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Abstract

The understanding of the interaction between light and matter is essential in various applications,
such as LEDs or Solar Cells. Simulating the electronic structure of materials to understand their
interaction with light is important for designing materials with desirable properties. This report uses
molecular simulations using VOTCA-XTP to execute a DFT calculation including embedding with
Ewalds method. The goal is to create an automated workflow to execute these calculations to find the
electron affinity and ionization potential. The influence of different input parameters was examined,
such as the used basis set in the DFT calculation (svp, tzvp and qzvp) and the cutoff radius used for
the embedding. Further steps are needed to clean the input data and to further examine the input
parameter dependency.
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Chapter 1

Introduction

The interaction between light and matter plays an essential role in various applications. Upon gaining a
fundamental understanding of these interactions, a variety of materials can be designed which optimize
properties for different applications. An example of the materials of interest is the group of organic
semiconductors.

1.1 Organic semiconductors

Semiconductors are materials with an electric conductivity between metals and insulators. The band
gaps of these materials are generally below 3 eV [1], which makes them attractive in the interaction
with visible light, as these electromagnetic waves have an energy corresponding to the band gaps
of these materials. Possible applications for these semiconductors are organic solar cells or organic
light-emitting diodes (OLEDs).

1.1.1 Organic Solar cells

The basic principle of solar cells is the use of energy from incoming light for charge separation within
the solar cell. This process is schematically drawn in Figure 1.1. The photons excite electrons from
the HOMO (Highest Occupied Molecular Orbital) level to the LUMO (Lowest Unoccupied Molecular
Orbital) level, resulting in a vacant spot, a hole. This leads to an electron-hole pair, a so-called exciton.
The exciton is held together through the Coulomb interaction, the charge needs to be separated for
the electrons and holes to diffuse to the electrical contacts. In inorganic solar cells, this Coulomb
interaction within the exciton is typically on the order of magnitude of the thermal energy, such that
the charge separation can happen spontaneously. For inorganic solar cells, this Coulomb interaction is
stronger, typically in the order of 1 eV, which makes the charge separation challenging.

Currently, mainly inorganic solar cells are used for large-scale applications. If more complex chemi-
cal compounds are used, the properties of the materials can be better adjusted to meet different require-
ments. Organic solar cells can have properties like printability, flexibility, or even semi-transparency
[3]. This will allow for various applications. The disadvantage of these organic compounds is the
increased complexity. Elaborate research is needed to understand the properties of the materials.

1.1.2 OLEDs

From a general point of view, the working of a LED is the reverse of the working of a solar cell. Instead
of using light to enhance a current, we are using a current to generate light. The energy gap between
the HOMO level and LUMO level influences the wavelength of the light that is being created. OLEDs
are used in displays and offer advantages when it comes to flexibility and being able to adjust the
wavelength of the light. Again, the main disadvantage of OLEDs is the increased complexity of their
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Figure 1.1: The charge separation in an organic solar cell [2]
.

materials. The change of one compound can influence the band gap and thus the light being produced
[1]. Gaining an understanding of the electronic properties of these materials can help in predicting the
band gap.

1.2 Predicting properties

Instead of determining the band gap of different materials through experiments and direct measure-
ments, simulations to predict the properties of such complexes can be used. The properties of interest
are determined at the subatomic scale and can be predicted through simulations of the interactions
at this scale. This report strives to make a step forward toward an automated method of predicting
those properties by running several calculations. The workflow can be used to select materials based
on their desired properties quickly. The knowledge gained through the mathematical models will help
in the understanding and improvement of the compounds for these applications. This saves a lot of
lab work, as the first step in the selection of materials can be done by means of a calculation.

For this workflow, a basic theoretical understanding of subatomic interactions is required. The
required methods are explained in Chapter 2. How this theory is implemented in the workflow is
described in Chapter 3. A discussion on intermediate and end results can be found in Chapter 4 and
the conclusion and further steps are presented in Chapter 5.
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Chapter 2

Theory

To gain a fundamental understanding of the interaction between light and matter, the electronic
structure of materials plays a crucial role. In general, this structure is described by many-electron
wave functions, as they follow from solutions to the Schrödinger equation [4]:

ĤΨ = i
∂

∂t
Ψ. (2.1)

For simplicity, Hartree atomic units are used throughout this report. In equation (2.1), the wave
function Ψ is a function of time and the positions of electrons and nuclei in the material, and Ĥ is the
Hamiltonian operator. The Hamiltonian can be described as a combination of the kinetic energy and
the potential energy of the particles. Unfortunately, the Schrödinger equation has only been solved
exactly for systems of two particles, for example, the hydrogen atom [5]. To be able to describe systems
of more than two interacting particles, an approximation of the many-body Schrödinger equation is
needed. This chapter describes several theoretical methods that are used to be able to describe the
electronic structure of materials. Firstly, it is described how an approximation of the many-electron
wave function can be made using Slater determinants. Secondly, approximations based on a total
electron density function are described. Finally, the implementation of previously described methods
in combination with classical methods, so-called embedding, is covered.

2.1 Many-body Hamiltonian

We first look a bit closer at the Hamiltonian operator. For a many-body system, the Hamiltonian can
be constructed out of the basic operators for kinetic (T̂ ) and potential (V̂ ) energy of charged particles
with charge q and mass M

T̂ =− 1

2

∑
n

1

Mn
∆rn (2.2)

V̂ =
1

2

∑
α ̸=β

qαqβ
|rα − rβ |

(2.3)

When we combine these two operators on a system consisting of M nuclei with charge Zα at
position Rα, (α ∈ {1, . . . ,M}), and N electrons at positions ri, (i ∈ {1, . . . , N}), we end up with a
non-relativistic Hamiltonian taking into account the nucleus-nucleus (nuc-nuc), nucleus-electron (nuc-
el) and electron-electron (el-el) interactions:
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Ĥ =T̂nuc +T̂el +V̂nuc-nuc +V̂nuc-el +V̂el-el (2.4)

Ĥ =− 1

2

M∑
α=1

1

Mα
∆Rα

−1

2

N∑
i=1

∆ri +
1

2

∑
α̸=β

ZαZβ

|Rα −Rβ |
−1

2

M∑
α=1

N∑
i=1

Zα

|Rα − ri|
+
1

2

∑
i ̸=j

1

|ri − rj |
(2.5)

This Hamiltonian operator can be substituted into the Schrödinger equation (2.1), but as mentioned
before, this has only been solved for systems with two particles. The standard method of solving such
problems is by the use of separation of variables. We do this both with regard to the time dependency
and to the motion of electrons and nuclei. The first makes the implicit assumption that the wave
function Ψ can be written as a product of a spatial part Φ and a time-dependent part U . If the
Hamiltonian is not time-dependent, the time-dependent part will yield the expectation value of the
Hamiltonian, say E. The spatial parts yield the time-independent Schrödinger equation,

ĤΦ = EΦ. (2.6)

The second separation rests on the Born-Oppenheimer approximation [6], which assumes that the
electronic and nuclear motion can be decoupled. As the nuclei are much heavier than the electrons,
we also assume that the nuclear motion is negligible. With this assumption, the term for the kinetic
energy of the nuclei (Tnuc) in the Hamiltonian (equation (2.5)) will be zero. The problem can be tackled
in multiple ways, building from this simplified Hamiltonian with the time-independent Schrödinger
equation.

2.2 Hartree Fock (HF)

As the electrons are fermions, the Pauli exclusion principle must be taken into account. This anti-
symmetry is taken as a starting point for the Hartree-Fock (HF) principle, by using an estimated wave
function (Φ) in the form of a determinant of single-electron wave functions (ϕi). By choosing the form
of a determinant, the anti-symmetry requirement, namely the change of sign upon interchanging two
electrons, is fulfilled. The determinant takes the following form:

Φ(r) =
1√
N !

∣∣∣∣∣∣∣
ϕ1(r1) . . . ϕ1(rN )

...
. . .

...
ϕN (r1) . . . ϕN (rN )

∣∣∣∣∣∣∣ . (2.7)

This estimated wave function is then substituted into the time-independent Schrödinger equation
(equation (2.6)) with the many-electron Hamiltonian. The variational theorem states that the energy
will be minimal for the ground state wave function. Upon minimizing the energy under the constraint
that the individual single-electron wave functions are normalized, a set of equations for the functions
ϕi is found, the so-called Hartree-Fock equations:(

−∆r

2
+ V̂ext(r) + VH(r)− V̂X(r)

)
ϕHF
i (r) = ϵHF

i ϕHF
i (r), (2.8)

where VH =
∫ n(r)

|r−r′|dr
′ describes the Coulomb interaction between the electrons and V̂X =

∫ n(r,r′)
|r−r′| . . . dr

′

the exchange potential operator. By this approach, the N-electron problem is reduced to a set of N
single-electron problems. An estimation of the ground-state energy is given by

EHF
0 =

N∑
i=1

ϵHF
i − 1

2
(EH + Ex), (2.9)

where EH corresponds to the Coulomb interaction and Ex to the exchange energy. The difference
between this estimation given by Hatree-Fock and the true (usually unknown) ground state energy is
called correlation energy.
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2.3 Density functional theory (DFT)

Another approach to tackle the many-electron Schrödinger equation is Density Functional Theory
(DFT). The electron density is used instead of starting from an (estimated) many-electron wave func-
tion. So instead of substituting a trial wave function and minimizing the energy, the energy is min-
imized through a variational principle regarding the total electron density n(r), with the constraint
that

∫
n(r)d3r = N . This method is allowed by the Hohenberg-Kohn theorem which states that the

ground state of any interacting many-particle system with a given fixed inter-particle interaction is a
unique functional of the electron density n(r) [7]. The energy functional

E[n] =

∫
Vext(r)n(r)dr + T̂ + V̂el-el (2.10)

is minimal for the ground state density n0(r). This is a theoretically exact relation.

2.3.1 Kohn-Sham (KS)

A problem occurs when one tries to minimize the energy, as the kinetic energy and the electron-electron
interaction are not described in terms of the electron density. This can be solved by an approximation
proposed by Kohn and Sham [8]. The kinetic energy is first described for a system of non-interacting
electrons, as a function of the electron density. The electron-electron interaction is approximated by the
Coulomb interaction, the Hartree energy. These equations are implemented in the energy functional
that needs to be minimized. To correct for the fact that the kinetic energy is taken from a system
of non-interacting electrons and that the electron-electron interaction is approximated by the Hartree
energy, an additional term, the exchange-correlation functional is added. The exchange-correlation
functional corrects for the errors that were made in these approximations. With this, the Kohn-Sham
(KS) energy functional is

EKS = Ts +

∫
Vext(r)n(r)dr + EH + Exc, (2.11)

with Ts the kinetic energy for a system of non-interacting electrons, EH the Hartree energy, and Exc

the exchange-correlation functional. Minimization of equation (2.11) yields the KS-equations:(
−∆r

2
+ V̂ext(r) + V̂H(r) +

δExc

δn
(r)

)
ϕKS
i (r) = ϵKS

i ϕKS
i (r). (2.12)

In principle, these equations are exact, though there is no practical implementation of finding the
exchange-correlation functional [9].

2.4 Numerical solutions of HF and KS

The eigenvalue equations resulting from the Hartree-Fock or Kohn-Sham equations are in general
solved numerically by substituting functions of the form

ϕi =
∑
α

cαχα, (2.13)

where the χα are functions from a basis set. The ϕi are linear combinations of functions from the basis
set. Substituting these functions in the HF or KS equations and integrating both sides yields∫

χβ(r)H
∑
α

ciαχα(r)d
3 =

∫
χβ(r)

∑
α

ciαχα(r)d
3r. (2.14)

By taking the finite sum out of the integral, the equation simplifies to∑
α

ciα

∫
χβ(r)Hχα(r)d

3r = ϵi
∑
α

ciα

∫
χβ(r)χα(r)d

3r. (2.15)
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Figure 2.1: An energy-level diagram for a generic material, indicating the electron affinity (EA) and
the ionization potential (IP) [10]

This leads to a Hamiltonian tensor (H) and an overlap tensor (S)

Hci = ϵiSc
i, (2.16)

and the eigenvalue problem can be solved for the ci, giving the functions ϕi.

2.5 Electron affinity (EA) and ionization potential (IP)

The electron affinity (EA) is a measure of the energy increase upon adding an electron to an isolated
molecule, whereas the ionization potential (IP) is a measure of the energy it takes to remove an electron
from such molecule. Here, the electron should completely be taken up into the system or completely
removed. The electron affinity has a correlation to how easily the molecule reacts in a chemical reaction,
as this generally entails the exchange of an electron. In Figure 2.1, an energy diagram indicating the
EA and the IP is shown.

2.5.1 Determining the EA and IP

Through the calculations, the EA and the IP can be determined in different manners. As suggested in
Figure 2.1, the EA can be found by taking minus the energy from the LUMO, whereas the IP can be
found from minus the energy from the HOMO. When this is done on a system of C2H2, this gives an
IP of 8.54 eV (as the ϵHOMO = −8.54 eV) and the EA gives 1.02 eV (as ϵLUMO = −1.02 eV). However,
these results do not seem to match the results from experiments. From experiments, the IP for C2H2

is found to be 11.4 eV [11]. Another way to determine the IP and EA from the DFT calculation is
by taking the difference of the Self-Consistent Field energy, ∆SCF for the states with charge 0, and
±1. In the case of the IP, the energy it takes to remove an electron from the system means taking
the difference between the -1 and the neutral state (E−1 − E0). For the EA, this is calculated as
the difference between neutral and + 1 state (E0 − E+1). This gives for C2H2 the values EA = -3.25
eV and IP =11.44 eV. As the IP correlates better with the results from experiments, this method is
used in the remainder of the report. The IP and EA are determined through the DFT calculation
for an isolated molecule. These values are used as a constant offset, where the contributions of the
surroundings are calculated in a similar manner.
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(a) (b) (c)

Figure 2.2: A schematic representation of the embedding process. (a) The region of interest is indicated
in red, (b) considering the entire region with quantum techniques (c) only considering the region of
interest with quantum techniques, whilst considering the surroundings as polarized molecules, inducing
an external potential.

2.6 Embedding

Whenever the size of the system grows, it becomes increasingly more computationally expensive to
treat the system with the methods that were described in this chapter. To tackle this problem, a
general method is to only consider a smaller region of the material using the methods as described,
containing the quantum mechanical contributions. This is schematically drawn in Figure 2.2. The size
of the region of interest (as indicated by (a)) is determined by setting a cutoff radius.

The surroundings can be treated as a classical system of charges or polarized molecules, more on
this in section 2.8. The influence of the surrounding on the region of interest is being implemented as
an external potential. The region of interest changes according to this potential and influences on its
turn the surrounding. The mutual influences are calculated until an equilibrium is reached [9].

2.6.1 Embedding on crystals

The method changes slightly whenever the system is highly structured as a crystal. A crystal consists
of repeating unit cells on a lattice. This is translational invariant, as long as one translates over an
integer multiplication of the lattice vectors [12]. Because of this translational invariance, the cutoff
radius that can practically be used for the embedding will be bounded by the length of the lattice
vectors. If this cutoff radius is bigger than half of the length of the lattice vectors (in the case of a
cubic lattice where all vectors have the same length and are orthogonal), then also the interactions with
translated atoms will be taken into account, instead of just the closest neighbor. The total Coulomb
energy of a crystal leads to the Ewald sum

Ecoulomb =
1

2

N∑
j=1

qjΦ(xj), (2.17)

which is only conditionally convergent. Ewald came up with a method to rewrite the Ewald sum into
two convergent series. One series accounting for the short-range (described in real space) and one
for the long-range (described in reciprocal space) contribution to the Coulomb energy. The reciprocal
space is a Fourier-transformed space of the original (real space) lattice, as the long-range contribution
has a high periodicity. This leads to

Φ(xj) = Φreal(xj) + Φrexiprocal(xj), (2.18)
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which is the sum of two convergent series.

2.7 Population analysis

Once the electron density is determined using a DFT calculation, population analysis can be done to
determine the individual atomic charges. This can be done through different methods. This section will
describe three common methods: CHELPG, Löwdin, and Mulliken. The first method is an example
of potential derived charges, whereas Löwdin and Mulliken are both orbital-based methods. CHELPG
(Charges from Electrostatic Potential using a Grid) uses a partitioning of the electrostatic potential as
derived from the DFT calculation [13]. It uses a cubic grid to determine the charge at several points.
This method has a smaller basis set dependency as compared to the other two orbital-based methods
[14]. The Mulliken method uses a molecular orbital function as a linear combination of the separate
atomic orbitals [15]. The charge q on an atom a, qa is determined by taking the atomic number Za

and subtracting the number of electrons allocated to the atomic orbitals on the atom,

qa = Za −
∑
µν∈a

PµνSµν , (2.19)

where Sµν is the overlap matrix of the separate atomic orbitals. The basic functions are based on an
orbital partitioning scheme. The Mulliken method is simple, though the method is dependent on the
set of basic functions used in the Mulliken calculation. The Löwdin method is an improved version of
the Mulliken method. This method uses a different set of basic functions, symmetrically orthogonalized
atomic orbitals [16].

2.8 Atomic polarizabilities

Once obtaining the charges of the individual atoms, a potential can be calculated from this. The
potential at a point R from a system of particles at positions ri is given by

V (R) =
∑
i

1

|R− ri|
. (2.20)

This potential can be expanded using a Taylor series about the center of the system. This expansion
leads to a multipole expansion, which contains the electrostatic, dipole, quadruple, and higher moments
of interaction. The geometry is determined by these interactions, where the electrostatic moment is
the most dominant term [17].
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Chapter 3

Method

The previous chapter gave a brief overview of the theory that is being implemented by the programs
that were used for this project. The project used the implementations from VOTCA-XTP [18] and
Orca [19] [20]. In this chapter, it is described how everything comes together in a workflow. The
workflow is split into two parts, which will be explained separately.

3.1 DFT calculation

The first step of the workflow is to execute the DFT calculation on the system. This is schematically
drawn in Figure 3.1. The DFT calculation is done for three different states: neutral, +1, and -1. The
DFT calculation is done by the implementation of Orca [19] [20]. This is done through the VOTCA
framework using

x tp t o o l s −e dftgwbse −o OPTIONFILE. xml

where the options file specified to use the implementation of Orca. The input for this calculation is an
XYZ file of the structure, which contains information on the atoms and their coordinates. The spin is
set to 1 for the neutral calculation and to 2 for the ±1 calculation. For all calculations, the used basis
set is tzvp.

The next step is a conversion step, where the three generated log files are converted to MPS files.

x t p t o o l s −e log2mps −o OPTIONFILE. xml

These files contain information on the electronic structure of the system. This step saves the infor-
mation from the log file in a different format, an MPS file, such that the calculator for the molecular
polarizabilities can update them.

x t p t o o l s −e molpol −o OPTIONFILE. xml

This calculator uses the generated MPS files and the log file to calculate the molecular polarizabilities
for every state. In the input MPS file, the polarizability is taken from a database, whilst in this step
the polarizability is calculated specifically for the system. The output from this calculation is an MPS
file with an updated polarizability tensor.

3.2 Embedding

The second part of the workflow consists of the calculation on the embedding and implementing Ewalds
method. The first step is only done for the smaller compounds. The next step uses a crystal structure.
It starts with preparing the input data. The data is an open-source database with crystal structures.
The data is a crystal structure, of which only the coordinates and atoms within the primitive unit cell
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DFT calculation
ORCA

XYZ file
Molecular 
polarizabilities

log file
log to mps mps file

mps file

Figure 3.1: Schematic workflow of the DFT and related calculations. The calculations are indicated
with rectangles and the files with ellipses.

(a) (b) (c)

Figure 3.2: A visualization of a crystal structure, all made using VMD [21]. (a) One unit cell, where
the atoms in the molecule are dislocated. (b) Two unit cells, where the molecular structure becomes
visible. (c) Several copies of the unit cell giving an impression of the crystal structure

are saved. This may lead to molecules being separated over different unit cells, causing problems in
the initial DFT calculation, as the equivalent images of atoms are not taken into account. In Figure
3.2, an example of such a structure is visible. The original unit cell contains four such molecules, of
which one is visualized in Figure 3.2. To work around this problem, the data set is cleaned manually.
The coordinates are translated such that the images of atoms corresponding to the same molecule have
minimal distance.

The next step is to create the topology for the embedding. A mapping is made to match the
coordinates in the supercell to the XYZ file and the different MPS files using

xtp map −c s u p e r c e l l . gro −t topo l . tpr −f s t a t e . hdf5 −s map . xml

The topology needed for Ewald’s method is created. This mapping is checked, with

xtp run −e mapchecker −o mapchecker . xml −f s t a t e . hdf5

resulting in separate PDB files for every segment in the molecule. Once the topology is in place, the
polarization of the periodic background is calculated.

xtp run −e ewdbgpol

The next step is to run the calculation for the embedding, where the results from the DFT calculation
are combined with the background polarization. To do this, several jobs need to be defined. This is
done using

x t p p a r a l l e l −e ewald −o ewald . xml −f s t a t e . hdf5 −j wr i t e

In general, every job covers a different state a molecule is in. For the three states that were calculated
for the DFT calculation, a separate job is created. If the unit cell consists of multiple molecules, they
will all have three jobs. The jobs are executed, which consist of calculating the mutual interactions
between the molecule in a particular state with the previously defined background.

x t p p a r a l l e l −e ewald −o ewald . xml −f s t a t e . hdf5 −j run

This leads to the total energy of the system.
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Figure 3.3: Schematic workflow of the embedding step in the workflow
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Chapter 4

Results and discussion

The first part of the project consisted of getting acquainted with the code, by executing the different
parts of the workflow separately and testing for parameter dependency. Some of these results are
discussed in this chapter. Also, some results on the entire workflow and the future steps are discussed.

4.1 Parameter dependency

4.1.1 Basis set dependency population analysis

The first DFT calculations were done on a series of isolated alkanes. The number of C atoms was
increased up to 6, hexane (C6H14). In this setting, the three different population analysis methods,
as explained in section 2.7, were executed. This was done for different basis sets used in the initial
DFT calculation. The three basis sets that are used are split valance polarization (svp), triple zeta
valence potential (tzvp), and quadruple zeta valance potential (qzvp), in increasing order of functions.
Firstly, a DFT calculation was done with the implementation from VOTCA-XTP, then the population
analysis was done using the command

x tp t o o l s −e p a r t i a l c h a r g e s −o OPTIONFILE. xml

where the option of the population analysis method was changed. This calculation outputs an MPS
file, which was used to collect the partial charge on each atom in the molecule. The partial charges of
the ’central’ C atom are plotted against the different basis sets and the population analysis methods,
see Figure 4.1. For the molecules with an even number of C atoms, the ’central’ C was one of the two
central C atoms. As the molecules are symmetric, the differences between both central atoms are not
significant.

From Figure 4.1 it can be seen that the calculation using Löwdin with the qzvp basis set, gave
interesting results. Where most partial charges for the central C atoms are negative (as to be expected,
as the nuclei of C atoms are heavier than the nuclei of the H atoms), this combination consistently gives
positive partial charges. To ensure that this behavior is not caused by the DFT implementation of
VOTCA-XTP, the entire process was repeated using the implementation of Orca. This gave the exact
same results. The calculations with the CHELPG method gave comparable results for the different
basis sets used on the same system, as to be expected from the theory, see section 2.7. The method
seems to be less dependent on the used basis set as compared to Mulliken and Löwdin. The CHELPG
calculation on Butane, Figure 4.1(d), assigns a positive partial charge to the central C atoms. The
same result was observed for the second and fifth C atoms for hexane, see Figure 4.2. Mulliken and
Löwdin’s calculation using the tzvp basis set gives the lowest partial charge.
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Figure 4.1: The partial charge of the ’central’ C atom for different systems: (a) methane, (b) ethane,
(c) propane, (d) butane, (e) pentane and (f) hexane. The calculations were repeated for three different
basis sets (svp, tzvp and qzvp) and three different population analysis methods (CHELPG, Mulliken
and Löwdin)
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Figure 4.2: The partial charge of C atoms of hexane, again for three different basis sets (svp, tzvp,
qzvp) and population analysis methods (CHELPG, Mulliken, Löwdin). (a) The first C atom, (b) the
second atom. The third atom was considered as the ’central’ C atom, so visible in figure 4.1 (f)). The
other three C atoms were not plotted, as these are comparable to the first three, due to the symmetry
of the molecule.

Figure 4.3: One unit cell of the used system of C2H2 [21]

4.1.2 Cutoff radius embedding

The total workflow was tested on a different system; a crystallin system of C2H2. The (linear) molecules
are aligned as shown in Figure 4.3. Every unit cell consists of four such molecules with a different
alignment. The input data was cleaned manually, such that the problem as described in Chapter 3 is
taken care of. The dependency on the polar cutoff radius was examined, by varying this value from 1
nm to 3 nm. The EA and IP were plotted as a function of the polar cutoff radius, see Figures 4.4 and
4.5.

For every cutoff radius, five data points are available; one for every molecule and an additional
molecule; a translation of the molecule located at the origin. This additional molecule is taken into
account because the data for the molecule at the origin deviated from the other molecules, whilst the
system seems to be highly symmetrical, and thus is expected to yield similar results. The different
data points are best visible in the plots for the static moments. Here, the highest values for every
cutoff radius correspond to the second, third, and fourth molecule, the lowest values correspond to the
molecule located at the origin. The middle values correspond to a translated image of the molecule at
the origin. In theory, the values of the molecule at the origin, and those for the translated image should
be the same, as they represent the same molecule. However, this is not the case, which suggests there
might be problems with molecules being centered at the origin. Further research on other systems is
needed to test whether this is a consistent problem.

As the cutoff radius increases, the EA and IP seem to stabilize. The contribution to the EA and IP
from a static charged and an induced charged surrounding can be considered separately, see Figures 4.4
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Figure 4.4: The EA as a function of the polar cutoff radius. (a) the total contribution from the
embedding, (b) the contribution from the induced moments, (c) the static contributions
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Figure 4.5: The IP as a function of the polar cutoff radius. (a) the total contribution from the
embedding, (b) the contribution from the induced moments, (c) the static contributions
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Figure 4.6: The EA as a function of the polar cutoff radius, with additional points at smaller cutoff radii
to better examine the behavior for small cutoff radii. (a) the total contribution from the embedding,
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Figure 4.7: The IP as a function of the polar cutoff radius, with additional points at smaller cutoff radii
to better examine the behavior for small cutoff radii. (a) the total contribution from the embedding,
(b) the contribution from the induced moments, (c) the static contributions

(b), (c) and 4.5 (b), (c). The addition of these values yields the total contribution of the surroundings
to the AE and IP, Figures 4.4 (a) and 4.5 (a). Especially on the static contribution, the behavior on
small cutoff radii seems troublesome. To better evaluate this behavior, additional points were added
to the calculation, see Figures 4.6 and 4.7.

This showed that the behavior at low cutoff radii is confusing. It was noted that in the calculations,
the option to apply coarse-graining on the background was turned on. This means that the individual
moments of the atoms on the background are first converted to averaged moments on the molecules.
Especially for smaller cutoff radii, this may cause troublesome deviations. This option is relevant to
decrease the computational time for systems with large molecules, but for the (relatively small) system
of C2H2, this option is not necessary. In Figures 4.8 and 4.9 the same plots are made for when the
option course-graining on the background is turned off. Here, the behavior at small cutoff radii is more
in line with the overall behavior.

4.2 Future steps

These results were obtained by using Python code, which automated the commands to give to the
VOTCA-XTP calculator. Several attempts were made to set up an algorithm to clean the input data
such that the initial DFT calculations can use it. There should be an automated method to read the
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Figure 4.8: The EA as a function of the polar cutoff radius, without a course graining applied on
the background (a) the total contribution from the embedding, (b) the contribution from the induced
moments, (c) the static contributions
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Figure 4.9: The IP as a function of the polar cutoff radius, without a course graining applied on the
background (a) the total contribution from the embedding, (b) the contribution from the induced
moments, (c) the static contributions
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file containing the information on the crystal structure and the coordinates of the atoms within the
unit cell, groups the individual atoms as molecules taking into account the periodic copies based on
the crystal structure, and saves the coordinates in such way that the atoms within one molecule have a
minimal mutual distance. This will prevent having to clean the input data manually, which is a tedious
process when the molecule size increases. Such code is not in place yet but should be incorporated
before the entire workflow can be applied to the database. Another improvement can be made upon
realizing that the code overwrites a file if another file with the same name and directory already exists.
To prevent files containing relevant data to be overwritten, several directories should be made. It is
advisable to structure the documents from the beginning into different directories. Once a rigorous
structure of directories is created, a more thorough examination of the parameter dependency on the
code can be done.
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Chapter 5

Conclusion

The goal of this project was to make a step towards an automated workflow for multiscale molecular
modeling. In Chapter 3, the used workflow is explained. This workflow is automated using two Python
codes, for the DFT and embedding calculation. These codes automate the commands that are given
to the terminal of the VOTCA-XTP application. Through this workflow, the impact of the input
parameters after the entire workflow could efficiently be determined.

5.1 Impact parameters

The impact of the basis set used and the population analysis on the individual atomic partial charges
was determined. The DFT calculations on systems of isolated alkane molecules were done for different
basis sets (svp, tzvp and qzvp). The results from these DFT calculations were examined using different
population analysis methods (CHELPG, Mulliken, Löwdin). This yielded 9 different values for the
partial charge for every atom. CHELPG showed the least basis set dependence, which is in line with
the results from the theory. The combination of Löwdin with qzvp gave significantly different results
as compared to the other values. More experiments are needed to explain this difference.

Another parameter dependency test was done on the embedding part of the code. The influence
of the EA and IP on the polar cutoff radius was determined. This was done with coarse-graining
of the background and without this option, thus taking the individual moments of the atoms on
the background. Especially for the lower cutoff radii, the option without the coarse-graining of the
background gave more reliable results. It is worth considering doing the calculations without this
option, especially if one is using smaller cutoff radii. Of course, this only applies if this is reasonable
for the size of the molecule. The influence of this option on larger systems is to be determined.

5.2 Future steps

As discussed in the previous chapter, several steps are necessary to improve the workflow and to
adjust it such that it can be used more efficiently. More tests on the database, especially for systems
of increasing molecule size, and the efficiency of the workflow should be tested. One of the first steps
for this is by tackling the problem as discussed in Chapter 3, by cleaning the input from the database.
Once an algorithm is in place to clean the input data, the workflow can be tested for systems with
more atoms. The parameter dependency as done in this report will be interesting when the system
size, thus the complexity, increases. After these necessary steps, the workflow can be used to do a more
thorough determination of the parameter dependency. The results from this can be used to improve
the workflow. Once the workflow has had more rounds of evaluation, the next step is to compare
the outcomes of the code to the outcomes from experiments to determine the capability to predict
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material properties. Once the correlation between the outcome of the code and the real-live properties
is known, this workflow will be a tool for designing materials with desirable properties.
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