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Abstract

Glass formation is one of the deepest challenges today in condensed matter physics. Only mild changes in
structural properties in a supercooled liquid result in a dramatic change of dynamical properties, such as a
material’s viscosity. A better fundamental understanding of the glass transition would give us an insight in the
underlying effects of this and could improve our material design and processing abilities. At present, mode-
coupling theory (MCT) is the only fully microscopic theory to describe this. It is approximated as schematic
MCT for analytical insight. In this project, an improvement on the theory, known as schematic generalized
MCT (GMCT), is mathematically analyzed. It concerns a system of coupled, non-linear integro-differential
equations that describe the intermediate scattering function of a material. We show, detailing and elaborating
on the work of others, that a unique solution to the equations exists when the equations are obtained with
the so-called exponential closure, and we can establish this also for one specific mean-field closure. For the
over-damped approximation to the schematic GMCT equations, we find that a unique solution always exists.
The earlier works we used either exploit linear aspects of the equation, or linearise the equations to show the
result with a convergence property. We then aim to model super-strong glass formation observed in vitrimer
simulations numerically. We find the Power Structure Factor (PSF) model, relating this glass formation to a
static structure factor of the form S(Λ) = 1 + Λ1/α where Λ is an inverse temperature, as one of the models
that could be useful for the observed phenomena. In the numerical exploration, we find that the ratio of the
frequency and damping coefficients in the schematic MCT equation is crucial. When looking at the correlation
functions themselves, we find numerically a data collapse if we scale the time for each correlation function by
the associated relaxation time. An analytic approach to explain this behaviour shows that this would hold
universally if the relaxation time can be shown to depend on the coefficient ratio only.
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1 INTRODUCTION

1 Introduction

One of the major challenges in condensed matter physics is to understand the dynamics of supercooled liquids
[16]. In particular, during their vitrification (or glass formation) the viscosity can grow orders of magnitude
upon only mild variations in control parameters such as temperature or density, while also showing only weak
changes in structural properties [13]. Phenomenologically, the glass transition, as it is also referred to, has
extensively been studied and we will introduce the main concepts below. Theoretically, on the contrary, there
is only one strictly first-principles, microscopically based theory that seeks to predict these phenomena: mode-
coupling theory (MCT) [14], and there are still many phenomena that cannot be accounted for. Glasses are
abundant and have among others applications in window panes, phase-change memory devices, pharmaceutical
compounds and wearable electronics [13]. A better theoretical understanding of glass formation could therefore
increase our capabilities in relevant material control and design [4].

In short, MCT studies the density correlation function in the Fourier domain and leads to an integro-
differential equation with non-linear memory kernel which also depends on the unknown correlation function.
To allow for analytical predictions, a wave vector independent approximation of the theory known as schematic
MCT is often considered. In recent years, the theory has extended to include exact equations for the memory
kernel, leading to a system of integro-differential equations. The system is in principle an infinite hierarchy,
but for numerical results a so-called closure is used to cut off the system at a finite level. This system, in
the schematic approximation, is the subject of an extensive mathematical analysis in this report, which will
eventually bring us to existence and uniqueness results for the theory that is used in the physical practice. We
can derive these from earlier work on the appropriate type of equations, whose proofs we provide in detail and
aim to improve if necessary.

1.1 Glass formation: phenomenology

In this introduction, we first provide a discussion of the phenomenon of glass formation. We think this is ne-
cessary to give a mathematical audience some background as to what is studied here, but also to appropriately
introduce the concepts that underlie the physical research question to be formulated below.

Microscopic structure
To study the properties of a glass, we start from a liquid. This can be turned into a glass by cooling down or
compressing the material such that the viscosity exceeds a value of 1012 Pa.s (this is just a definition; the central
concept is many orders-of-magnitude growth), but sufficiently quickly such that the liquid cannot crystallize.
We thus supercool the liquid to below its crystallization temperature. A glass therefore is a solid material,
lacking any long-range structure [13].

To describe the microscopic structure of a material, the radial distribution function g(r) is typically used.
This describes the probability of finding a particle in a thin, spherical shell a distance r away from some
reference particle, with respect to this probability in an ideal gas. In an ideal gas, the particles are assumed to
be evenly distributed over the whole occupied volume. For a typical crystalline solid, which has a well-defined
and repetitive structure, g(r) has sharp peaks at fixed intervals and vanishes in between. For a liquid, g(r) is
typically more smooth, but also displays peaks of decreasing height at distances corresponding to multiples of
the particle diameter (referred to as the solvation shells). However, for large values of r, it becomes identical to
an ideal gas, i.e. g(r) → 1, since a liquid has no long-range structure. Now for an amorphous solid or a glass,
the radial distribution function is very similar to the liquid state, although its dynamical properties clearly are
not (leading to a giant growth of the viscosity). For a pictorial representation of g(r), we refer to e.g. [13], [25].

In MCT, we study the microscopic structure in Fourier space, where the characteristics of g(r) are captured
by the static structure factor S(k) as a function of the wave number k. It displays properties similar to those of
g(r) and in particular has a main peak at the wave number corresponding to the first solvation shell. It flattens
out for greater wave numbers. We give a schematic representation of S(k) in figure 1(a).

Relaxation
To study the dynamics of a glass-forming liquid, we use the density-density correlation function or intermediate
scattering function F in the (spatial) Fourier domain over time. In words, it tells us how much the structure as
given by g at some time t resembles the structure at some reference time 0. Once it has decayed to zero, the
structure has become uncorrelated to the initial structure. At high temperatures, in the normal liquid state,
this function will always decay to zero in a fashion similar to the representative curve in figure 1(b), within
some time frame that is sufficient for the particles to move to new positions. At very short times, they are even
free to move in any direction (this is before they bump into other particles and are influenced by the resulting
interactions), which is called the ballistic regime. Thereafter, the microscopic regime follows and eventually, the
function relaxes to zero [17].
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1 INTRODUCTION

At lower temperatures, when we have a supercooled liquid, the decay will look like the other curves in figure
1(b). After the microscopic regime, a plateau is attained. In this time regime, the particles are trapped by
their neighbouring particles and can only move within a certain ’cage’, this is the so-called cage effect. This
time regime is referred to as the β-relaxation. Only for much larger times the particles will be able to escape
from these cages such that the structure of the material is allowed to continue to change and F can decay to
zero. This decay is called the α-relaxation regime. Based on experimental results, many features of the β- and
α-relaxation can be described by appropriate fitting models. Although these are not microscopically motivated,
we will see that MCT verifies some of these results [17].

When no relaxation to zero occurs any more, we have a liquid whose constituent particles can no longer
move sufficiently to relax and we speak of an amorphous solid or a glass. In figure 1(b), this is illustrated by a
curve for F staying in the β-regime plateau instead. This is called the (ideal) glass transition. Ideal, because it
is not clear whether in reality F will never fully decay. We therefore speak of an experimental glass transition
when the relaxation time increases over five orders of magnitude with respect to a typical high-temperature
relaxation time, for this defines an experimental time scale on the order of about a week.

1
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Figure 1: Structural and dynamical properties of liquids. (a) Schematic representation of the structure factor S
with the main peak at wave number k ≈ 2π/σ, where σ is the first solvation shell. (b) Normalised intermediate
scattering function F over time (note the logarithmic scale) for a high-temperature liquid, a supercooled liquid
and a glass. For the latter, F cannot relax to 0 any more. The arrows indicates the ballistic, microscopic,
β-relaxation and α-relaxation regimes. The last two can only be observed for supercooled liquids. The lines are
representative numerical solutions of the MCT equations, which capture this phenomenological behaviour.

Fragility
The relaxation time of the intermediate scattering function is the time needed to relax, or in the research practice
the time needed to reach some typical small value. It is related to the viscosity with the shear modulus as a
proportionality factor [13]. We can therefore use MCT to study F and obtain information about the viscosity.
Of particular interest is then the slope of the logarithm of the viscosity or relaxation time of the material as
a function of inverse temperature. For an example of what this might look like, the reader is invited to look
ahead at various outcomes for the relaxation time in figure 9 of chapter 7. If such a graph is a straight line,
this is called a strong glass-former. It corresponds to exponential growth of the relaxation time with inverse
temperature and this growth-behaviour is called Arrhenius-type. Fragile glass formers have a smaller slope
at higher temperatures and increasing slope at higher temperatures [17]. Formally, the fragility is described
in terms of the slope at the glass transition. This is of practical importance, because the material might be
less easily processable in temperature ranges with a high slope. Indeed, the viscosity would increase more and
more strongly upon cooling and a very precise temperature control is necessary for processing, while a strong
glass-former has a more gradual change of the viscosity [23].

As said, we will use MCT to predict the relaxation time. The only structural information that this theory
needs is the static structure factor. Via mild changes of this structure factor with decreasing temperature, MCT
will be able to predict a glass transition and accordingly a dramatic increase in the relaxation time over several
orders of magnitude.
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1 INTRODUCTION

1.2 Research goals and structure of the report

This report has partly a mathematical focus and partly a physical one. Mathematically, we are interested in the
existence and uniqueness of a solution to the schematic generalized MCT equations. We will study this system
of integro-differential equations based on the work of Götze et al. [10] and Saal [29]. The research goal here is:

To obtain a proof for the existence and uniqueness of solutions to the schematic generalized MCT equations,
detailing previous work such that the argument is understandable and convincing for a student at a third year

Bachelor’s level in mathematics.

We formally state the equations to be studied in chapter 3. We then start with preliminary mathematical
results in chapter 4 (part of which is just a repetition and part of which is aimed at developing an under-
standing of new material) from real and complex analysis concerning inequalities, convergence, the Laplace
transform and matrices in the context of differential equations. Also included are some notions and results
from functional analysis, topology and variational calculus, in particular differentiation of normed operators.
In chapter 5 we will then be able to develop the proofs for three existence and uniqueness results, building
new arguments on top of the preliminary results where necessary. Then in chapter 6 we can slightly adapt
the foregoing results such that they capture the exact structure of the equations in chapter 3 and provide the
desired results for specific closures. Here we mainly show how certain inequalities are satisfied, but will for one
case need some physical insight to allow for a mathematical trick before we can finalize the proof. We give
a conclusion and outlook at the end in chapter 9. These chapters form the mathematical contents of this project.

The physical part of the project is motivated by vitrimers. This is a name for covalent polymer networks that
can change their topology by thermally activated bond exchange reactions [3]. For vitrimers, these reactions are
reversible such that material properties at high temperatures and at low temperatures are not lost on repetitive
cooling and heating. Montarnal et al. have studied such a material and observed an Arrhenius behaviour
of the fragility when approaching the glass transition, unlike for organic compounds or other polymers. At
higher temperatures, the material is very processable. This way, the dimensional stability of thermosets and
the processability and reparability of thermoplastics are combined. [23].

Figure 2: Simulation results for glass-forming vitrimers. Left: logarithm of the (α-)relaxation time τα as a
function of inverse temperature 1/T normalised by the glass transition temperature of the simulation Tg,sim.
For decreasing density, the fragility changes from weak to super-strong. Right: height of the main peak of the
static structure factor S, at wave number kp. Here the density also decreases from red to green. The qualitative
change of shape for these graphs seems to be related to the qualitative change of glass-formation. The pictures
were provided by S. Ciarella.

In computer simulations done by S. Ciarella, a form of super-strong glass formation appeared where, near the
glass transition, the growth of the logarithm of the viscosity becomes less strong with decreasing temperature.
This same type of growth is also seen in the main peak of the static structure factor, as illustrated by figure
2. In this project, we try to establish a connection between the static structure factor and this growth of the
relaxation time. We note that MCT always predicts a power-law divergence of the relaxation time at the glass
transition, i.e., fragile behaviour. As a result, curves starting as those for the relaxation time in figure 2 will
display a cross-over from a convex shape to a concave one. Therefore we try to obtain this cross-over at a
value of the relaxation time on the order of 105, which we used to define an experimental glass and expresses
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large practical time ranges. We will come back to precise definitions later in the report, but can now state the
research question we seek to answer:

Can structural information in the form of a model for the static structure factor be used in schematic MCT to
predict an increase of the relaxation time at the cross-over between super-strong and fragile behaviour beyond

the experimental glass transition?

We start the physical aspect in chapter 2 with the theoretical background of MCT and its predictions. After the
mathematical goal has been completed in chapter 6, We explore various models for schematic MCT and their
results in chapter 7. In this chapter, we aim to answer the research question above by first looking at different
models for the static structure factor and then building on these results to look for a way to shift the relaxation
time to high time values. Then in chapter 8, we try to have a more physical look at the results of chapter 7
than the purely numerical view. We end with a conclusion and outlook for the whole report in chapter 9. These
chapters might be of particular interest to the physically motivated reader.
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2 SCHEMATIC GENERALIZED MODE-COUPLING THEORY: PHYSICS AND ASSUMPTIONS

2 Schematic generalized mode-coupling theory: physics and assump-
tions

This chapter introduces the theory behind the GMCT equations, which will be extensively studied mathem-
atically in subsequent chapters. We do not aim to provide full technical details of their derivation, but rather
wish to highlight the physics that underlie it and the assumptions that may limit their validity. Subsequently,
we will give some attention to the predictions of the theory and the physical understanding that they bring.

Let us begin by defining the quantities needed to study the physical properties of interest. We look at a
collection of N particles whose positions we describe by functions rj(t) of time in our space (j = 1, . . . , N).
Then the (real-)space density ρ as measured with respect to a point r in space at time t is defined by

ρ(r, t) =

N∑
j=1

δ(r− rj(t)). (2.1)

We space Fourier transform this quantity to obtain the density modes ρ(k, t) as a function of wavevector k, i.e.,

ρ(k, t) =

∫
space

eik ·rρ(r, t) dr,

=

N∑
j=1

eikrj(t) (2.2)

Now the dynamics of the system over time are described in this work (following e.g. [25]) by considering the
intermediate scattering function F (k, t), as a function of wave number and k = |k| and time t, defined by

F (k, t) =
1

N
〈ρ(−k, 0)ρ(k, t)〉 , (2.3)

where the brackets denote a canonical ensemble average. The intermediate scattering function only depends
on the wave number, instead of the actual wavevector in the right-hand side of (2.3), assuming isotropy of the
material. This is the case for a powder or a ’simple’ fluid, but not generally e.g. in the presence of an external
field. [13]. This quantity, besides forming the backbone of our theory, is also of practical importance because
it is information of the fluid that can be measured in inelastic neutron scattering experiments [17]. The static
structure factor S(k) is this structural information at time t = 0, i.e.,

S(k) ≡ F (k, 0) =
1

N
〈ρ(−k, 0)ρ(k, 0)〉 . (2.4)

It is a Fourier transform-like variant of the radial distribution function g(r), to which it is related by [25]

S(k) = 1 + ρ

∫
space

e−ik ·rg(r) dr, (2.5)

where ρ = N/V is the bulk density of the system. We have briefly discussed the qualitative properties of these
quantities in the introduction.

2.1 Mode-coupling theory

Mode-coupling theory (MCT) starts from two basic observations: firstly, it is used that the structural prop-
erties of a glass-forming liquid are very similar to those of the high-temperature liquid. (We have seen in the
introduction that this is phenomenologically well-founded [17], as barely any structural change emerges when
a fluid transitions to a glass.) Secondly, it builds on the observation that some dynamic variables evolve fast
(such as vibrations or thermal noise), while others vary much slower, so there is a separation of time scales. The
Mori-Zwanzig projection operator formalism allows one to derive exact equations of motion for the dynamical
variables of interest.

This procedure can be sketched as follows: for a classical fluid, obeying Newton’s laws of motion, it is known
that the time evolution of any phase space variable A can be described by d

dtA(t) = iLA(t), whose solution is
given by A(t) = eiLtA(0), where L is the Liouville operator (but we do not go into its details here) [25]. In the
Mori-Zwanzig formalism, we choose for A the slowly varying variables. Next one defines a scalar product for
the phase space variables (note that A may actually be a vector of such variables) by means of the canonical
ensemble and this is used to define a projection operator PA onto the variable A. By this method, each variable
in the Hilbert space that they are described in, might have a component in our space of interest (slow dynamics),
and a counterpart in the orthogonal complement.
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2 SCHEMATIC GENERALIZED MODE-COUPLING THEORY: PHYSICS AND ASSUMPTIONS

Manipulating the exact equation of motion with this projection formalism and defining the correlation matrix
C(t) = 〈A∗(0)A(t)〉, one can derive that an exact equation of motion for these is

dC(t)

dt
= iΩ · C(t)−

t∫
0

K(τ) · C(t− τ) dτ. (2.6)

Here, Ω is some matrix called the frequency matrix and K a matrix called the memory function (their definitions
can be found e.g. in [25]). K is the time-autocorrelation function of the ’fast’ fluctuating force f , which describes
the fast components influencing the dynamics of A. It is the difficulty of determining K(t) that still imposes a
problem on finding C(t) from equation 2.6.

To apply this theory to molecular glass-forming liquids, the variables one considers are the density modes
defined by equation (2.2) and the associated current modes

j(k, t) ≡ d

dt
ρ(k, t) = i

N∑
l=1

(k ·ṙl(t)) eik ·rl(t). (2.7)

So we set A(t) = (ρ(k, t), j(k, t))T for some wave vector.
In this setting, we are ultimately interested in the matrix element C21(t) in equation (2.6), because it gives

us the time derivative of F (k, t). Using that time dynamics are described by L, which is a Hermitian operator
(this means that its position in an inner product can be swapped without any modifications), we can see this
as follows:

d

dt
F (k, t) =

1

N

d

dt
〈ρ(k, 0)∗ρ(k, t)〉 ,

=
1

N

〈
ρ(k, 0)∗

d

dt
eiLtρ(k, 0)

〉
,

=
1

N

〈
ρ(k, 0)∗iLeiLtρ(k, 0)

〉
,

= − 1

N

〈
iLρ(k, 0)∗eiLtρ(k, 0)

〉
,

= − 1

N

〈
d

dt
ρ(k, 0)∗eiLtρ(k, 0)

〉
,

= − 1

N

〈
j(k, 0)∗eiLtρ(k, 0)

〉
= − 1

N
C21(t).

Some approximations are presented in [25] regarding the specific form of f to simplify K in the exact
equation (2.6). Firstly, it is assumed that pair densities of the form ρk1ρk2 for all wave vectors k1,k2 dominate
the slow mode in the time dependence of the fluctuating force f . This turns its autocorrelation function K

in the form of a sum over four-point density correlation functions
〈
ρ∗(k1, 0)ρ∗(k2, 0)ei[1−PA]Ltρ(k3, t)ρ(k4, t)

〉
.

Mathematically, this comes down to the first-order non-vanishing projection of f onto the space of our variables
of interest [13].

Secondly, these four-point correlations are assumed to factorize into two-point correlations and the operator
exp[i[1 − PA]Lt] is replaced by exp[iLt] to prevent that all terms vanish (due to projection by 1 − PA on the
fast space). This means that in further steps, we make the replacement 〈ρ∗(k1, 0)ρ∗(k2, 0)ρ(k3, t)ρ(k4, t)〉 →
〈ρ∗(k1, 0)ρ(k1, t)〉 〈ρ∗(k2, 0)ρ(k2, t)〉 = N2F (k1, t)F (k2, t). This factorization would be exact for Gaussian
variables, but density modes in general are not Gaussian. It is an ad hoc approximation, which only serves the
purpose of simplification. Since we have, with the approximations, related (or coupled) the unknown correlations
(or modes) to our variable F , we speak of mode-coupling theory at this point.

Working out the details of the approximations described above, the MCT equation of motion for F (k, t) is
obtained from (2.6) as

0 =
d2F (k, t)

dt2
+
k2kBT

mS(k)
F (k, t) +

t∫
0

KMCT (k, t− τ)
dF (k, t)

dt
dτ,

KMCT (k, t) =
ρkBT

16π3m

∫
|Vq,k−q|2F (q, t)F (|k− q|, t) dq,

(2.8)

where Vq,k−q is a so-called vertex and depends on wave vectors k and q, the bulk density ρ and the static
structure factor evaluated at these wave vectors. Further kB is the Boltzmann constant and m is the particle
mass. We write these equations here to emphasize two things: the MCT approximations lead to an equation

6



2 SCHEMATIC GENERALIZED MODE-COUPLING THEORY: PHYSICS AND ASSUMPTIONS

where the intermediate scattering function at a specific wavevector depends on those at all other wave vectors
via the integral in KMCT , and that apart from the system parameters ρ,m and T the only structural input for
this theory is the liquid’s structure factor S(k) at all wavelengths.

Finally, instead of the function F (k, t), we can also consider Φ(k, t) := F (k, t)/S(k), i.e. we consider a
normalized intermediate scattering function that satisfies Φ(k, 0) = 1 by equation (2.4). Since S(k) is constant
with respect to the time t in equation (2.8), the equation for Φ(k, t) remains very similar. Apart from Φ(k, 0) = 1,
the initial condition Φ̇(k, 0) = 0 is imposed on Φ [15].

2.2 Interpretation

To interpret equation (2.8), we compare it to the equation of motion for a damped oscillator x(t) [13],

ẍ(t) + ω2x(t) + 2ζωẋ(t) = 0, (2.9)

where dots denote time differentiation, ω is the frequency of the undamped oscillator and ζ is the damping
coefficient. Comparison with (2.8) reveals that the role of ω2 is fulfilled by the factor k2kBT/mS(k), which
is the Ω21 component of the matrix Ω in equation (2.6). Hence the name frequency matrix. Further we see
that the damping effect of ζ is similar to the time-dependent memory function KMCT under the integral in
equation (2.8). Indeed, the ’fast’ fluctuating force f from which it ultimately stems can thus be interpreted as
a dissipative force responsible for the evolution of our variables under the influence of fast variables.

2.3 Generalized MCT

To avoid the uncontrolled factorization of four-point density correlation functions, the Mori-Zwanzig formalism
has been invoked again to find exact equations of motion for those, starting from a basis of two-point correlators
ρ(k1, t)ρ(k2, t), for wave vectors k1,k2, to project onto. Omitting the details, we state that the exact equations
for these are similar in structure to equation (2.6), but now with a memory function which is in first order
determined by six-point density correlations [15].

To be precise, a first derivative also appears outside the integral in the work of [15]. This is due to an
approximation of the memory kernel in equation (2.8), where the fast dynamics are modelled by a delta function
with a coefficient representing a friction coefficient (and the slow dynamics are added to this). This delta function
takes one first-order derivative outside the integral and accounts for the friction coefficient in the equations in
chapter 3. Often the so-called over-damped limit is used, where the friction coefficient outweighs the second
derivative, and the second derivative is then dropped from the equations [15]. In any case, this does not influence
the long-time behaviour as the second derivative always becomes negligible eventually.

For the four-point correlators, one can continue and find exact equations of motion depending on six-point
correlators, etc. For each step, let us schematically denote by Fn a 2n-point density correlator. (So F1 is the
function we have been interested in since equation (2.3) and which in the usual MCT approximations obeys
equation (2.8).) This process gives a hierarchy of equations of motion for the correlators Fn, each of which then
depends on the 2(n+ 1)-point correlator Fn+1 and is called generalised MCT (GMCT). This can in theory be
continued indefinitely, obtaining infinite order GMCT. The same can be done for the normalised correlators
Φn(k1, . . . ,kn, t) := Fn(k1, . . . ,kn, t)/Fn(k1, . . . ,kn, 0). For numerical tractability, however, this is impossible.
Therefore an approximation is in practice eventually made for some correlator FN+1, where we refer to N as
the closure level and to the approximation made as the closure.

The so-called mean-field closure at level N uses the factorization approximation as before, but now for the
equation of motion for the correlator FN . Doing this for N = 1 corresponds to equation (2.8) and is referred
to as standard MCT or first-order GMCT. One can choose between various factorizations in terms of all the
F1, . . . , FN as long as the total number of point correlations sums up to 2(N + 1). With the mean-field closure
at level N , we obtain a finite-dimensional system for the correlators F1, . . . , FN . Another possibility is the
exponential closure, which sets FN+1 = 0. This is physically based on the observation that at higher levels, the
correlators start to look like exponentially decaying functions. Since with the exponential closure, the kernel
vanishes in the equation for FN , this observation is made exact with the exponential closure as the solution for
FN then becomes a sum of exponentials (as we show in chapter 3).

2.4 Schematic GMCT

An analytical solution to the MCT equation (2.8) is not known, let alone to the infinite or closed system of
GMCT equations. Simplifications are needed to obtain a better qualitative understanding of MCT. This can be
done based on an observation by Bengtzelius et al., namely that the main contribution to the memory function
arises from the first peak of S(k), located at a wavevector which we denote k0 [1]. They make the simplification

S(k) = 1 +Aδ(k − k0).
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2 SCHEMATIC GENERALIZED MODE-COUPLING THEORY: PHYSICS AND ASSUMPTIONS

A is often defined to be the area under the first peak of S(k). This modelling for S(k) has the result that each
equation of the GMCT hierarchy depends on k0 only, which makes it essentially wavevector independent.

This approach is called schematic MCT in the case of first order GMCT, or for higher closure levels, schematic
GMCT. Since all k-dependent factors in the GMCT equations also become constants, we label them µn for the
frequency-like factor and λn for the factor in front of the integral, where n is the level of the GMCT hierarchy
(note that we do allow for different constants at each level). The former is also sometimes referred to as ωn

2.
We denote the normalised, wavevector independent intermediate scattering function for level n by φn. For the
numerical investigation in later chapters, φ1 as predicted by standard schematic MCT will be our variable of
interest.

For decreasing temperature, it is seen that the structure factor becomes more peaked and increases and
hence we should think of the parameter A as an increasing function of inverse temperature1 [17]. At the level
of the GMCT equations, this implies that the damping is strengthened and also the parameters λn in GMCT
are to be thought of as an increasing function of inverse temperature.

We will precisely state the equations for schematic GMCT in the next chapter, together with a precise
description of the closures one can use to close the hierarchy.

2.5 Predictions

We focus here on predictions of MCT (and GMCT or the schematic approximation) regarding fragility and the
behaviour of the relaxation time up to the transition, since those are properties that this project has focussed
on as well. The relaxation time can be defined in various ways, e.g. the time point where the correlator Φ1 or
φ1 has decayed to a value below 1/e or 0.05, or the area under its graph as is done in [14] for analytical means.
We stress once more that the predictions of MCT are based only on the static information contained in S(k)
(for e.g. various temperatures) and the bulk density and temperature one is interested in.

The first remarkable and most notable aspect is that MCT can indeed predict a transition in the sense that
the time the correlation functions need to decay to zero, increases without bound at a finite temperature [17].
The transition might be indicative of a transition from a liquid to a solid state. However, since no information
about an ordered state is used or imposed in the theory, Reichman and Charbonneau conclude in [25] that this
can only be a disordered state and hence the prediction of a glass. Moreover, both for MCT and its schematic
form, the time dependence of the correlators changes form from a simple decay in the high temperature regime
to a relaxation exhibiting the characteristic β and α-relaxation in the super-cooled liquid regime, which we used
to depict these phenomena in figure 1. So we see that MCT as well as its further approximation capture a
physical mechanism that can be used to explain the glass transition [17].

Yet the temperature at which MCT predicts the transition is often not in good agreement with experiments or
simulations [13]; the transition temperature of the theory is much higher than the true experimental temperature
of the glass transition. We come back to this point below, in view of GMCT.

Another prediction is that the divergence of the relaxation time as a function of T always follows a power law
close to the transition temperature. This implies that MCT can only account for fragile glass formation, and
no Arrhenius T -dependence which is in fact one of the things people seek to describe by a macroscopic theory
for glass forming systems. Still, for fragile glass formers, even when rescaling the transition temperature to the
real glass forming temperature of the system, the dynamics are not accurately described by the theory close the
the transition [13]. For further predictions on functional forms (which often correspond to phenomenological
observations of glass formers) and other quantities, we refer to [17], [13] for an overview.

GMCT
Including exact equations for higher-order correlators, GMCT can make a number of predictions that improve on
the above. Janssen et al. have identified parameter choices in the over-damped schematic GMCT equations (3.1)
for λn and µn for the infinite order hierarchy which can be fitted to the standard F2 model (to be introduced in
chapter 7), demonstrating that GMCT is more general than MCT and can indeed reproduce its predictions [14].
This fit was made only to a certain plateau height and relaxation time, yet reproduces all qualitative behaviour
with respect to time as well as temperature. The authors further found a model that can, based on a single
parameter, predict no divergence for any finite temperature, as well as divergence with different fragilities: from
fragile to Arrhenius-type and even to super-strong glass formers. They expect these properties to be captured
by the non-schematic GMCT as well. So GMCT really extends the prediction possibilities of MCT.

GMCT can also be compared to simulations. One then finds convergence towards the correlation functions
obtained by simulations with an increasing closure level [16], whether one uses the exponential or mean-field
closures at different levels. This uniform convergence can be rigorously demonstrated for a schematic model
[22]. Further, it is found in the numerical studies of [16] that the mean-field closures give an upper bound to
the dynamics (i.e., the correlation functions), while the exponential closures provides a lower bound.

1 We can also think of it as a function of the bulk density or packing fraction, which are also parameters that can spur a glass
transition. However, our interpretation will only be in terms of temperature
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2 SCHEMATIC GENERALIZED MODE-COUPLING THEORY: PHYSICS AND ASSUMPTIONS

The convergence can be interpreted physically. Mean-field theories generally underestimate the effects of
ergodicity-restoring fluctuations and hence overestimate the dynamic slowing down towards a non-ergodic state
(the glass transition). In contrast, the exponential closure ignores higher order memory effects by setting
ΦN+1(k, t) ≡ 0. This consequently leads to relaxation patterns that are too fast. So for both closures, a
convergence notion exists in that we incorporate more memory effects in the solution. A higher closure level
can also turn a non-relaxing correlation function into a relaxing one, removing the discrepancy between the
MCT-predicted transition temperature and the simulated one [16].

We finally note that it is suggested that the MCT transition should be interpreted as a dynamical trans-
ition, where hopping effects or activated dynamics of particles ’hopping’ out of their cages are responsible for
ergodicity-restoring effects below the predicted transition temperature. An underlying argument is that the
MCT-predicted transition does not adhere to experimentally observed divergence behaviour of the relaxation
time [17]. In view of the above, GMCT improves the prediction of the transition of standard MCT without any
need for fitting the results to simulations, from which it can be concluded that the inclusion of higher-order
terms appears to describe all relevant relaxation patterns, at least in the weakly supercooled regime [16].
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3 MATHEMATICAL STATEMENT OF THE EQUATIONS

3 Mathematical statement of the equations

The equations that are studied in generalized mode coupling theory concern an infinite hierarchy of coupled
integro-differential equations for the unknown functions φn, n = 1, 2, . . . . In order for the equations below to
make sense, we will assume that each of these functions is twice continuously differentiable, i.e. the functions
of interest can be characterized as {φn ∈ C(2)(R,R) | n ∈ N}. Physically these result from (real valued) density
correlation functions in the Fourier domain and depend on a single variable, time.

3.1 Equations

In [15], a hierarchy of equations is derived in a schematic approximation, where wave-vector dependence of the
density correlation functions is neglected (to produce φn) and brought into two characterizing (unknown) sets
of constants µn ∈ R+, λn ∈ R+, n ∈ N. We briefly pointed towards this procedure in the introduction and more
details are presented in the physical theory of chapter 2. In the over-damped limit, where a second derivative
is ignored in the presence of a first derivative, this yields the following equations for n ∈ N, t > 0:

φ̇n(t) + µnφn(t) + λn
t∫

0

φn+1(τ)φ̇n(t− τ)dτ = 0,

φn(0) = 1.

(3.1)

where φ̇n(t) = dφn
dt (t) denotes differentiation of φn.

Alternatively, one could decide not to make the assumption of the over-damped limit. In this case a second
order derivative is not neglected and the equations contain an effective friction coefficient ζ > 0. Moreover, an
initial value is needed for the first derivative, which must equal 1 for all functions [15]. The equations that then
result, for n ∈ N and t > 0, are given by:

φ̈n(t) + ζφ̇n(t) + µnφn(t) + λn
t∫

0

φn+1(τ)φ̇n(t− τ)dτ = 0,

φn(0) = 1, φ̇n(0) = 0.

(3.2)

The most eminent problem when discussing solutions to these equations is clear: the defining equation for
each φn depends on another unknown function φn+1, which can by no means be found unless one knows the
next unknown φn+2 and this continuous for ever, not yielding a finite set of integro-differential equations to be
solved. To this end, an assumption must be made at some finite value of n to end the infinite hierarchy. In [15],
two ways are proposed which we will both investigate in the following section. These assumptions to end the
hierarchy are called closures.

3.2 Closures

Let us denote the level at which we wish to close the hierarchy by N , by which we mean that the equations (3.1)
and (3.2) will be considered for n = 1, 2, . . . , N and φN+1 is expressed in terms of the functions φ1, φ2, . . . , φN
to yield a system of N equations for N unknown functions. We will denote such a closure function at level N
by CN .

Definition 3.2.1. For N ≥ 1 the so-called mean-field closure at level N is defined to be of the generic form
2

φN+1 = CN (φ1, . . . , φN ) =

N∏
n=1

(φn)
mn =

N∏
n=1

φmnn , (3.3)

where for n = 1, 2, . . . , N we have mn ∈ N ∪ {0} chosen such that

N∑
n=1

n ·mn = N + 1 (3.4)

is satisfied. This closure is briefly written as MF-N(1m12m2 . . . nmn . . . NmN ), omitting all n for which mn = 0.

2We slightly change notation here with respect to Janssen et al. in [15]. They adopt the definition that a closure at level N
means that φN is expressed in terms of φ1, φ2, . . . , φN−1, but we think that taking N unknowns at level N enhances notational
clarity for the explicit mathematical analysis that follows. The authors of [15] further write 3.3 as a product of φ

mi
ni ’s, with a new

subindex, but this notation seems to be superfluous.
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Example 3.2.2. With the above definition, we see that MF-4(14) means that we define φ5 = φ1φ4. More

generally, MF-N(1N) means that we define φN+1 = φ1φN , and MF-N(1N+1) defines φN+1 = φN+1
1 .

Remark 3.2.3. (Standard schematic MCT.) In both of the general examples above, closure at level 1 reduces
to MF-1(12) such that φ2 = φ2

1. This is exactly the approximation made in standard schematic MCT, which is
the schematic (wave vector independent) approximation of the theory discussed in 2.1.

Another approach suggested in [15] is to put φN+1(t) = 0 for all t ≥ 0. This leads to the following definition
of the exponential closure.

Definition 3.2.4. Let N ∈ N. The exponential closure of the system (3.1) or (3.2) at level N is defined by

φN+1 ≡ 0, (3.5)

which turns φN+1 into the zero function. This is denoted as the exp-N closure.

Remark 3.2.5. Looking at the system 3.1, which is studied in [15] for µn = n, it follows readily that the
exp-N closure yields φN (t) = e−µnt. This explains the terminology used for the exponential closure.
The numerical studies in [15] suggest that for sufficiently large n, φn(t) ≈ e−nt. This observation suggests the
exponential closure, making the observation exact at level N .

Observation 3.2.6. For completeness, let us also analyse the effect of the exp-N closure on the system (3.2).
For φN , (N ≥ 1), the exp-N closure yields an initial value problem with an ordinary second-order differential
equation for t ≥ 0: {

φ̈N (t) + ζφ̇N (t) + µNφN (t) = 0,

φN (0) = φ̇N (0) = 1,

having the constant coefficients ζ and µN in front of the unknown φN and its derivatives. Solving this initial
value problem is straightforward [2, Chapter 3]: upon the substitution φN (t) = eλt, we obtain the characteristic
equation

λ2 + ζλ+ µN = 0.

So when ζ2 > 4µ we obtain the real solutions λ = λ1 = − 1
2

(
ζ −

√
ζ2 − 4µ

)
and λ = λ2 = − 1

2

(
ζ +

√
ζ2 − 4µ

)
and the initial value problem has a unique solution, which is a linear combination of the form C1e

λ1t +C2e
λ2t,

and hence again an exponential form. When ζ2 < 4µ, we have a similar solution but with complex exponentials,
or a superposition of sines and cosines if we consider real-valued solutions only. For the situation ζ2 = 4µ, we
have a solution of the form (C1 + tC2)e−

1
2 ζt and since ζ > 0, the solution still displays decay dominated by an

exponential in the long-time limit t→∞.

Remark 3.2.7. From a mathematical point of view, the exp-N closure drastically simplifies the coupled sys-
tem, for one can solve the unknown functions φN , . . . , φ1 one by one, each time substituting the obtained solution
in the equation for the function with the next lower index. However, the assumption of the exponential closure
is in direct contradiction with the infinite hierarchy that is actually considered in the systems (3.1) and (3.2),
since these demand that φN+1(t = 0) be equal to 1. This is avoided with the MF-N closures, which yield a
self-consistent system for φ1, φ2, . . . , φN that does not directly contradict the discarded equations of the infinite
system.

These both closures finalize the definition of the equations of interest in generalized mode-coupling theory.

11



4 PRELIMINARY MATHEMATICAL RESULTS

4 Preliminary mathematical results

In chapter 5, some existence and uniqueness results will be proved, extending the arguments provided by Götze
et al. in [10] and Saal in [29]. To support the arguments they use, various results from mathematical theory will
be invoked. In this chapter, we aim to organize these results and the underlying definitions to prepare for their
application later. We give a reference for these results, or a proof for less general statements that we derive
ourself for the purposes of this report. Alhough many results are interesting in their own right, the reader may
wish to read the relevant sections of this chapter only when they are needed in chapter 5.

4.1 (In)equalities

We will need various inequalities to establish appropriate upper bounds in chapter 5. It turns out that for the
convolution and double integral type expressions that we encounter, such estimates can be found. Also the
Cauchy-Schwarz inequality for bounds on inner products and Gronwall’s inequality for integral equations will
be needed, and some more. However, we start with a very easy-to-prove inequality which will surprisingly often
be used.

Inequality 4.1.1. Let a, b ∈ R. Then the following holds:

a · b ≤ 1

2

(
a2 + b2

)
. (4.1)

Proof:
From 0 ≤ (a− b)2 = a2 − 2ab+ b2, we immediately derive the desired result.

Lemma 4.1.2. Let T0, T ∈ R, T0 < T . Let f : [T0, T ] → R (T > T0) be integrable and such that for all
x ∈ [T0, T ], f(x) is non-negative. Then for all t ∈ [T0, T ] the following inequality holds:

t∫
T0

s∫
T0

f(r) dr ds ≤ (T − T0)

t∫
T0

f(s) ds. (4.2)

Proof:
Reversing the order of integration, we can write

t∫
T0

s∫
T0

f(r) dr ds =

t∫
T0

t∫
r

f(r) dsdr =

t∫
T0

(t− r)f(r) dr,

≤
t∫

T0

(t− T0)f(r) dr ≤ (T − T0)

t∫
T0

f(r) dr,

where the inequality holds because f(r) ≥ 0 for r ∈ [T0, T ] by assumption. Note that r is a dummy variable in
the last integral.

Lemma 4.1.3. Let f : [T0, T ]→ R be non-negative and integrable on [T0, T ]. Then for all t ∈ [T0, T ]:

t∫
T0

s∫
T0

f(r) · f(s) dr ds ≤ (T − T0)

t∫
T0

f(s) ds. (4.3)

Proof:
Splitting the sum in the integral after applying (4.1), next applying (4.2) to the integral with f(r), we obtain

t∫
T0

s∫
T0

f(r) · f(s) dr ds ≤ 1

2

t∫
T0

s∫
T0

f(r) + f(s) dr ds,

≤ 1

2

t∫
T0

s∫
T0

f(r) dr ds+
1

2

t∫
T0

f(s)

s∫
T0

1 dr ds,

≤ 1

2
(T − T0)

t∫
T0

f(s) ds+
1

2

t∫
T0

(s− T0)f(s) ds ≤ (T − T0)

t∫
T0

f(s) ds.
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Lemma 4.1.4. Let f : [0, 2T0]→ R (T0 > 0) be integrable and non-negative. For t ∈ [T0, 2T0] it holds that

t∫
T0

T0∫
0

f(s− r) dr ds ≤ T0

t∫
0

f(s) ds. (4.4)

Proof:
Changing variables to u = s− r, we obtain

t∫
T0

T0∫
0

f(s− r) dr ds =

t∫
T0

s∫
s−T0

f(u) duds.

In terms of u and s, the region of integration is represented by figure 3. It is a parallelogram with the two upper
corners at (u, s) = (t− T0, t) and (u, s) = (T0, t), or the domain D = {(u, s) ∈ R2 | T0 ≤ s ≤ t, s− T0 ≤ u ≤ s}.
Since we have T0 ≤ t ≤ 2T0, their relative positioning is in accordance with the configuration in figure 3 (except
for the case when t = 2T0, but that poses no complications below). Careful inspection of the figure allows us to
describe the same domain D with the following boundaries, reversing the order of integration:

t∫
T0

T0∫
0

f(s− r) dr ds =

t−T0∫
0

u+T0∫
T0

f(u) dsdu+

T0∫
t−T0

t∫
T0

f(u) dsdu+

t∫
T0

t∫
u

f(u) dsdu,

=

t−T0∫
0

uf(u) du+ (t− T0)

T0∫
t−T0

f(u) du+

t∫
T0

(t− u)f(u) du,

≤ (t− T0)

t∫
0

f(u) du ≤ T0

t∫
0

f(u) du.

We used that for t ∈ [T0, 2T0] and u ∈ [T0, t], we have 0 ≤ t− u ≤ t− T0 and t− T0 ≤ T0.

t-T0 T0

s = u - T0

s = u

0 1 2 3 4 5
u0

1

2

3

4

5

s
Integration region

Figure 3: Region of integration (orange) in the u, s-plane in the proof of Lemma 4.1.4, illustrated for T0 = 3
and t = 4.5.

Lemma 4.1.5. (Gronwall’s inequality, [7, Section 1.5]).
Let a < b and let I = [a, b] denote an interval of the real line. Let α, β, u : I → R and assume these functions
are continuous on I and that β(x) ≥ 0 on I. Let u satisfy for all t ∈ I the integral inequality

u(t) ≤ α(t) +

t∫
a

β(s)u(s) ds. (4.5)
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Then for all t ∈ I:

u(t) ≤ α(t) +

t∫
a

α(s)β(s) exp

 t∫
s

β(r) dr

 ds. (4.6)

If also α is non-decreasing3, it holds for all t ∈ I that

u(t) ≤ α(t) exp

 t∫
a

β(s) ds

 . (4.7)

Notation 4.1.6. Let U be an inner product space. We denote the inner product on U by ·, i.e. the infix
operator · with the notation

· : U × U → R, (u, v) 7→ u ·v.
For some vector object u ∈ U , we shall write u ·u = u2. We will not make an explicit distinction in notation
between inner products on different spaces.

Lemma 4.1.7. (Cauchy-Schwarz inequality, [19, Lemma 3.2-1]) Let U be an inner product space and let

u, v ∈ U . Let ||.|| denote the norm that is derived from the inner product on U , i.e. ||u|| =
√
u2. We then have

|u ·v| ≤ ||u|| · ||v||. (4.8)

Observation 4.1.8. We use the same notation as above. In view of the Cauchy-Schwarz inequality and (4.1),
we can also derive the following estimate of an inner product in terms of a sum of inner products:

|u ·v| ≤ 1

2
(u2 + v2).

That is, (4.1) generalizes to inner products.

Lemma 4.1.9. Let n ∈ N, f ∈ C(1) ([a, b],Rn) be a vector-valued function, continuously differentiable function
for some interval [a, b] in R and let · denote the standard inner product onRn. Then for all t ∈ [a, b] we have

d

dt

1

2
(f ·f) (t) = f(t) · d

dt
f(t), (4.9)

where f ·f ∈ C(1) ([0, T ],R) is defined by f ·f(t) = f(t) ·f(t). This is an intuitive generalization of the chain
rule in the case of an inner product.
Proof:
The proof can be found by straight-forward use of the definition of the standard inner product and application of
the chain rule in the one-dimensional case for each component, because differentiation of a vector-valued function
comes down to differentiating each component. Let us write for t ∈ [a, b]: f(t) = (f1(t), f2(t), . . . , fn(t)). We
then have for all t ∈ [a, b]:

f(t) · d
dt
f(t) =

n∑
i=1

fi(t) ·
d

dt
fi(t) =

n∑
i=1

d

dt

1

2
fi

2(t),

=
d

dt

1

2

n∑
i=1

fi
2(t) =

d

dt

1

2
(f ·f) (t).

Theorem 4.1.10. (Leibniz rule for differentiation of integrals, [32, section 1.3]) Let f = f(x, t) and ∂f
∂t be

continuous functions in a domain of the x, t-plane that includes the rectangle R = [a, b] × [t0, t1]. Further let
g, h : [a, b]→ [t0, t1] be differentiable on [a, b]. We then have for all x ∈ [a, b]:

d

dx

h(x)∫
g(x)

f(x, t) dt = f(x, h(x))
dh(x)

dx
− f(x, g(x))

dg(x)

dx
+

h(x)∫
g(x)

∂f(x, t)

∂x
dt. (4.10)

We finish these inequalities with the definition of Lipschitz continuity and show how this property can be
derived from continuous differentiability.

3 In [7] this assumption reads α is constant, but the proof can readily be extended to non-decreasing α since then for some t ∈ I,
α(s) under the integral in (4.6) can be estimated by α(t) for s ∈ [a, t].
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Definition 4.1.11. Let U, V be metric spaces with metrics dU : U ×U → R and dV : V ×V → R, respectively.
Let f : U → V be a function from U to V . f is said to satisfy a Lipschitz condition with constant L, or to
be Lipschitz continuous if a constant L > 0 exists such that for all x1, x2 ∈ X we have

dY (f (x1) , f (x2)) ≤ LdX (x1, x2) .

Definition 4.1.12. Let n ∈ N. We define the metric4 δ : Rn×Rn → R for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
Rn by

δ(x, y) =

n∑
i=1

|xi − yi| .

It will be useful in section 5.2 to work with this metric instead of the standard Euclidean metric on Rn.

Lemma 4.1.13. (Lipschitz continuity for continuously differentiable functions) Let [a, b] be a closed interval
in R, n ∈ N and let f : [a, b]n → R be continuous and continuously differentiable on [a, b]n. Then f is Lipschitz
continuous.
Proof:
Since f is continuous, it is also continuous in each of its n variables. Let us write for x ∈ Rn, x = (x1, . . . , xn).
Applying the Mean Value Theorem to the ith variable yields for all x, y ∈ [a, b]n (with xi < yi) that some
ξ = ξ(xi, yi) ∈ (xi, yi) exists with

|f(x1, . . . , xi, . . . , xd)− f(x1, . . . , xi−1, yi, xi+1, . . . , xd)|
|xi − yi|

≤ |∂if(ξ)| ≤ max
i=1,...,n

max
t∈[a,b]

|∂if(t)| := L,

where L is independent of x and y, and the component i under consideration. Therefore it also follows for all
x, y ∈ [a, b]n that

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤|f(x1, . . . , xn)− f(y1, x2, . . . , xn)|+ |f(y1, x2, . . . , xn)− f(y1, . . . , yn)|,
≤|f(x1, . . . , xn)− f(y1, x2, . . . , xn)|+ |f(y1, x2, . . . , xn)− f(y1, y2, x3, . . . , xn)|

+ |f(y1, y2, x3, . . . , xn) + f(y1, . . . , yn)|,
≤|f(x1, . . . , xn)− f(y1, x2, . . . , xn)|+ |f(y1, x2, . . . , xn)− f(y1, y2, x3, . . . , xn)|

+ · · ·+ |f(y1, . . . , yn−1, xn)− f(y1, . . . , yn)|,

≤L
n∑
i=1

|xi − yi| = Lδ(x, y).

4.2 Sequences of functions

Here we will state some results concerning uniform convergence of real-valued functions and consequent prop-
erties. These will be referred to in order to complete the technical arguments in chapter 5.

Theorem 4.2.1. (Cauchy criterion for sequences, [18, Theorem 8.2.8]) A sequence of functions (fn)n∈N
converges uniformly on D if and only if for each ε > 0 there exists an n∗ ∈ N such that for all x ∈ D:
|fn(x)− fm(x)| < ε whenever n,m ≥ n∗.

Theorem 4.2.2. (Interchanging limit and integral) If (fn)n∈R is a sequence of continuous functions that
converges uniformly to a function f on [a, b], then

lim
n→∞

b∫
a

fn(x) dx =

b∫
a

[
lim
n→∞

fn(x)
]

dx =

b∫
a

f(x) dx.

I.e., if fn converges uniformly on [a, b], we can interchange taking the limit and taking the integral over the
interval [a, b].

4 We will not explicitly check that this definition satisfies that of a metric. This is assumed to be familiar by experience.
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Theorem 4.2.3. ([27, Theorem 7.17]) Let (fn)n∈N be a sequence of functions, differentiable on [a, b] (a, b ∈
R, a > b) and such that (fn(x0))n∈N converges for some x0 ∈ [a, b]. If (f ′n)n∈N converges uniformly on [a, b],
then (fn)n∈N converges uniformly on [a, b], to a function f , and

f ′(x) = lim
n→∞

f ′n(x) (a ≤ x ≤ b).

That is, under the conditions stated here, we can interchange differentiation and taking the limit of the
sequence.

Lemma 4.2.4. Let (fn)n∈N and (gn)n∈N be sequences of continuous functions from [0, T ] to Rk for some

k ∈ N, T > 0. Suppose that fn → f and gn → g, both uniformly, as n → ∞ (in some norm ||.||1 on Rk). Let
M : Rk → Rm for some m ∈ N be uniformly continuous on a set D with respect to the norm ||.||1 on Rk and
some norm ||.||2 on Rm. Here D = {x ∈ Rk | ||x||1 < maxt∈[0,T ] ||f(t)||1 + c} for some c > 0. Then the following
statements hold for n→∞, and each convergence is uniform on [0,T]:

(i) fn + gn → f + g;

(ii) M ◦ fn →M ◦ f .

Proof:
Let ε > 0 be given.

(i) For t ∈ [0, T ], we have

||fn(t) + gn(t)− f(t)− g(t)||1 ≤ ||fn(t)− f(t)||1 + ||gn(t)− g(t)||1.

By uniform convergence, there exist n1 ∈ N such that n ≥ n1 implies ||fn(t) − f(t)||1 < ε/2 and n2 ∈ N
such that n ≥ n2 implies ||gn(t)−g(t)||1 < ε/2, independent of t. Hence for n ≥ max{n1, n2}, we conclude
that

||fn(t) + gn(t)− f(t)− g(t)||1 < ε.

(ii) By uniform continuity of M on D, for all t ∈ [0, T ] there exists a δε > 0 (independent of t) such that for
all x ∈ D, ||x− f(t)||1 < δε implies ||M(x)−M(f(t))||2 < ε. By uniform convergence of (fn), there exists
an N ∈ N such that n ≥ N implies ||fn(t) − f(t)||1 < min{c, δε}, for all t ∈ [0, T ]. Let n ≥ N . Then we
see for all t ∈ [0, T ] that ||fn(t)||1 ≤ ||f(t)||1 + ||fn(t)− f(t)||1 < maxs∈[0,T ] ||f(s)||1 + c, hence fn(t) ∈ D,
and

||fn(t)− f(t)||1 < δε ⇒ ||M(fn(t))−M(f(t))||2 < ε.

Lemma 4.2.5. Let (fn)n∈N be a sequence of functions from [0, T ] to Rk×k and let (gn)n∈N be a sequence of

functions from [0, T ] to Rk for some T > 0, k ∈ N. We work with some norm ||.||1 on Rk and the induced
operator norm ||.||2 on Rk×k (see remark 4.4.3). Suppose that (fn) and (gn) converge uniformly to functions f
and g, respectively. Define Ω := {(τ, t) ∈ [0, T ]2 | t ≤ τ} and define f̄g : Ω→ Rk by f̄g(τ, t) = f(τ − t)g(t) and
likewise for all fn and gn. Then f̄ngn → f̄g uniformly as n→∞.
Proof:
Let ε > 0 be given. By ||.||∞ we denote the appropriate supremum norms over the interval [0, T ]. For all n ∈ N
and all (τ, t) ∈ Ω, we have

||f̄ngn(τ, t)− f̄g(τ, t)||1 ≤ ||gn(t)||1||fn(τ − t)− f(τ − t)||2 + ||f(τ − t)||2||gn(t)− g(t)||1.

By uniform convergence, an n1 ∈ N exists such that for all t ∈ [0, T ], n ≥ n1 implies

||gn(t)− g(t)||1 <
ε/2

1 + ||f ||∞
.

Then we also obtain for n > n1:

||gn(t)||1 ≤ ||gn(t)− g(t)||1 + ||g(t)||1 < ||g(t)||∞ +
ε/2

1 + ||f ||∞
≤ ||g||∞ +

ε

2
.

Now also by uniform convergence, an n2 ∈ N exists such that for all (τ, t) ∈ Ω, n ≥ n2 implies

||fn(τ − t)− f(τ − t)||2 <
ε/2

||g||∞ + ε/2
.
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Then for n ≥ max{n1, n2}, the following holds for all (τ, t) ∈ Ω:

||f̄ngn(τ, t)− f̄g(τ, t)||1 <
(
||g||∞ + ε

2

)
ε/2

||g||∞ + ε/2
+
||f(τ − t)||2ε/2

1 + ||f ||∞
,

≤ ε

2
+
ε

2
= ε.

Lemma 4.2.6. Let the definitions be as in Lemma 4.2.5. Let us further suppose that all fn and gn are
continuous for n ∈ N. (In particular, we know that f and g are continuous and hence all functions considered are
also Riemann integrable.) We now work with a norm ||.||1 on Rk that respects the triangle inequality for integrals

(e.g., the Euclidean norm). Define for all n ∈ N the function Fn : [0, T ]→ Rk by Fn(t) =
∫ t

0
fn(t−s)gn(s) ds. By

Theorem 4.2.2 and Lemma 4.2.5 Fn converges pointwise to the function F defined by F (t) =
∫ t

0
f(t− s)g(s) ds.

This convergence is uniform on [0, T ].
Proof:
Let ε > 0 be given. Due to the uniform convergence established in Lemma 4.2.5, an n1 ∈ N exists such that
n ≥ n1 implies for all (t, s) ∈ Ω:

||fn(t− s)gn(s)− f(t− s)g(s)||1 <
ε

T
.

Then we obtain for n ≥ n1 and all t ∈ [0, T ]:∣∣∣∣∣∣
∣∣∣∣∣∣
t∫

0

fn(t− s)gn(s) ds−
t∫

0

f(t− s)g(s) ds

∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤
t∫

0

||fn(t− s)gn(s)− f(t− s)g(s)||1 ds,

<

t∫
0

ε

T
ds,

=
εt

T
≤ ε.

4.3 The Laplace transform and monotonicity

To consider the so-called over damped case of the mode-coupling theory equations, we will need some results
about the Laplace transform and monotonicity of functions. We define these notions and summarize the
necessary results here. We will give an example, immediately illustrating the usefulness of the Laplace transform.

Definition 4.3.1. [30, section 1.1] Let f be a real or complex valued function of one variable. The Laplace

transform of f , denoted L(f) or f̂ is the function of the complex variable s defined by

L(f)(s) = f̂(s) =

∞∫
0

e−sτf(τ) dτ,

whenever the integral exists.

We can also refer to this integral as the Laplace integral at s, as is done in [8].

Theorem 4.3.2. [8, Theorem 3.1] A Laplace integral which converges absolutely at some point s0 ∈ C, con-
verges absolutely in the right half-plane {s ∈ C | Re(s) > Re(s0)}.

The Laplace transform can be used to turn equations into simpler ones, with properties that we present
now.

Theorem 4.3.3. (Integration Theorem, [8, Theorem 8.1]) Let f be some real or complex valued function

defined on [0,∞). Define φ(t) =
∫ t

0
f(τ) dτ . If L(f)(s) converges for some real s = x0 > 0, then L(φ)(s)

converges for s = x0, and we have:

φ̂(s) = L(s) =
1

s
L(s) =

1

s
f̂(s) for s = x0 and for Re(s) > x0.

So when f has a convergent Laplace transform, the transform of the integral can be related to that one.
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Theorem 4.3.4. (Differentiation Theorem, [8, Theorem 9.1]). If f : [0,∞) → K, t 7→ f(t), where K ∈ {R,C}
is differentiable for t > 0, and L(f ′)(s) converges for some real s = x0 > 0, then the limit f(0+) exists, and
L(f)(s) too converges for s = x0. We have the relation

L(f ′)(s) = sf̂(s)− f(0+) for s = x0 and for Re(s) > x0.

Definition 4.3.5. T0 is the set of functions from [0,∞) to R or C which are absolutely integrable and bounded
on every finite interval that does not include the origin.

Theorem 4.3.6. (Convolution Theorem, [8, Theorem 10.1]) If f1, f2 ∈ T0 and L(f1)(s) and L(f2)(s) converge
absolutely for s = s0, then L(f1 ∗ f2)(s) converges absolutely for s = s0, and we have

L(f1 ∗ f2)(s) = L(f1)(s) · L(f2)(s) for Re(s) ≥ Re(s0).

Observation 4.3.7. A few more properties of the convolution integral are useful. They are briefly presented
in [30, section 2.7] and follow quite readily from the definition and properties of the Riemann integral. Let
f, g, h real or complex valued functions on some interval [a, b] and let c ∈ R. Then c(f ∗ g) = cf ∗ g = f ∗ cg,
f ∗ (g ∗ h) = (f ∗ g) ∗ h and f ∗ (g + h) = (f ∗ g) + (f ∗ h).

It is also necessary to know if the Laplace transform is one-to-one and can be inverted after some manipu-
lations, to go back to the original problem setting. This is ensured by the following theorem.

Theorem 4.3.8. (Uniqueness Theorem, [8]) Two functions, whose Laplace transforms are the same (in a right
half-plane where both their Laplace integrals converge), differ at most by a null function.

From this, [30] infers the following theorem:

Theorem 4.3.9. (Lerch’s Theorem, [30, Theorem 1.23]) Distinct continuous functions on [0,∞) have distinct
Laplace transforms.

Hence if for some Laplace transform we encounter a continuous inverse transform, we can be sure it is the
unique continuous inverse transform.

Example 4.3.10. (Ordinary differential equation) Consider the initial-value problem for a function y : [0,∞)→
R given by

d

dt
y(t) + y(t) = 1, y(0) = 0.

Let us assume that the solution of this equation satisfies the conditions of Theorem 4.3.4. Applying the Laplace
transform to both sides of the equality and using linearity, we then obtain

L
(
dy

dt

)
(s) + L(y)(s) = sL(y)(s)− 0 + L(y)(s) = L(1)(s) =

1

s
.

The differential equation has thus been transformed to an algebraic equation for L(y), which can be solved to
give

L(y)(s) =
1

s(s+ 1)
.

To do an inverse Laplace transform in order to solve for the function y, one usually resorts to tables. For
example, [30, p. 210] immediately gives for y:

y(t) = 1− e−t.

This procedure replaces the search for a solution to the homogeneous problem and a particular solution as
is involved in the standard solution technique of ordinary differential equations. We will use this algebraic
technique to formally solve an iterative process in section 5.2.

Definition 4.3.11. [33, Definition IV-2a] A function f : [a, b] → R is absolutely monotone on the interval
[a, b] if it is continuous and has non-negative derivatives of all orders, satisfying

f (k)(x) ≥ 0 (a < x < b; k = 0, 1, 2, . . . ).
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Definition 4.3.12. [33, Definition IV-2c] A function f : [a, b]→ R is completely monotone on the interval
[a, b] if and only if f(−x) is absolutely monotone on [−b,−a], i.e. f satisfies

(−1)kf (k)(x) ≥ 0 (a < x < b; k = 0, 1, 2, . . . ).

Theorem 4.3.13. [33, Theorem IV-2b] If f1 : [a, b] → R is an absolutely monotone function on [a, b], and if
f2 : [a, b]→ [a, b] is completely monotone there, then f1 ◦ f2 is completely monotone there.

We will generalise this result to a multivariate function.

Theorem 4.3.14. Let n ∈ R. If F : [a, b]n → R is absolutely monotone in each of its n variables5 and if
f1, . . . , fn : [a, b] → [a, b] are completely monotone functions, then M : [a, b] → R, t 7→ F (f1(t), . . . , fn(t)) is
completely monotone on on [a, b].
Proof:
It suffices to use the chain rule to obtain

d

dt
M(t) =

n∑
i=1

∂F

∂xi
(x1, . . . , xn)

∣∣∣∣
(x1,...,xn)=(f1(t),...,fn(t))

· dfi
dt

(t).

This will be smaller than zero, because all terms in the summation are as for all xi,
∂F
∂xi

satisfies absolute
monotonicity and all fi satisfy complete monotonicity. With the product rule, we obtain for the second derivative
of M :

d2

dt2
M(t) =

n∑
i=1

 n∑
j=1

∂2F

∂xj∂xi
(x1, . . . , xn)

∣∣∣∣
(x1,...,xn)=(f1(t),...,fn(t))

· dfj
dt

(t)
dfi
dt

(t)


+
∂F

∂xi
(x1, . . . , xn)

∣∣∣∣
(x1,...,xn)=(f1(t),...,fn(t))

· d
2fi
dt2

(t).

(4.11)

This will be non-negative, because the first derivatives of some fi that occur are all non-positive, but always
multiplied, and the second derivative of the fi is non-negative by complete monotonicity. Further, all partial
derivatives of F of first and second order are positive by the assumption of absolute monotonicity.
This line of thought continues: applying the product rule, for a next derivative all derivatives of some fi are
either multiplied by a new non-negative derivative of some fj due to the chain rule, or differentiated once more.
In either case, the contribution to the sum of derivatives will change sign and so will the derivative itself.

We adapted the next result to a scalar valued function, because introducing the higher dimensional notions
is not necessary for our purposes.

Theorem 4.3.15. [11, Theorem 5-2.6] The Laplace transform â(z) of a function a : (0,∞)→ C that is locally
integrable on R+ and completely monotone on (0,∞) has the following properties:

(i) â has an analytic extension to the region C\R−;

(ii) â(x) = â∗(x) for x ∈ (0,∞);

(iii) lim
x→∞

â(x) = 0 (x ∈ R);

(iv) Im(â(z)) ≤ 0 for Im(z) > 0;

(v) Im(zâ(z)) ≥ 0 for Im(z) > 0, and â(x) ≥ 0 for x ∈ (0,∞).

Conversely, every function â that satisfies (i)-(iii), together with (iv) or (v), is the Laplace transform of a
function a : (0,∞)→ C that is locally integrable on R+ and completely monotone on (0,∞).

4.4 Metric and normed spaces

We will be considering spaces of functions with the structure that they obtain from a metric. Also, for Rn,
a metric different from the Euclidean metric was already defined in definition 4.1.12. We will also consider
some different metrics here. Using different ideas will allow us to exploit different properties of the functions
considered in chapter 5. We will also summarize some notions about compactness in metric spaces from the
literature.

5 By this statement, we mean that partial differentiation with respect to all variables and for higher-order partial derivatives,
all combinations of differentiation directions must result in non-negative derivatives on [a, b]n. The reason for this demand relates
directly to the occurrence of all possible combinations of partial derivatives in (4.11).
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Definition 4.4.1. Let a, b ∈ R, n ∈ N. Also let k ∈ N ∪ {0}. Then Ck([a, b],Rn) denotes the vector space of
all continuous functions from [a, b] into Rn that are (at least) k times differentiable.

Definition 4.4.2. (||.||(k)) Notation as in definition 4.4.1. Let us define the norm ||.||(k) on Ck([a, b],Rn) which

we define for f ∈ Ck([a, b],Rn) by

||.||(k) : Ck([a, b],Rn)→ R, ||f ||(k) =

k∑
i=0

sup
t∈[a,b]

||f (i)(t)||, (4.12)

where ||.|| is the Euclidean norm on Rn. This norm can be defined, since we look at functions which are k times
continuously differentiable on the closed and bounded interval [a, b]. Since continuous functions on closed and
bounded intervals are bounded, all three suprema needed to define ||f ||(k) will exist whenever f ∈ X, for finite
intervals [a, b]. The usefulness for working with this norm will become clear in 5.3.4. Moreover, this norm turns
Ck([a, b],Rn) into a Banach space [26], i.e., all Cauchy sequences in Ck([a, b],Rn) will converge to a (unique)
limit in Ck([a, b],Rn).

The particular advantage of this norm will become clear when working with the differentiation operator,
which is linear and bounded when one uses this norm.

Remark 4.4.3. We will consider matrix-valued functions m : Rn → Rn×n for some n ∈ N. As matrices, the
function values can again act as operators on vectors in Rn. We will therefore consider Rn×n as the vector space
of (matrix representations of) bounded linear operators from Rn to Rn, equipped with the induced operator
norm from the Euclidean norm on Rn. Then, for any x ∈ Rn, M ∈ Rn×n it holds that ||Mx|| ≤ ||M || · ||x|| [19,
2.7-7].
The same result applies to arbitrary bounded linear operators between normed vector spaces, when no specific
norm is mentioned. That is, if U and V are normed vector spaces and A : U → V is a bounded linear
operator with norm ||A||, we consider the induced operator norm on A and we have (denoting all norms by ||.||)
∀u ∈ U : ||Au|| ≤ ||A|| · ||u||.

Observation 4.4.4. (Compactness, [19, Appendix A1.5]) Most generally, a topological space (or a subset
thereof) is called compact if every open cover of this space or subset contains a finite sub cover (for a subset,
one considers the induced subspace topology, defined by intersecting all open sets of the topological space
with the set under consideration). A topological space or subset thereof is called sequentially compact if every
sequence in the set contains a converging subsequence (thus with limit in the same set). In metric spaces, and
hence also in normed spaces, the two notions are equivalent, and when compactness is mentioned we can give
a proof by demonstrating sequential compactness. We further note that any compact subset of a metric space
(and hence also of a normed space) is closed and bounded [19, Lemma 2.5-2].

Definition 4.4.5. (C(X,Y ), [5, p. 348].) Let U, V be compact metric spaces. We define the metric space
C(U, V ) as the set consisting of all continuous functions from X to Y , equipped with the supremum metric
d∞ : C(U, V )× C(U, V )→ R defined by

∀f, g ∈ C(U, V ) : d∞(f, g) = sup
u∈U

dV (f(u), g(u))),

where dV : V 2 → R is the metric defined for V . The compactness of U ensures that this metric is well-
defined, since continuous functions map compact sets to compact sets [24, Theorem 26.5], which are bounded
by observation 4.4.4.
Similarly, when V is a vector space with norm ||.||V : V → R, we can define the supremum norm ||.||∞ :
C(U, V )→ R by

∀f ∈ C(U, V ) : d∞(f) = sup
u∈U
||f(u)||V .

Definition 4.4.6. (Compact operator, [5, Section 2.3].) An operator A, mapping one normed vector space
into another, is said to be compact if it maps the unit ball in its domain to a set whose closure is compact.

In this case, the image of the unit ball is also called relatively compact in the literature, e.g. in [19]. Here
the closed unit ball is meant, i.e. for a normed space U with norm ||.|| we consider the image of the set
{u ∈ U | ||u|| ≤ 1}.
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4.5 Topology: the Arzelà-Ascoli theorem

Here we introduce some notions about equicontinuity in order to state the Arzelà-Ascoli theorem. Equicontinu-
ity, lemma about closure, Arzelà-Ascoli. It characterizes compactness in spaces of continuous functions.

Definition 4.5.1. ([5, p. 348].) Let U, V be metric spaces and let F be a subset of C(U, V ). Let dU and dV
denote the metrics on U and V , respectively. Then F is said to be equicontinuous (or an equicontinuous
family of functions) if the following holds:

∀ε > 0 ∃δ = δ(ε) ∀f ∈ F ∀u, v ∈ U :

dU (u, v) < δ ⇒ dV (f(u), f(v)) < ε.
(4.13)

That is, uniform continuity for each function in F can be established by use of the same number δ(ε) once ε
has been given.

Lemma 4.5.2. Let U, V be compact metric spaces with metrics dU and dV , respectively, and let F ⊆ C(U, V )
be equicontinuous. Assume that f ∈ C(U, V ) and that there exists a sequence (fn)n∈N in F such that fn → f
as n→∞ in C(U, V ), i.e. in the supremum norm. (When for infinitely many n ∈ N we have that fn 6= f , f is
called an accumulation point of F .) Then F ∪ {f} is equicontinuous and for each ε > 0, a choice of δ can be
made that is independent of the specific function f or the sequence (fn)n∈N, but only depends on F (and on ε,
of course).6

Proof:
Due to convergence in the supremum norm, we have

∀ε̃ ∃N = N(ε̃) ∈ N ∀n ≥ N, u ∈ U :

dV (fn(u), f(u)) ≤ sup
v∈U

dV (fn(v), f(v)) = d∞ (fn, f) < ε̃. (4.14)

Let ε′ > 0 be arbitrary and let u′, v′ ∈ U . Then for all n ∈ N, the following holds:

dV (f(u′), f(v′)) ≤ dV (f(u′), fn(u′)) + dV (fn(u′), fn(v′)) + dV (fn(v′), f(v′)) .

Now take N ∈ N such that (4.14) holds for ε̃ = 1
2ε
′. Continuing with n ≥ N , we obtain

dV (f(u′), f(v′)) < ε̃+ ε̃+ dV (fn(u′), fn(v′)) = ε′ + dV (fn(u′), fn(v′)) . (4.15)

Now let ε > 0 be given. We will establish uniform continuity of f for this ε. We must prove that this can
be done independently of the sequence (fn)n∈N or the function f . So let us take, in the notation of (4.13),
δ = δ(ε/2) and let u, v ∈ U with dU (u, v) < δ. Using in (4.15) that for such u and v we have for all g ∈ F that
dV (g(u), g(v)) < ε/2, it holds that

dV (f(u), f(v)) < ε′ +
1

2
ε.

Since this inequality has been derived for arbitrary ε′ > 0 and ε is a fixed number, we obtain

dV (f(u), f(v)) ≤ 1

2
ε < ε.

Equicontinuity of F ∪ {f} is thus established. Further, definition 4.5.1 ensures, that the equicontinuity can
be proven only based on the fact that F is equicontinuous, regardless of the accumulation point of F that is
considered. Hence the lemma has been proven.

Corollary 4.5.3. (Closure of equicontinuous family of functions) Since the closure F̄ of F in C(U, V ) can
be characterized as the union of F and all its accumulation points, it follows from the foregoing lemma that
uniform continuity of any f ∈ F̄ can be established for all ε > 0 with one choice of δ, namely δ(ε/2) in (4.13).
Hence, the closure of an equicontinuous set in C(U, V ) is itself again equicontinuous.

Theorem 4.5.4. (Arzelà-Ascoli, [5, Theorem 7.4-1].) Let U and V be compact metric spaces. A subset of
C(U, V ) is compact if and only if it is closed and equicontinuous.

6 In the case that f ∈ F , this fact is a trivial consequence of definition 4.5.1, but f need not be in F (and then it is certainly an
accumulation point). Furthermore, we assume in the proof that U contains accumulation points (or equivalently, that the interior
of U is non-empty), because otherwise the existence of u, v ∈ U with dU (u, v) < δ is not guaranteed for arbitrary δ > 0. However,
for isolated points in U , establishing uniform continuity is trivial.

21



4 PRELIMINARY MATHEMATICAL RESULTS

4.6 Differentiation of operators in normed spaces

Some of the results needed for the existence and uniqueness rely on the differentiation of operators. In order to
make sense of differentiation of an operator A, we must use an extension from real (vector) valued functions to
functions between arbitrary normed spaces. We adopt the presentation in [31, Section 9.2]. Let us start with
an illustration of the usefulness of differentiation in a linearisation.

Example 4.6.1. (Stability of ordinary differential equations) Let us consider for a function y : [0, T ]→ Rn for
some n ∈ N the autonomous differential equation

d

dt
y = F (y)

for a sufficiently smooth function F : Rn → Rn. Suppose for yeq ∈ Rn that F (yeq) = 0, i.e., yeq is an equilibrium
point of the differential equation. Sufficiently close to yeq, one can study properties of the linearised system

d

dt
u = DF (yeq)u.

Here DF (yeq) is the Jacobian matrix of F at yeq, giving the total derivative. The eigenvalues of DF (yeq) are
used in [2, chapter 9] to describe the stability of the equilibrium yeq. The linearisation is thus used to extract
very useful properties of the system. We note that it is theoretically covered by the concept of differentiation.
We now study a definition of differentiation that is more general than for functions of real variables, which will
allow us to use the central theorem of section 5.3.

Definition 4.6.2. Let U, V be normed spaces and let T : U → V be an operator. Suppose Ω = D(T ) ⊆ U
is an open set (D(T ) denotes the domain of T ), and let u ∈ Ω. If a bounded7 linear operator T ′(u) : U → V
exists such that

lim
||∆u||→0

||T (u+ ∆u)− T (u)− (T ′(u)) (∆u)||
||∆u||

= 0, (4.16)

then T ′(u) is called the Fréchet derivative of the operator T at the vector u and T is said to be Fréchet-
differentiable at u. The operator T ′ : U → B(U, V ), mapping u 7→ T ′(u) is called the Fréchet derivative of T
(B(U, V ) denotes the set of all bounded linear operators from U to V ). The domain D(T ′) ⊆ U consists of all
vectors in U where the limit (4.16) exists. We say that T is Fréchet differentiable (on U) when D(T ′) = U .

It follows readily from this definition that if two operators S and T are Fréchet-differentiable at some
vector u ∈ U , then so is their sum and any scalar multiple. We have for all α ∈ R: (αT )′(u) = αT ′(u) and
(T + S)′(u) = T ′(u) + S′(u). Also, when T is Fréchet-differentiable at u it is continuous at u [31, Theorem
9.2.4]. We shall from now on just write differentiable for Fréchet-differentiable. This can easily be done since for
differentiable functions f : Rm → Rn, the Fréchet derivative also exists and coincides with the linear operator
represented by the m×n Jacobian matrix of f at all points where it is differentiable [31, Example 9.2.8]. Finally,
if T has a Fréchet derivative, this bounded linear operator is unique [31, Theorem 9.2.5 and further].

Observation 4.6.3. (Bounded linear operators) Let U, V be normed spaces and let T : U → V be a bounded
linear operator. We denote both the norm on U and on V by ||.||. Then T is differentiable on U and T ′ maps u
to T for all u ∈ U (i.e., T ′ is a constant mapping from U to B(U, V )). The proof follows immediately by noting
that the linearity of T allows us to write for all u,∆u ∈ U : T (u+ ∆u) = T (u) + T (∆u). Then (4.16) gives

lim
||∆u||→0

||T (u+ ∆u)− T (u)− T (∆u)||
||∆u||

= lim
||∆u||→0

||T (u) + T (∆u)− T (u)− T (∆u)||
||∆u||

= lim
||∆u||→0

||0||
||∆u||

= 0.

Since the Fréchet derivative is unique, we have shown that ∀u ∈ U : T ′(u) = T .
Should we wish to differentiate this operator again after differentiation at a (fixed) vector u,8 now differentiating
at v ∈ U , we note the following: since the derivative gives the same operator regardless of the vector in U at
which we compute the derivative, we have for each vector u ∈ U in which we compute the first derivative (which
we will denote as T ′(u) = T ′u here) and each vector v ∈ U at which we wish to differentiate again, that

lim
||∆v||→0

||T ′u(v)− T ′u(v + ∆v)− T ′u(∆v)||
||∆v||

= lim
||∆v||→0

||T (v)− T (v + ∆v)− T (∆v)||
||∆v||

= 0,

7 [31] also demands that his operator be continuous, but we know that for linear operators between normed spaces, boundedness
and continuity are equivalent [19, Theorem 2.7-9].

8 We did not explicitly define higher-order derivatives, but we just need to apply the definition to T ′(u), since this is again an
operator from U to V . Note that this yields a mapping from U × U to B(U, V ), so to specify the second derivative as an operator
from U to V (i.e., in B(U, V )), we must provide two arguments, and we even need three if we want to know its value in V at some
vector in U .
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because by linearity of T , the numerator yields zero for all ∆v ∈ V . Hence, differentiating a bounded linear
operator twice will always yield the same operator again, and continuing the differentiation process, we can
differentiate as many times as we desire at all vectors in U and always know that T is the operator that results.

Definition 4.6.4. Let U, V be normed spaces, D ⊂ U open and T : U → V differentiable on D. The space
B(U, V ) of bounded linear operators can also be turned into a normed vector space, with for instance the induced
operator norm. We say that T is continuously differentiable if T ′ is continuous with the norms on U (||.||U )
and B(U, V ) (||.||B), i.e.

∀ε > 0∃δ > 0∀u, v ∈ D : ||u− v||U < δ ⇒ ||T ′(u)− T ′(v)||B < ε.

Theorem 4.6.5. (Chain rule, [5, Theorem 3.2-1]) Let U, V,W be normed spaces and let D ⊆ U and D′ ⊆ V
be open sets. Let T : D → V and S : D′ →W be operators. If T is differentiable at u ∈ U with T (u) ∈ D′ and
S is differentiable at T (u), then S ◦ T is differentiable at u, and

(S ◦ T )′(u) = S′(T (u)) ◦ T ′(u).

Theorem 4.6.6. (Product rule for convolution) Let [a, b] be an interval in R, n ∈ N and let U = C1([a, b],Rn),

V = C([0, T ],Rn×n) and W = C([0, T ],RN ). Let A : U → V , B : U →W be bounded linear operators that are
differentiable at f ∈ U with derivatives denoted by A′f and B′f , respectively. Then also the convolution of the
operators, A ∗B : U →W , is differentiable at f and we have

(A ∗B)′f = A′f ∗B(f) +A(f) ∗B′f . (4.17)

Proof:
A proof is given in appendix A.

We are now well-equipped for the differentiation of operators to prove the respective part of lemma 5.3.4 in
chapter 5. Another nice application of the Fréchet derivative is that the Mean Value Theorem can be generalized.
We also derive some results from this theorem.

Theorem 4.6.7. (Mean Value Theorem, [5, Theorem 3.2-4]) Let U, V be normed vector spaces (for both of
which we denote the norm by ||.||), let D ⊂ U be open and let f be a map from U to V . If for arbitrary u, v ∈ U
the line segment

S = {tu+ (1− t)v | 0 ≤ t ≤ 1}

lies in D and if f ′(x) exists for all x ∈ S, then

||f(u)− f(v)|| ≤ ||u− v|| sup
x∈S
||f ′(x)||.

Corollary 4.6.8. Let U, V be normed vector spaces and let D be compact and convex subset of U . Let f be
a continuously differentiable function from U to V , satisfying f(u) = 0 for x ∈ U\D. Then f is bounded on U .
Proof:
If D is empty, we have ∀x ∈ U : f(x) = 0 by assumption and the statement is trivial.
Let us suppose the D is nonempty and let a ∈ D be fixed. For arbitrary u ∈ D, we have by the triangle
inequality: ||f(u)|| ≤ ||f(u)− f(a)||+ ||f(a)||. By the assumption that D is convex, the line segment S from a
to u is contained in D and Theorem 4.6.7 can be applied. Let us use the boundedness of D (which is implied by
its compactness) to write ∀x ∈ D : ||x|| ≤ k. Finally, since f ′ is continuous on the compact set D by assumption,
its image on D is also bounded, by K, say. Then we obtain

||f(u)|| ≤ ||f(a)||+ ||u− a|| sup
x∈S
||f ′(x)||,

≤ k + (||u||+ ||a||) sup
x∈D
||f ′(x)||,

≤ k + 2kK.

Since u ∈ D was arbitrary and f(u) = 0 when u 6∈ D, we have ∀x ∈ U : ||f(x)|| ≤ k(1 + 2K). Hence, f is
bounded on U .
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Lemma 4.6.9. Let U, V be normed vector spaces with norms denoted by ||.|| and let f : U → V be continuously
differentiable on some non-empty, compact and convex subset D of U . Then f is Lipschitz continuous on D,
and hence, uniformly continuous on D.
Proof:
Let u, v ∈ D. Since D is convex, the line segment from u to v is contained in D and Theorem 4.6.7 can be
applied. Since f ′ is assumed to be continuous on the compact set D, we can set L := maxx∈D ||f(x)||. Then
we obtain

||f(u)− f(v)|| ≤ ||u− v|| sup
x∈S
||f ′(x)||,

≤ ||u− v|| sup
x∈D
||f ′(x)||,

= L||u− v||.

Uniform continuity now follows easily: for arbitrary ε > 0, let u, v ∈ D with ||u − v|| < ε/(1 + L). Then
||f(u)− f(v)|| < ε.

We note that this Lemma actually also proves Lemma 4.1.13, where U is the one-dimensional real line and
V = Rn.

4.7 Matrices and differential equations

The theory of matrices in the context of ordinary differential equations will come in useful to analyse the
differential parts of the system of generalised mode-coupling theory integro-differential equations. We first
recall the definition of the matrix exponential. Its usefulness is at the end of this section illustrated by result
4.7.10.

Definition 4.7.1. For n ∈ R, let A ∈ Cn×n be any square matrix over the complex numbers. Then the matrix

exponential eA is defined as

eA =

∞∑
k=0

1

k!
Ak.

Remark 4.7.2. For any matrix A, absolute convergence of the matrix exponential in the induced operator
norm follows from ∣∣∣∣∣

∣∣∣∣∣
∞∑
k=0

1

k!
Ak

∣∣∣∣∣
∣∣∣∣∣ ≤

∞∑
k=0

1

k!
||Ak|| ≤

∞∑
k=0

1

k!
||A||k = e||A||.

Since the space Cn×n is a finite-dimensional vector space over the complete field of the complex numbers, it
also follows that Cn×n is complete and hence absolute convergence implies convergence in Cn×n for the matrix
exponential.

Lemma 4.7.3. [12, Proposition 2.3-3, 2.3-6] Let A be an n×n matrix. Then eA is invertible and
(
eA
)−1

= e−A.

Further, for any invertible C ∈ Cn×n, we have eCXC
−1

= CeXC−1.

Next our aim is to find a bound on eA if A is diagonalizable. We derive this bound with the help of a few
intermediate calculations and results.

Observation 4.7.4. (Exponential of a diagonal matrix) Let Λ = diag(λ1, . . . , λn) be a diagonal n× n matrix

for some λ1, . . . , λn ∈ C. We then have for any k ∈ N that Λk = diag(λ1
k, . . . , λn

k) and it follows that
eΛ = diag(eλ1 , . . . , eλn).

Observation 4.7.5. Let A ∈ Cn×n be a matrix with n eigenvalues λ1, . . . , λn and n linearly independent
eigenvectors. Let Λ = diag(λ1, . . . , λn). Then an invertible matrix D exists (containing the eigenvectors A as
columns) satisfying Λ = D−1AD, or A = DΛD−1. Applying Lemma 4.7.3 we then find

eA = eDΛD−1

= DeΛD−1,

so eA is seen to have the same eigenvectors as A (because it is diagonalized by the same matrix D) and as
eigenvalues the diagonal values of eΛ, i.e., in view of observation 4.7.4, eλ1 , . . . , eλn .
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Lemma 4.7.6. Let Λ be a symmetric n × n matrix for some n ∈ N (for instance it could be diagonal). Let
||.|| denote some norm on Cn which can be derived from an inner product and let ||.||M denote the induced
operator norm on Cn×n. We have

||Λ||M = max
k=1,...,n

{|λ1|, . . . , |λn|} =: λmax.

Proof:
Since Λ is a symmetric matrix, there exists an orthonormal basis {e1, . . . , en} of eigenvectors of Λ. Let the
corresponding eigenvalues be denoted by λ1, . . . , λn. Let v ∈ Cn be any vector; we can decompose v with
respect to the basis of eigenvectors as v = v1e1 + · · ·+ vnen. We then have

||Λv|| = ||v1λ1e1 + · · ·+ vnλnen|| = |λ1| · ||v1e1||+ · · ·+ |λn| · ||vnen|| ≤ λmax (||v1e1||+ . . . ||vnen||) = λmax||v||.

Hence ||Λ||M ≤ λmax. Now let m ∈ {1, . . . , n} be such that |λm| = λmax. We have for em:

||Λem|| = ||λmem|| = |λm| · ||em|| = λmax||em||,

so also ||Λ||M ≥ λmax. We conclude that ||Λ||M = λmax.

Lemma 4.7.7. Let A ∈ Cn×n be diagonalizable, i.e. A has n linearly independent eigenvectors). Let λ1, . . . , λn
be the eigenvalues corresponding to the n eigenvectors of A and let λmax be defined as in Lemma 4.7.6. Further
let ||.|| denote some norm on Cn which can be derived from an inner product and let ||.||M denote the induced
operator norm on Cn×n. Then some b ≥ 1 exists such that

||A||M ≤ bλmax.

Proof:
Since A is diagonalizable, a matrix D exists such that A = DΛD−1. Applying remark 4.4.3 regarding the
induced operator norm ||.||M and Lemma 4.7.6 to Λ := diag(λ1, . . . , λn), we have

||A||M = ||DΛD−1|| ≤ ||D||M ||ΛD−1||M ≤ ||D||M ||D−1||M ||Λ||M = bλmax,

with b := ||D||M ||D−1||M . Note that for D we have

1 = ||I||M = ||DD−1||M ≤ ||D||M ||D−1||M ,

so in general we really need b ≥ 1.

Note that smaller values of b may be possible to bound A. However, we are mainly concerned with the form
this estimate can take.

Observation 4.7.8. We can combine observation 4.7.5 with Lemma 4.7.7 to obtain the following result. Let

A ∈ Cn×n be some diagonalizable matrix with eigenvalues λ1, . . . , λn, say. Then for the eigenvalues of eA, we
have |eλk | = eRe(λk) (k = 1, . . . , n). So if we consider a norm ||.||M on Cn×n induced by a norm ||.|| on Cn
which can be derived from an inner product, there exists a b ≥ 1 such that

||eA||M ≤ bec,

where c = max
k=1,...,n

{Re(λ1), . . . ,Re(λn)}.

Observation 4.7.9. Let us now extend this result to the matrix exponential function f : R→ Cn×n, t 7→ eAt.
If A is diagonalizable with an invertible matrix D, we have A = D(Λt)D−1 and as above it follows that
eAt = DeΛtD−1 for a diagonal matrix Λ containing the eigenvalues λ1, . . . , λn of A. Then the eigenvalues of Λt
are λ1t, . . . , λnt. So we obtain the result of observation 4.7.8, namely that for each t ∈ R:

||f(t)||M = ||eAt||M ≤ bec(t),

where for instance b = ||D||M ||D−1||M can be taken and c(t) = t · max
k=1,...,n

{Re(λ1), . . . ,Re(λn)}.

Result 4.7.10. We now turn our attention to the application of the matrix exponential to differential equations.
Let A be a constant (coefficient) matrix in Rn×n for some n ∈ N. For x ∈ C1([0,∞),Rn) consider the linear
system of first-order differential equations {

d
dtx(t) = Ax(t),

x(0) = x0 ∈ Rn

It is detailed in [2, section 7.7] that the unique solution to this initial value problem is

x(t) = eAtx0.
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4.8 Various

There are some more important statements and definitions needed before we can move on to the proof of results
pertaining to the mode-coupling theory equations. We give them now at the end of the preliminary results.

Definition 4.8.1. [34, p. 472] Let U , V be Banach spaces with norms denoted by ||.||. Let A : U → V . Then
A is called weakly coercive if

lim
||u||→∞

||Au|| → ∞.

Observation 4.8.2. As is noted by Saal [29], we see that we can equivalently say that an operator A is weakly
coercive if and only if the image of an unbounded set is unbounded. This will be used to prove Lemma 5.3.6.

Definition 4.8.3. Let U, V be Banach spaces. A differentiable map f : U → V is called a diffeomorphism if

it is a bijection and its inverse f−1 : V → U is also differentiable. For k ∈ N, f is called a Ck-diffeomorphism
if f is a diffeomorphism and, moreover, f and f−1 are k times continuously differentiable.

Theorem 4.8.4. [21, Theorem 3.11] Let n ∈ N, T > 0, g ∈ C0([0, T ],Rn) and k ∈ C0([0, T ]2,Rn×n) (meaning
that all component functions of g and k are continuous). Then the system of integral equations

f(t) = g(t) +

t∫
0

k(t, s)f(s) ds (4.18)

for f ∈ C0([0, T ],Rn) has a unique continuous solution for t ∈ [0, T ].

Remark 4.8.5. The equation (4.18) is referred to as a system of Volterra integral equations of the second
kind, because the boundaries of the integral are not fixed (hence the Volterra-type) and the unknown function
f appears under and outside the integral (hence the second kind).
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5 Existence and uniqueness of solutions

One of the first questions of interest when confronted with some equation is whether a solution actually exists,
whether it exists on the (complete) domain of interest and whether such a solution then is unique. When at
least the answer to the first of these questions is affirmative, but preferably all, we can start looking for a (or
the) solution to the equations. It is this topic about existence and uniqueness that is discussed in this chapter
for the generalized mode-coupling theory equations that were presented in chapter 3. This chapter elaborates
on the results of [10] and [29].

5.1 Position in literature

Integro-differential equations involve an integral as well as a differential operator of an unknown function for
which the equation is to be solved. For integral equations, one usually makes the distinction between Fredholm
and Volterra type. For the former, the boundaries of the integral operator are fixed, while for the latter, at
least one of them is a variable. One further distinguishes between equations of first and second kind, which
correspond to the unknown function occurring only inside or also outside the integral operator, respectively
[32]. We have seen an example of a Volterra integral equation of the second kind in Theorem 4.8.4.

When a differential operator is also included, one can still make the characterizations above. We can then
classify the schematic generalized mode-coupling theory equations as Volterra integro-differential equations of
the second kind. Saal notes that in general, such equations are mostly studied when the unknown function
depends in the integral only on the integration variable [29]. However, in equations (3.1) and (3.2), φn (or its
derivative to be precise) and φn+1 display dependence on the integration variable τ as well as on the independent
variable t.

One usually captures the dependence on the independent variable under the integral in a function called the
kernel of the integro-differential equation. We can therefore also say that the unusual property of the equations
of chapter 3 is that they have a kernel that depends on the solution of the equation. This property of the kernel
is generalized in the mathematical results studied in this chapter, allowing for more general kernels than those
used specifically in schematic generalized mode-coupling theory.

5.2 Over-damped equations

In [10], a one-dimensional variant of the over-damped equations (3.1) is considered by Götze, and the existence
of a unique solution on a bounded time interval is proved with a uniformly convergent iteration sequence. The
extension to higher-dimensional cases is not given, but we will do so here.

Nonlinear integro-differential equation

Equivalent integral equation

Laplace transform

Unique iteration 
solutions

Completely 
monotone

Lipschitz 
continuity

Uniformly summable 
majorant

Uniform convergence
of iteration solutions

Limit function solves original equation

Bounded

Iteration solutions Convergence

Linearized iteration equation

Figure 4: Flow chart illustrating the existence proof in by Götze. We indicate the most important intermediate
conclusions and methods used to obtain them. On the left are the steps to obtain bounded iteration solutions,
on the right those that lead to their convergence properties.
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Theorem 5.2.1. (Existence and uniqueness for the over-damped equations) Let T > 0. Let us consider for N

vector-valued functions φ = (φ1, φ2, . . . , φN ) with φ1, . . . , φN ∈ C1([0, T ],RN ) the integro-differential equationsτqφ̇q(t) = −φq(t)−
t∫

0

mq(t− τ)φ̇q(τ) dτ,

φq(0) = 1,

q = 1, . . . , N, 0 < t ≤ T, (5.1)

where for each q, τq > 0 and mq(t) = Fq(φ(t)) and Fq is absolutely monotone in each of the N variables fq
restricted to 0 ≤ fq < 1 + δ∗ for some δ∗ > 0. Under these conditions, a unique solution φ to (5.1) exists.

Note that, since the value of mq in (5.1) depends on φ, the functions Fq can be used to establish the closure
that one chooses to use in the problem.

We illustrate the structure of Götze’s proof for the existence part in figure 4. Based on a linearised, iterative
variant of (5.1), we find unique iteration solutions via the Laplace transform, that are completely monotone.
After integrating the equation, we can use these properties to derive some very useful estimates. These will
allow us to identify a uniformly summable majorant sequence for the distances between successive iteration
solutions. Finally then, the existence of a solution to (5.1) follows. Then we end this section with a proof for
the uniqueness of such a solution.

Iteration sequence
We will consider the following iteration sequence to establish existence of a solution to (5.1): for n = 1, define

φ
(n)
q : [0, T ]→ R by φ

(n)
q (t) = exp(−Γt) for some Γ ≥ 0. For n ≥ 1, define φ

(n+1)
q as the solution of the equationτqφ̇

(n+1)
q (t) + φ

(n+1)
q (t) +

t∫
0

m
(n)
q (t− τ)φ̇

(n+1)
q (τ) dτ = 0,

φ
(n+1)
q (0) = 1,

(5.2)

m(n)
q (t) = Fq

(
φ(n)(t)

)
= Fq

(
φ

(n)
1 , . . . , φ

(n)
N

)
.

Note that m
(n)
q does not depend on any of the φ

(n+1)
q , which it defines by means of a linearised variant of (5.1)

because the φ-dependence of the kernel is suppressed.

Via the Laplace transform, we will show that these equations do yield a solution for φ
(n+1)
q . (By Theorem 4.3.9,

the Laplace transform yields an equivalent equation if we look at continuous functions, provided the Laplace
transforms exit. This is justified as we find below that by Theorem 4.3.14, the Laplace transformed equations
can be solved.) Using the results 4.3.4 and 4.3.6, we obtain from (5.2) the equation

sτqφ̂
(n+1)
q (s)− τqφ(n+1)

q (0) + φ̂(n+1)
q (s) + m̂(n)

q (s)
ˆ̇
φ(n+1)
q (s) = 0,

sτqφ̂
(n+1)
q (s)− τq + φ̂(n+1)

q (s) + m̂(n)
q (s)

(
sφ̂(n+1)

q (s)− 1
)

= 0,

leading to

φ̂(n+1)
q (s) =

τq + m̂
(n)
q (s)

1 + s
(
τq + m̂

(n)
q (s)

) . (5.3)

Complete monotonicity

We argue inductively that all iteration functions φ
(n)
q are completely monotone, q = 1, . . . , N , n ∈ N. This

clearly is the case for n = 1. Let us assume that some φ
(n)
q is completely monotone. Applying Theorem 4.3.14

to m
(n)
q = Fq ◦ φ(n), we find that also m

(n)
q is completely monotone with the assumption that Fq is completely

monotone in all its N variables in the sense of the footnote in Theorem 4.3.14. Then its Laplace transform m̂
(n)
q

fulfils the properties (i)-(v) of Theorem 4.3.14 and this is all we need to show that also φ̂
(n+1)
q as given by (5.3)

fulfils the properties (i)-(iii) and (v):

(i) Given that m̂
(n)
q has an analytic extension to the region C\R, we can use this extension, which we shall

also denote by m̂
(n)
q here, to define an analytic extension of φ̂

(n+1)
q by plugging it in equation (5.3). This

will then be an analytic function for all s in C that satisfy 1 = s(τq + m̂
(n)
q (s)) 6= 0. Götze does not

mention or explore this demand at all. At this point in time, we must also leave this subtlety unstudied.

(ii) We phrase this property of m̂
(n)
q (x) as being real-valued for x ∈ R+. We then see immediately that for

such x, the value of φ̂
(n+1)
q (x) as defined by equation (5.3) is real as well, for only real numbers appear in

it.
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(iii) Making use of basic limit properties and the assumed limit property of m̂
(n)
q in Theorem 4.3.14, we obtain

for x ∈ R+:

lim
x→∞

φ̂(n+1)
q (x) =

τq + lim
x→∞

m̂
(n)
q (x)

1 +
(

lim
x→∞

x
)(

τq + lim
x→∞

m̂
(n)
q (x)

) =
τq + 0

1 + τq lim
x→∞

x
= 0.

(v) To show that Im(φ̂
(n+1)
q (s)) ≤ 0 for Im(s) > 0, we introduce the notation s = x + iy with x, y ∈ R for

arbitrary s ∈ C and µx := Re(m̂
(n)
q (s)), µy := Im(m̂

(n)
q (s)).

We first look at property (v) for m̂
(n)
q , which yields for y > 0 that Im(sm̂

(n)
q (s)) ≥ 0, or xµy + yµx ≥ 0.

To study the imaginary part of sφ̂
(n+1)
q (s), we use expression (5.3) and write

sφ̂(n+1)
q (s) = (x+ iy)

1 + (x− iy)(τq + µx − iµy)

1 + (x− iy)(τq + µx − iµy)
· τq + µx + iµy

1 + (x+ iy)(τq + µx + iµy)
.

Now in the denominator, we obtain a complex number multiplied by its complex conjugate, which is the
modulus squared. Hence we can write this as some number α > 0 (since we assume the denominator not
to be 0) and we obtain

sφ̂(n+1)
q (s) =

1

α

(
x+ iy + (x2 + y2)(τq + µx − iµy)

)
(τq + µx + iµy) ,

=
1

α

{(
x+ (τq + µx)(x2 + y2)

)
+ i
(
y − µy(x2 + y2)

)}
(τq + µx + iµy) .

A careful inspection then shows that for the imaginary part, we have

α Im
(
sφ̂(n+1)

q (s)
)

= τqy + yµx − τqµy(x2 + y2)− µxµy(x2 + y2)

+ xµy + τqµy(x2 + y2) + µxµy(x2 + y2)⇔

Im
(
sφ̂(n+1)

q (s)
)

=
1

α
(τqy + xµy + yµx),

≥ 0,

where the final inequality results from α, y, τq > 0 and the inequality xµy + yµx ≥ 0 derived above.

Hence the second part of Theorem 4.3.14 yields that φ̂
(n+1)
q is the Laplace transform of some completely

monotone function, which we define to be φ
(n+1)
q . Clearly this can be done for all q. This completes the induc-

tion argument. So the iteration sequences for all q are indeed well-defined by (5.2) and this is done uniquely in
view of Theorem 4.3.9.

Now, due to complete monotonicity of all φ
(n)
q , we know that φ̇

(n)
q (t) ≤ 0 and therefore all φ

(n)
q are non

increasing, such that φ
(n)
q (t) ≤ φ

(n)
q (0) = 1 holds for all q = 1, . . . , N and all n ∈ N. Also, due to complete

monotonicity of all m
(n)
q , we know that these functions are all non-negative, such that φ

(n+1)
q (t) = 0 for some

t > 0 would lead to

τqφ̇
(n+1)
q (t) = −

t∫
0

m(n)
q (t− τ)φ̇(n+1)

q (τ) dτ,

> 0,

by virtue of the definition (5.2) if m
(n)
q 6= 0, because φ̇

(n+1)
q (which has a positive derivative) cannot be constantly

zero on [0, t] if φ
(n+1)
q goes from 1 to 0. This contradicts the complete monotonicity of φ

(n)
q . If m

(n)
q is the zero

function, all solutions φ
(n)
q will be decreasing exponentials, hence they will also not intersect zero. We can thus

conclude for all t ∈ [0, T ]:
0 < φ(n)

q ≤ 1, q = 1, . . . , N, n ∈ N. (5.4)

(φ
(n)
q can certainly not be smaller than 0 if it cannot be zero, as a consequence of the Intermediate Value

Theorem that applies to continuous functions.)

Equivalent equation
To further analyse the iteration sequence, we will once integrate the definition (5.2). To simplify the expression,
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we need the Leibniz rule for differentiation of integrals (4.10). Substituting u for t in (5.2) and reversing the
integration direction in the convolution, this allows us to write for all q = 1, . . . , N :

u∫
0

m(n)
q (u− τ)φ̇(n+1)

q (τ) dτ =

u∫
0

m(n)
q (τ)φ̇(n+1)

q (u− τ) dτ,

=

u∫
0

m(n)
q (τ)

∂

∂u
φ(n+1)
q (u− τ) dτ,

=

u∫
0

∂

∂u
m(n)
q (τ)φ(n+1)

q (u− τ) dτ,

=
d

du

u∫
0

m(n)
q (τ)φ(n+1)

q (u− τ) dτ −m(n)
q (u)φ(n+1)

q (0),

=
d

du

u∫
0

m(n)
q (u− τ)φ(n+1)

q (τ) dτ −m(n)
q (u).

Still making the substitution u for t in (5.2), we see that integration over u from 0 to t yields

τqφ
(n+1)
q (t)− τq = −

t∫
0

φ(n+1)
q (τ) dτ −

t∫
0

d

du

u∫
0

m(n)
q (u− τ)φ(n+1)

q (τ) dτ du+

t∫
0

m(n)
q (τ) dτ,

= −
t∫

0

φ(n+1)
q (τ)−m(n)

q (τ) dτ −
t∫

0

m(n)
q (t− τ)φ(n+1)

q (τ) dτ ⇔

φ(n+1)
q (t) = 1 +

1

τq

t∫
0

m(n)
q (τ)− φ(n+1)

q (τ)−m(n)
q (t− τ)φ(n+1)

q (τ) dτ,

= 1 +

t∫
0

Kq

(
φ(n)(τ), φ(n)(t− τ), φ(n+1)

q (τ)
)

dτ, (5.5)

defining Kq : RN × RN × R→ R as the function

Kq(x1, . . . , xN , y1, . . . , yN , z) =
1

τq
(Fq(x1, . . . , xN )− Fq(y1, . . . , yN )z − z) . (5.6)

Consequence of Lipschitz continuity
In view of (5.4), all Kq only need to be considered on the closed domain [0, 1]2N+1. Since all Fq are infinitely
many times differentiable with respect to all their variables in [0, δ) for some δ > 1 by assumption, it follows
readily with the chain rule that all Kq have a continuous derivative on [0, 1]2N+1. So lemma 4.1.13 can be
applied to Kq and it is Lipschitz continuous for all q = 1, . . . , N . Hence there exist constants Lq > 0 such that

∀x, y, u, v ∈ [0, 1]N , z, w ∈ [0, 1] :

|K(x1, . . . , xN , y1, . . . , yN , z)−K(u1, . . . , uN , v1, . . . , vN , w)| ≤ L

(
|z − w|+

N∑
i=1

|xi − ui|+ |yi − vi|

)
,

= Lq {δ(x, u) + δ(u, v) + δ(z, w)} ,

(where x = (x1, . . . , xN ) etc.). Now define L := maxq=1,...,N Lq, such that the inequality holds for all
q = 1, . . . , N with the same constant L.

Majorant
For the convergence of φ(n), we will need a uniformly convergent majorant. We define this sequence here. Let
a0 : [0, T ]→ R be defined by a0(t) = N , and for n ∈ N let

an(t) = 3NL

t∫
0

an−1(τ) dτ,
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so we readily see that for all n ∈ N, an(t) = N (3NL)n

n! tn and because |an(t)| ≤ an (min{1, T}) = N (3NL·min{1,T})n
n! ,

we see that an → 0 as n→∞ uniformly.

Estimates
We will use the sequence of functions (an)n∈N defined above to demonstrate the uniform convergence of the

iteration sequence φ
(n)
q . Define

X(n) : [0, T ]→ R, for t ∈ [0, T ] : X(n)(t) = δ
(
φ(n+1)(t), φ(n)(t)

)
, n ∈ N.

Since all components of all φ(n)(t) lie between 0 and 1 for all values of t, we have

∀n ∈ N, t ∈ [0, T ] : X(n)(t) =

N∑
q=1

∣∣∣φ(n+1)
q (t)− φ(n)

q (t)
∣∣∣ ≤ N. (5.7)

Using (5.5), obtained from the iterative definition of φ(n+1), and the Lipschitz continuity of all Kq, we find for
X(n)(t) (n ∈ N):

X(n)(t) =

N∑
q=1

∣∣∣∣∣∣
t∫

0

Kq

(
φ(n)(τ), φ(n)(t− τ), φ(n+1)

q (τ)
)
−Kq

(
φ(n−1)(τ), φ(n−1)(t− τ), φ(n)

q (τ)
)

dτ

∣∣∣∣∣∣ ,
≤

N∑
q=1

t∫
0

∣∣∣Kq

(
φ(n)(τ), φ(n)(t− τ), φ(n+1)

q (τ)
)
−Kq

(
φ(n−1)(τ), φ(n−1)(t− τ), φ(n)

q (τ)
)∣∣∣dτ,

≤
N∑
q=1

t∫
0

Lq

{
δ
(
φ(n)(τ), φ(n−1)(τ)

)
+ δ

(
φ(n)(t− τ), φ(n−1)(tτ)

)
+ δ

(
φ(n+1)
q (τ), φ(n)

q (τ)
)}

dτ,

≤
N∑
q=1

t∫
0

L
{
X(n−1)(τ) +X(n−1)(t− τ) +X(n)(τ)

}
dτ,

= NL

t∫
0

2X(n−1)(τ) +X(n)(τ) dτ, (5.8)

using
∫ t

0
X(n)(t− τ) dτ = −

∫ u=0

u=t
X(n)(u) du =

∫ t
0
X(n)(τ) dτ in the last equality.

Now we can identify the sequence (an)n∈N as a majorant for the sequence
(
X(n)

)
n∈N with the help of

mathematical induction. From (5.7), it immediately follows that X(0)(t) ≤ a0(t) for all t in [0, T ]. We proceed
by the principle of strong induction to show that

∀n ∈ N ∀t ∈ [0, T ] ∀k ∈ {1, . . . , n} : 0 ≤ X(n)(t) ≤ ak(t). (5.9)

(The left inequality is already provided for by definition.) Let us assume for some k ∈ N that for all t ∈ [0, T ]:
X(k)(t) ≤ an(t) for n = 1, 2, . . . , k. Then we need to show that also X(k+1)(t) ≤ ak+1(t) holds. We have due to
(5.8) and using (5.7):

X(k+1)(t) ≤ NL
t∫

0

2X(k)(τ) +X(k+1)(τ) dτ,

≤ NL
t∫

0

2 ·N +N dτ,

= 3NL

t∫
0

a0(τ) dτ = a1(τ).

Using this inequality and the induction hypothesis, and repeatedly making use of the newly found inequalities,
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we obtain

X(k+1)(t) ≤ NL
t∫

0

2X(k)(τ) +X(k+1)(τ) dτ,

≤ NL
t∫

0

2a1(τ) + a1(τ) dτ = a2(t),

X(k+1)(t) ≤ NL
t∫

0

2a2(τ) + a2(τ) dτ = a3(t),

...

X(k+1)(t) ≤ NL
t∫

0

2ak(τ) + ak(τ) dτ = ak+1(t),

which concludes the proof of the desired property (5.9).

Convergence

With the property (5.9) at hand, we can show that all sequences
(
φ

(n)
q

)
n∈N

(q = 1, . . . , N) converge uniformly

on [0, T ]. We will show that it satisfies the Cauchy criterion 4.2.1 for uniform convergences of sequences.

Let ε > 0 be given. Let t ∈ [0, T ], q ∈ {1, . . . , N} and m,n ∈ N. Without loss of generality, we assume
m > n. Let β = 3NLmin{1, T}. Then we can derive the following inequalities:

∣∣∣φ(n)
q (t)− φ(m)

q (t)
∣∣∣ ≤ δ (φ(n)(t), φ(m)(t)

)
,

≤ δ
(
φ(n)(t), φ(n+1)(t)

)
+ δ

(
φ(n+1)(t), φ(n+2)(t)

)
+ δ

(
φ(m−1)(t), φ(m)(t)

)
,

= X(n)(t) + · · ·+X(m−1)(t),

≤ an(t) + · · ·+ am−1(t),

≤ an(min{1, T}) + . . . am−1(min{1, T}),

= N

m−1∑
k=n

βk

k!
< N

∞∑
k=n

βk

k!
.

Now for the last series, we recognize that
∑∞
k=0 β

k/k! = eβ , and in particular, the latter series converges. Hence∑∞
k=n β

k/k! → 0 as n → ∞. So we can pick n∗ ∈ N such that
∑∞
k=n β

k/k! < ε/N whenever n,m ≥ n∗. This
choice is clearly independent of t, and even q. So for all q ∈ {1, . . . , N} uniform convergence to a function
φ̃q : [0, T ] → R follows according to Theorem 4.2.1 for q = 1, . . . , N . This means that we can also define the

vector-valued limit function φ̃ : [0, T ]→ RN as φ̃ = (φ̃1, . . . , φ̃N ).

Properties of the limit function

At this point, Götze concludes in the one-dimensional proof that uniform convergence of the derivatives of φ
(n)
1

also follows trivially in the same way. We accept this statement without further proof here. Since we have

shown the same properties of each of our component functions φ
(n)
q (1 = q, . . . , N), we conclude that their

derivatives also converge uniformly. The uniform convergence of the iteration functions and their derivatives
allows us by Theorem 4.2.2 to take the limit inside the integral and the differentiation in the iteration equa-
tion (5.2) and we then see that φ̃ solves equation (5.1). We have thus shown the existence part of Theorem 5.2.1.

Uniqueness
We finalize the proof of Theorem 5.2.1 by an argument based on an integral inequality, guided by the uniqueness
proof in [2, Section 2.8] for ordinary differential equations.
Suppose two solutions x, y : [0, T ] → RN to equation (5.1) exist. We denote their component functions by
xq and yq, respectively, for q = 1, . . . , N . The equivalent equation (5.5) for a solution to (5.1) with x and y
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substituted for both iterations of φ(n) yields that we have for each q:

|xq(t)− yq(t)| =

∣∣∣∣∣∣
t∫

0

Kq (x(τ), x(t− τ), xq(τ))−Kq (y(τ), y(t− τ), yq(τ)) dτ

∣∣∣∣∣∣ ,
≤

t∫
0

L {δ ((x(τ), y(τ)) + δ ((x(t− τ), y(t− τ)) + δ ((xq(τ), yq(τ))} ,

≤ 3L

t∫
0

δ (x(τ), y(τ)) dτ. (5.10)

We also have by the definition of our δ-metric

0 ≤ |xq(t)− yq(t)| ≤
N∑
k=1

|xk(t)− yk(t)| ,

= δ (x(t), y(t)) . (5.11)

Let us now define U : [0, T ] → R by U(t) =
∫ t

0
δ (x(τ), y(τ)) dτ for t ∈ [0, T ]. We then see immediately that

U satisfies (because x, y are differentiable and therefore continuous, such that also δ (x(t), y(t)) is a continuous
function of t):

d

dt
U(t) = δ (x(t), y(t)) , U(0) = 0. (5.12)

With the help of (5.10), we derive that

δ (x(t), y(t)) =

N∑
q=1

|xq(t)− yq(t)|,

≤
N∑
q=1

3L

t∫
0

δ (x(τ), y(τ)) dτ,

= 3LNU(t). (5.13)

Combining (5.12) and (5.13), and multiplying by exp(−3LNt) we find that

e−3LNt d

dt
U(t)− 3LNe−3LNtU(t) ≤ 0,

d

dt
e−3LNtU(t) ≤ 0.

Integrating finally gives that e−3LNtU(t) ≤ U(0) = 0 for t ∈ [0, T ]. This implies U(t) ≤ 0, but from its
definition it is clear that U(t) ≥ 0. So we conclude that U(t) = 0 ∀t ∈ [0, T ]. Consequently, we also have
δ(x(t), y(t)) = d

dtU(t) = 0 and according to (5.11) it now holds for all t ∈ [0, T ], q = 1, . . . , N that

xq(t) = yq(t).

Sine x and y have now been shown to be equal component-wise, we have established that a solution to equation
(5.1) is necessarily unique.

We can now end this section since the existence and uniqueness as asserted by Theorem 5.2.1 have been
demonstrated.

5.3 Second-order system I

In the existing literature, a paper by Martin Saal provides several theorems concerning existence and uniqueness
of solutions to the following equation [29]:

λψ̈(t) + ψ̇(t) + ψ(t) +
t∫

0

m (ψ(t− τ)) ψ̇(τ)dτ = f(t),

ψ(0) = Ψ0,

ψ̇(0) = Ψ1,

(5.14)
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where the vector-valued function ψ ∈ C2([0, T ],RN ) for some T > 0 and some N ∈ N (which we identify with
the closure level chosen), λ > 0 and m : RN → RN×N is a matrix-valued function describing how the kernel
depends on ψ and determines the coupling between the N component functions of ψ. Further, the initial values
Ψ0,Ψ1 ∈ RN and the source function f : R→ RN are assumed to be given.

To be able to speak of the different component functions of ψ, we introduce for these the notation ψ =
(ψ1, ψ2, . . . , ψN ), where for n = 1, 2, . . . , N : ψn ∈ C2([0, T ],R).

We will consider two conditions that lead to existence and uniqueness of a solution to (5.14) as provided by
Saal [29]. He also proves these statements, but not all arguments are made explicit. In this section, we aim to
extend the arguments such that the proof is understandable at a Bachelor’s level, enriched by chapter 4. We
state the theorem and introduce some suitable notation for the proof. Then we state a result which turns the
proof into showing some properties of a non-linear operator by three lemmas. These are proved extensively
afterwards.

Theorem 5.3.1. [29, Theorem 1]

Let m ∈ C1(RN ,RN×N ). Then for any given Ψ0,Ψ1 ∈ RN and f ∈ C0([0,∞),RN ) there exists some T > 0
and a unique solution ψ ∈ C2([0, T ],RN ) of (5.14).
T is arbitrary if

∃c > 0∀x, y ∈ RN : ||m(x)y|| ≤ c(1 + ||x||)||y|| (5.15)

holds.

Notation
Let X := C2([0, T ],RN ), where N is the closure level considered in equation (5.14) and T is some fixed real
number defining the bounded interval on which the equation is considered. So X defines the vector space in
which we wish to find a solution to (5.14). We will refer to the normed space

(
X, ||.||(2)

)
(see definition 4.12)

simply by writing X.

Let us now define Y := C0([0, T ],RN )×RN×RN with for (f, x, y) ∈ Y the norm ||.|| defined by ||(f, x, y)||Y =
sup
t∈[0,T ]

|f(t)|+ ||x||+ ||y||. Here ||.|| denotes the Euclidean norm on RN .9 Then define the operator A : X → Y

as

A(ψ) :=

λψ̈ + ψ̇ + ψ +m(ψ) ∗ ψ̇
ψ(0)

ψ̇(0)

 .

Then the system (5.14) can be rewritten as

A(ψ) =

 f
Ψ0

Ψ1


and Theorem 5.3.1 is proven if we show that A is invertible for arbitrary T > 0.

Saal shows that A is a Ck-diffeomorphism for 1 ≤ k ≤ ∞ by splitting A = L + N , where L is a linear
operator defined by

L(ψ) :=

λψ̈ + ψ̇ + ψ
ψ(0)

ψ̇(0)


and N is the non-linear part of A defined by

N (ψ) :=

m(ψ) ∗ ψ̇
0
0

 . (5.16)

The argument used by Saal is a proof that the result below can be applied to A. No explicit reference is
given, so we refer to Saal.

9 [29] uses X for this space and does not abbreviate what we called X, but introducing notation for both seems most convenient
to me.
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Theorem 5.3.2. [29, p. 3] Let the notation be as introduced above. If L (a linear operator) is a C∞-

diffeomorphism from X onto Y , then A = L + N is a Ck-diffeomorphism (1 ≤ k ≤ ∞) if the following
conditions are satisfied:

(i) N is a compact Ck-mapping;

(ii) The derivative A′(ψ) is injective for all ψ ∈ X;

(iii) A is weakly coercive.

Now the proof under condition (5.15) is constructed by showing that all conditions are met by the operator
A as we encounter it to capture equation (5.14). This is done in four separate lemmas that we prove in this
chapter. We summarize this approach in figure 5, where we make explicit that the linear growth condition on
m, (5.15), is only needed to show weak coerciveness. Local existence is then derived by cutting off the kernel
at hand if it does not satisfy condition (5.15), and uniqueness in that situation is proved in a last lemma.

a 𝐶∞-diffeomorphism 
a compact
𝐶𝑘-mapping

weakly 
coercive

𝑚 at most of 

linear growth

injective 
∀𝜓 ∈ 𝑋

is a 𝐶𝑘-
diffeomorphism 

⇒ unique solution 
exists

Lemma 4.3.4 Lemma 4.3.3

Lemma 4.3.5

Lemma 4.3.6

Theorem 4.3.1

Theorem 4.3.2

Figure 5: Flow chart interconnecting the Lemmas that we prove in this section to prove Theorem 5.3.1, global
existence and uniqueness of a solution for (5.14). The linear growth condition (5.15) is only needed in the steps
to show weak coerciveness.

Lemma 5.3.3. It is asserted by [29] that L is a C∞-diffeomorphism from X onto Y .
This can be seen as follows: L is surjective due to the existence theorem for systems of ordinary differential
equations. For instance, since f is continuous by assumption, after a transformation of L(ψ) = f to a first
order system, [2, Theorem 7.1.2] can be applied and this yields that a unique solution ψ exists globally on [0, T ].
Injectivity follows by the same theorem, which also ensures uniqueness of the solution. Hence L is an invertible
linear operator from X to Y . Observation 4.6.3 yields that L is infinitely many times differentiable. Since the
inverse of a linear operator is itself a linear operator (if it exists) [19, Theorem 2.6-10], it is also infinitely many
times differentiable. Hence L is a C∞-diffeomorphism.

Lemma 5.3.4. [29, Lemma 2] Let m ∈ Ck(RN ,RN×N ) (1 ≤ k ≤ ∞). Then N is a compact Ck-operator with
the derivative given by

N ′(ψ) : X → Y, N ′(ψ)h =

(m′(ψ)(h)) ∗ ψ̇ +m(ψ) ∗ ḣ
0
0

 . (5.17)

Proof:
To prove the lemma, we have to establish differentiability and compactness for N . For the latter, we will show
that the image of the closed unit ball in X is compact and hence closed. Then its closure coincides with the
image itself because a set is closed if and only if it equals its closure [24, Corollary 17.7].

1 Differentiability of N .

Let us denote the differentiation operator by D : X → C0([0, T ],RN ), and rewrite the effect of N on some
ψ ∈ X as

N (ψ) =

m(ψ) ∗ D(ψ)
0
0

 ,
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𝜓𝑛 bounded in 𝐶2 {𝜓𝑛} is an equicontinuous family

{𝜓𝑛𝑚
′ } is an equicontinuous family A converging subsequence {𝜓𝑛𝑚} exists

A converging subsequence {𝜓𝑛𝑚𝑙

′ } exists

𝜓𝑛𝑚 → 𝜓 uniformly

𝜓𝑛𝑚𝑙

′ → Ψ uniformly

𝜓𝑛𝑚𝑙
→ 𝜓 uniformly

𝜓 ∈ 𝐶1 0, 𝑇 ,ℝ𝑁 and 𝜓′ = Ψ

Arzelà-Ascoli + 
Corlollary 2.5.3

Arzelà-Ascoli + 
Corlollary 2.5.3

𝜙𝑛 in 𝐵 2 0,1

𝜙𝑛𝑚𝑙
→ (𝜓)

is continuous

⇒ 𝐵 2 0,1 is (sequentially) 

compact and       is compact

Figure 6: Overview of the steps taken in the compactness proof of Lemma 5.3.4 and the arguments that justify
the implications we make.

or omitting the presence of ψ in the notation:

N =

m ∗ D0
0

 .

So N is the convolution of two operators (”followed” by twice the zero mapping). Now m is k times differentiable
by assumption. With respect to the norms used on X and Y , D is a bounded operator, for if ψ ∈ X with norm
||ψ||(2), then

sup
t∈[0,T ]

|D(ψ)(t)| = sup
t∈[0,T ]

|ψ̇(t)| ≤ ||ψ||(2). (5.18)

Furthermore, differentiation is linear, so D is a bounded linear operator and in view of observation 4.6.3, it is
differentiable as many times as we wish. Hence the chain rule for the convolution product (stated as (4.17))
yields (after repeated application) that N is k times continuously differentiable and more explicitly, we have
for the first derivative that10

N ′ : X → B(X,Y ), N ′ =

m′ ∗ D +m ∗ D′
0
0

 ,

which yields after evaluation at some ψ ∈ X an operator from X to Y . Remembering that the fact that D is a
linear operator implies that D′(ψ) = D for all ψ ∈ X, we find:

∀ψ ∈ X : N ′(ψ) : X → Y is for h ∈ X given by

N (ψ)(h) =

m′(ψ) ∗ D(ψ) +m(ψ) ∗ D
0
0

 (h) =

(m′(ψ)(h)) ∗ D(ψ) +m(ψ) ∗ D(h)
0
0

 ,

as is the claim in (5.17).

2 Compactness of N .

Let B̄(2)(0, 1) denote the closed unit ball in X. In order to prove compactness of N , we start with a sequence
(φn)n∈N in N (B̄(2)(0, 1)). Then there is by definition a sequence (ψn)n∈N in B̄(2)(0, 1) such that for all n ∈ N :
N (ψn) = φn.
We first show that (ψn)n∈N contains a subsequence which converges to a limit with a differentiable derivative.

This will yield sequential compactness, hence compactness of N (B̄(2)(0, 1)). The steps are summarized by
figure 6. Let us denote the compact interval [0, T ] by I. For all ψ ∈ B̄(2)(0, 1), we know that ||ψ||(2) ≤ 1,

10 We are a little sloppy with respect to the vector-valued character of the values that N takes, since we only consider the first
of the three spaces C0([0, T ],RN ), RN and RN . However, since we add the norms to obtain Y , it is easily seen that related results
(such as differentiation of the operators considered here) can equivalently be treated in each space separately. Since the quantities
in RN associated with N are constant mappings, their differentiation yields zero.
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which implies for the supremum norm that ||ψ||∞ = supt∈I ||ψ(t)|| ≤ 111. So the image of I under some ψ

lies in R̃ := {y ∈ RN | ||y|| ≤ 1} and we can write B̄(2)(0, 1) ⊆ C2(I, R̃). Both I and R̃ are compact sets
(closed and bounded subsets of a finite dimensional normed space), so a sequence in C2(I, R̃) is a sequence in
C(I, R̃), in which we work with the supremum norm induced by C0(I,RN ). Below, we will change between
norms (||.||, ||.||(1), ||.||(2)) to obtain the information we need. The details of the steps in figure 6 now follow.

• Let C(1)(I, R̃) := {f ∈ C(I, R̃) | f ′ exists and f ′ ∈ C(I, R̃)}. As an immediate consequence of the definition
of the norm ||.||(2), for all n in N, ψn ∈ C(1)(I, R̃). We show that C(1)(I, R̃) is equicontinuous. Using the

Mean Value Theorem [5, Theorem 3.2-3] and the fact that for f ∈ C(1)(I, R̃), we know that ||f ′|| ≤ 1, we
obtain

∀f ∈C(1)(I, R̃) ∀t, t′ ∈ I with t < t′ :

||f(t′)− f(t)||∞ ≤ 1 · |t′ − t|.

Hence, for all ε > 0, letting t, t′ ∈ I with |t− t′| < ε ensures for all f ∈ C(1)(I, R̃) that ||f(t′)− f(t)||∞ < ε
and the set C(1)(I, R̃) is thus equicontinuous.

• To apply the Arzelà-Ascoli Theorem 4.5.4, we need to look at the closure C̄(1)(I, R̃) of C(1)(I, R̃). Since
C(1)(I, R̃) is equicontinuous, so is C̄(1)(I, R̃) by corollary 4.5.3.

• In summary, I, R̃ are compact metric spaces and C̄(1)(I, R̃) is a closed and equicontinuous subset of
C(I, R̃). Hence it is compact and also sequentially compact, so there exists a converging subsequence
(ψnm)m∈N of (ψn)n∈N with limit ψ ∈ C̄(1)(I, R̃). This convergence is in the supremum norm. However, we

do not yet know whether ψ ∈ C(1)(I, R̃), i.e., whether ψ is also continuously differentiable.

• We now look at the sequence
(
ψ′nm

)
m∈N of derivatives of ψnm . Because ∀m ∈ N : ψnm ∈ B̄(2)(0, 1) (which

ensures uniform boundedness by 1 of the second derivatives), it now also holds that ∀m ∈ N : ψ′nm ∈
C(1)(I, R̃). Applying the same argumentation as above, there exists a converging subsequence

(
ψ′nml

)
l∈N

of
(
ψ′nm

)
m∈N with limit Ψ ∈ C̄(1)(I, R̃) ⊂ C(I, R̃). So this limit is continuous. The convergence is again

in the supremum norm. Clearly,
(
ψnml

)
l∈N

still converges to ψ.

• For the sequences
(
ψnml

)
l∈N

and
(
ψ′nml

)
l∈N

, all conditions of Theorem 4.2.3 are satisfied, since con-

vergence in the supremum norm is (by definition) uniform convergence.12 Hence it follows that ψ is
differentiable on I and that ψ′ = lim

l→∞
ψ′nml

= Ψ. Indeed, since Ψ is continuous, we have established that

ψ is continuously differentiable.

• Since ψnml → ψ and ψ′nml
→ ψ′ uniformly as l → ∞, we see that ψnml → ψ in the ||.||(1) norm as well.

Hence we can say that any sequence in B̄(2)(0, 1) contains a subsequence that converges in C(1)(I,RN ).

So there is a subsequence (ψnl)l∈N that converges in C(1)(I,RN ). We note from (5.18) that D is also a bounded

linear operator from C(1)(I,RN ) to Y with the ||.||(1)-norm on the former, hence it is continuous as an operator

between these spaces. Then we know that N is continuous from C(1)(I,RN ) to Y . So because (ψnl)l∈N is a

subsequence that converges in C(1)(I,RN ), N provides a subsequence (N (ψnl))l∈N of (φn)n∈N that converges

in Y (due to continuity of N , it converges to N (ψ). So N (B̄(2)(0, 1)) is a sequentially compact subset of the
metric space Y , and therefore a compact subset. Its closure is thus equal to the set itself and still compact.
Hence, N is a compact operator from X to Y .

Lemma 5.3.5. [28, Lemma 3] Let m ∈ C(k)
(
RN ,RN×N

)
(1 ≤ k ≤ ∞) and ψ ∈ X. Then A′(ψ) is injective.

Proof:
Let m ∈ C(k)

(
RN ,RN×N

)
(1 ≤ k ≤ ∞) and ψ ∈ X. To show injectivity of A′(ψ), let h ∈ X. Since A′(ψ) is a

linear operator from X to Y , we need to show that A(ψ)h = 0 implies h = 0.
We have previously defined A = L+N . Now L is a bounded linear operator, such that in view of observation
4.6.3, we have L′(ψ) = L. We have already shown that the derivative N ′(ψ) is given by (5.17). Since derivatives
add, we see that A(ψ)h = 0 means thatλḧ+ ḣ+ h+ (m′(ψ)h) ∗ ψ +m(ψ) ∗ ḣ

h(0)

ḣ(0)

 =

0
0
0

 ,

11 ||.|| denotes the Euclidean norm on RN here.
12 All ψn are vector-valued functions, so we actually apply Theorem 4.2.3 to each of the N component functions and use that

uniform convergence in the Euclidean norm is equivalent to uniform convergence of each of the component functions.

37



5 EXISTENCE AND UNIQUENESS OF SOLUTIONS

so in particular h(0) = ḣ(0) = 0.
Our further investigation concerns for s ∈ [0, T ] the equation

λḧ(s) + ḣ(s) + h(s) +

s∫
0

(m′(ψ)h(s− r))ψ(r) dr +

s∫
0

m(ψ(s− r))ḣ(r) dr = 0. (5.19)

Taking the inner product with ḣ(s) (since a real inner product is symmetric in its two arguments, we can take
the inner product left or right for each term as suits best) and integration over s from 0 to t yields with (4.9):

t∫
0

λḧ(s) ·ḣ(s) ds+

t∫
0

ḣ(s) ·ḣ(s) ds+

t∫
0

ḣ(s) ·h(s) ds =−
t∫

0

ḣ(s) ·
s∫

0

(m′(ψ)h(s− r))ψ(r) dr ds

−
t∫

0

ḣ(s) ·
s∫

0

m(ψ(s− r))ḣ(r) dr ds,

t∫
0

1

2
λ
d

ds
ḣ ·ḣ(s) ds+

t∫
0

ḣ(s) ·ḣ(s) ds+

t∫
0

1

2

d

ds
h ·h(s) ds =−

t∫
0

s∫
0

(m′(ψ)h(s− r))ψ(r) ·ḣ(s) dr ds

−
t∫

0

s∫
0

m(ψ(s− r))ḣ(r) ·ḣ(s) dr ds.

We will now write h(s) ·h(s) = h(s)2 and use that we already found h(0) = ḣ(0) = 0:

1

2
λḣ(t)2 +

t∫
0

ḣ(s)2 ds+
1

2
h(t)2 ≤

∣∣∣∣∣∣
t∫

0

s∫
0

(m′(ψ)h(s− r))ψ(r) ·ḣ(s) dr ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
t∫

0

s∫
0

m(ψ(s− r))ḣ(r) ·ḣ(s) dr ds

∣∣∣∣∣∣ ,
≤

t∫
0

s∫
0

∣∣∣(m′(ψ)h(s− r))ψ(r) ·ḣ(s)
∣∣∣dr ds

+

t∫
0

s∫
0

∣∣∣m(ψ(s− r))ḣ(r) ·ḣ(s)
∣∣∣dr ds,

≤
t∫

0

s∫
0

||m′(ψ)|| · ||h(s− r)|| · ||ψ(r)|| · ||ḣ(s)||dr ds

+

t∫
0

s∫
0

||m(ψ(s− r))|| · ||ḣ(r)|| · ||ḣ(s)|| dr ds.

We used the Cauchy-Schwarz inequality (4.8) and remark 4.4.3 for the last inequality.
Since m is continuous and ψ is continuous, the image of the compact interval [0, T ] under m◦ψ : [0, T ]→ RN×N
is bounded, such that a constant c1 > 0 exists with ∀τ ∈ [0, T ] : ||m (ψ(τ)) || ≤ c1. Also due to continuity of
ψ, a constant c2 > 0 exists such that ∀τ ∈ [0, T ] : ||ψ(τ)|| ≤ c2. Since m′ denotes differentiation of m in the
operator sense, m′(ψ) is by definition a bounded linear operator for fixed ψ, so ||m′(ψ)|| must be an existing
constant, fundamentally independent of any variable in the integration. Now let c := max{1, c1, c2, ||m′(ψ)||}.
Then

1

2
λḣ(t)2 +

1

2
h(t)2 ≤ −

t∫
0

ḣ(s)2 ds+ c2

 t∫
0

s∫
0

||h(s− r)|| · ||ḣ(s)||dr ds+

t∫
0

s∫
0

||ḣ(r)|| · ||ḣ(s)||dr ds

 ,

≤ −
t∫

0

ḣ(s)2 ds+ c2

 t∫
0

s∫
0

||h(r)|| · ||ḣ(s)||dr ds+

t∫
0

s∫
0

||ḣ(r)|| · ||ḣ(s)||dr ds

 .
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Inequality (4.1) can be applied to the above integrals to give

1

2
λḣ(t)2 +

1

2
h(t)2 ≤ −

t∫
0

ḣ(s)2 ds+
1

2
c2

 t∫
0

s∫
0

||h(r)||2 + ||ḣ(s)||2 dr ds+

t∫
0

s∫
0

||ḣ(r)||2 + ||ḣ(s)||2 dr ds

 .

Now applying (4.2) leads to

1

2
λḣ(t)2 +

1

2
h(t)2 ≤ −

t∫
0

ḣ(s)2 ds

+
1

2
c2T

 t∫
0

||h(s)||2 ds+

t∫
0

||ḣ(s)||2 ds+

t∫
0

||ḣ(s)||2 ds+

t∫
0

||ḣ(s)||2 ds

 , (5.20)

≤ −
t∫

0

ḣ(s)2 ds+ 3c2T max

{
1

λ
, 1

} t∫
0

1

2
λḣ(s)2 ds+

t∫
0

1

2
h(s)2 ds

 .

We can now use Gronwall’s inequality, Lemma 4.1.5,, identifying

u(t) =
1

2
λḣ(t)2 +

1

2
h(t)2,

α(t) = −
t∫

0

ḣ(s)2,

β(t) = 3c2T max

{
1

λ
, 1

}
,

such that (4.5) is satisfied. With these functions for α and β, since α is a non-positive function, (4.6) yields

u(t) =
1

2
λḣ(t)2 +

1

2
h(t)2 ≤ 0.

Since this is the sum of two inner products of a vector with itself, which are by definition non-negative, we can
conclude that h = ḣ = 0, i.e., A is injective.

We now turn to the last lemma needed to prove Theorem 5.3.1 under condition (5.15).

Lemma 5.3.6. [29, Lemma 4] Let m ∈ Ck
(
RN ,RN×N

)
(1 ≤ k ≤ ∞) and assume that condition (5.15) holds.

Then A is weakly coercive.
Proof:
For B > 0 fixed, let Z = {ψ ∈ X | ||A(ψ)||Y ≤ B}, i.e. a subset of X with functions whose images under A
are bounded in Y by a constant B. Without loss of generality, we pick B ≥ 1, because sets that are bounded
by a smaller constant are also bounded by 1. In view of observation 4.8.2, we can show that the image of an
unbounded set is unbounded. To prove this statement, it suffices to show that the fact that B is bounded
imposes a bound on ||ψ||(2) for ψ ∈ Z, i.e. a constant that bounds ||ψ(t)||, ||ψ̇(t)|| and ψ̈(t) for t ∈ [0, T ]. This
will be a constant in the sense that it depends on B, λ, T , m and some arbitrarily chosen ε > 0. We will
critically check that this constant does not depend on any specific ψ ∈ Z.
Let ψ ∈ Z and define  f

ψ0

ψ1

 := A(ψ) =

λψ̈ + ψ̇ + ψ +m(ψ) ∗ ψ̇
ψ(0)

ψ̇(0)

 . (5.21)

We will find an upper bound for ψ and ψ̇ by iteratively bounding them on successive intervals.
Let ε > 0 arbitrary. Because ψ and m are continuous, so is their composition m ◦ ψ and this guarantees the
existence of some T ′ > 0 with |m(ψ(t))| ≤ |m(ψ0)| + ε for t ∈ [0, T ′]. Now, because ψ ∈ Z, it holds that
||ψ0|| ≤ ||A(ψ)||Y ≤ B in the Euclidean norm for ψ0. Again with continuity of m, it maps compact sets (in RN ,
where compactness is equivalent to being closed and bounded) to compact sets (in RN×N ), so a constant κ > 0
exists such that for all φ ∈ Z : ||m(φ(0))|| ≤ κ. In conclusion, for t ∈ [0, T ′], we have ||m(ψ(t))|| ≤ κ+ ε =: k1,
where k1 depends only on some chosen ε, B and m.
Let T0 := min{T ′, 1

2k1
, T}.13 Note that T0 does depend on ψ because T ′ does. However, T0 ≤ 1

2k1
and T0 < T ,

13 We wish to ensure that T0 ≤ T to be able to integrate up to T0. However, in the following argument, we will mostly assume
that T0 < T and even 2T0 < T .
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so it has an upper bound that does not depend on the specific function ψ ∈ Z. Now for t ∈ [0, T ], starting from
f(s) = λψ̈(s) + ψ̇(s) + ψ(s) + (m(ψ) ∗ ψ̇)(s) and taking the inner product with ψ̇(s), followed by integration
over s from 0 to t results in (making use of great similarities with the proof of Lemma 5.3.5):

1

2
λ
(
ψ̇(t)2 − ψ2

1

)
+

t∫
0

ψ̇(s)2 ds+
1

2

(
ψ(t)2 − ψ0

)
+

t∫
0

s∫
0

m(ψ(s− r)) ˙ψ(r) ·ψ̇(s) dr ds =

t∫
0

f(s) ·ψ(s) ds ≤
t∫

0

∣∣∣f(s) ·ψ̇(s)
∣∣∣ ds ≤ t∫

0

||f(s)|| · ||ψ̇(s)||ds ≤ 1

2

t∫
0

f(s)2 + ψ̇(s)2 ds⇒

ψ(t)2 + λψ̇(t)2 ≤ ψ0
2 + λψ1

2 +

t∫
0

f(s)2 ds−
t∫

0

ψ̇(s)2 ds+ 2

t∫
0

s∫
0

∣∣∣m (ψ(s− r)) ψ̇(r)ψ̇(s)
∣∣∣dr ds. (5.22)

We used Cauchy-Schwarz and again inequality (4.1). Continuing with t ∈ [0, T0], we can make the following
estimates:

ψ(t)2 + λψ̇(t)2 ≤ ψ0
2 + λψ1

2 +

t∫
0

f(s)2 ds−
t∫

0

ψ̇(s)2 ds+ 2k1

t∫
0

s∫
0

||ψ̇(s)|| · ||ψ̇(r)|| dr ds,

(4.3)

≤ ψ0
2 + λψ1

2 +

t∫
0

f(s)2 ds−
t∫

0

ψ̇(s)2 ds+ 2k1T0

t∫
0

ψ̇(s)2 ds,

= ψ0
2 + λψ1

2 +

t∫
0

f(s)2 ds+ (2k1T0 − 1)

t∫
0

ψ̇(s)2 ds.

Because T0 ≤ 1/(2k1), we have that 2k1T0 − 1 ≤ 0, so we have

ψ(t)2 + λψ̇(t)2 ≤ ψ0
2 + λψ1

2 +

t∫
0

f(s)2 ds,

≤ ψ0
2 + λψ1

2 +

T0∫
0

f(s)2 ds,

≤ ψ0
2 + λψ1

2 +

T∫
0

f(s)2 ds,

ψ(t)2 + ψ̇(t)2 ≤ max

{
1,

1

λ

}(
ψ(t)2 + λψ̇(t)2

)
,

≤ max

{
1,

1

λ

}B2 + λB2 +

T∫
0

B2 ds

 =: c1
2

Thus we have identified an upper bound c1 for both ψ(t) and ψ̇(t) for t ∈ [0, T0]. This bound only depends on
B, T and λ and is thus valid for all ψ ∈ B.
If T0 = T , we can proceed to showing that also ψ̈(t) is bounded here. However, we proceed first for the general
case that T0 < T . For ease of notation, we will also assume that 2T0 < T . Should this not be the case, the
same bounds hold, but one should be aware that the integrals can only be taken up to T , strictly speaking.

For t ∈ [T0, 2T0], we will first examine the integral
t∫

0

s∫
0

∣∣∣m(ψ(s− r)) ∗ ˙ψ(r) ·ψ(s)
∣∣∣ dr ds. We will split the integral

over different regions. To see how, let us symbolically write

t∫
0

s∫
0

=

T0∫
0

s∫
0

+

t∫
T0

s∫
0

=

T0∫
0

s∫
0

+

t∫
T0

T0∫
0

+

t∫
T0

s∫
T0

.
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This allows us to also use the upper bounds previously identified on the interval [0, T0]. We find

t∫
0

s∫
0

∣∣∣m(ψ(s− r)) ∗ ˙ψ(r) ·ψ̇(s)
∣∣∣ dr ds,

≤
T0∫
0

s∫
0

||m(ψ(s− r))|| · || ˙ψ(r)|| · ||ψ̇(s)||dr ds+

t∫
T0

s∫
0

∣∣∣m(ψ(s− r)) ˙ψ(r) ·ψ̇(s)
∣∣∣dr ds,

≤ k1c1
2

T0∫
0

s∫
0

1 dr ds+

t∫
T0

T0∫
0

||m(ψ(s− r)) ˙ψ(r)|| · ||ψ̇(s)||dr ds+ (5.23)

t∫
T0

s∫
T0

||m(ψ(s− r))|| · || ˙ψ(r)|| · ||ψ̇(s)|| dr ds.

We will consider the three integrals that are left separately. The first integral can be explicitly computed:

k1c1
2

T0∫
0

s∫
0

1 dr ds =
1

2
k1c1

2T0
2.

For the second integral, using condition (5.15), we have

t∫
T0

T0∫
0

||m(ψ(s− r)) ˙ψ(r)|| · ||ψ̇(s)||dr ds ≤
t∫

T0

T0∫
0

c(1 + ||ψ(s− r)||)||ψ̇(r)|| · ||ψ̇(s)||dr ds.

In this integral, r ∈ [0, T0], so we can bound ||ψ̇(r)||. Further, we have for all a, b ∈ R : (1 + a)b = 1 · b + ab ≤
1
2 (12 + b2 + a2 + b2) < b2 + 1 + a2. We also need inequality 4.1.4. This leads us to

t∫
T0

T0∫
0

||m(ψ(s− r)) ˙ψ(r)|| · ||ψ̇(s)||dr ds ≤ cc1

t∫
T0

T0∫
0

ψ̇(s)2 dr ds+ cc1

t∫
T0

T0∫
0

1 + ψ(s− r)2 dsdr, (5.24)

(4.4)

≤ cc1(t− T0)T0 + cc1T0

t∫
T0

ψ̇(s)2 ds+ cc1T0

t∫
0

ψ(s)2 ds,

≤ cc1T0
2 + cc1T0

t∫
T0

ψ̇(s)2 ds+ cc1T0

t∫
0

ψ(s)2 ds.

For the third integral, we notice that s ∈ [T0, 2T0], r ∈ [T0, 2T0], so s − r ∈ [0, T0] and s − T0 ≤ T0. We then
obtain

t∫
T0

s∫
T0

||m(ψ(s− r))|| · ||ψ̇(r)|| · ||ψ̇(s)|| dr ds ≤ 1

2
k1

t∫
T0

s∫
T0

ψ̇(r)2 + ψ̇(s)2 dr ds, (5.25)

(4.2)

≤ 1

2
k1T0

t∫
T0

ψ̇(s)2 ds+
1

2
k1

t∫
T0

(s− T0)ψ̇(s)2 ds,

≤ k1T0

t∫
T0

ψ̇(s)2 ds.

Combining these inequalities with (5.23) gives

t∫
0

s∫
0

∣∣∣m(ψ(s− r)) ∗ ˙ψ(r) ·ψ̇(s)
∣∣∣dr ds ≤ 1

2
k1c1

2T0
2 + cc1T0

2 + cc1T0

t∫
0

ψ(s)2 ds+ (k1 + cc1)T0

t∫
T0

ψ̇(s)2 ds,

≤ 1

2
k1c1

2T0
2 + cc1T0

2 + (k1 + cc1)T0 max

{
1,

1

λ

} t∫
0

ψ(s)2 + λ ˙ψ(s)
2

ds.
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Putting this in (5.22), which was obtained for all t ∈ [0, T ], we find14

ψ(t)2 + λψ̇(t)2 ≤ψ0
2 + λψ1

2 +

T∫
0

f(s)2 ds+ k1c1
2T0

2 + 2cc1T0
2 (5.26)

+ 2 (k1 + cc1)T0 max

{
1,

1

λ

} t∫
0

ψ(s)2 + λψ̇(s)2 ds,

≤ α2 + β2

t∫
0

ψ(s)2 + λψ̇(s)2 ds,

with

α2 = B2(1 + λ+ T ) + T 2c1(k1c1 + 2c),

β2 = 2(k1 + cc1)T max

{
1,

1

λ

}
.

These constants depend only on B, ε, λ, T and the nature of m. Furthermore, they are certainly positive.
Hence Gronwall’s inequality (4.7) can be applied to give, for all t ∈ [0, 2T0]:

ψ(t)2 + ψ̇(t)2 ≤ max

{
1,

1

λ

}(
ψ(t)2 + λψ̇(t)2

)
,

≤ max

{
1,

1

λ

}
α2 exp(β2t),

≤ max

{
1,

1

λ

}
α2 exp(β2T ) =: c2

2.

So we have found a bound c2 for ψ(t) and ψ̇(t) on t ∈ [0, 2T0]. This bound holds for all ψ ∈ Z because it only
depends on B, ε, λ, T and the nature of m. This bound on ψ(t) for all t ∈ [0, 2T0] again gives a constant k2

such that for all t ∈ [0, 2T0]: m(ψ(t)) ≤ k2 due to continuity of m.
These are the ingredients needed to find a bound on ψ(t) for t ∈ [0, 4T0]. We can follow the same procedure as
above, now splitting the integral for t ∈ [2T0, 4T0] as

t∫
0

s∫
0

=

2T0∫
0

s∫
0

+

t∫
2T0

s∫
0

=

2T0∫
0

s∫
0

+

t∫
2T0

2T0∫
0

+

t∫
2T0

s∫
2T0

.

Inequalities analogous to (5.23), (5.24) and (5.25) can be obtained (with the appropriate bounds) with the use
of k2 and c2 instead of k1 and c1, respectively. In inequality (5.26), we could add the constant (1 + λ)c2

2 to
ensure that the inequality also holds for t ∈ [0, 2T0]. Then Gronwall’s inequality can again be invoked to bound
ψ(t) and ψ̇(t) by a constant c3 for all t ∈ [0, 4T0]. This constant can be found such that it only depends on B,
ε, λ, T and m, so the estimate is again valid for all ψ ∈ Z. We find a new bound k3 on m(φ(t)) for all φ ∈ Z
and all t ∈ [0, 4T0] and continue to find a bound on t ∈ [0, 8T0], etcetera.
This results in an upper bound K, say, for t ∈ [0, T ] on ψ(t) and ψ̇(t) for all ψ ∈ Z, where the bound K still
only depends on B, ε, λ, T and m. Consequently, by continuity of m, ||psi(t)|| ≤ K also ensures the some L > 0
exists with m(ψ(t)) ≤ L for t ∈ [0, T ].
Now we have to bound the second derivate to obtain a bound of ψ in the sense of the ||.||(2) norm. This is now
immediately derived from (5.21), since for all t ∈ [0, T ], we have:

λ||ψ̈(t)|| ≤ ||f(t)||+ ||ψ̇(t)||+ ||ψ(t)||+ ||m(ψ) ∗ ψ̇(t)||,
≤ B + 2K + TLK.

So, if the image under A of a set of functions in X is bounded, so is the set of functions itself. Then observation
4.8.2 ensures that A is weakly coercive.

Now we have shown with Lemmas 5.3.4, 5.3.5 and 5.3.6, together with Theorem 5.3.2, that A is a Ck-
diffeomorphism from X onto Y for any T > 0, provided that m satisfies condition (5.15).

14 The newly found inequalities cannot be used on [0, T0], since they were explicitly derived for t ∈ [0, 2T0]. However, we see that
the first three terms on the next line already provide a bound on ψ(t) + λψ̇(t) there.
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Local existence
When the kernel m does not satisfy condition (5.15), a local existence result can be derived from the global
existence result if we replace the kernel by a bounded one, which equals m on some restricted domain of RN .
To this end, let k1 > ||Ψ0||, k2 > k1 arbitrary but fixed, and define m̃ ∈ C1

(
RN ,RN×N

)
by

m̃(x) :=

{
m(x) ||x|| ≤ k1,

0 ||x|| ≥ k2,

and continuously differentiable extended on {x ∈ RN | k1 ≤ ||x|| ≤ k2}. So by construction m̃ is indeed
continuously differentiable and with D = {x ∈ RN | ||x|| ≤ k2}, we can employ Corollary 4.6.8 to conclude that
m̃ is bounded on RN , say ∀x ∈ RN : ||m̃(x)|| ≤ K. Hence we can verify condition (5.15) for m̃. Let x, y ∈ RN .
By remark 4.4.3, we have

||m̃(x)y|| ≤ ||m̃(x)|| · ||y|| ≤ K||y|| ≤ K(1 + ||x||)||y||,

which is indeed (5.15). Consequently, with the kernel m̃, we know that the system (5.14) admits a unique
solution ψ on [0, T ] for any T ∈ R. We have ensured that ||ψ(0)|| = ||Ψ0|| < k1 and since the solution ψ is con-
tinuous, there exists some τ > 0 with ||ψ(t)|| ≤ k1 for t ∈ [0, τ ]. Then on [0, τ ], it holds that m(ψ(t)) = m̃(ψ(t)),
so ψ is a (local) solution to (5.14) with the kernel m on the interval [0, τ ].

Ψ0

ℝ𝑁
𝑚 extended

𝑚 = 0

𝑘1 𝑘2

𝑚 = 𝑚

𝑢

𝑣

Figure 7: Illustration of the cut-off kernel m̃. The kernel is left unchanged in some domain around Ψ0 (up to
k1), such that a solution (u or v in the figure) with m̃ can locally be taken as a solution with the original kernel
m.

To show uniqueness of any local solution, we can weaken the conditions on the kernel m to local Lipschitz
continuity such that m is Lipschitz continuous on the closed ball with ||x|| ≤ k1 in RN , which contains the local
solutions to the problem.

Lemma 5.3.7. (Uniqueness, [29, Lemma 5]) Let T > 0 arbitrary and let m ∈ C0(RN ,RN×N ) be locally
Lipschitz continuous, in the sense that it is Lipschitz continuous when restricted to any closed ball with arbitrary
finite radius15. Then for any given Ψ0,Ψ1 ∈ RN and f ∈ C0([0, T ],RN ) there exists at most one solution
ψ ∈ C2([0, T ],RN ) of (5.14). Therefore, we demand this property for m restricted to arbitrary closed balls.
Proof:
Suppose two solutions u, v of (5.14) exist. Let w = u− v. Then we have w(0) = 0 = ẇ(0) since both solutions
satisfy the same initial conditions. Further equating the inhomogeneous equation in (5.14) for both solutions u
and v yields

0 = λẅ(t) + ẇ(t) + w(t) +

t∫
0

m(u(t− s))u̇(s)−m(v(t− s))v̇(s) ds.

15 Saal is not clear about what he means with local Lipschitz continuity in [29]. However, the definition that for any point in
x ∈ RN , there should be an open region Ux of x such that m constrained to Ux is Lipschitz continuous, is insufficient to support
the argument for arbitrary solutions of (5.14).
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The presence of w here is due to the linearity of L in A = L + N . Taking the inner product with ẇ(t), this
leads to

λ

2

d

dt
(ẇ(t))2 +

1

2

d

dt
(w(t))2 = −ẇ(t)2 − ẇ(t)

t∫
0

m(u(t− s))u̇(s)−m(v(t− s))v̇(s) ds.

Since u, v and m are continuous (and hence the composition m ◦ u as well), there exist constants c1, c2, c3 > 0
with ||u||∞ ≤ c1, ||v||∞ ≤ c2 and ||m ◦ u||∞|| ≤ c3, where all supremum norms are taken over [0, T ]. All bounds
hold for the constant c := max{c1, c2, c3}. In terms of figure 7, we can interpret c as k1 for some cut-off kernel
if taken larger than ||Ψ0|| such that local existence of a solution is obtained on [0, T ].
For the integrand, we can find the following estimates:

||m(u(t− s))u̇(s)−m(v(t− s))v̇(s)|| ≤ ||m(u(t− s))u̇(s)−m(u(t− s)v̇(s)−m(u(t− s)v̇(s)−m(v(t− s))v̇(s)||,
≤ ||m(u(t− s)) [u̇(s)− v̇(s)] ||+ || [m(u(t− s)−m(v(t− s))] v̇(s)||,
≤ ||m(u(t− s))|| · ||u̇(s)− v̇(s)||+ ||m(u(t− s)−m(v(t− s))|| · ||v̇(s)||,
≤ c||ẇ(t− s)||+ L||u(t− s)− v(t− s)||c,
= c||ẇ(t− s)||+ cL||w(t− s)||,

using a suitable estimate for matrix multiplication in view of remark 4.4.3 and the fact that the local Lipschitz
continuity of m allows us to write for some constant L > 0 that ||m(u(t)) −m(v(t))|| ≤ L||u(t) − v(t)|| for all
t ∈ [0, T ], as u and v lie in the compact set {f ∈ C2([0, T ],RN ) | ||f ||∞ ≤ c}.
Now, since

∫ t
0
f(t− s) ds =

∫ t
0
f(s) ds for any integrable function f , integrating over t from 0 to, say r ∈ [0, T ],

we obtain with the triangle inequality for integrals (recall the initial values w(0) and ẇ(0) we found for w) and
the Cauchy-Schwarz inequality:

λ

2
ẇ(r)2 +

1

2
w(r)2 ≤ −

r∫
0

ẇ(t)2 dt+

∣∣∣∣∣∣
r∫

0

t∫
0

ẇ(t)m(u(t− s))u̇(s)−m(v(t− s))v̇(s) dsdt

∣∣∣∣∣∣ ,
≤

r∫
0

||ẇ(t)|| ·
t∫

0

||m(u(t− s))u̇(s)−m(v(t− s))v̇(s)|| dsdt,

≤
r∫

0

||ẇ(t)|| ·
t∫

0

||ẇ(s)||+ cL||w(s)||dsdt,

(4.1)

≤
r∫

0

t∫
0

1

2
(1 + cL)ẇ(t)2 +

1

2
ẇ(s)2 +

1

2
cLw(s) dsdt,

(4.2)

≤
r∫

0

t
1

2
(1 + cL)ẇ(t)2 dt+ T

r∫
0

1

2
ẇ(s)2 ds+ T

r∫
0

1

2
cLw(s)2 ds,

∗
≤ T

r∫
0

1

2
(1 + cL)ẇ(s)2 ds+ T

r∫
0

1

2
ẇ(s)2 ds+ T

r∫
0

1

2
cLw(s)2 ds,

≤
(

1

2
L+ 1

)
cT

r∫
0

ẇ(s)2 ds+
1

2
cLT

r∫
0

w(s)2 ds,

≤
(

1

2
L+ 1

)
cT

r∫
0

ẇ(s)2 + w(s)2 ds,

≤ (1L+ 2) cT max

{
1,

1

λ

} r∫
0

λ

2
ẇ(s)2 +

1

2
w(s)2 ds.

At * we could estimate t in the first integral by T since ẇ(t)2 ≥ 0 for all t between 0 and T . So we conclude
with Gronwall’s inequality that for all t ∈ [0, T ]:

ẇ(t)2 + w(t)2 ≤ 0,

since in (4.5), we identify α = 0. So for all t ∈ [0, T ] : u(t) = v(t) and the solution is indeed unique.

This concludes the proof of Theorem 5.3.1.
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5.4 Second order system II

To extend the class of kernels giving rise to a global solution to (5.14) (i.e., existing for all T > 0 on the interval
[0, T ]), Saal uses an iterative approach with a linearised equation. This is in fact reminiscent of the approach of
Götze et al. in [10] as discussed in section 5.2. We first behold the linearisation in a slightly more general context.

For l ∈ N, x0 ∈ Rl, Φ,M ∈ C0([0,∞),Rl×l) and f ∈ C0([0,∞),Rl), let x ∈ C0([0,∞),Rl) be a solution to

x(t) = Φ(t)x0 + Φ(t)

t∫
0

Φ(−s)
s∫

0

M(s− r)x(r) dr ds+ Φ(t)

t∫
0

Φ(−s)f(s) ds. (5.27)

Reversing the order of integration in the double integral, we rewrite this as

x(t) = Φ(t)

t∫
0

 t∫
r

Φ(−s)M(s− r) ds

x(r) dr + Φ(t)

x0 +

t∫
0

Φ(−s)f(s) ds

 ,

or

x(t) =

t∫
0

M̃(t, r)x(r) dr + f̃(t),

where

M̃(t, r) := Φ(t)

t∫
r

Φ(−s)M(s− r) ds,

f̃(t) := Φ(t)

x0 +

t∫
0

Φ(−s)f(s) ds

 .

Due to the assumptions made on Φ, M and f and the continuity of multiplication and the integral in the above
definitions, M̃ and f̃ are seen to be continuous functions as well. Here we recognize the Volterra equation of
the second kind of Theorem 4.8.4, hence a unique solution x ∈ C0([0, T ],Rl) exists to equation (5.27).
If we further assume that Φ ∈ C1([0,∞),Rl×l) (so it is differentiable), (5.27) can be differentiated and we find

ẋ(t) =Φ′(t)

x0 +

t∫
0

Φ(−s)
s∫

0

M(s− r)x(r) dr ds+

t∫
0

Φ(−s)f(s) ds

 (5.28)

+ Φ(t)

Φ(−t)
s∫

0

M(t− r)x(r) dr + Φ(−t)f(t)

 ,
so the solution x is also continuously differentiable: x ∈ C1([0, T ],Rl).

We proceed to the next theorem, which bounds the solution of (5.27).

Theorem 5.4.1. [29, Theorem 6] In the notation introduced above, for certain b, c0, c1, k ∈ R with c1 > c0,

let ∀y ∈ Rl : ||Φ(t)y|| ≤ be−c0t||y|| for t ∈ [0,∞), ||M(s − r)x(r)|| ≤ ke−c1(s−r)||x(r)|| for s, r ∈ [0,∞)16, s ≥ r

and let

∣∣∣∣∣∣∣∣ t∫
0

Φ(−s)f(s) ds

∣∣∣∣∣∣∣∣ ≤ k1 for some k1 > 0 independent of t. Then

||x(t)|| ≤ (||x0||+ k1)e

(
−c0− kb2

c1−c0

)
t

(5.29)

holds for the solution x of (5.27). Especially in the case c0 − k
c1−c0 > 0, we have an exponentially decaying

solution.
Proof:

16 In [29], Saal omits the constant b (i.e., b = 1). However, in view of observation 4.7.8, we think that it is in general necessary
to account for another constant. We show in appendix B that for the matrix we wish to apply the theorem to, that is indeed the
case when working with the Euclidean norm and the matrix norm it induces.
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Using the assumed estimate for multiplication with Φ(t) and the triangle inequality - and timely making use of
the other estimates - we can start from (5.27) with

||x(t)|| ≤ ||Φ(t)x0||+

∣∣∣∣∣∣
∣∣∣∣∣∣Φ(t)

t∫
0

s∫
0

Φ(−s)M(s− r)x(r) dr ds

∣∣∣∣∣∣
∣∣∣∣∣∣+

∣∣∣∣∣∣
∣∣∣∣∣∣Φ(t)

t∫
0

Φ(−s)f(s) ds

∣∣∣∣∣∣
∣∣∣∣∣∣ ,

≤ be−c0t||x0||+ be−c0t
t∫

0

s∫
0

||Φ(−s)M(s− r)x(r)||dr ds+ be−c0t
t∫

0

||Φ(−s)f(s)||ds⇒

1

b
ec0t||x(t)|| ≤ ||x0||+

t∫
0

s∫
0

bec0s||M(s− r)x(r)|| dr ds+ k1,

≤ ||x0||+ k1 + bk

t∫
0

s∫
0

ec0se−c1(s−r)||x(r)||dr ds,

= ||x0||+ k1 + bk

t∫
0

s∫
0

ec0re−(c1−c0)(s−r)||x(r)||dr ds,

= ||x0||+ k1 + bk

t∫
0

ec0r||x(r)||
t∫
r

e−(c1−c0)(s−r) dsdr.

Now the integral over s can be directly computed:

t∫
r

e−(c1−c0)(s−r) ds =

[
−1

c1 − c0
e−(c1−c0)(s−r)

]s=t
s=r

=
e(c0−c1) − e(c0−c1)(t−r)

c1 − c0
.

Since c1 > c0, the term with the minus sign can be discarded to obtain the bounds

e(c0−c1) − e(c0−c1)(t−r)

c1 − c0
≤ e−(c1−c0)

c1 − c0
≤ e0

c1 − c0
=

1

c1 − c0
.

Continuing the estimate for ||x(t)|| with this result gives

ec0t||x(t)|| ≤ b (||x0||+ k1) +

∫ t

0

kb2

c1 − c0
ec0r||x(r)||dr.

As a result, we can apply Gronwall’s inequality (4.7) with

α(t) = b (||x0||+ k1) ,

β(t) =
kb2

c1 − c0
,

and bringing ec0t to the other side gives

||x(t)|| ≤ be−c0t(||x0||+ k1) exp

 t∫
0

kb2

c1 − c0

 = b(||x0||+ k1)e
−
(
c0− kb2

c1−c0

)
t
.

First order system
The foregoing result will be applied in the iteration process with a linearised, first-order system. So Saal
transforms the system (5.14) to a first-order system by means of the following definitions:

• We look at the variable x = (x1, x2) := (ψ, ψ̇) ∈ C1([0,∞),R2N );

• The source function is transformed to F := 1
λ (0, f) ∈ C0([0,∞),R2N );
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• Saal (implicitly) extends the interpretation of matrix multiplication: for a general matrix

A =

(
a11 a12

a21 a22

)
and a vector y = (y1, y2) ∈ R2N , we define their product Ay = ((Ay)1, (Ay)2) ∈ R2N by

(Ay)i :=

2∑
j=1

aijyj ∈ RN , i = 1, 2;

• For our transformation, define

A :=

(
0 1
− 1
λ − 1

λ

)
;

• For the kernel, we keep using the usual matrix multiplication. We define for arbitrary g = (g1, g2) ∈
C0([0,∞),RN × RN ) and t ∈ [0,∞):

M(g(t)) :=

(
0 0
0 m(g1(t− s))

)
∈ R2N×2N ,

where each block is to be read as a block of size N ×N .

The equation for x is now first order and reads for t ∈ [0,∞):

ẋ1(t) = ψ̇(t) = x2(t)− 1
λ

t∫
0

0 · x1(s) ds,

ẋ2(t) = ψ̈(t) = − 1
λψ(t)− 1

λ ψ̇(t)− 1
λ

t∫
0

m(ψ(t− s))ψ̇(s) ds+ f(t),

= − 1
λx1(t)− 1

λx2(t)− 1
λ

t∫
0

m(x1(t− s))x2(s) ds+ f(t).

and initial value x(0) = (Ψ0,Ψ1) := x0. With the notations and definitions above we see that this can compactly
be rewritten as ẋ(t) = Ax(t)− 1

λ

t∫
0

M(x(t− s))x(s) ds+ F (t),

x(0) = x0.

(5.30)

The linear part, without the integral and F , explicitly reads

(ẋ1)1 = (x2)1,

(ẋ2)1 = − 1
λ (x1)1 − 1

λ (x2)1,
...

(ẋ1)N = (ẋ2)N ,

(ẋ2)N = − 1
λ (x1)N − 1

λ (x2)N ,

so we see that we effectively have N linear first-order systems each of which can be solved as described in result
4.7.10 to obtain (with the correct initial conditions)

(
(x1)1

(x2)1

)
= eAt

(
(Ψ0)1

(Ψ1)1

)
,

...(
(x1)N

(x2)N

)
= eAt

(
(Ψ0)N

(Ψ1)N

)
.

With the extended interpretation of matrix multiplication above, we can now write the solution to the linear
part as

x(t) = eAtx0 =: Φ(t)x0

Variation of constants
With the solution for the linear part of (5.30) at hand, we employ the technique of variation of constants to find
a modified equation to solve (5.30). To this end, we suppose the solution x is of the form x(t) = Φ(t)y(t) for
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some function y ∈ C1([0,∞),R2N ) with y(0) = x0 to satisfy the initial conditions. Substituting this supposition
yields for t ∈ [0,∞) (with d

dte
At = AeAt = AΦ(t)):

AΦ(t)y(t) + Φ(t)ẏ(t) = AΦ(t)y(t)− 1

λ

t∫
0

M(Φ(t− s)y(t− s))Φ(s)y(s) ds+ F (t).

Since the matrix inverse of eAt is e−At according to Lemma 4.7.3, multiplying by Φ(−t) 17 and integrating yields
the integral equation

y(t) = x0 −
1

λ

t∫
0

Φ(−r)
r∫

0

M(Φ(r − s)y(r − s))Φ(s)y(s) dsdr +

t∫
0

Φ(−r)F (r) dr.

With x(t) = Φ(t)y(t), this leads us for x to the integral equation

x(t) = Φ(t)x0 −
1

λ
Φ(t)

t∫
0

Φ(−s)
s∫

0

M(x(s− r))x(r) dr ds+ Φ(t)

t∫
0

Φ(−s)F (s) ds. (5.31)

We changed the role of the dummies r and s for maximum resemblance to (5.27).

Iteration sequence
Saal now defines a sequence (x(n))n∈N of functions x(n) ∈ C1([0,∞),RN × RN ) for n ∈ N by

x(n)(t) = Φ(t)x0 −
1

λ
Φ(t)

t∫
0

Φ(−s)
s∫

0

M(x(n−1)(s− r))x(n)(r) dr ds+ Φ(t)

t∫
0

Φ(−s)F (s) ds (5.32)

with x0(t) := x0e
−c1t, where c1 > 0 will be chosen in the proof of Theorem 5.4.2. Due to the discussion at the

beginning of this section, we know that these equations yield a unique solution for all x(n) which is continuously
differentiable (with its derivative given by (5.28), for f we read F and for M we should read 1

λM ◦ x
(n−1)).

Boundedness for Φ
Before we can bound the solution of (5.30), we need to bound Φ(t) = eAt and we do this in the manner of
observation 4.7.9. Computing the eigenvalues λ1, λ2 of A results in{

λ1,2 = − 1±
√

1−4λ
2λ if λ ≤ 1

4 ,

λ1,2 = − 1±i
√

4λ−1
2λ if λ > 1

4 .

Now using the bound of observation 4.7.9, we thus find that a b ≥ 1 exists such that for all y ∈ R2N

||Φ(t)y|| ≤ be−c0t||y||

with c0 = Re
(

1−
√

1−4λ
2λ

)
(where we read

√
1− 4λ = i

√
4λ− 1 when λ > 1

4 ), since this is the largest (real part)

of the two possible eigenvalues. We see that c0 is positive, and hence for all t ∈ [0,∞), we conclude that

||Φ(t)y|| ≤ be−c0t||y||. (5.33)

To be precise, we need to check the inequalities in section 4.7 again for our renewed interpretation of
multiplication in equation 5.31. This only needs to be done for Lemma 4.7.7, since then observations 4.7.8
and 4.7.9 follow from (ordinary) scalar and matrix multiplications and the property of the norm described in
remark 4.4.3. The result of Lemma 4.7.7 can be verified by rewriting the expression at hand with usual matrix

17 We should actually check that the definition on page 47 is associative, such that multiplication by the inverse really removes

Φ(t). This boils down to associativity of scalar addition and scalar multiplication with vectors as follows: let A =

(
a11 a12
a21 a22

)
,

B =

(
b11 b12
b21 b22

)
and y = (y1, y2) ∈ RN × RN . We then have (B(Ay))i =

∑2
j=1 bij(Ay)j =

∑2
j=1 bij

(∑2
k=1 ajkyk

)
=∑2

j=1

∑2
k=1 bijajkyk =

∑2
k=1

(∑2
j=1 bijajk

)
yk =

∑2
k=1(BA)ikyk = ((BA)y)i.
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multiplications as follows (on Rn × Rn we use the Euclidean norm):

||Ay||2 =

∣∣∣∣∣∣∣∣(a11y1 + a12y2

a21y1 + a22y2

)∣∣∣∣∣∣∣∣2 ,

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



a11(y1)1 + a12(y2)1

...
a11(y1)N + a12(y2)N
a21(y1)1 + a22(y2)1

...
a21(y1)N + a22(y2)N



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

,

=(a11(y1)1 + a12(y2)1)2 + · · ·+ (a11(y1)N + a12(y2)N )2+

(a21(y1)1 + a22(y2)1)2 + · · ·+ (a21(y1)N + a22(y2)N )2,

=

∣∣∣∣∣∣∣∣A((y1)1

(y2)1

)∣∣∣∣∣∣∣∣2 + · · ·+
∣∣∣∣∣∣∣∣A((y1)N

(y2)N

)∣∣∣∣∣∣∣∣2 ,
≤b2λmax

2
(

(y1)1
2

+ (y2)1
2

+ · · ·+ (y1)N
2

+ (y2)N
2
)
,

=b2λmax
2
(

(y1)1
2

+ · · ·+ (y1)N
2

+ (y2)1
2

+ · · ·+ (y2)N
2
)
,

=b2λmax
2||y||2.

Taking the square root yields the result of Lemma 4.7.7.

Theorem 5.4.2. [29, Theorem 7]18 Assume that

∃α > 1, v1 > 0, k1 > 0 with ∀y, z ∈ RN , ||z|| ≤ ||x0||+ k1 : ||m(z)x|| ≤ v1||z||α||x||

and ∀t ∈ [0,∞) :

∣∣∣∣∣∣
∣∣∣∣∣∣
t∫

0

Φ(−s)F (s) ds

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ k1

holds. Then there exists a constant k > 0 dependent on b, α and c0 such that if v1(||x0||+k1)α ≤ k is fulfilled19,
we can choose a c1 > 0 such that

||xn(t)|| ≤ b(||x0||+ k1)e−c1t (5.34)

holds for all n ∈ N and all t ∈ [0,∞).
Proof:

Set k := λ(α−1)2

4αb3 c0
2 and c1 := α+1

2α c0. Then for x0, the statement of this theorem holds by definition.

So we proceed by induction. For some n ∈ N, assume that ||x(n−1)(t)|| ≤ b(||x0|| + k1)e−c1t for all t ∈ [0,∞)
(Induction Hypothesis). We wish to apply Theorem 5.4.120 and the inequality (5.29) it provides. For s, r ∈
R, s ≥ r ≥ 0, we obtain for the kernel in equation (5.32), making use of the assumptions for this theorem:∣∣∣∣∣∣∣∣ 1λM(x(n−1)(s− r))x(n)(r)

∣∣∣∣∣∣∣∣ =
1

λ
||m

(
x

(n−1)
1 (s− r)

)
x

(n)
2 (r)||,

≤ v1

λ
||x(n−1)

1 (s− r)||α||x(n)
2 (r)||,

I.H.
≤ bv1

λ
(||x0||+ k1)αe−αc1(s−r)||x(n)(r)||,

≤ kb

λ
e−αc1(s−r)||x(n)(r)||. (5.35)

We have αc1 = α+1
2 c0 > c0, so together with the assumption on F above, the assumptions of Theorem 5.4.1 are

satisfied and this yields for x(n):

||x(n)(t)|| ≤ b(k1 + ||x0||)e
−
(
c0− kb

3

λ
1

αc1−c0

)
,

18 The constants in this theorem are slightly modified with respect to Saal [29], for the same reason as explained in footnote 16.
19 Since the constant k is specifically chosen as a function of b, α and c0, and these cannot take any values (c0 is fixed, α must

satisfy the first assumption of this theorem and b must be at least large enough to satisfy the bound (5.33)), this is in fact another
constraint on the kernels to which this theorem applies.

20 The object Φ in Theorem 5.4.1 is used with the ordinary matrix multiplication, unlike in equation (5.32). However, all we
need in Theorem 5.4.1 is the bound for the multiplication with Φ in the assumptions, and this was verified just above the current
theorem. So if we verify the other conditions as well, the inequality (5.29) can still be applied.
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for all t ∈ [0,∞), where with the definitions of c1 and k it follows that

c0 −
kb3

λ

1

αc1 − c0
= c0 −

kb3

λ

2

(α+ 1)c0 − 2c0
= c0 −

2(α− 1)2c0
2

4α(α− 1)c0
= c0 −

(α− 1)c0
2α

=
(α+ 1)c0

2α
= c1.

Corollary 5.4.3. [29, Corollary 8] Let m ∈ C1(RN ,RN×N ). Then for any given Ψ0,Ψ1 ∈ RN and f ∈
C0([0,∞),RN ) satisfying the conditions of Theorem 5.4.221 (with x0 = (Ψ0,Ψ1)), there is a unique global
solution ψ ∈ C2([0,∞),RN ) of (5.14). Additionally

||ψ̇(t)||+ ||ψ(t)|| ≤ (||x0||+ k1)e−c1t

holds for t ∈ [0,∞).
Proof:

1 Existence.
We show existence of a solution on each bounded interval [0, T ] for some T > 0. Constructing an iteration
sequence as has been done above, we can apply Theorem 5.4.2 and we know that each iteration function

x(n) = (x
(n)
1 , x

(n)
2 ) ∈ R2N is uniformly bounded by (||x0||+ k1)e−c1 on [0, T ]. Differentiating (5.32), we obtain

ẋ(n)(t) = Ax(n)(t)− 1

λ
Φ(t)Φ(−t)

t∫
0

M(x(n−1)(t− r))x(n)(r) dr + Φ(t)Φ(−t)F (t),

= Ax(n)(t)− 1

λ

t∫
0

M(x(n−1)(t− r))x(n)(r) dr + F (t). (5.36)

We used that Φ̇(t) = AΦ(t) (it is the matrix exponential of A, which yields the unique solution to the initial
value problem of result 4.7.10) and the fact that Φ(t)−1 = Φ(−t) according to Lemma 4.7.3. We recognize
a linearised version of (5.30, which is not unexpected since (5.32) was obtained from integrating that very
equation. With this equality, we can also derive the following bound for t ∈ [0, T ]:

||ẋ(n)(t)|| ≤ ||A|| · ||x(n)(t)||+ 1

λ

t∫
0

||M(x(n−1)(t− r))x(n)(r)||dr + ||F (t)||,

(5.35)

≤ ||A|| · ||x(n)(t)||+ 1

λ
sup
t∈[0,T ]

||f(t)||+ kb

λ

t∫
0

e−αc1(t−r)||x(n)(r)||dr,

(5.34)

≤ ||A|| · ||x(n)(t)||+ 1

λ
sup
t∈[0,T ]

||f(t)||+ kb2

λ
(||x0||+ k1)

t∫
0

e−αc1e−c1r dr,

= ||A|| · ||x(n)(t)||+ 1

λ
sup
t∈[0,T ]

||f(t)||+ kb2

c1λ
(||x0||+ k1)e−αc1

(
1− e−c1t

)
,

≤ ||A||(||x0||+ k1)e−c1 +
1

λ
sup
t∈[0,T ]

||f(t)||+ kb2

c1λ
(||x0||+ k1)e−αc1 .

So we have a sequence of uniformly bounded, differentiable vector valued functions x(n), whose derivatives
are also uniformly bounded. Moreover, it follows that x(n) and ẋ(n) can for all n ∈ N be bounded by a single
constant. This brings us to the same situation as in the second part of the proof of Theorem 5.3.4. Following the
line of argument shown there, it follows with the Arzelà-Ascoli Theorem that there is a convergent subsequence(
x(nk)

)
k∈N. Let x = (x1, x2) ∈ C([0, T ],R2N ) denote the limit. Since the convergence with the Arzelà-Ascoli

Theorem is in the supremum norm over the interval [0, T ], it is uniform.
We must make some observations to obtain convergence properties of ẋ(n) now. Since m is assumed to be
continuously differentiable, the same holds for M . Since all iteration functions are uniformly bounded by the
same constant, the same holds for the limit function x. Then by Lemma 4.6.9, M is Lipschitz continuous and
uniformly continuous on a ball in R2N with any radius larger than this constant. Then we can apply Lemma
4.2.4 and we see that the continuous function defined by the product Ax(n) converges uniformly, as does the

21 Saal only mentions the assumptions of the bounds with α, v1 and k1, but as we remarked in footnote 19, also the demanded
inequality with k poses a constraint.
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composition M ◦ x(n−1). Hence by Lemma 4.2.6, the integral itself converges uniformly and the uniform limit
of (5.36) becomes

lim
n→∞

ẋ(n)(t) = Ax(t)− 1

λ

t∫
0

M(x(t− r))x(r) dr + F (t),

=
d

dt
x(t)

The second equality holds in view of Theorem 4.2.3 (extended to vector valued functions by uniform convergence
of the derivatives of all components functions) and shows that the limit function x is continuously differentiable,
so x ∈ C1([0, T ],R2N ) and x solves (5.30). Since this is the first-order transformation of (5.14), we see that x
provides a solution ψ to (5.14) by setting ψ(t) = x1(t) for t ∈ [0, T ]. Since ψ̈ = ẋ2 and we have seen ẋ to be
continuous, we obtain ψ ∈ C2([0, T ],RN , as desired. Finally note that x indeed takes the correct initial values
because all iteration functions do so by definition according to equation (5.32), such that ψ(0) = x1(0) = Ψ0

and ψ̇(0) = x2(0) = Ψ1.

2 Uniqueness.

Suppose two solutions u, v ∈ C2([0, T ],RN ) to (5.14) exist. By continuity of u, v and m, we know that u(t),
v(t) and m(u(t)) can be bounded by some constant c for t ∈ [0, T ]. Since m is continuously differentiable on
RN , so is M , and by Lemma 4.6.9, M is Lipschitz continuous on every closed ball centred around the origin in
RN . This is enough to obtain the local Lipschitz continuity required for the proof of Lemma 5.3.7. Hence we
apply the argument given there and see that indeed we must have u = v on [0, T ].

Note 5.4.4. We have established in both Theorem 5.3.1 and 5.4.3 existence and uniqueness on bounded in-
tervals, of the form [0, T ]. This suffices to define a global solution, for all t ∈ R+, because for any t ∈ R+ some
T > t can be taken to define the solution up to there. Since any such solution will also be a solution on all
smaller intervals, it is also the unique solution there, and indeed this argument allows us to really extend the
solution to as large intervals of definition as we wish.

We have now studied in-depth the existence and uniqueness proofs presented in [10] and [29] and have seen
how their conclusions arise. In the next chapter, we will finalize our study of the schematic GMCT equations
of chapter 3 by comparing the results of this chapter to the form of those equations. The detailed study of the
theorems in this chapter allows us to make adaptations such that the theorems exactly match the equations for
schematic GMCT.

51
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6 Theorems applied to mode-coupling theory

In this chapter we check whether the theorems of chapter 5 can be applied to yield existence and uniqueness
of a solution on [0,∞) (recall note 5.4.4) to the schematic GMCT equations (3.1) and (3.2) when a suitable
closure CN is applied. First we identify for both closures the appropriate kernel function. For (3.2), we will also
have to take another look at the proofs of the theorems in [29], because some more parameters occur in GMCT
than are treated by Saal.

6.1 Over-damped equations

To identify (3.1) with (5.1), for which the proof of section 5.2 is constructed, we immediately see that we can
set (using n to indicate the levels 1, . . . , N of the system)

τn =
1

µn
,

mn(t) = Fn(φ(t)) =
λn
µn
φn+1(t), n = 1, . . . , N − 1,

mN (t) = CN (φ(t)).

So Theorem 5.2.1 applies to our situation and we need to check whether each Fn defined above is completely
monotone in each argument. This leads to the following lemma.

Lemma 6.1.1. For each closure function CN that is absolutely monotone in each of its N variables on the
interval [0, δ) for some δ > 1, a unique solution to (3.1) on [0,∞) exists.
Proof:
Using the notation x1, . . . , xN for the variables of Fn (n ∈ {1, . . . , N − 1}), we have that ∂Fn

∂xm
= λn

µn
δn,m−1

(the Kronecker delta). It further follows that any second or higher order derivative is identically zero. So for
F1, . . . , FN−1, we see that absolute monotonicity holds on the whole of RN . Now demanding the same of CN
on the interval of interest, we see that all requirements for Theorem 5.2.1 are met and this yields the desired
conclusion.

It is consequently clear that Theorem 5.2.1 can indeed be applied to the over-damped equations, since non-
negativity of all combinations of partial derivatives follows readily for both the exp-N and all MF-N closures
on the region (φ1, . . . , φN ) ∈ [0, δ)N .

6.2 Second-order system

In equation (5.14), we are short of parameters to describe the system (3.2) that is studied in GMCT. We divide
(3.2) by ζ to get rid of the parameter in front of the first derivative and obtain the system


1
ζ φ̈n(t) + φ̇n(t) + µn

ζ φn(t) +
t∫

0

λn
ζ φn+1(t)φ̇n(t− τ)dτ = 0,

φn(0) = 1, φ̇n(0) = 0.

(6.1)

So we can write A = L+N as in section 5.3 to describe this system by A(φ) = (0, 1, 0) ∈ RN×N×N by defining

L(φ) :=

λφ̈+ φ̇+Mφ
1
0


with λ = 1

ζ , the 1 and 0 denoting (1, . . . , 1) ∈ RN and (0, . . . , 0) ∈ RN , respectively, and

M :=
1

ζ

µ1 ∅
. . .

∅ µN

 ,

and N defined as in equation (5.16) with

m(φ1, . . . , φN ) :=
1

ζ

λ1φ2 ∅
. . .

∅ λNCN (φ)

 .
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Our goal now is to use the conclusion of Theorem 5.3.1. We check that with the presence of M in the definition
of L, the same steps to prove it can be used. We outline here the modifications that are needed for each of the
lemmas that are established to construct the proof.

1. Lemma 5.3.3.
With M in the definition of L, it still holds that L is a linear differential operator with constant coefficients
(the matrix M only contains some constants). Therefore the same line of argument holds.

2. Lemma 5.3.4.
The operator N is still exactly of the form that is assumed in the proof. So we need to check that m is k
times continuously differentiable. For this we can demand that all components of m are, which is to say
that we demand that CN is k times continuously differentiable. We elaborate on the computation of the
derivative of m in appendix C. We see there that a sufficient condition for m to be Fréchet differentiable
on RN is that all its component functions be continuously partial differentiable in all its variables on all
of RN . In the GMCT situation, we see that we then need to demand this only of CN .

3. Lemma 5.3.5.
In the inequalities that are derived in the proof, the presence of M now introduces some trouble, since
estimates for h were obtained by taking the inner product with ḣ. We try to remedy this. Starting from
taking the inner product of the appropriate version of equation (5.19) with ḣ and integrating, we see that
we need to consider what to do with

t∫
0

Mh(s) ·ḣ(s) ds.

Let µmin := 1
ζ min{µ1, . . . , µN}. Since M is diagonal, we can work out the integral to obtain

t∫
0

Mh(s) ·ḣ(s) ds =
1

ζ

t∫
0

N∑
i=1

µihi(s)ḣi(s) ds,

=
1

ζ

N∑
i=1

µi

t∫
0

1

2

dhi(s)
2

ds
ds,

=
1

ζ

N∑
i=1

1

2
µihi(t)

2,

≥ 1

2
µmin

N∑
i=1

hi(t)
2,

=
1

2
µminh(t)2.

(Note that h(0) = 0 in this lemma.) The appropriate inequalities that can be derived corresponding to
equation (5.20) become

1

2
λḣ(t)2 +

1

2
µminh(t)2 ≤ 1

2
λḣ(t)2 +

1

ζ

N∑
i=1

1

2
µihi(t)

2,

≤ −
t∫

0

ḣ(s)2 ds+
1

2
c2T

 t∫
0

||h(s)||2 ds+

t∫
0

||ḣ(s)||2 ds+

t∫
0

||ḣ(s)||2 ds+

t∫
0

||ḣ(s)||2 ds

 ,

≤ −
t∫

0

ḣ(s)2 ds+ 3c2T max

{
1

λ
,

1

µmin

} t∫
0

1

2
λḣ(s)2 ds+

t∫
0

1

2
µminh(s)2 ds

 .

This is again the suitable form to use Gronwall’s inequality. We used that for arbitrary λ, µ > 0, a, b ≥ 0,
we can write

a+ b =
1

λ
λa+

1

µ
µb ≤ max

{
1

λ
,

1

µ

}
λa+ max

{
1

λ
,

1

µ

}
µb = max

{
1

λ
,

1

µ

}
(λa+ µb).

So the conclusion of the lemma still holds when M appears in the equation.
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4. Lemma 5.3.6
Here we need again to adapt the estimates to the situation with M in the equation. The procedure to
obtain the estimates is largely the same as above: taking the inner product with ḣ(t) and integrating, after
which the integrals in which M does not appear are estimated. The fact that this is done on successive
intervals is no problem, since we can adapt the estimate on each interval. An extra subtlety is that the
initial values in equation (5.22) are non-zero. Hence ψ0

2 should be replaced by 1
ζ

∑N
i=1 µiψi(0)2 (the ψi

are the vector components of ψ). In terms of the constants we use in Lemma 5.3.6, this can be estimated
as follows:

1

ζ

N∑
i=1

µiψi(0)2 ≤ µmax

N∑
i=1

ψi(0)2 = µmaxψ0
2 ≤ µmaxB

2,

with µmax := 1
ζ max{µ1, . . . , µN}. Then applying the method above for the lower sides of the inequalities

obtained in the proof, we see that on each interval a bound on ψ and ψ̇ can be identified with Gronwall’s
inequality as is done in the original proof. Hence also the conclusion of this lemma holds.

In conclusion, we see that also in the situation with M that is encountered in GMCT, we can conclude that
Theorem 5.3.1 holds. So if m satisfies condition (5.15) and CN is continuously partial differentiable in all its
variables on all of RN , we know that a global solution exists. We formalize this below in Lemma 6.3.1.

6.3 Existence for different closures

Here we check explicitly for the exponential and mean-field closures if we can establish global existence and
uniqueness of a solution to the GMCT equations.

Lemma 6.3.1. For any closure function CN that is continuously partial differentiable with respect to all its
arguments, there exists some T > 0 such that a unique solution of (5.14) exists on [0, T ].
Proof:
Cf. Theorem 5.3.1 and the discussion of section 6.2. Since in this situation f ≡ 0 ∈ C0([0,∞),RN ), we have
to check that m ∈ C1[RN ,RN×N ]. Let us denote the N arguments of m by x = (x2, x3, . . . , xN ) here. For
i = 1, . . . , N we see that (

∂m

∂xi

)
jj

(x) =


0 if i 6= j + 1 ∧ j < N,
λi−1

ζ if i = j + 1,
λN
ζ
∂CN
∂xi

(x) if j = N.

All off-diagonal elements are also 0. Now a vector-valued function is continuous if and only if all its components
are continuous functions and for any partial derivative of m but for the last component, these will be constants
(and thus continuous). Since the last component equals λN/ζ · ∂CN∂xi (x), this function is continuous for all

i = 1, . . . , N if ∂CN∂xi is a continuous function on RN for all i = 1, . . . , N , which is the assumption for this lemma.

Continuity of all partial derivatives on all of RN now ensures that m ∈ C1(RN ,RN×N ), such that Theorem
(5.3.1) can be applied to yield the desired conclusion.

Remark 6.3.2. For the exp-N closure, CN = 0 so this is certainly continuously differentiable. For any MF-
N closure, CN is a monomial in the variables x1, . . . , xN and is therefore also continuously differentiable on
RN . So for both closure types, some interval [0, T ] for T > 0 exists such that a local, unique solution for the
mode-coupling hierarchy exists.

Lemma 6.3.3. (Existence for exponential closure.) For the exp-N closure, the condition (5.15) holds. Con-
sequently, a unique global solution on [0,∞) of (5.14) exists.
Proof:
Let x = (x1, . . . , xN ) ∈ RN and y = (y1, . . . , yN ) ∈ RN . Also define Λ = 1

ζ max
i=1,...,N−1

{λi}. For the exp-N

closure, we have

m(x) =
1

ζ


λ1x2 0 · · · 0

0
. . .

. . .
...

...
. . . λN−1xN 0

0 · · · 0 0

 .
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We now find the following (in)equalities:

||m(x)y||2 =

 N∑
i=1

 N∑
j=1

(m(x))ij yj

2
 ,

=

N−1∑
i=1

((
λi
ζ

)2

xi+1
2yi

2

)
,

≤ Λ2
N−1∑
i=1

(
xi+1

2yi
2
)
,

≤ Λ2
N−1∑
i=0

xi+1
2
N∑
j=1

yj
2

 = Λ2
N∑
i=1

xi
2
N∑
j=1

yj
2,

= Λ2||x||2||y||2.

Hence ||m(x)y|| ≤ Λ||x|| · ||y|| and also ||m(x)y|| ≤ Λ(1+ ||x||)||y|| (as Λ, |y| ≥ 0), so we see that condition (5.15)
is indeed satisfied with e.g. c = Λ.

Lemma 6.3.4. (Condition for mean-field closures.) Let CN be determined by some MF-N closure. Then
condition (5.15) does not hold.
Proof:
We will construct a vector y ∈ RN and a sequence of vectors

(
xk
)
k∈N such that ||m(xk)y|| becomes arbitrarily

much larger than (1 + ||xk||)||y|| as k →∞.
Let y = eN ∈ RN be the N th unit vector in RN . Then m(xk)y = λN/ζ · CN (xk) · eN and ||y|| = 1.

In the notation of definition 3.2.1, we can write CN (xk) =
∏N
n=1

(
xkn
)mn

. Now there is a minimal i ∈ {1, 2, . . . , N}
such that mi is nonzero, since all mi must add to N + 1 according to (3.4).
Let us first suppose that there is also some j ∈ {i + 1, i + 2, . . . , N} such that mj is nonzero (and i 6= j). In
particular, this can only hold for N > 2. Now define for k ∈ N and with (yet) arbitrary scalars αk ∈ R the
components (xk)n of the vector xk by

(
xk
)
n

=

{
αk if n ∈ {i, j},
1 otherwise,

n = 1, . . . , N.

It follows for xk that CN (xk) = αk
mi+mj and ||xk||2 = (N − 2) + 2αk

2. We restrict αk to values greater than
or equal to 1 such that we have ||x||2 ≥ 1. We now have the following inequality:

||m(xk)y||2

(1 + ||xk||)2||y||2
≥ ||m(xk)y||2

(2||xk||)2||y||2
,

=
(λN/ζ)2

4

αk
2mi+2mj

(N − 2) + 2αk2
.

We now choose αk = k for all k ∈ N and let k > N such that also k2 > N . Then we proceed:

||m(xk)y||2

(1 + ||xk||)2||y||2
>

(λN/ζ)2

4

k2mi+2mj

N + 2k2
,

>
(λN/ζ)2

4

k2mi+2mj

k2 + 2k2
,

≥ (λN/ζ)2

12
k2,

since mi,mj ≥ 1. Hence the expression on the left cannot be bounded by any constant c > 0.

Let us now turn to the situation where CN can be written as a function of just one of the components of
the vector xk, say CN (xk) = CN (xki ) for some i ∈ {1, . . . , N} fixed. Note that this also includes the standard
mode-coupling theory MF-1 closure discussed in remark 3.2.3. For this case, we define the components

(
xk
)
n

by (
xk
)
n

=

{
k if n = i,

1 otherwise,
n = 1, . . . , N.
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We then have ||x||2 = (N − 1)2 + k2 and CN (xk) = kmi , where due to (3.4), mi = N+1
i . In particular, since

i ∈ {1, . . . , N}, we see that mi > 1. We still let y = eN . Now for k > N−1, we obtain the following inequalities:

||m(xk)y||2

(1 + ||xk||)2||y||2
≥ ||(λN/ζ) · kmieN ||2

(2||x||)2||y||2
,

=
(λN/ζ)2k2mi

4((N − 1)2 + k2)
,

>
(λN/ζ)2k2mi

8k2
,

≥ (λN/ζ)2

8
k2.

We can conclude that also in this situation, the quantity on the left cannot be bounded by any constant c > 0.
So any MF-N closures never satisfy condition (5.15).

Remark 6.3.5. Lemma 6.3.4 shows that global existence for a solution to a system for which the mean-field
closure is used, cannot be proved based on Theorem 5.3.1 provided by [29]. This is in contrast to Lemma 6.3.3
for the exponential closure. We can solve this problem for the MF-N(1N) closure with some physical insight
that allows us to redefine m outside the region [−1, 1]× RN−1. A proof provided by S. Ciarella shows that for
physical solutions to (6.1), it holds that |φ1(t)| ≤ 1 for all t ∈ R. For any MF-N closure, we could show that
condition (5.15) holds for the corresponding coupling function m for input vectors x restricted to the condition
||x|| <

√
2. So redefining m for inputs with |x1| > 1 will not change the physics and the definition outside this

region can be made such that m does satisfy (5.15) on all of RN in a way that preserves also the differentiability
condition. We will make all this rigorous now with Lemma 6.3.6 and construction 6.3.7.

Lemma 6.3.6. Let x ∈ RN satisfy |x1| ≤ 1. Then for the MF-N(1N) closure, m satisfies the following:

∃c > 0 ∀y ∈ RN : ||m(x)y|| ≤ c(1 + ||x||)||y||.

Proof:
Let y = (y1, . . . , yN ) ∈ RN and define Λ = 1

ζ · max
i=1,...,N

{λi}. For the MF-N(1N) closure, we have

m(x) =
1

ζ


λ1x2 0 · · · 0

0
. . .

. . .
...

...
. . . λN−1xN 0

0 · · · 0 λNx1xN

 .

We now find the following (in)equalities:

||m(x)y||2 =

 N∑
i=1

 N∑
j=1

(m(x))ij yj

2
 ,

=

N−1∑
i=1

((
λi
ζ

)2

xi+1
2yi

2

)
+

(
λN
ζ

)2

x1
2xN

2yN
2,

≤ Λ2
N−1∑
i=1

(
xi+1

2yi
2
)

+ Λ2 · 1 · xN 2yN
2,

≤ Λ2
N−1∑
i=1

xi+1
2
N−1∑
i=1

yi
2 + Λ2yN

2
N−1∑
i=1

xi+1
2,

= Λ2
N−1∑
i=1

xi+1
2
N∑
i=1

yi
2,

≤ Λ2
N∑
i=1

xi
2
N∑
i=1

yi
2,

= Λ2||x||2||y||2.

Hence ||m(x)y|| ≤ Λ||x|| · ||y|| ≤ Λ2(1 + ||x||)||y||.
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Closure function Upper bound
Closure function Upper bound

Figure 8: Graphs illustrating the construction and boundedness of the coupling function CN as a function of
φ1 and φN . Left: The original MF-N(1N) closure function (orange shades), intersecting its allowed bound
(blue shades) for (φ1, φN ) = (±

√
2,±
√

2). Right: the MF-N(1N) closure function, identical to its physical
definition for φ1 ∈ [−1, 1] and continuously differentiable extended on the rest of R2 to satisfy stay below a
bound α(x1

2 + x2
2) for some α >

√
e, which is the bound used in construction 6.3.7.

Construction 6.3.7. We now construct a new function m : RN → RN which still defines the MF-N(1N)

closure for x1 ∈ [−1, 1], but also fulfils the growth condition (5.15) on all of RN and is continuously differentiable.
From the foregoing proof of Lemma 6.3.6, because m is diagonal in matrix notation, it is actually clear that
only the closure function CN is of importance and that its value squared should be bounded by some expression
that is at most quadratic in the components x1, . . . , xN . To this end, let us define

CN (x1, . . . , xN ) = CN (x1, xN ) =


x1 · xN , x1 ∈ [−1, 1],

−xN · e
1
4−(x1+ 3

2 )2 , x1 < −1,

xN · e
1
4−(x1− 3

2 )2 , x1 > 1.

For a visual illustration of this function, see figure 8. In words, while CN is allowed to continue to grow linearly
in xN , the linear modulation, say, by x1 is replaced by an exponentially decaying modulation when x1 is no
longer in the interval [−1, 1]. We will continue by establishing that CN is continuously differentiable and satisfies
the imposed bound, such that the same can be said about the closure function m. We will only do this explicitly
for the region x1 ≥ 1. On [−1, 1], CN is simply a polynomial that satisfies the growth condition as a result of
Lemma 6.3.6 and the case x1 ≤ −1 is very similar.

• Continuity on x1 = 1.
We have lim

x1↑1
CN (x1, xN ) = lim

x1↑1
x1 · xN = xN = CN (1, xN ), and lim

x1↓1
CN (x1, xN ) = lim

x1↓1
xN · e

1
4−(x1− 3

2 )2 =

xN · e
1
4−(1− 3

2 )2 = xN . This holds for all xN ∈ R, so continuity follows.

• Continuity of ∂
∂x1
CN .

From the left (x1 ≤ 1), we have lim
x1↑1

∂
∂x1
CN (x1, xN ) = lim

x1↑1
xN = xN . From the right (x1 > 1), we

find lim
x1↓1

∂
∂x1
CN (x1, xN ) = lim

x1↓1
−2(x1 − 3

2 )xNe
1
4−(x1− 3

2 )2 = xN . This yields continuity of the x1-partial

derivative on x1 = 1.

• Continuity of ∂
∂xN
CN .

From the left, we obtain lim
x1↑1

∂
∂xN
CN (x1, xN ) = lim

x1↑1
x1 = 1 and from the right, lim

x1↓1
∂

∂xN
CN (x1, xN ) =

lim
x1↓1

e
1
4−(x1− 3

2 )2 = e0 = 1. So both partial derivatives are continuous at x1 = 1 for all xN , hence CN is

(totally) differentiable.

• Correct boundedness
Let d : R2 → R be a function defined by d(x1, xN ) = α(x1

2 + xN
2)−

√
exN

2e−2(x1− 3
2 )2 for some number
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α >
√
e (e.g. α = 2 would suffice). We then have that

∂

∂xN
d(x1, xN ) = 2αxN − 2

√
exNe

−2(x1− 3
2 )2 ,

≥ 2xN
(
α−
√
e
)
⇒

{
∂

∂xN
d(x1, xN ) ≥ 0 if xN ≥ 0,

∂
∂xN

d(x1, xN ) < 0 otherwise.

So in the xN direction, d(x1, xN ) is always non-decreasing if we move away from the xN = 0 axis.
Furthermore, we have on this axis,

∀x1 ∈ R : d(x1, 0) = αx1
2 ≥ 0.

Combining these facts, we conclude that d(x1, xN ) ≥ 0 for all x1 and xN , or equivalently, recognizing that
for x1 > 1, we have d(x, y) = α(x1

2 + xN
2)− CN (x1, xN )2,

∀x1 > 1, xN ∈ R : CN (x1, xN )
2 ≤ α(x1

2 + xN
2).

Putting this in the proof of Lemma 6.3.6, we find that the following holds for the MF-N(1N) closure,
redefined for |x1| > 1:

||m(x)y||2 =

 N∑
i=1

 N∑
j=1

(mi(x))j yj

2
 ,

=

N−1∑
i=1

((
λi
ζ

)2

xi+1
2yi

2

)
+

(
λN
ζ

)2

CN (x1, xN )2yN
2,

≤ Λ2
N−1∑
i=1

(
xi+1

2yi
2
)

+ αΛ2(x1
2 + xN

2)yN
2,

≤ Λ2
N∑
i=1

xi
2
N−1∑
i=1

yi
2 + αΛ2yN

2
N∑
i=1

xi
2,

≤ αΛ2
N∑
i=1

xi
2
N∑
i=1

yi
2,

= αΛ2||x||2||y||2.

It follows that also ||m(x)y||2 ≤ Λ2 max{α, 1}||x||2||y||2, so the MF-N(1N) closure (for |x1| ≤ 1) satis-
fies condition (5.15) and by Theorem 5.3.1, a unique solution to to the GMCT equations that is twice
continuously differentiable exists for this closure.

We do not formally elaborate on the application of the existence result of section 5.4. Without further
details, we state that have seen that also in this case it is applicable to the exponential closure, but not to the
MF-closures. However, we can now conclude this section with the existence and uniqueness of solutions to the
over-damped and full schematic GMCT equations based on two of the results of chapter 5, as we investigated
their applicability with various lemmas. In the next chapter, we start to explore numerical results produced by
the standard schematic MCT equation, i.e., GMCT closed at first order by the mean-field closure.
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7 Modelling different relaxation time behaviours

We would now like to see if standard schematic MCT (GMCT closed at first order with the MF-N(12) clos-
ure) is capable of predicting super-strong glass formation over a range of large relaxation times that we can
manipulate ourselves. We look at the over-damped limit. Denoting by τ the relaxation time (which we define
below), we would particularly like log(τ) to have a decreasing slope as a function of inverse temperature, such
as is found in the simulation results of figure 2. Since all structural input to MCT of the liquid is contained
in the static structure factor S, our tool will be the choice of S as a function of temperature. We have seen
in the introduction that under some conditions for vitrimers, its main peak (which is the actual input for the
schematic approximation of MCT), grows in a way that also displays a decreasing slope as a function of in-
verse temperature (figure 2). Further this seems to impact the relaxation time in the same way, leading to
super-strong glass formation until the power-law divergence of τ arises that is always predicted by MCT, but
not necessarily physically correct. In accordance with the research goal stated in the introduction, we aim to
place the cross-over from super-strong glass formation to power-law divergence to high relaxation times and as
a measure for this we set the goal of an increase of 105.

Let us first make some definitions that we will use in the presentation of the results. Looking at standard
schematic MCT in the over-damped limit, we denote by µ1 and λ1 the frequency and damping coefficients,
respectively, appearing in the equations (3.1) for the case N = 1. As we do not consider GMCT now, we drop
the indices and write µ and λ. We are interested in the relaxation time τ of the normalized density correlator
φ1(t), which we define by

φ1(τ) =
1

e
, (7.1)

i.e., the time needed for the normalized intermediate scattering function to reach below a typical decay value.
Since we are interested in τ as a function of temperature, and this temperature decreases when we approach
the transition, we look at the inverse temperature Λ,

Λ = T−1.

We define Λc to be the value of Λ for which τ(Λ) diverges, when we approach the divergence from below (that
is, from the high-temperature regime). In [20], the equations for φ without dropping the second derivative are
studied, and he shows that divergence occurs at Λc which satisfies λ1/µ1 = 4. Since the second derivative does
not change the long-time dynamics (which are relevant for a divergent relaxation time), we can use this in our
numerical work. The outcomes are always consistent with this result. Finally, we have already seen that the
predicted transition does not correspond to the physical glass transition. We therefore scale the variable Λ in
our results, making use of the variable

ε =
Λ− Λc

Λc
(7.2)

We noted in section 2.4 that the structure factor S is usually seen to become more peaked at lower temperatures.
We therefore model S as an increasing function of Λ. Based on the observed possibly logarithmic growth of the
first peak height in S in simulations for vitrimers (figure 2), we will try to establish the desired effect also by
such functional forms. This will result in the functional form we choose for λ and µ, which will thus depend on
Λ as a control parameter by which we approach the transition.

7.1 On the numerics used

To analyse the relaxation time as a function of Λ, we will integrate the schematic MCT equations, using an
implementation by L.M.C. Janssen of the algorithm provided by M. Fuchs [9], up to time values of 1020 or a
value of φ1(t) < 2−52 · 104 at the end time of the integration. This last number is 10 000 times the floating
point accuracy of Matlab. To implement the definition for τ in (7.1), we average the two time values for which
φ1(t) is just above and just below 0.367879 ≈ 1/e. The use of a time grid introduces a numerical error here, as
does the rounding of 1/e. In the data computed, it is therefore seen that the curves for τ as a function of Λ
display step-wise growth for a fined grid of Λ. This means that increasing Λ in smaller steps does not result in
more smooth data. An analysis of these errors is beyond the scope of this work. The resulting data is smooth
enough for our purposes and error analysis will be needed when more quantitative results are required.

The data we consider will typically look as shown in figure 9 at the curve labelled with the number 2. Our
interest is to see at what value of τ the curve changes from a convex shape to a concave one, i.e. from super-
strong to fragile glass formation. We call this the cross-over point. To be precise, we do not wish to determine
an exact value from the data, but aim to see if we can influence its height by changing the structure factor in
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the theory. To this end, it suffices to identify a rough but systematic estimate of its height. Less quantitatively,
the desired effect can of course be observed from comparing the various graphs of τ as a function of Λ.

We summarize our procedure to determine the estimated cross-over point. We use the forward-difference for
a numerical approximation of the first derivative. We do so over a grid of 80 to 120 values of Λ. The cross-over
corresponds to the minimum of this function, but the data displays a bumpy plateau instead of a smooth valley
(this can be ascribed to the small numerical errors introduced above). Our choice is to take the average value
of the lowest ten percent of the forward difference as a threshold, then consider the forward differences from
the highest value of Λ to below and put the cross-over at the last value of Λ before crossing the threshold. This
procedure results in the circles in figure 9. A more elaborate and quantitative analysis of the cross-over could
be executed with e.g. a polynomial fit to the data which allows for the determination of the cross-over as the
inflection point.

Physically, the important aspect of the cross-over is its height as a function of Λ, since a large relaxation
time relates to a large viscosity upon cooling. To compare the magnitude of the relaxation time across various
models, we divide them all by one typical high-temperature value. This will be the time scale on which we wish
to reach the experimental glass transition as a growth over five orders of magnitude. In order to do so, we first
introduce the standard F2 model by Leutheusser [20].

1 The standard F2 model is characterized by the parameters

µ(Λ) = 1,

λ(Λ) = Λ.
(7.3)

This is a simple and one of the first models for which the MCT equations have been studied and its name
arises from the fact that the closure is obtained with the function F 2 in the memory kernel of the integral. The
dependence of τ on Λ for this model is shown in figure 9 labelled by the number 1. It shows the power-law
divergence near the critical value Λc = 4 (which solves λ(Λc)/µ(Λc) = 4) and shows fragile behaviour over the
rest of the temperature domain. As a typical high-temperature value, we choose Λ = 0.02. At this temperature,
we find

τF2 = 1.024 (7.4)

for the relaxation time. This is our reference value for all the results that we present hereafter.

7.2 Various modelling approaches

In this section, we explore numerical results for various functional forms of λ and µ. In [6], the following is
derived, relating these parameters to the structure factor S:

µ(Λ) =
kBT

m

k0
2

S(Λ)
,

λ(Λ) ≈ 0.0082
kBT

ρm
k0

3(S(Λ)− 1)2,

(7.5)

where S is a model for the structure factor at the fixed wave number k0. Since we are only interested in the
mathematical flexibility of the MCT equation, we drop all constant factors in (7.5) that we do not aim to control
directly, and replace the definitions by (recall that T = 1/Λ)

µ(Λ) =
1

ΛS(Λ)
,

λ(Λ) =
(S(Λ)− 1)2

Λ
.

(7.6)

All results for the choices below are plotted in figure 9, which also includes the standard F2 model. The numbers
we assign to each choice correspond to the labels of all curves in the figure.

2 Being interested in the influence of a logarithmic form for the structure factor as an intuitive guess from
figure 2, let us first behold the choice S(Λ) = ln(Λ) (the natural logarithm, i.e. with base e). Now the logarithm
is not a perfectly sensible model for the structure factor, as it diverges to −∞ for high temperatures, while it
should be 1, resembling an ideal gas. We set S(Λ) = 1 + ln(Λ) for λ(Λ) to make it somewhat more reasonable
for values of Λ > 1, and our approximation is not to add the 1 to µ to still simplify the expressions slightly and
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obtain a factor 1/Λ in front. All in all, we set

µ(Λ) =
1

Λ ln(Λ)
,

λ(Λ) =
ln(Λ)2

Λ
.

(7.7)
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Figure 9: The relaxation time τ as a function of ε, which is a scaled inverse temperature, for different functional
forms of the structure factor S. The red circles represent our estimates for the cross-over from super-strong
glass formation to power-law divergence, following the procedure of section 7.1, which is absent in the linear
standard F2 model. We see various ways to increase τ at the cross-over by tuning the functional forms used.
Detailed discussions for each curve can be found in the main text, where the numerical labels correspond to the
numbered boxes on pages 60-63.
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From figure 9, we see that a strong glass former is manifest at higher temperatures, while the power-law
develops for ε closer to 0, i.e., when Λ approaches Λc. In particular, a characteristic cross-over point can be
located when log(τ) changes from a strong-glass former to power-law behaviour as described in section 7.1. We
observe that the non-linear dependence on Λ of the parameters in (7.7) spurs quite different behaviour of the
relaxation time as a function of temperature than is seen in the standard F2-model.

Solving λ(Λc)/µ(Λc) = 4 for Λc, we find Λc = exp( 3
√

4) ≈ 4.89. We use this analytical value to scale our
variable to ε according to formula (7.2). Further, we can use this knowledge to set the right frame for our
numerical computation of φ1(t) for varying values of Λ and confirm the procedure’s implementation22.

3 To investigate the character of τ(Λ) (or τ(ε)) further and have a look at the possible shifting of the relaxation
time (in particular, moving the cross-over point to high values of the relaxation time), we now propose models
of the form S(Λ) = Λα ln(Λ) where α is some fixed number for a particular model. To obtain a glass-forming
system at some temperature, we must choose α such that λ/µ can attain the value 4, where τ(Λ) diverges.
For these computations, we did not add 1 to the structure factor (although it would result in a more physical
model, but we will include these concerns in the next section when we search for a really successful model). So
here we have for arbitrary α:

µ(Λ) =
1

Λ1+α ln(Λ)
,

λ(Λ) =
(Λα ln(Λ)− 1)2

Λ
.

(7.8)

We start with α = 0.5. Numerically solving λ(Λc)/µ(Λc) = 4, we find Λc ≈ 3.467. In figure 9, we see again the
transition from a strong glass-former to a power-law with cross-over point, albeit at a lower value of τ than the
previous case.

4 The next model uses the parameters of equations (7.8) with α = 0.1. This yields Λc ≈ 6.765. We see the
same qualitative behaviour as for α = 0.5 in figure 9, with the cross-over point lying at a slightly higher value of τ .

5 Hoping to further raise the τ -value at the cross-over point, we set α = 0.01 in (7.8), for which Λc ≈ 9.610.
We still see the same qualitative behaviour as for α = 0.5, with the cross-over point lying again at a higher
value of τ than for the previous values α = 0.1.

6 As a final test of the tunability of this model, we consider α = 0.0001, corresponding to Λc ≈ 10.115. We see
that τ barely increases any more for this extreme decrease of our tuning parameter with respect to the situation
α = 0.01, so this model does not seem to reach the flexibility we seek.

7 As another tunable model, we consider a structure factor of the form S(Λ) = ln(Λ/(2α))/ ln(Λ/(α)). Since
this formula shows a diverging structure factor at Λ = α, this is only sensible in the range 0 ≤ Λ ≤ α. In this
range, S is also an increasing function of Λ. Further note that

lim
Λ→0

ln(Λ/(2α))

ln(Λ/α)
= 1,

such that there is no reason to add any constant to the structure factor here. With equation (7.6), this model
corresponds to the parameters

µ(Λ) =
ln(Λ/α)

Λ ln(Λ/2α)
,

λ(Λ) =
1

Λ

(
ln(Λ/2α)

ln(Λ/α)
− 1

)2

.

(7.9)

We call this the LD model as an abbreviation for logarithm division for later reference. For a reasonable tem-
perature range, we start with α = 20, which corresponds to a divergence of τ at Λc ≈ 11.804. Again for this
model, the results are depicted in figure 9.

8 Next we use α = 40 in equation (7.9) for which we have Λc ≈ 23.609. We see that the cross-over point
increases. We thus pursue increasing α for some more values.

22 The knowledge of the divergence value of Λ is indeed a perfect means to make a grid of about 100 values for Λ. However, at
the time of most computations, we did not yet realise this and therefore the exact grids may change for each choice of parameters.
Since we are mostly qualitatively interested in the behaviour of the cross-over, we do not provide further details on the exact
computations.
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7 MODELLING DIFFERENT RELAXATION TIME BEHAVIOURS

9 This model uses α = 200, which yields Λc ≈ 118.043.

10 We proceed for α = 2 000, corresponding to Λc ≈ 1 180.43.

11 Our next model is for α = 10 000 and corresponds to Λc ≈ 5 902.14.

12 As the last model based on the parameters given by (7.9), we use α = 20 000. In this case, divergence
occurs at Λc ≈ 11 804.3.
It may at first be surprising that Λc seems to scale linearly with α. This can in fact be seen analytically, since
µ(Λ)/λ(Λ) is a function of Λ and α such that only the ratio Λ/α appears in the expression. Hence the critical
value Λc is found for a fixed value of Λc/α, which implies the linear scaling of Λc with α.

Further it is notable that with increasing α, we keep increasing the relaxation time at the cross-over point.
In figure 9, we see an increase of τ of over approximately 3 orders of magnitude for α also varying in this range.
We will look into the relation between the parameter α and the value of τ at the cross-over in the next section.

13 We consider two more models in this section, inspired by the apparent importance of the ratio λ/µ (at
least for the critical value Λc). We ask ourselves what the effect would be of altering this ratio. We test this
for the model described by (7.7). Specifically, we decrease23 the relative value of λ such that

µ(Λ) =
1

Λ ln(Λ)
,

λ(Λ) =
ln(Λ)2

64Λ
.

(7.10)

This leads to a value for the divergence temperature Λc = exp( 3
√

64 · 4) ≈ 572.27. The result for τ as a function
of Λ is again shown in figure 9, at the label 13. We see that this model increases the relaxation time at the
cross-over with respect to the model given by (7.7).

14 We finally investigate this rescaling of the parameters by adapting µ, setting

µ(Λ) =
64

Λ ln(Λ)
,

λ(Λ) =
ln(Λ)2

Λ
,

(7.11)

such that the critical temperature is still found for Λc = exp( 3
√

64 · 4) ≈ 572.27. This rescaling leads again to a
higher relaxation time at the cross-over, as can be seen in figure 9 at the label 14.

7.3 Scaling-inspired structure factors

In the previous section, tuning the ratio λ/µ seemed to be a powerful tool to influence the value of τ at the
cross-over. In particular, we saw that decreasing this ratio for all Λ can make τ increase. In this section, we
look at some more results of this method and use this idea to guide us to other models.

We first continue with the scaling of the model described by (7.7), now investigating µ and λ of the form

µ(Λ) =
α

Λ ln(Λ)
,

λ(Λ) =
ln(Λ)2

Λ

(7.12)

for variable α. We call this the log model, since it makes use of the (natural) logarithm for the structure factor.
In figure 10, we show the relaxation time as a function of ε for different values of α, resulting in curves that lay
at higher τ values for bigger values of α. We also show the estimate of τ at the cross-over, which we denote
by τx, versus α and see that this estimate also increases as a function of the parameter α. As a universal
normalisation parameter of the relaxation time, we still use the value τF2 of equation (7.4). The numerical
results show that this approach to scaling the parameters λ and µ allows one to obtain values of τx ranging over
3 orders of magnitude for α between 1 and 200, which is what we are looking for. In this range, the critical
value Λc varies from 4.9 to 1.1 · 104.

23 We have observed that increasing the relative value of λ has the opposite effect. Since we wish to increase τ at the cross-over,
we only show the case for which it does actually increase.
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We note that the numerical values may not look exactly smooth, which is due to the estimates we make
numerically as explained in section 7.1. However, the aim of the present work is not to improve on the predicted
values; we believe that figure 10(a) sufficiently depicts the increase of τx with increasing α, wherever it may be
located exactly.
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Figure 10: Numerical results for the relaxation time τ predicted by schematic MCT for the log model with
parameters given by (7.12), controlled by the parameter α. (a) τ as a function of scaled inverse temperature
ε for varying α, including circles at the numerical estimates for the cross-over from super-strong behaviour to
power-law divergence. (b) The value of τ at the cross-over (τx) versus α. We see that these various models have
the ability to predict values of τx over a large time range. We do not elaborate on precise numerical values and
errors, but only wish to establish a shift of τx to higher values.

Our next aim is to see if we can relate this scaling to the structure factor. To this end, it is most useful to
look at µ in (7.12) and note that we can alternatively write this as

µ(Λ) = 1/(Λ ln(Λ1/α)).

This inspires us to choose for S some function which is purely controlled by a power of Λ, where the constant
α seems an appropriate tool to influence the height of τx.

We first investigate this for a model that resembles the standard F2 model, setting

λ(Λ) = Λ1/α,

µ(Λ) = 1,
(7.13)

again for varying values of α. Due to its resemblance to the F2 model, we call it the Power F2 model. We
display the results for τ as a function of ε and for τx as a function of α in figure 11. From (7.13), we see

that the critical temperatures used for normalization of the data are given by Λc
1/α = 4, or Λc = 4α. So

for the results of figure 11, these vary from 8 to 1.2 · 1024. If this is used in a real physical setting with a
temperature in Kelvin, note that this value is very close to a temperature of absolute zero. We emphasize
that the determination of τx is influenced by numerical errors that we do not analyse here, so the position of
the circles in figure 11 is only indicative of an upward shift of the relaxation time at the cross-over point and
should not be taken as an exact numerical result for these. We do believe, however, that the increase of τx
with increasing α is clear from the graph. So we can conclude that the model (7.13) can predict the desired effect.

Next we try to combine the idea S(Λ) = Λ1/α with the parameters λ and µ from equation (7.6) by looking
at the functional forms

λ(Λ) = Λ
2
α−1,

µ(Λ) =
1

Λ1+ 1
α

,
(7.14)

and we call this the PSF model as an abbreviation for Power Structure Factor model (we use α > 0). For the
expression for λ, we have again used 1 + S(Λ), because the substituted structure factor then approaches 1 as
Λ approaches 0. For different values of α, it results in the τ behaviour of figure 12. We can again observe a
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Figure 11: Numerical results for the relaxation time τ predicted by schematic MCT for the power F2 model
with parameters given by (7.13), controlled by the parameter α. (a) τ as a function of scaled inverse temperature
ε for varying α, including circles at the numerical estimates for the cross-over from super-strong behaviour to
power-law divergence. (b) The value of τ at the cross-over (τx) versus α. We see that these various models
have the ability to predict values of τx over a large time range. The results indicate that τx is shifted upwards
for increasing values of the parameter α.

transition from super-strong to fragile glass formation and see that at the cross-over, τx again increases with
increasing α. For the critical temperature in this model, we see that λ(Λc)/µ(Λc) = 4 is satisfied for Λc = 4(3/α).
The results of figure 12 have values of Λc varying from 4 to 1.0 · 104. For the values of α here, we again observe
the increasing trend of τx with increasing α. Although the numerical data should undergo an error analysis
before a quantitative analysis can be made, our results do suggest that for the PSF model, log(τx) might grow
linearly as a function of α. This could be an interesting observation to motivate a more accurate numerical
analysis. Perhaps most importantly, this growth has finally allowed us to obtain a a relaxation time that has
grown 5 orders of magnitude with respect to the F2 model at Λ = 0.02. We expect that more orders can be
reached when we further increase α.
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Figure 12: Numerical results for the relaxation time τ predicted by schematic MCT for the PSF model with
parameters given by (7.12), controlled by the parameter α. (a) τ as a function of scaled inverse temperature
ε for varying α, including circles at the numerical estimates for the cross-over from super-strong behaviour to
power-law divergence. (b) The value of τ at the cross-over (τx) versus α. The results indicate that τx is shifted
upwards for increasing values of the parameter α.

As a last consideration, we come back to the rather successful LD model of the previous section, given by
equations (7.9). Looking at the structure factor as a function of Λ in figure 13(a) for α = 20, we see that it
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has a convex shape like Λ1/α for small Λ, but for the greatest temperature range where it does not diverge, it
is concave. As for the value of τx in this model, we see from figure 13(b) that log(τx) seems to grow linearly
with log(α), or τx linearly with α. So this is another model that easily allows us to explore multiple orders of
magnitude for the relaxation time at the cross-over point. We note however, that the divergence of this model
is not physically consistent with the observation that the structure factor changes mildly upon temperature
variations. Still it might be a useful model up to the point where divergence occurs, or to be corrected to
become more physical.
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Figure 13: A second look at the LD model, whose structure factor is indicated and plotted in panel (a) for
α = 20. With the parameters of equation (7.9), MCT predicts the values of τx of panel (b). We did no
numerical error analysis, but the graph suggests a linear relationship between τx and the parameter α that is
used to model different structure factors.

7.4 A closer look at F2

In this section we aim to provide some perspective to the behaviour of the relaxation time that we have seen
above. We would like to ensure that the super-strong growth of the relaxation time that arises for non-linear
dependence of λ and µ on Λ is not a result of the temperature range we consider, for the results would be similar
to the standard F2 model if we started at higher values of Λ. Therefore, we consider the model for µ = 100
and λ = Λ, such that Λc = 200 and we increase the temperature range up to the divergence by two orders of
magnitude while maintaining the F2 dependence on Λ.
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Figure 14: Comparison between the F2 model and the same Λ dependence, but with µ = 100. Since the shapes
of τ as a function of ε are similar, we conclude that the super-strong glass prediction is not just a temperature
window effect.
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In figure 14, we compare the results for this model with the standard F2 model (for which we have µ = 1).
We see the same form in the graph for log(τ) as a function of ε and conclude that the super-strong behaviour
of the relaxation time is not just a temperature window effect.
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8 Physical interpretation

In this chapter, we first try to find a physical intuition to explain the results obtained in chapter 7 based on the
role of the ratio λ/µ. Then we take a look at the intermediate scattering functions calculated with schematic
MCT to see if there are also effects of the ratio λ/µ on this quantity.

It may be verified that all our modelling choices in chapter 7 come down to decreasing the ratio of λ(Λ)/µ(Λ)
(at least from a certain value of Λ on) with increasing α. This is of course explicit in the choice of equations
(7.12). In section 2.2 we have seen that the memory kernel represents a damping effect that acts on the
intermediate scattering function. In schematic MCT, the strength of this effect is captured by the parameter
λ. Similarly, µ comes in the place of the component of the frequency matrix, which one can compare to an
oscillation frequency in the system. Therefore we can interpret a larger value of the ratio λ/µ at the same
temperature as greater damping on the intermediate scattering function. Hence, the relaxation to 0 takes place
on a shorter time scale and divergence of the relaxation time can be expected to happen when further lowering
temperatures, as is consistent with the results of the previous chapter.

8.1 Intermediate scattering functions and time scaling

Here we try to understand the role of the ratio λ/µ and of scaling by looking at the normalized intermediate
scattering function φ(t) directly. In figure 15, we compare such functions for different models, but the same
ratio of λ and µ.

We choose the ratio to be fixed at λ(Λ)/µ(Λ) = 3.415. For the standard F2 model, this means that we
consider the solution for Λ = 3.415.

For the PSF model (equations (7.14), we set α = 10 and look at the solution for Λ = 3.41510/3 to obtain
the correct ratio. We also compute the solution for Λ = 13 to have a comparison solution with a ratio of 2.16.

We also compare these to a few solutions of the log model (equations 7.12). Solving for the desired ratio
yields the relation α = (log(Λ))3/3.415. We therefore look at the solutions for Λ = 3, 10 and 100 and use the
corresponding α value to ensure we can make a comparison at a fixed ratio of λ/µ. We note that it does not
really matter from which models the ratios are derived. The resulting graphs are shown in figure 15.
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Figure 15: Solutions φ(t) as a function of time t of the MCT equation for different parameter values but with a
fixed ratio. (a) φ(t) on their real time scale, where it can be seen that different ratios result in similarly shaped
graphs. Note that the deviating graph was obtained at a different ratio for extra comparison. (b) The solutions
of panel (a) with the time scaled by the relaxation time for each. For a fixed ratio, we see that a master curve
results that represents all solutions.

For different parameter values, it is no surprise that different numerical outcomes of φ(t) are obtained. We
see that the shape depends on the ratio used, but seems not to depend on the precise values of λ and µ. If we
make use of a new time scale, where we divide by the relaxation time of each solution, this is confirmed. The
curves for the same ratio display a data collapse. However, a definite observation that the rescaled solutions
coincide can only be made analytically. If this is the case, this would imply that a single master curve is
predicted by the schematic MCT equation for a fixed ratio of λ/µ and that the MCT predictions only differ in
the associated time scales.
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8 PHYSICAL INTERPRETATION

We can make a start based on a time scale invariance which relates to a friction prefactor for the first
derivative in the MCT equation (3.1) (for the N = 1 case). We will derive this result in the context of our fixed
ratio. We consider the MCT equation with a fixed ratio r = λ/µ, i.e.

φ̇(t) + µφ(t) + rµ

t∫
0

φ(t− τ)2φ̇(τ) dτ = 0, (8.1)

for some µ > 0. This is equivalent to

1

µ
φ̇(t) + φ(t) + r

t∫
0

φ(t− τ)2φ̇(τ) dτ = 0. (8.2)

We are now interested in the solutions as a function of a rescaled time: ψ(t) = φ(t/t∞) for some time scale t∞,
or φ(t) = ψ(t · t∞). Then we know, by the chain rule, that

φ̇(t) =
d

dt
φ(t) =

d

dt
ψ(tt∞) = t∞ψ̇(tt∞). (8.3)

This allows us to transform (8.2) into an equation for ψ (we write τ = u in the integral for later convenience):

1

µ
t∞ψ̇(tt∞) + ψ(tt∞) + r

t∫
0

ψ((t− u)t∞)2ψ̇(ut∞)t∞ du = 0. (8.4)

In the integral, we can now make the change of variables τ = t∞u, corresponding to du = t∞ dτ and a change
of the integration bounds to 0 and t∞ · t:

1

µ
t∞ψ̇(tt∞) + ψ(tt∞) + r

tt∞∫
0

ψ(tt∞ − τ)2ψ̇(τ) dτ = 0. (8.5)

Hence we see that if φ(t) solves (8.1), then ψ(t) = φ(t/t∞) solves (replacing tt∞ simply by t in equation (8.5))

t∞
µ
ψ̇(t) + ψ(t) + r

t∫
0

ψ(t− τ)2ψ̇(τ) dτ = 0. (8.6)

If now t∞ is the relaxation time as was used for the scaling in figure 15(b) and the relaxation time and µ are
related in such a way that t∞/µ = C(r), some constant only depending on the fixed ratio r, then we would
indeed have that the rescaled curves all satisfy the same ratio-universal equation

C(r)ψ̇(t) + ψ(t) + r

t∫
0

ψ(t− τ)2ψ̇(τ) dτ = 0. (8.7)

However, a relation of the form t∞/µ = C(r) is non-trivial. Therefore, the result of figure 15 is useful in that
it shows that a search to this relation would directly give the relaxation time based on the parameters µ and r,
but would also enable us to predict the full relaxation based on only the one parameter r. One specific role of
r is already known to us, namely the divergence of the relaxation time at the fixed value r = 4.
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9 Conclusion

Mathematical research

In this report, we have taken a detailed look at existence and uniqueness of solutions to the coupled integro-
differential equations of schematic GMCT, both in the over-damped limit and for the actual second-order system
that has been derived (stated in chapter 3). For the over-damped limit, we have written the higher-dimensional
extension to a system of equations of the proof given by Götze [10] and have elaborated almost all details of
the proof that were omitted by Götze. The proof makes use of a linearised iteration variant of the equation of
interest and then derives suitable estimates to prove uniform convergence of the iteration sequence one obtains to
show (global) existence. The uniqueness part follows a standard argument from ordinary differential equations.

For the second-order system, we were able to provide full details of the proofs given by Saal [29] with the help
of the preliminary theory. This allowed us to work towards the application of Theorem 5.3.2 to the operator A
that describes the system, such that the main steps of the proof were based on Fréchet differentiation and the
derivation of several integral inequalities. Invertibility of A followed, which yields the existence and uniqueness.
We had to impose a growth condition on the kernel function m to obtain existence for arbitrary intervals of
definition, which limits the applicability to practical (physical) systems. For other kernels, a local existence
result is derived and uniqueness of such a solution follows for kernels m satisfying a Lipschitz condition. A second
proof was also studied which again employed a linearised iteration equation after transforming the system into a
first-order one. Using the integro-differential equation to obtain bounds on the iteration sequence, convergence
was shown which established existence. Uniqueness was established in a similar manner as before.

Subsequently, we saw that the theorem in [10] was directly applicable to schematic GMCT and found
existence of a unique solution for the exponential and mean-field closures. We then modified the equation
studied in Theorem 5.3.1 by Saal in [29] and highlighted the modifications needed in the proof to account for
all parameters that are used in schematic GMCT. This yields existence of a unique solution for the exponential
closure. For the MF-N(1N) closure, we could establish this with a kernel function that we redefined outside
the region where physical solutions exist. This was necessary in order to respect the linear growth condition
needed in the proof.

Research outlook

Regarding the type of integro-differential equations studied here, a result without the linear growth condition
on the kernel used by Saal would be useful to be searched for in future research. For example, if we want to
employ it directly to all types of mean-field closures that can be used in GMCT, any type of polynomial growth
should be allowed. To this end, new estimates would be needed to show that the operator A is weakly coercive
if one wishes to fit this into the proof of Theorem 5.3.1. It would further be interesting to look at uniqueness
and existence results for the full GMCT equations, without the schematic approximation. In this situation, each
correlation function φn becomes also a function of n wave numbers and the kernel depends on the correlation
functions via an integral over wave vectors. However, the time-dependence is fully captured by the equations
studied here, so the proofs of this report might already give a good starting point.

Of further interest are the solutions themselves (both for GMCT and for the schematic case). These are
often found numerically in the physical practice and the work of Janssen et al. suggests that for increasing
closure levels, the solution converges to the solution of the infinite hierarchy [15]. It would be powerful to have
theorem that rigorously confirms this for the numeric schemes used, e.g. in [15] based on the algorithm of
[9]. For some specific parameter choices in schematic GMCT, an analytic solution to the infinite hierarchy of
equations is known [15]. It would also be very interesting to derive such results for other hierarchies in order to
better understand the predictions that GMCT can make.

Physical research

We have studied a multitude of models for the parameters µ and λ for standard schematic MCT with which
MCT predicts super-strong behaviour of the relaxation time with decreasing temperature before the always
predicted power-law divergence. Relating the models to the static structure factor, we have found the PSF
(power structure factor) model of the form S(Λ) = 1 + Λ1/α (α > 0). We obtained an increase of the relaxation
time at the cross-over from super-strong to power-law behaviour over 5 orders of magnitude. Other successful
models could be the log model or the LD (logarithm division) model, but they are physically less apt to describe
a static structure factor.

The search for physically realistic models was started from the apparent importance of the ratio λ/µ that
seems to control the divergence. A bigger ratio can be physically interpreted as stronger damping. This
interpretation is consistent with the numerical results we found as we have seen that a change of the structure
factor that results in a bigger ratio yields the prediction of faster relaxation. Further our numerical results
suggest that for a fixed ratio λ/µ, a master curve for the solutions to schematic MCT is obtained when scaling
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the time by the relaxation time. The scaling invariance of the schematic MCT equation with a replaced friction
coefficient hints towards an explanation that describes for a fixed ratio r, a universal expression for the relaxation
time t∞ = µC(r) for all µ. Such a dependence would enable us to strongly characterize MCT predictions.

Research outlook
In this work, the value of the relaxation time at the cross-over from super-strong to fragile glass formation

was only estimated. For a good quantitative description of the glass formation, these methods could be improved
and should be analysed to allow for error estimation and fits through the numerical results. Only then can the
MCT predictions be interpreted quantitatively. In particular, the possible linear dependencies observed for (the
logarithm of) the relaxation time at the cross-over and the model parameter for the PSF and LD model might
then be investigated. Moreover, the results of the PSF model can be compared to vitrimer simulations to see if
the desired effect of super-strong glass formation can quantitatively be fitted to those practical results.

Theoretically, the investigated models can be further explored by the methods of higher order GMCT. It
is interesting to see if the convergence notions seen in previous work will also hold in these models with new
qualitative behaviour, and what the effect on the cross-over point will be (would it disappear, leaving super-
strong glass formation at the glass transition temperature?). In line with earlier research, one could e.g. as the
simplest case set µn = n · µ, weighing all wave numbers in GMCT on an equal footing, and keep all coefficients
λn equal to the instances of λ (λ1 in GMCT) considered here [15].

Finally the importance of the λ/µ ratio can be further pursued in numerical and theoretical work. The
data collapse of the intermediate scattering function, depending on this ratio only, could be explored for more
values of the ratio than has been done here. This might be done with the purpose of providing more convincing
evidence for the data collapse, or to establish specific regimes for the ratio where the data collapse might hold.
Further, numerical observations could be used to steer a search for the dependence of τ∞ on this ratio. When
this is pursued, future research should not overlook the physical relevance of the master curve. If there is a
feasible explanation, it would be interesting to see if this can be taken to GMCT as well.
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A CONVOLUTION AND PRODUCT RULE

Appendices

A Convolution and product rule

Here we elaborate a little on the convolution integral and prove the product rule for operator differentiation
(Theorem 4.17).

Definition A.1. Let n ∈ N and let F : [0, T ] → Rn×n and v : [0, T ] → Rn be continuous functions, for some
T > 0. Then the convolution F ∗ v is defined as the continuous function F ∗ v : [0, T ]→ Rn by

F ∗ v(t) =

t∫
0

F (t− s)v(s) ds.

Observation A.2. Due to linearity of the multiplication of matrices and vectors and of computing integrals,
we readily see that for all F,G : [0, T ] → Rn×n and v, w : [0, T ] → Rn and all λ, µ ∈ R we have (F + G) ∗ v =
F ∗ v +G ∗ v, F ∗ (v + w) = F ∗ v + F ∗ w and (λF ) ∗ (µ)v = (λµ)(F ∗ v).

Observation A.3. With the Euclidean norm on Rn (||.||), the induced operator norm on Rn×n, and the
supremum norm over [0, T ] denoted by ||.||∞ for both, and the triangle inequality for integrals, we see that

||F ∗ v(t)|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
t∫

0

F (t− s)v(s) ds

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

t∫
0

||F (t− s)|| · ||v(s)||ds =

t∫
0

||F ||∞||v||∞ ds = ||F ||∞ ∗ ||v||∞.

The last step basically uses a convolution of two constant functions. This holds for all t ∈ [0, T ], so for brevity
we write

||F ∗ v|| ≤ ||F ||∞ ∗ ||v||∞.

Theorem A.4. (Product rule for convolution) Let [a, b] be an interval in R, n ∈ N and let U = C1([a, b],Rn),

V = C([0, T ],Rn×n) and W = C([0, T ],RN ). Let A : U → V , B : U →W be bounded linear operators that are
differentiable at f ∈ U with derivatives denoted by A′f and B′f , respectively. Then also the convolution of the
operators, A ∗B : U →W , is differentiable at f and we have

(A ∗B)′f = A′f ∗B(f) +A(f) ∗B′f . (A.1)

Proof:
To be explicit, we use the ||.||(2) norm on U , the Euclidean norm on the convolution integral and the induced
operator norms to find estimates involving A′f and B′f when needed. We have for all ∆f ∈ U :

||A(f + ∆f) ∗B(f + ∆f)−A(f) ∗B(f)−A′f (∆f) ∗B(f)−A(f) ∗B′f (∆f)|| =
||
{
A(f + ∆f)−A(f)−A′f (∆f)

}
∗B(f + ∆f) +A(f) ∗B(f + ∆f) +A′f (∆f) ∗B(f + ∆f)

−A(f) ∗B(f)−A′f (∆f) ∗B(f)−A(f) ∗B′f (∆f)|| =
||
{
A(f + ∆f)−A(f)−A′f (∆f)

}
∗B(f + ∆f) +A(f) ∗

{
B(f + ∆f)−B(f)−B′f (∆f)

}
+A′f (∆f) ∗ {B(f + ∆f)−B(f)}||.

Hence with the observations above (where it is certainly allowed to replace the norm ||.||∞ by the norm ||.||(2),
preserving the inequality) and the triangle inequality, we have for all ∆f ∈ U\{0}:

||A(f + ∆f) ∗B(f + ∆f)−A(f) ∗B(f)−A′f (∆f) ∗B(f)−A(f) ∗B′f (∆f)||
||∆f ||

≤

||A(f + ∆f)−A(f)−A′f (∆f)||
||∆f ||

∗ ||B(f + ∆f)||+ ||A(f)|| ∗
||B(f + ∆f)−B(f)−B′f (∆f)||

||∆f ||

||A′f || ·
||∆f ||
||∆f ||

∗ ||B(f + ∆f)−B(f)||.

By the definition of the Fréchet derivative, we can make use of the fact that

lim
||∆f ||→0

||A(f + ∆f)−A(f)−A′f (∆f)||
||∆f ||

= 0,
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and likewise for B. The differentiability at f further ensures that B is continuous at f , so

lim
||∆f ||→0

B(f + ∆f) = B(f).

We note that ||A(f)||, ||B(f)|| and ||A′f || are fixed numbers (for fixed f) and letting ||∆f || → 0, the continuity
of the norm and the convolution allows us to take all limits above separately and it follows that

lim
||∆f ||→0

||A(f + ∆f) ∗B(f + ∆f)−A(f) ∗B(f)−A′f (∆f) ∗B(f)−A(f) ∗B′f (∆f)||
||∆f ||

= 0.

This proves (A.1).

B Appropriate bound for matrices

Here we show why for the matrix A defined on page 47, a bound of the form

||eAt|| ≤ e−c0t

as defined in Lemma 4.7.6 is insufficient if we adhere to the norm induced by the Euclidean norm on R2, but
should rather be replaced by one of the form

||A|| ≤ be−c0t,

with some b > 1. In the case of a diagonal matrix we could do with b = 1 in observation 4.7.8 since then
b = ||D|| · ||D−1|| = ||I|| · ||I|| = 1.
In this appendix, we give a numerical example for the case t = 1.

Let λ = 0.2, so

A =

(
0 1
−5 −5

)
.

This gives for A approximately the eigenvalues λ1 = −3.32 and λ2 = −1.38, and for eA the eigenvalues eλ1 = 0.03
and eλ2 = 0.25, so λmax = 0.25. Further let us behold the vector v = (2, 3). We then have with the Euclidean
norm

||eAv||
||v||

= 0.4.

This clearly violates the inequality obtained in Lemma 4.7.6. Hence a scaling constant b > 1 is indeed needed
here to bound the induced operator norm, as introduced in Lemmas 4.7.7 and 4.7.8.

C Fréchet derivative of matrix-valued functions

After definition 4.6.2, we have seen that the Fréchet derivative of vector-valued functions coincides with the
Fréchet derivative. To see how Fréchet differentiation generalizes to matrix-valued functions, let us first look at
the Jacobian matrix for a slightly different point of view than that of a matrix.

Let n,m ∈ N and let f : Rn → Rm be a differentiable function on all of Rn. We denote partial derivatives
of the kth component function with respect to the lth coordinate in a point y ∈ Rn as ∂lfk(y), which are the
elements of the Jacobian matrix Jy. Then the value of the Fréchet derivative Dfy of f in y (which is the linear
operator corresponding to the Jacobian matrix) evaluated at some vector u = (u1, . . . , un) ∈ RN is given by

Dfy(u) = Jyu =

n∑
i=1

uiDfy(ei) =

n∑
i=1

ui

∂if1(y)
...

∂ifm(y)


if we denote by e1, . . . , en the unit vectors of Rn that correspond to the coordinate system in which f is defined.
The linearity of the Fréchet derivative thus manifests itself in taking a linear combination of partial derivatives
of the function f at y.

We can use the same linearity for the Fréchet derivative of a matrix-valued function. Let m : Rn → Rm×l be
such a function with component functions mij : Rn → R which are all continuously differentiable (i = 1, . . . ,m,
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j = 1, . . . , l) . Then we claim that the Fréchet derivative Dmy(u) of m at a vector y = (y1, . . . , yn) ∈ Rn
evaluated at a vector u = (u1, . . . , un) ∈ Rn is given by

Dmy(u) =

N∑
k=1

uk

∂km11(y) . . . ∂km1l(y)
...

. . .
...

∂kmm1(y) . . . ∂kmml(y)

 , (C.1)

which is a linear combination of partial derivatives of matrices. To prove this, we need to show that

||m(y + u)−m(y)−Dmy(u)||
||u||

→ 0 as ||u|| → 0, (C.2)

for the appropriate norms that one has chosen on the vector spaces Rn and Rm×l. Certainly, if each component
in the expression 1

||u|| (m(y+u)−m(y)−Dmy(u))→ 0, the same will hold true for the norm in (C.2). Applying

(C.1) he (i, j)th component here reads

1

||u||
(mij(y + u)−m(y)− u ·∇mij(y)) ,

where ∇ denotes the gradient operator in Cartesian coordinates. From the directional derivative from basic
multivariate calculus, we know that this expression goes to 0 as ||u|| → 0 for all i, j. So we have shown that
(C.1) indeed gives the Fréchet derivative of the matrix-valued function m at y evaluated at the vector u and all
we need for m to be Fréchet differentiable is thus continuous partial differentiability of its component functions.
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