs and quantum yields exceeding
30% in hybrid perovskite thin films by ligand passivation”. In: ACS Energy Letters 1.2 (2016), pp. 438–
444.

[28] Geoffrey Grimmett and David Stirzaker. Probability and random processes. Oxford university press,
2020. Chap. 6.

[29] Ji-Hui Yang et al. “Fast self-diffusion of ions in CH 3 NH 3 PbI 3: the interstiticaly mechanism versus
vacancy-assisted mechanism”. In: Journal of Materials Chemistry A 4.34 (2016), pp. 13105–13112.

[30] Andrei Buin et al. “Materials processing routes to trap-free halide perovskites”. In: Nano letters 14.11
(2014), pp. 6281–6286.

[31] Chen Wang et al. “Giant phonon tuning effect via pressure-manipulated polar rotation in perovskite
MAPbI3”. In: The journal of physical chemistry letters 9.11 (2018), pp. 3029–3034.

[32] Yi Zhang et al. “Trash into treasure: δ-FAPbI3 polymorph stabilized MAPbI3 perovskite with power
conversion efficiency beyond 21%”. In: Advanced Materials 30.22 (2018), p. 1707143.

[33] Chaohui Li et al. “Vertically aligned 2D/3D Pb–Sn perovskites with enhanced charge extraction and
suppressed phase segregation for efficient printable solar cells”. In: ACS Energy Letters 5.5 (2020),
pp. 1386–1395.

39

A Table of parameters

Parameter Elaboration Value indication
nx, ny, nz The number of modelled unit cells in the x-, y- and z-direction

respectively.
Between 8 and 20.

ax, ay, az The length of the lattice vector in the x-, y- and z-direction in
Angstrom.

6.28 Å for MAPBI
around 300 K [32]

nb, ni, nv The number of bromine, iodine and vacancies in the model re-
spectively. Note that these numbers must satisfy nb + ni + nv =
3 · nx · ny · nz, as each halide site is one of these three states

10% < nb, ni <90%
of halide sites, nvac
<1% of halide sites.

rcut The maximal distance in nanometers between halide sites for a
swap to be possible. In this model taken at the distance of the
nearest halide neighbours.

4.44 Å

reg The radius in Angstrom of the sphere around each lead for which
the local concentration of bromine and iodine is determined. Also
known as band gap radius. No exact value or realistic value is
known.

Between 4.44 Åand
30 Å.

Eb The binding energy in electrovolts of the halides in the crystal.
For both iodine and bromine the same values are used, although
they might differ in reality.

0.25 eV

T The temperature of the system in kelvin. Taken as constant during
the simulation.

300 K.

ncar The number of excited charge carriers in the system. Between 10-3 and
10-1 per unit cell.

k0 The prefactor for the rate of each event in per seconds. The exact
value is not know, but most likely in the order of 1012, similar to
phonon frequencies.

1012

Nstep, tmax The maximal number of steps or model time for which the simula-
tion runs. In this model only Nstep is actively used. The number
of steps for similar results scales with the number of unit cells.

102 to 103 per unit
cell

40

B Manual code

The C++ code can be found on a private repository on GitHub1. On the repository it is described how
the code and the necessary libraries can be installed. Once these packages have been properly installed, the
general work flow of performing experiments is as follows. First, create a folder in which the output files
need to come. This can be done via Windows File Explorer or using the shell, using ‘cd <path>’. Note that
if two simulations are run in the same folder, the output files get overwritten if they have the same name.
It is therefore recommended to use a separate folder for each simulation.

Second, copy the options.xml file from the folder in which you downloaded the repository to the output file
folder. Open the file and change the values to their desired values. Note that the number of vacancies is
determined by the number of sites minus the number of bromine and iodine. The options.xml file is shown
in Figure 20.

Figure 20: An example of an options.xml file.

Third, the programme needs to be build. By opening the shell, or using a terminal in Visual Studio, go
to the repository folder using ‘cd <path>’. Then type ‘./build.bat’ (on Windows, on Linux ./build), press
enter, and the programme is being build. Once complete, the built programme is in the bin folder within
the repository folder.

Fourth, the programme needs to be run inside the folder with the options file. Navigate to the folder in
the shell or terminal using ‘cd <path option folder>’. Then run the programme using ‘<path programme,
ends with .exe> -o options.xml -t <number of threads>’. It is recommended to use a divisor of the number
of vacancies as the number of threads to have all cores equally running and thus using the time most efficient.

Fifth, all data files are now available in the output folder where code was run. There is also a file with the
time for each of the output files.

1https://github.com/rubengerritsen/perovskiteKMC/

41

	Introduction
	Perovskite solar cells
	Light-induced segregation
	Modelling
	Scope and contents of the thesis

	Theory
	Thermodynamics
	Kinetic Monte Carlo
	Random Number Generator

	Model Set-Up
	General Set-Up
	Rate
	Energy
	Assumption justification
	Coinciding events
	Halide diffusion
	Carrier influence
	Memoryless processes

	Parameters
	Simulation steps
	Size of the model
	Vacancy concentrations
	Energy parameters

	Code
	Python Code
	C++ Code
	Topology and next event list
	Time
	Parallelisation
	Information Retention and Summing

	Performance
	Direct comparison
	Order of algorithms
	Test case
	Further speed improvements
	File export reduction
	Set-up linearisation
	Parallelisation

	Modelling Results
	Method and Data Analysis
	Segregation measure
	Visualisation

	Band gap radius
	Carrier density
	Halide ratio
	Vacancy density

	Conclusion and outlook
	Outlook

	Table of parameters
	Manual code

