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Chapter 1

Introduction

The word polymer originates from two Greek words: poly meaning many and
meres meaning parts. It implies that a polymer consists of a large number of
repeating units. Proteins, cellulose, and silk are examples of polymers found
in nature, and polystyrene, polyethylene, and nylon are examples of synthetic
polymers. Figure 1.1 shows the chemical structure of ethylene and polyethyl-
ene. The repeating unit is the CH2-(methylene-) group and the number of
them is called the degree of polymerization. The name polyethylene denotes
that the polymerization is based on ethylene [1, 3].

The electronic structure of carbon atoms, 1s22s22p2, allows for each carbon
atom to form four bonds (σ bonds) [4, 5, 6]. Polymers that are built from
carbon atoms with four bonds are called non-conjugated polymers, such as
polyethylene, figure 1.1. Non-conjugated polymers have a large electron band
gap, resulting in them being insulators and not optically active. For example,
the optical band gap of polyethylene is of the order of 8 eV.

......

(a) (b)

Figure 1.1: (a): ethylene. (b): polyethylene. The repeating unit is the CH2-
(methylene-) group and the number of them is called the degree of polymer-
ization. The name polyethylene denotes that the polymerization is based on
ethylene. In polyethylene each carbon atom makes four bonds, and hence is a
non-conjugated polymer [1]. The most common industrial use of polyethylene
is in packaging (plastic, plastic bags, ...) [2].
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Introduction

Figure 1.2: Chemical structure of poly para phenylene ethynylene (poly-PPE).
n is the number of repeat units along the polymer (degree of polymerization).
Poly-PPEs are a class of strongly conjugated polymers with a rigid backbone
consisting of aromatic phenyl rings bridged by alternating single and triple
carbon bonds.

Polymers that have connected π-orbitals with delocalized electrons, and
alternating single and multiple bonds are called conjugated. The π-overlap
network results in the formation of π electronic states extended along the
polymer chain. The electronic band gap of conjugated polymers is of the order
of 1-4 eV. As such, they exhibit low energy excitations and semiconductor
behaviour [4, 5, 6].

Conjugated polymers have attracted a lot of interest due to their variable
functional properties and application potential, e.g., in biochemical sensors [7,
8, 9, 10, 11, 12], lasers [13], light emitting diodes (LEDs) [14, 15], organic
transistors [16], and photovoltaic devices [17, 18]. The ease of processability
and band gap tunability of polymeric semiconductors facilitates the realization
of this potential, since it provides the opportunity for targeted manipulation
of electronic and morphological properties of single polymer chains and their
aggregates. This, in turn, can be achieved by synthetic strategies, exploitation
of properties of functional side chains, and/or solvent-induced transitions [19].
One specific example in which both morphological and electro-optical prop-
erties of polymers are purposefully modified is highly fluorescent conjugated
polymer dots for fluorescence imaging in live cells [20]. Less toxicity together
with flexibility and biocompatibility make these polydots attractive substitutes
for their inorganic counterparts [19, 21].

Among fluorescent polymers, poly para phenylene ethynylenes (poly-PPE)
(see the chemical structure in figure 1.2) are a class of strongly conjugated
polymers with a rigid backbone consisting of aromatic phenyl rings bridged
by alternating single and triple carbon bonds. They absorb and emit light
in a range from ultraviolet (absorption) to visible (emission) [19]. Poly-PPEs
can be prepared in a variety of morphologies, ranging from extended single
chains to polydots, depending on the choice of functionalizing side chains and
solvent combinations for processing. In particular, poly-PPEs can be used in
fluorescence imaging and sensing [20, 19, 21] since their fluorescence intens-
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ity is sensitive to the presence of other co-solutes. Due to the significance
of polymer conformations for the photophysical properties of functionalized
PPEs, it is desirable to steer the tendency of the polymer to stay in single
strands or to aggregate in a particular solvent by rational manipulations [22].
It has been shown [19, 21, 22] that modification of side chain functionalization
by, e.g., substituting surfactants with varying degree of hydrophobicity and
solute-solvent or solvent-air interactions, can lead to controlled morphologies
and, concomitantly, optical properties. In flexible and semi-flexible polymers
conjugation along a single chain may be broken [23, 24, 25] due to a substantial
out-of-plane torsion angle between two adjacent repeat units. However, such
a simple criterion may be insufficient to describe and interpret the complex
interplay between the actual chemistry of the backbone, functionalization by
side chains, solute-solvent interactions and their cumulative effect on the loc-
alization characteristics of excitations, and hence, the electronic and optical
properties of polymer.

Our goal is to model the optical properties of poly-PPE in complex mor-
phologies [19, 22, 26] using a computational multiscale approach which allows
the analysis of the interplay between morphology and electronic excitations.

Upon an external perturbation, a quantum mechanical system is promoted
from its ground state (lowest energy state) to an excited state with higher
energy. The possible processes of direct and inverse photoemission, as well as
absorption are sketched in figure 1.3.

In direct photoemission, by perturbing the system by an incoming photon
with energy hν, an electron at its initial state with energy Ei absorbs the
energy, moves to a state with higher energy Ef , and leaves the sample with
kinetic energy Ekin. The level with energy Ei that was occupied by an elec-
tron previously, is called the hole. In inverse photoemission, injection of an
electron into the sample leads to a photon being released, accompanied by the
electron dropping to a lower energy state. In both direct and inverse pho-
toemission the electron can be considered as a free electron separated from
the other electrons in the sample. Direct and inverse photoemission spectra
can be interpreted as the densities of the occupied and unoccupied states and
can be described by employing single particle Schrödinger-like equations with
an effective potential. In absorption an electron is excited from an occupied
energy level (valence state) to an unoccupied level (conduction state) [27].
Therefore, the excited electron and hole cannot be considered separately and
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(a) Direct photoemission (b) Inverse photoemission (c) Absorption

Figure 1.3: Schematic representation of (a) direct photoemission (b) inverse
photoemission and (c) absorption in a molecule [27]. Ei is the initial and Ef
is the final energy of the electron. Evac is the energy of the free electron at
rest. Ekin denotes the kinetic energy, εc (εv) indicates conduction (valence)
energy level, and Keh denotes electron-hole interaction.

effective two-particle equations including the interaction between the electron
and hole are required to properly describe coupled excitations [27].

In this thesis, multiscale modeling techniques are utilized. On ab initio
level, the ground state properties of the molecules are well described by Dens-
ity Functional Theory (DFT). The treatment of electronic excitations poses
a significant challenge [28, 29, 30, 31, 32, 33, 34, 35, 36]. To describe ab-
sorption which involves coupled electron-hole pairs, one needs to go beyond
static DFT [27]. One possible approach is to calculate electronically excited
states is to couple DFT to Many-Body Green’s Function Theory. This ap-
proach is based on a set of Green’s function equations, which contain the
nonlocal, energy-dependent electronic self-energy Σ. Starting from an effect-
ive one-particle Hamiltonian, such as the Kohn-Sham [37, 38] Hamiltonian
in DFT as a zero-point solution, Σ can be approximated using Hedin’s [39]
GW approach (G: Green’s function, W : screening potential). Electron-hole
interactions can then be captured using the Bethe-Salpeter (BSE) equation
(GW -BSE) [40, 41, 42, 27, 43, 44]. The application of the GW -BSE tech-
nique has recently received a lot of attention in typical quantum-chemical
studies and has been shown to hold advantages over more traditional ap-
proaches [45, 42, 46, 47]. This is why in this work [48, 49], the GW -BSE
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method was the method of choice to describe electronic excitations.

After discussing basic polymer theory in chapter 2, the many-body problem
of electronic structure theory is introduced in chapter 3 and the conceptual and
practical aspects of DFT are summarized. The basics of Green’s function the-
ory, Hedin’s equations and the GW approximation, as well as Bethe-Salpeter
equation are explained in chapter 4.

For the purpose of designing organic materials with desired optoelectric
properties, molecular conformations are an important factor [50, 51]. Due to
the very high computational cost of quantum chemical approaches, one in-
evitably needs to employ classical techniques, molecular mechanics (MM) or
molecular dynamics (MD), to obtain the required information about conform-
ational properties. This is particularly the situation for macromolecules, such
as solvated polymer chains. Classical techniques use force fields, with atoms,
or groups of atoms, represented by point masses interacting via empirical po-
tentials.

In order to investigate the effects of morphology, side chains, and solvents
on electronic excitations in poly-PPE, strategies are required to couple quantum
mechanical techniques to classical environments [52, 53, 54]. In this work, a
quantum-classical QM/MM approach based on a combination of GW -BSE
and a polarizable force field is used to evaluate electronic excitations in solv-
ated poly-PPE with different side chains [48]. Linking GW -BSE to a classical
environment represented at atomistic resolution by a polarizable force field al-
lows for the determination of optical properties in realistic environments from
the self-consistent solution of the coupled QM/MM system. With this new
approach, it is possible to disentangle the conformational (as a result of side
chain-solvent interactions) and electronic (due to local electric fields and po-
larization effects) contributions to the absorption spectra. The details of our
QM/MM approach is described in chapter 5.

In this thesis, the aim is to obtain structural information of solvated poly-
PPE using MM/MD techniques and to use the MM/MD geometries for further
quantum mechanical calculations of optical excitations. In multiscale simula-
tions the structural descriptions at different levels of resolution must be com-
patible with each other. For example, bond length deviations or fluctuations
in angles and torsions can lead to substantial artifacts if the backmapped/fine-
grained geometries do not match the potential energy surfaces (PES) of the
underlying quantum mechanical system.

Due to the above reasons, existing all-atom force fields may need to be
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Figure 1.4: Chemical structure of diphenylethyne (DPE). It consists of two
aromatic rings bridged by a sequence of single bonds and very stiff triple
bond.

refined for new compounds. Such a situation regularly arises for conjug-
ated polymers, since conjugation can depend sensitively on conformation. In
(semi)flexible polymers, conjugation along a single chain can be broken due
to large out-of-plane torsions between two repeat units [23, 24, 25]. In gen-
eral, details are specific to the backbone chemistry, functionalization by side
chains, and solute-solvent interactions. Characteristics of conjugation are also
directly influenced by the localization behavior of electronic excitations and
hence the electronic and optical properties of the polymer. Some of the un-
derlying challenges related to reconciling atomistic detail between quantum
and all-atom resolutions are discussed in chapter 6. Due to the importance
of backbone torsions in poly-PPE on conjugation and hence excitations, we
compare PESs [48] for phenyl rotations in diphenylethyne (DPE, see figure 1.4)
obtained using DFT to the ones from all-atom simulations using a standard
force field and experimental data. Significant discrepancies were found [48] and
we discuss the observed discrepancies and their implications in determining of
excited state properties using GW -BSE [48]. To eliminate the differences, the
atomistic force field needed to be re-parameterized. Furthermore, equilibrium
geometries of n-PPE oligomers with n = 1, 2, . . . , 10 were obtained using the
modified force field in vacuum. The associated excitation energies using GW -
BSE were then benchmarked.

In chapter 7 our investigations of optical properties of 2,5-dinonyl poly para
phenylene ethynylene oligomers in dilute solutions with toluene and water are
discussed. Using our modified force field [48], conformations of 2,5-dinonyl-
10-PPE are explored in different solvents with classical MD simulations. Elec-
tronic excitations are calculated based on GW -BSE. The results indicate that
the electronic environment contributions are negligible compared to the con-
formation dynamics of the conjugated poly-PPE [49].
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In chapter 8 conformations of 2,5-dinonyl-10-PPE in water are studied us-
ing MD simulations. The results show that 2,5-dinonyl-10-PPE exhibits an
extended backbone with nonyl side chains aggregated toward the backbone.
The backbone exhibits bending. MD simulations of 2,5-diethylhexyl-10-PPE
in water show that the backbone forms an extended structure and the ethyl-
hexyl side chains are aggregated toward the backbone. The optical spectra for
different structures of 2,5-dinonyl-10-PPE are investigated using our QM/MM
techniques and presented in this chapter.

Finally, conclusions and open questions are presented in chapter 9.
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Chapter 2

Basic polymer concepts

2.1 Introduction
In this chapter we present the basic concepts in polymer physics. We briefly
describe the ideal chain models to study the sizes and shapes of polymers in
solutions. Some of these concepts are required for the analysis of conformations
of polymers in solutions obtained by classical MD in chapter 8. This chapter
is based on Refs. [55, 56, 57].

2.2 Polymer conformation
A polymer is a molecule consisting of many repeating units called monomers
(chemical monomers), see figure 2.1 and 2.2, that are linked together through
covalent bonds. Figure 2.1 shows a schematic representation of a linear poly-
mer using a simple bead and stick model. Each bead represents a monomer
connected to its two nearest neighbours (sticks in figure 2.1). Many properties
of polymers are determined by their degree of polymerization n, which defines
the number of monomers (the number of beads in figure 2.1). The chemical
composition of the constituent monomers and the polymer microstructure are
important factors in determining their properties. Structurally, polymers are
either homopolymers, consisting of one type of monomer, or heteropolymers,
consisting of different types of monomers. Polymers can also have different
types of architectures: linear, ring, star-branched, H-branched, comb, ladder,
dendrimer, randomly-branched (see figure 2.2), to mention some [55, 56].

Analogously to the secondary structure of proteins, polymers can take
different conformations. Conformation is controlled by three factors: the flex-
ibility of the polymer chain, interactions between monomers, and interactions
with environment. The strength of these interactions can be changed, for in-
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Figure 2.1: The bead and stick model. Each bead represents a monomer that
are connected to each other with covalent bonds (sticks).

(a) (b) (c) (d) (e) (f)

Figure 2.2: Schematic representations of polymer architectures: (a) linear, (b)
ring (c) star-branched, (d) comb, (e) ladder, and (f) a dendrimer [55].

stance by temperature, and as a result the conformation of the polymer chain
changes.

In order to study polymer conformations, one can start from an ideal
chain model. In the ideal chain model there are no interactions between the
monomers (see figure 2.1). A polymer is then considered as n + 1 backbone
atoms {D} connected to each other with a bond vector {r}. A bond vector
ri connects atom Di−1 to Di. By summing over all the bond vectors, the
end-to-end distance can be measured as

Rn =
n∑
i

ri. (2.1)

Considering a conformational ensemble, the average end-to-end vector is zero
since there is no preferred orientation. However, the mean square end-to-end

10
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distance can be calculated as

〈R2〉 =
n∑

i,j=1
〈ri · rj〉. (2.2)

〈R2〉 is an important quantity in describing flexibility of polymers. If one
considers that all the bond vectors have the same length l = |ri| and that
the angle between adjacent bond vectors is ξij , the mean square end-to-end
distance reads

〈R2〉 =
n∑

i,j=1
〈ri · rj〉 = l2

n∑
i,j=1
〈cos (ξij)〉. (2.3)

Several models based on ideal chains are presented in the following sections.
The interactions between monomers that are far apart from each other along
the polymer chain are ignored in these models. Each model makes its own par-
ticular assumptions about the allowed values of bond angles (ξ) and torsions
(φ).

The Freely Jointed Chain Model

In the freely jointed chain model the bond length is constant (l = |ri|) and
there are no correlations between the orientations of different bond vectors
(〈cos(θij)〉 = 0 for j 6= j). Therefore

〈R2〉 = nl2, (2.4)

which only includes the n non-zero values for i = j.
In a real chain there are correlations between the bond vectors. As such,

one can consider that there are no correlations between the bond vectors that
are far apart from each other, that is,

lim
|i−j|→∞

〈cos(ξij)〉 = 0. (2.5)

One can then write eq. 2.3 as

〈R2〉 = Cnnl
2, (2.6)

where the coefficient Cn is called Flory’s characteristic ratio [58], which is the
ratio of the end-to-end distance of a real chain to the end-to-end distance of
a freely jointed chain with the same number of monomers as the real one. It
can be written as [55]

11
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...

...
...

Figure 2.3: Schematic representation of freely rotating chain model. ξ is the
bond angle. The correlation between bond vectors ri and rj that are separated
from each other by distance |i− j|, is l2 cos(ξ)|i−j|.

Cn = 1
n

n∑
i=1

n∑
j=1
〈cos(ξij)〉︸ ︷︷ ︸
C′i

. (2.7)

C ′i is a number defined for any bond vector i. For an infinite chain, C ′i = C∞
and hence the mean square end-to-end distance for an infinite ideal chain is

〈R2〉 ∼= C∞nl
2. (2.8)

Polymers have many universal properties that do not depend on their chem-
ical composition. A simple universal description of all ideal polymers can be
given by an equivalent freely jointed chain [55]. The mean-square end-to-end
distance 〈R2〉 and the contour length (maximum end-to-end distance Rmax) of
the equivalent freely jointed chain are the same as the real polymer, however,
the equivalent freely jointed chain has N = R2

max
C∞nl2

effective bonds of length
b = 〈R2〉

Rmax
. The quantity b is called the Kuhn length [59]. The Kuhn length

is the length scale that gives the segment size or the effective monomer size.
For synthetic polymers the value of Kuhn length is around 1 nm. For DNA it
is 100 nm [57]. Persistence length, lp, describes the length scale in which the
polymer chain bends and loses its memory [57]. It is related to b as

b = 2lp. (2.9)

12



Basic polymer concepts

The Freely rotating chain model

In the freely rotating chain model all the bond vectors have the same length
l but the bond angles between neighbouring bond vectors are fixed (ξ) (see
figure 2.3). Different torsion angles are, however, equally probable. As a
result, there are correlations between the bond vectors,

〈ri · rj〉 = l2 cos(ξ)|i−j|. (2.10)

By increasing the distance between i and j, cos(ξ)|i−j| decays rapidly and can
be written as

cos(ξ)|i−j| = exp
(
− |i− j|

sp

)
, (2.11)

where sp is the persistence segment [55]

sp = − 1
ln(cos(ξ)) . (2.12)

Then, the mean square end-to-end distance can be written as

〈R2〉 = nl2
1 + cos(ξ)
1− cos(ξ) . (2.13)

By multiplying sp with the segment length (l), the persistence length can be
obtained as

lp ≡ spl = − lp
ln(cos(ξ)) . (2.14)

Worm-like chain model

The freely jointed chain model has no bending rigidity. The Worm-like chain
model includes it. It assumes the bond angles ξ to be very small. It is used
to describe semi-flexible chains. By expanding cos(ξ) around ξ = 0, the per-
sistence segment can be written as

sp = − 1
ln(cos(ξ))

∼= −
1

ln(1− ξ2

2 )
∼=

2
ξ2 , (2.15)

and the persistence length lp can then be obtained as

lp = lsp ∼=
2l
ξ2 . (2.16)
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Due to the addition of bending regidity, the worm-like chain model has a large
Flory’s characteristic ratio,

C∞ = 1 + cos(ξ)
1− cos(ξ)

∼=
1 + 1− ξ2

2

1− 1 + ξ2

2

∼=
4
ξ2 , (2.17)

and its Kuhn length is b = 〈R2〉
Rmax

= C∞nl2

Rmax
= C∞l = 2lp. The mean square

end-to-end distance for worm-like chain can be written as

〈R2〉 = 2lpRmax − 2l2p
(
1− exp

(
− Rmax

lp

))
. (2.18)

In the limit of a very long worm-like chain (Rmax > lp), the mean square
end-to-end distance can be approximated as 〈R2〉 ∼= bRmax and in the limit of
the chain being much shorter than persistence length (Rmax � lp), it can be
approximated as 〈R2〉 ∼= R2

max.

2.3 Radius of gyration

For a linear chain, the mean square end-to-end distance is a good measure of
the size of the polymer. However, for a branched polymer or a ring it is not
obvious what the ends are. In this case the radius of gyration can be employed.
The radius of gyration can be determined by experimental techniques such as
static light scattering, small angle neutron scattering, and/or X-ray scattering.
The radius of gyration is defined as the average square distance between the
monomers and the center of mass of the polymer Rcom as

R2
g ≡

1
N

N∑
i=1

(R −Rcom). (2.19)

This quantity is usually averaged using an ensemble of conformations

〈R2
g〉 ≡

1
N

N∑
i=1
〈(R −Rcom)〉. (2.20)

For a polymer consisting of identical monomers it can be written as

〈R2
g〉 ≡

1
N2

N∑
i=1

N∑
j=i
〈(Ri −Rj)2〉. (2.21)
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2.3.1 Excluded volume

The aforementioned models are based on the assumption that the interactions
between monomers that are far apart along the chain can be neglected. In
reality, these monomers interact with each other if they come close together.
Each monomer has a volume that other monomers cannot occupy (steric ef-
fect). This is referred to as excluded volume. Kuhn [59] and Flory [60] realized
that the statistical properties of the chains change by considering excluded
volume. As a consequence, 〈R2〉 is proportional to higher values of n

〈R2〉 ∝ n2ν , (2.22)

where n is the degree of polymerization and ν is the excluded volume para-
meter. Theoretical modelling of excluded volume chains is complicated due to
the inclusion of steric effects, van der Waals interactions, and interactions with
solvent. Historically, P. G. de Gennes (1972) [61] used renormalization group
to include excluded volume effects. However, even with computer simulations
modelling non-ideal chains remains a challenge [62].

2.4 Thermodynamics of polymers in solutions
In the previous section the excluded volume interaction (εev) was briefly
discussed. This interaction depends on the type of polymer chain and the
solvent [57]. Depending on temperature, this interaction can make the poly-
mer either to be dispersed (εev � kBT , excluded volume effect) or collapsed
(εev � kBT ). Different kinds of solvents exist for a polymer. If the solvent
dissolves the polymer well it is called a good solvent. This effect is similar to
swelling of polymer chain due to excluded volume effect at high temperatures.
If the solvent does not dissolve the polymer it is called a nonsolvent, poor
solvent or bad solvent.

There is a temperature, at which the repulsive and attractive interactions
cancel out and the polymer chain behaves like an ideal chain. This temperature
is called the Θ-temperature. If T > Θ the polymer chain swells like in a
good solvent. If Θ < T , the chain shrinks as in a bad solvent [57, 63, 55].
Polymer solutions in good solvent are examples of homogeneous mixtures. If
the mixture includes several different regions with different composition is
called a heterogeneous mixture [55, 56].

Considering a polymer solution, the properties of the mixture and its ther-
modynamics depend on the quality of the solvent and the interactions between
the solvent and the polymer. The competition between entropy and energy
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determines whether the equilibrated solution is homogeneous or heterogen-
eous. These properties can be described within the mean-field lattice model of
Flory-Huggins [64, 65].

In this model two species with volume fraction Φ (for polymer chain) and
(1 − Φ) (for solvent) are considered. By assuming that there is no volume
change upon mixing the two species, the entropy of mixing can be obtained by
counting the number of microstates on a lattice. The average pairwise energy
interaction of mixing in constant volume can be calculated by the interaction
between neighbouring lattice sites. Finally, the free energy (∆Fmix = ∆Emix−
T∆Smix) reads [55, 56]

∆Fmix = kBT
[Φ
n

ln(Φ) + (1− Φ) ln(1− Φ) + χΦ(1− Φ)
]
, (2.23)

where n is the number of monomers in the polymer chain. The first two terms
in eq. 2.23 have an entropic origin and the last term is due to the energy of
mixing. χ is the Flory-Huggins parameter which characterizes the difference
of interaction energies of the two species in the mixture. χ < 0 (χ > 0),
means that there is a net attractive (repulsive) interaction between the solvent
and polymer. In case of net zero interaction, the Θ-solvent (Θ defines the
temperature that the net interaction is zero). For a detailed derivation of the
free energy of mixing, please see Ref. [55, 56].

In the Flory-Huggins theory, the volume does not change by mixing species.
However, in real polymers volume changes. This effect and other deviations
from the lattice model can be added to the χ parameter. χ depends on polymer
compositions, chain lengths, and temperature [55]. The temperature depend-
ence of χ can be written empirically, as a sum of temperature independent
entropic part and temperature dependent enthalpic part as

χ(T ) ∼= A+ B

T
. (2.24)

The parameters A and B are weakly depend on the lengths of the chains and
their compositions [55].

2.5 Polymer dynamics

Considering a small particle in a liquid, the velocity v of the particle under
an applied force f reads as

f = ζv, (2.25)
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where ζ is the friction coefficient. The Einstein relation gives the relation
between the friction (ζ) and the diffusion (D) coefficients of the particle,

D = kBT

ζ
. (2.26)

If the size of the particle is R, then the time τ that it takes for the particle to
move a distance of R is proportional to the friction coefficient,

τ ≈ R2

D
≈ R2

kBT
. (2.27)

If the particle is spherical and has radius R and it moves in a Newtonian
liquid (the stress σ is proportional to the shear rate γ̇, σ = ηγ̇, η is viscosity
coefficient), the relation between the friction coefficient and the viscosity and
radius of sphere is given by Stokes’ law

η = 6πηR. (2.28)

The Stokes-Einstein relation then gives the diffusion coefficient as

D = kBT

6πηR. (2.29)

The Stokes-Einstein relation can be employed in order to determine the size of
a spherical particle R from the measured diffusion coefficientD. The measured
size is called the hydrodynamic radius [55]. The aforementioned calculation is
for a particle moving in a liquid.

Rouse model

Rouse [66] developed the first model for the dynamics of polymers in implicit
solvent, using a bead and spring model (see figure 2.4). In this model, the
polymer chain is represented by n beads which are interacting with each other
by springs. Each bead has a friction coefficient ζ independent from others,
and the total Rouse chain friction coefficient ζR can be given as

ζR = nζ. (2.30)

Using Einstein relation, the diffusion coefficient of the Rouse chain is given as

DR = kBT

nζ
. (2.31)
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Figure 2.4: A bead and spring model. The polymer chain is represented by n
beads, which are interacting with each other by springs with root-mean-square
size of l.

The Rouse time, τR, is defined as the time that the polymer moves a distance
of the order of its size R is:

τR ≈
R2

DR
= ζnR2

kBT
. (2.32)

From the scaling argument the size of a polymer chain is:

〈R2〉 ≈ lnν .

where ν is the scaling exponent [63]. For an ideal linear chain ν = 1
2 . The

Rouse time can then be written as [55]

τR ≈
ζl2n1+2ν

kBT
, (2.33)

and the time scale for movement of each bead in polymer chain, the Kuhn
monomer relaxation time, [55] is

τ0 ≈
ζb2

6π2kBT
n2. (2.34)

The polymer does not move at time scales smaller than τ0 (elastic response),
and it exhibits a diffusive motion on time scales longer than τR. τ0 < t < τR,
is the viscoelastic response regime [55].
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The Rouse model disregards hydrodynamic interactions due to the move-
ment of the other beads and it assumes that the beads interact with each other
only via connecting springs.

Zimm model

The Zimm [67] model includes hydrodynamic interactions between the monomers.
They are important for polymers in dilute solutions. The Zimm diffusion coef-
ficient is given as

DZ ≈
kBT

ηslnν
. (2.35)

The Zimm time, τZ
τZ ≈ τ0n

3ν , (2.36)

is different from the one provided by the simpler Rouse model, eq. 2.33.
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Chapter 3

Density Functional Theory

3.1 Introduction
Understanding of many-body interacting system of electrons and nuclei re-
quires electronic structure methods such as Density Functional Theory for the
description of electronic and structural properties of systems. This chapter
introduces the many-body particle Hamiltonian of a system of interacting elec-
trons and nuclei and reviews the essential definitions and formulations that
yield the single particle Kohn-Sham equations. For detailed description, see
Refs. [68, 69, 70, 71].

3.2 The Many-Body Hamiltonian
The question of how to describe a system of many-body interacting electrons
traces back to decades ago [38, 37]. The difficulty is not because the related
equations of motions are not known, but in how to solve them. The non-
relativistic Hamiltonian of a system of interacting electrons and nuclei can be
written as

Ĥ =
Nn∑
I=1

P̂2
I

2MI
+ 1

2

Nn∑
I=1

Nn∑
I′=1
I′ 6=I

ZIZI′e
2

|RI −RI′ |

+
N∑
i=1

p̂2
i

2mi
+ 1

2

N∑
i=1

N∑
j=1
j 6=i

e2

|ri − rj |
−

N∑
i=1

Nn∑
I=1

ZIe
2

|ri −RI |
(3.1)

= T̂n + V̂nn︸ ︷︷ ︸
Ĥn

+ T̂e + V̂ee + V̂en︸ ︷︷ ︸
Ĥel

.
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The system consists of Nn atomic nuclei with mass MI and charge ZI at pos-
itions RI and N electrons with mass m and charge −e (e > 0) at positions ri.
Index I runs over nuclei and i over electrons. In eq. 3.2 , T̂n (T̂e) is the kinetic
energy of the nuclei (electrons). V̂nn (V̂ee) is the internuclear (interelectronic)
Coulomb repulsions. V̂en is the electron-nuclear Coulomb interaction.

The obstacle is how to solve the time-independent Schrödinger equation
for a system of N +Nn interacting particles in which the number of electrons
and nuclei is of the order of Avogadro’s number ∼ 1023:

[Ĥn + Ĥel]Ψ({r}, {R}) = EΨ({r}, {R}). (3.2)

where E is the eigenvalue and Ψ({r}, {R}) is the eigenfunction of the coupled
electronic-nuclear system which is a function of all electronic ({r} = r1, r2, . . . ,

rN ) and nuclear ({R} = R1,R2, . . . ,RNn) variables. E gives the total energy
of the system and Ψ({r}, {R}) yields the electron distribution.

One way out of this dilemma is to simplify the Hamiltonian [68, 69, 70, 71].

3.3 Born-Oppenheimer approximation
Since the masses of electrons (mi) are much less than the masses of nuclei
(MI), mi

MI
∼ O(10−4 − 10−5), electrons move much faster than nuclei and

they quickly adjust to any nuclear displacement. This is the basis of the so-
called Born-Oppenheimer approximation [72]. As such, one can separate the
electronic and nuclear motions. Within this approximation, the inverse mass
of a nucleus ( 1

MI
) can be considered as a small perturbation parameter and one

can perform a perturbation series with respect to 1
MI

. As a consequence, the
nuclear kinetic energy (T̂n = −

∑
l

~2

2MI
∇2
I) and the nuclear-nuclear potential

(Vnn) can be taken independent of the electrons. Hence, they can be considered
fixed during the motion of electrons. Therefore, the Schrödinger equation for
electrons can be written as:

ĤelΨel({r}; {R}) = EelΨel({r}; {R}). (3.3)

where nuclear coordinates {R} can be considered as fixed parameters of the
Hamiltonian for the electronic system. Eel is eigenvalue of the electronic
Schrödinger equation and is called the electronic energy [68, 69, 70, 71]. The
electronic Hamiltonian of the system Ĥel is:

Ĥel = T̂e + V̂ext + V̂int, (3.4)
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in which T̂e, V̂ext, and V̂int are:

T̂e =
∑
i

− ~2

2m∇
2
i , (3.5)

V̂ext = V̂en = −
N∑
i=1

Nn∑
I=1

ZIe
2

|ri −RI |
, (3.6)

V̂int = V̂ee = 1
2

N∑
i=1

N∑
j=1
j 6=i

e2

|ri − rj |
, (3.7)

From now on, we use Hartree atomic units ~ = m = e = 4π
ε0

= 1.

3.4 Kohn-Sham Equations
The electronic Schrödinger equation within the Born-Oppenheimer approxim-
ation, eq. 3.3 is not exactly solvable because of electron-electron interactions.
Several quantum chemistry approaches have been proposed in order to solve it.
Methods include Hartree [73], Hartee-Fock [74], configuration interaction [75]
method, variational Monte Carlo [76, 77], etc. which are based on optimizing
many-body wave-functions. These methods severely suffer from the dimen-
sionality bottleneck as the computational cost grows as ∼ N4−6 with system
size N . Furthermore, exchange and electron correlations are not considered in
the Hartree method. Electron correlations are not included in Hartree-Fock
method, however, the exchange effects are included in terms of a single Slater
determinant to account for the Pauli exclusion principle. All these approaches
aim to predict and explain experimental measurements and, therefore, one
needs to calculate the expectation values of observables. For this the know-
ledge of the full wave-function is not mandatory [68, 69, 70, 71].

DFT is based on the original works of Hohenberg and Kohn [38, 37] in
which they indicate that all the information of the correlated many-body
system can be described as a functional of the ground state density. The
Hohenberg-Kohn theorems [38, 37] for a system of N interacting fermions are
the following:

1. There is a one-to-one correspondence between the ground state density
n0(r) and external potential Vext(r) applied to a system of interacting
fermions.

2. The energy of a system of interacting particles is a universal functional
of its density n(r), E[n(r)], and the exact ground state energy of the
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system is the global minimum of this energy functional.

According to the second theorem there is a variational principle acting on
density. The ground state density in terms of the ground state wave-function
of an N -electronic system Ψ0(r1, r2, ..., rN ) is given by

n(r) = N

∫
dr2...drN |Ψ0(r, r2, ..., rN )|2. (3.8)

where N is the number of electrons. In order to find the functional form of
the total energy in terms of density one can start to take out the parts that
have obvious functional form and try to make the unknown parts as small as
possible. As such, the total ground state energy can be written in terms of
ground state density as

E[n(r)] = 〈Ψ0|H |Ψ0〉 (3.9)

= 〈Ψ0| T̂e |Ψ0〉+ 〈Ψ0| V̂int |Ψ0〉+
∫
dr Vext(r)n(r). (3.10)

The electron-electron Coulomb interaction (Vint or Vee) can be written in
terms of the known Hartree part (VH) and an unkown term called exchange-
correlation term (Exc[n(r)]). Subsequently, one can rewrite eq. 3.10 as

E[n(r)] = 〈Ψ0| T̂e |Ψ0〉+ EH + Exc[n(r)] +
∫
dr Vext(r)n(r) (3.11a)

= 〈Ψ0| T̂e |Ψ0〉+ 1
2

∫
drdr′ n(r)n(r′)

|r− r′ | + Exc[n(r)]

+
∫
dr Vext(r)n(r). (3.11b)

In eq. 3.11b the unknown terms are kinetic energy functional (〈Ψ0| T̂e |Ψ0〉)
and the exchange-correlation functional (Exc[n(r)]).

In order to find the functional form of kinetic energy, Kohn and Sham [37]
offered a procedure in 1965 that replaces the original interacting many electron
problem with a system of independent auxiliary electrons subjected to an
effective potential called the Kohn-Sham potential (VKS) in a way that the
ground state density of the original interacting system is equal to that of non-
interacting one. In this way, one can write the kinetic energy term in terms of
auxiliary single particle wave functions (φi(r)) of the non-interacting system:

T0 =
N∑
i=1

∫
drφi(r)∗−∇

2
r

2 φi(r), (3.12)
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and the correlation part of kinetic energy can be added to the unknown
exchange-correlation term (Exc).

The Kohn-Sham (KS) energy functional is written as:

E[n(r)] = T0[n(r)] +
∫

dr n(r)Vext(r)

+ 1
2

∫
drdr′ n(r)n(r′)

|r− r′ | + Exc[n(r)], (3.13a)

where n(r) is the total electron density of the system which can be written in
terms of single-particle wave-functions φi(r) as

n(r) =
N∑
i=1
|φi(r)|2. (3.14)

By variation of the total energy functional E[n(r)] with respect to dens-
ity n(r) at a fixed particle number N and by using eq. 3.14 one can obtain
the Euler equations of a system of non-interacting particles, the Kohn-Sham
equations:

{
− ∇

2

2 +
∫

dr′ n(r′)
|r− r′ | + Vext(r) + Vxc(r)

}
φi(r) = εiφi(r) (3.15a)

{
− ∇

2

2 + [VH + Vext(r) + Vxc(r)]︸ ︷︷ ︸
VKS︸ ︷︷ ︸

HKS

}
φi(r) = εiφi(r), (3.15b)

where εi is the Lagrange multiplier coming from the normalization of the
single-particle wave function as a constraint. By obtaining eq. 3.15 the ori-
ginal many-particle equation is transformed to a system of N single particle
equations. All effects due to exchange of electrons and electron correlations
are included in the exchange-correlation potential Vxc(r) in eq. 3.15:

Vxc[n(r)] = δExc[n(r)]
δn(r) . (3.16)

HKS in eq. 3.15 is the Kohn-Sham Hamiltonian and VKS the Kohn-Sham
potential. If one knows the exact form of exchange-correlation (xc) functional
the mapping is exact. However, there is no exact expression for exchange-

25



Density Functional Theory

correlation potential and therefore approximation needs to be used for it [68,
69, 70, 71].

3.5 Exchange Correlation Functional

The simplest approximation one can make for exchange correlation part is the
Local Density Approximation (LDA) which was described in seminal paper of
Kohn and Sham [37]. Energy of a system of non-interacting electrons (electron
gas) at position r and density n(r) can be approximated by the energy of
a homogeneous electron gas having the same density as the electron gas at
position r

ELDA
xc [n(r)] =

∫
dr n(r)εhomxc (n(r)), (3.17)

in which εhomxc (n(r)) is the energy of homogeneous electron gas with density
n(r) at position r [37, 78].

In LDA the system is considered to be homogeneous. This makes it a good
approximation for systems such as metals and sp-bonded semiconductors, in
which electronic density changes slowly [79]. For atoms and small molecules
and systems where the gradient of the electronic density is not small, LDA
overestimates binding energies and bond lengths [69]. In order to consider in-
homogeneities in the system, it is reasonable to consider derivatives of density
in the exchange correlation functional. In the Generalized Gradient Approx-
imation (GGA) [80, 81], the exchange correlation functional is assumed to
be a functional of density (n(r)) and its gradient (∇n(r)). GGA gives bet-
ter agreement with experimental structural parameters for this kind of sys-
tems [82]. GGA can be extended by considering higher derivatives of density.
The Meta-GGA approximation [83, 84] accounts for ∇2n(r). Meta-GGA is
computationally expensive and is not widely used [68, 69, 70, 71].

Another form of functionals can be constructed by combining a portion
of exchange energy from the Hartree-Fock and other approximations [85, 86].
These are the most accurate functionals available to the chemistry community
so far [69]. There are other functionals, such as the self-interaction corrected
functionals [87] where non-local corrections that reduce the self-interaction
error of local functionals are introduced [68, 69, 70, 71].
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3.6 Density Functional Theory in Practice
3.6.1 Norm-conserving pseudopotential

There is another term in the KS Hamiltonian which includes the electron-
nuclear Coulomb interactions and this is Vext(r). Electron-nuclear Coulomb
interactions are singular near the nuclear core. However, core electrons are
localized around each atom and they have a weak interaction with the core
electrons of other atoms. Therefore, the external potential generated by the
core electrons behave like a nucleus core. One can replace the external po-
tential of the original all electron problem, including those of nucleus and the
core electrons by a smooth non-singular potential known as pseudopotential
which only acts on the valence electrons. Then, the Kohn-Sham calculations
become limited to valence electrons{

− ∇
2

2 + V ps
eff ([nps], r)

}
φpsi (r) = εiφ

ps
i (r). (3.18)

where φpsi are the pseudo wave-functions with effective screened pseuodopo-
tential

V ps
eff = V ps

n (r) + V ps
H ([nps], r) + V ps

xc ([nps], r), (3.19)

Once core electrons are removed, pseudo wave-functions are nodeless in the
core region (no zero in the core region) and outside that region the pseudopo-
tential and pseudo wave-functions are the same as the all-electron ones. An
empirical or a semi-empirical pseudopotential is based on fitting the effective
potential or its ionic components to empirical data and is not transferable to
different chemical environments. Norm conserving pseudopotential is a set
of ab initio pseudopotential that are not fitted to experimental data and are
transferable. Such a pseudopotential is constructed to satisfy the following
conditions [69]:

1. The eigenvalues resulting from the pseudopotential are identical to the
all-electron eigenvalues.

2. Outside a cut-off region the pseudopotential is equal to the all-electron
potential.

3. Outside the cut-off region the pseudo wave-function is the same as the
all-electron one. At the cut-off the logarithmic derivatives of pseudo
wave-function and the all electron one is the same.
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4. Inside the cut-off region the charge from pseudopotential calculations
and all-electron calculations coincide.

The cut-off region controls the accuracy of the pseudopotential. The pseudo-
potential is more transferable if the cut-off is smaller [69].

By removing the core electrons a considerable part of total energy is dis-
regarded and hence only differences in total energy due to the valence charge
readjustment are meaningful in pseudopotential calculations [68, 69, 88].

3.6.2 Basis sets

By choosing the appropriate exchange-correlation functional and pseudopoten-
tial, HKS is defined and one can solve the Kohn-Sham equations numerically.
For this purpose one needs to use a set of basis functions in order to represent
the single-particle wave-functions. The basis functions are chosen depending
on several factors, e.g. ease of implementation, computational cost, precision
and geometry of the system [88]. In general the basis sets are either local-
ized in k space, like the plane-wave basis, or localized in real space. In this
work [48, 49], we employed Gaussian basis sets. Accordingly, we restrict our
discussion to Gaussian basis sets.

Gaussian functions are localized in Fourier space and real space. Gaussian
orbitals either can be given in polar coordinates or Cartesian coordinates as

χn,l,m(r, θ, φ) = χν(r, θ, φ) = NYlm(θ, φ)r2n−2−le−ζνr
2 (3.20)

χlx,ly ,lz(x, y, z) = χν(x, y, z) = Nxlxylyzlze−ζνr
2 (3.21)

The type of orbital is defined by the sum of lx + ly + lz. The index ν ≡ l,m

indicates different symmetries of the orbitals. By expanding the Kohn-Sham
wave-function in terms of {χν} localized at each atomic position Rµ, we have

φKS
i =

∑
νµ

ciνµχν(r−Rµ). (3.22)

A minimum basis set is the smallest number of functions. For example, for
Hydrogen it involves one s orbital.

Employing eq. 3.22 into Kohn-Sham equation, it converts to∑
νµ

ciνµ[Hνµν′µ′ − εiSνµν′µ′ ] = 0. (3.23)
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and the matrix elements of the Hamiltonian are

Hνµν′µ′ =
∫
drχ∗ν(r−Rµ)[−∇

2

2 + V ps
eff ([nps], r)]χν′(r−Rµ′), (3.24)

and
Sνµν′µ′ =

∫
drχ∗ν(r−Rµ)χν′(r−Rµ′), (3.25)

is the overlap matrix. Equation 3.23 is a general eigenvalue problem with a
symmetric matrix (H − εS). This can be solved using standard numerical
techniques.

The Kohn-Sham Hamiltonian in eq. 3.15 depends on its own solution
through density. Hence, it is a non-linear eigenvalue problem which needs to be
solved self-consistently [68, 69, 88], figure 3.1. The procedure involves updat-
ing Veff (eq. 3.19) and electronic density n(r) successively until self-consistency
is achieved. Initial density is computed using the initial configuration. Em-
ploying Poisson’s equation, the Hartree potential VH is calculated. Having
chosen the exchange-correlation potential Vxc, the matrix elements Hνµ and
Sνµ can be evaluated using eq. 3.24 and eq. 3.25. Solving the eigenvalue prob-
lem eq. 3.23 leads the single particle eigenvalues and eigenfunctions. The new
electron density is computed using eigenfunctions of eq. 3.23 and is used for
the next iteration. This procedure iterates until the self-consistency criterion
is satisfied.
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and
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Figure 3.1: Schematic representation of self-consistent solutions of Kohn-Sham
equations.
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Chapter 4

Many-Body Green’s
Functions

4.1 Introduction
Density functional theory (DFT) that was briefly described in chapter 3 is a
ground state theory. It can describe the ground state properties of a system
of interacting electrons in an external potential in the form of effective single
particle Kohn-Sham equations. However, predicting or interpreting results of
experiments like photoemission, absorption , electron-energy loss that involves
electronically excited states cannot be described by DFT since it cannot de-
scribe electron-hole excitations [27]. Accordingly, one needs to go beyond DFT
in order to describe excited-state properties of molecules.

For the description of electronically excited states, there are two methods
based on the ground of density functional theory that are commonly used. One
is time-dependent density functional theory (TDDFT) [89]. The other one is
based on many-body perturbation theory in which a set of Green’s function
equations [39, 90] is employed [27]. Electron’s self energy Σ is introduced and
proper description of electron-hole interactions is taken into account. Com-
pared to Green’s function methods, TDDFT benefits from density dependence
rather than depending on the wave function or Green’s functions but it suf-
fers from the problem of choosing exchange correlation functional and does
not account for bound excitons which are needed to describe absorption ex-
periments. Despite that DFT cannot provide a good description of excited
stated, the Kohn-Sham eigenvalues and eigenfunctions can be employed as a
starting point for further excited state calculations [27]. In this chapter, we re-
view some essentials of the many-body perturbation theory based on Green’s
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functions. Hedin’s equations [39] are presented in this chapter to describe
the absorption and emission properties of molecules [27]. For a more detailed
discussion, please see Refs. [27, 70, 71, 91].

4.2 Green’s Functions
Let |N〉 be the normalized many electron ground state of the system. Then,
the single-electron (single-particle) Green’s function at zero temperature reads
as

G(r, σ, t; r′, σ′, t′) = −i 〈N |T ψ̂(r, σ, t)ψ̂†(r′, σ′, t′) |N〉 . (4.1)

In eq. 4.1, T is the time-ordering operator, ψ̂(r, σ, t) and ψ̂(r′, σ′, t′) are an-
nihilation and creation field operators, respectively. ψ†(r, σ, t) |N〉 creates an
electron at time t and position r with spin σ, and defines (N+1)-state. By
adding an electron to the system at time t′ < t, the Green’s function yields
the probability amplitudes to detect an electron with spin σ at position r and
time t. In this case the Green’s function describes propagation of electrons.

If t′ > t, the Green’s function describes a system that an electron with
spin σ has been removed at time t and position r, and that describes the
propagation of holes. By defining a collective index for space, time and spin
variables 1 ≡ {r1, t1, σ1}, the single electron Green’s function (eq. 4.1) can be
written as

G(1, 2) = −i 〈N |T ψ̂(1)ψ̂†(2) |N〉 . (4.2)

The Single particle Green’s function is a powerful tool in order to de-
scribe fundamental properties of many-electron system like charge density,
spin density and total energy [27]. One can utilize the single-particle Green’s
function to calculate the expectation values of any single-particle operator in
the ground-state of the system. The ground-state energy of the system is con-
nected to single-particle Green’s function through the Galitskii-Migdal [92]
formula [27, 70].

However, for describing all the properties of the system the single-particle
Green’s function is not enough. For example in order to describe coupled
exciton (electron-hole pair) in optical absorption and emission, single-particle
Green’s function cannot fully describe the system. Hence, a two-particle (two-
body) Green’s function is required,

G(1, 2; 1′, 2′) = −〈N |T [ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)] |N〉 . (4.3)

In general one can write the N-particle (N-electron) Green’s function [27,
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70]as

GN (1, . . . , N ; 1′ , . . . , N ′) =

(−i)N 〈N |T [ψ̂(1) . . . ψ̂(N)ψ̂†(N ′) . . . ψ̂†(1′)] |N〉 .
(4.4)

Lehmann representation (described below) of the Green’s function allows
one to make connection between the Green’s function and the single-particle
excitation energies of the system. By using the time-dependent field operator
in the Heisenberg picture,

ψ̂(1) = ψ̂(r, t, σ) = eiĤtψ̂σ(r)e−iĤt. (4.5)

and a completeness relation∑
s

|N + 1, s〉 〈N + 1, s| = 1. (4.6)∑
s

|N − 1, s〉 〈N − 1, s| = 1. (4.7)

where |N + 1, s〉 (|N − 1, s〉) is the s-th excited state of the N + 1-electron
(N−1-electron) system with energy EN+1

s (EN−1
s ). Assuming the Hamiltonian

(Ĥ) is time-independent, the single-electron Green’s function can be written
as

G(r, σ, t; r′, σ′, t′) = −i
∑
s

e−iεs(t−t
′)fs(r, σ)fs(r′, σ′)

× [θ(t− t′)θ(εs − µ)− θ(t′ − t)θ(µ− εs)], (4.8)

where,

fs(r, σ) =

〈N | ψ̂(r, σ) |N + 1, s〉 , εs > µ

〈N − 1, s| ψ̂(r, σ) |N〉 , εs < µ
(4.9)

and

εs =

EN+1
s − E0, εs > µ

E0 − EN−1
s , εs < µ .

(4.10)

This is called the Lehmann representation of the single-particle Green’s func-
tion and fs(r, σ). fs(r′, σ′) are referred to as the Lehmann amplitudes which
describe the overlap between the ground state and excited state of the system.
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They can be interpreted as the probability amplitudes for electron addition or
removal. Using the integral representation of the step function,

θ(t− t′) ≡ θ(τ) = −
∫ +∞

−∞

dω

2πi
e−iω

ω + iη
. (4.11)

and Fourier transform of eq. 4.8 we have

G(r, σ; r′, σ′;ω) =
∑
s

fs(r, σ)fs(r′, σ′)
ω − εs + iη sgn(εs − µ) . (4.12)

Electron addition and removal energies can be obtained by finding the poles
of G in eq. 4.12 [27, 70, 71].

4.3 Connection to Spectroscopy
The Lehmann representation demonstrates the connection of the single-particle
Green’s function to photo-emission characterization. Specifically, the spectral
function A(ω) is a quantity that makes the connection,

A(ω) = 1
π

∣∣ ∫ dr lim
r′→r

Im G(r, r′, ω)
∣∣ = 1

π

∣∣Tr[Im G(ω)]
∣∣. (4.13)

By using the relation

lim
η→0+

1
x+ iη

= P 1
x
− iπδ(x). (4.14)

in which P stands for principle value, in the Lehmann representation of the
Green’s function in eq. 4.12 A(ω) is given by

A(r, r′, ω) =
∑
s

fs(r)f∗s (r′)δ(ω − εs). (4.15)

A(ω) has the same information as G. The spectral function has the following
properties [27, 70, 71]:

• Sum-rule: ∫ +∞

−∞
dωA(r, r′, ω) = δ(r− r′). (4.16)

• Ground state density: ∫ µ

−∞
dω A(r, r′, ω) = n(r). (4.17)
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• Total energy can be calculated using A(ω) and the Galitskii-Migdal for-
mula.

• Photoemission spectra can be obtained using A(ω). The photocurrent
from Fermi’s Golden rule can be evaluated as a function of A(ω) [27, 70,
71]. In a simplified picture, one could have two kinds of excitations in a
photo-emission spectrum: One is a sharp peak in spectrum originating
from quasi-particle like excitations and the second is from the satellite
structures corresponding to collective excitations which are broadened
in a given energy area. Satellites in isolated atoms and molecules do not
emerge due to their short lifetime [70].

4.4 Dyson equation and self-energy
Let us start from the equation of motion for the Heisenberg creation and
annihilation field operators ψ̂† and ψ̂ and derive a hierarchy of equations of
motion in which the N -particle Green’s function is linked to the N+1-particle
and N −1-particle Green’s functions [70, 71]. For instance, for single and two-
particle Green’s function

[i ∂
∂t1
− h0(1)]G(1, 2) + i

∫
d3v(1, 3)G(1, 3+; 2, 3++) = δ(1, 2), (4.18)

where h(1) ≡ h0(r1)δ(t1) is the single-particle term of the many-body Hamilto-
nian (or density-independent part of the effective Hamiltonian) in which h0(r) =
−∇2

2 + Vext(r). Vext is assumed to be static, and

v(1, 2) ≡ v(r, r′)δ(t− t′) = δ(t− t′)
|r− r′| . (4.19)

is the repulsive Coulomb interaction between electrons. Notation 1+ ≡ {r1, t1+
η, σ1} where η is a positive infinitesimal. Equation 4.18 is a reformulated
version of the many electron problem to a set of equations of motions of
Green’s functions. However this set of equations of motions has the same
complexity as the original many-body problem. For instance, for describing
single-particle properties which are related to two-body Green’s function, one
needs to find an approximation for the two-particle Green’s function to be ex-
pressed as a one-particle Green’s function. For two-particle properties of the
system which are related to the three-body Green’s function, one needs to ap-
proximate the three-body Green’s function in terms of the two-body Green’s
function [27, 70, 71].
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One can define an auxiliary quantity called self-energy that contains all of
the two-body effects,∫

d3 Σ(1, 3)G(3, 2) = −i
∫
d3 v(1, 3)G(1, 3+; 2, 3++). (4.20)

Using the definition of self-energy in eq. 4.18, one can obtain the Dyson equa-
tion

[i ∂
∂t1
− h0(1)]G(1, 2)−

∫
d3 Σ(1, 3)G(3, 2) = δ(1, 2). (4.21)

Using Feynamn diagram techniques one can approximate the self-energy. It
can be written as

Σ(1, 2) = −iδ(1, 2)
∫

d3v(1, 3)G(3, 3+) + iv(1, 2)G(1, 2+), (4.22)

where the first term is the Hartree potential VH

VH(1, 2) = δ(1, 2)
∫
d3 v(1, 3)n(3), (4.23)

and the second term is the so-called exchange operator. The Hartree term is
local and one can put it inside the one-particle Hamiltonian

h0(1) = −∇
2

2 + Vext + VH , (4.24)

and self-energy designates the remaining exchange part [27, 70, 71, 91]. Using
this definition, the self-energy accounts for the exchange-correlation that is, all
electron-electron interactions beyond the Hartree term. With this definition
of self-energy we have

[i ∂
∂t1

+ ∇
2
1

2 − Vext(1)− VH(1)]G(1, 2)−
∫
d3 Σ(1, 3)G(3, 2) = δ(1, 2). (4.25)

This self-energy operator accounts for two-particle effects, and in general is
a complex, non-local, and non-Hermitian operator. The real part of the self-
energy can be attributed to the exchange and correlation contributions of
quasi-particle energies and its imaginary part corresponds to the excitation
life-time [27, 70, 71, 91].
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4.5 Non-interacting limit
Most ab initio approaches are based on the effective non-interacting particle
picture. It is useful for writing the Lehmann representation of the Green’s
function in terms of single-particle orbitals {φQP

i } (quasi-particle orbitals) with
eigenvalues {εQP

i }, which they are the eigenfunctions and eigenvalues of the
effective single-particle Hamiltonian h0φ

QP
i = εQP

i φQP
i .

By using the expression for the field operator, ψ̂(r) =
∑
i φ

QP
i (r)ĉ†i

fs(r) = 〈N | ψ̂(r) |N + 1, s〉

=
∑
i

φQP
i (r) 〈N | ĉ†i |N + 1, s〉

=
∑
i

φQP
i (r)δi,s = φQP

i (r). (4.26)

and single-particle excitation energies are related to the single-particle eigen-
values as

εs = EN+1
s − E0 = εQP

s . (4.27)

One can rewrite the Lehmann representation of the Green’s function in terms
of single-particle orbitals and single particle energies as

G0(r; r′;ω) =
∑
i

φQP
i (r)φQP

i (r′)
ω − (εQP

i − µ)− iη sgn(εQP
i − µ)

. (4.28)

The same applies to its Fourier transform (τ = t− t′),

G0(r, r′, τ) = −i
∑
i

e−i(ε
QP
i −µ)τφQP

i (r)φQP
i (r′)

× [θ(τ)θ(εQP
i − µ)− θ(−τ)θ(µ− εQP

i )]. (4.29)

By differentiating eq. 4.29 with respect to time, one can derive the equation
of motion for the non-interacting Green’s function as

[i ∂
∂t1
− h0(1)]G0(1, 2) = δ(1, 2). (4.30)

By replacing the δ-function in Dyson equation eq. 4.21:

[i ∂
∂t1
− h0(1)][G(1, 2)−G0(1, 2)] =

∫
d3Σ(1, 3)G(3, 2). (4.31)
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and therefore,

G(1, 2) = G0(1, 2) +
∫

d3d4 G0(1, 3)Σ(3, 4)G(4, 2). (4.32)

Hence, we can write the Dyson equation for the Green’s function in terms
of non-interacting Green’s function [27, 70, 71, 91] as

G = G0 +G0ΣG. (4.33)

4.6 Hedin’s equations
The single-particle Green’s function is essential for electronic excitations of the
many-body system which obeys the equation of motion as given in eq. 4.25. In
order to assess the one-electron Green’s function and self-energy, Lars Hedin
in 1965 [90] derived a set of self-consistent equations known as Hedin’s equa-
tions. By expanding the self-energy in terms of a screened Coulomb potential
W rather than bare Coulomb potential v, Hedin’s equations can be obtained
considering that the total energy needs to be stationary with respect to vari-
ations in the Green’s function. In a real many-body system interactions are
screened and one needs to consider electron relaxation and correlation effects.
The screened Coulomb potential first was introduced by Hubbard [93].

In this section the main results of Hedin’s equations are provided. The de-
tails of how to derive these equations can be found in Refs. [90, 91]. Starting
from the definition of self-energy and using Schwinger’s techniques [94] of func-
tional derivatives and introducing a local time-dependent potential coupled to
electron density, Hedin’s equations can be obtained [27, 70, 91] as

G(1, 2) = G0(1, 2) +
∫
d34 G0(1, 3)[VH(3)δ(3, 4) + Σ(3, 4)]G(4, 2) (4.34a)

P (1, 2) = −i
∫
d34 G(2, 3)G(4, 2)Γ(3, 4; 1) (4.34b)

W (1, 2) = v(1, 2) +
∫
d34 v(1, 3)P (3, 4)W (4, 2) (4.34c)

Σ(1, 2) = i

∫
d34 G(1, 4)W (3, 1+)Γ(4, 2; 3) (4.34d)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +
∫
d4567 δΣ(1, 2)

δG(4, 5)G(4, 6)G(7, 5)Γ(6, 7; 3), (4.34e)

where P is the polarization operator (contains the response of the system to
electron addition or removal (hole)), W is the dynamically screened Coulomb
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Figure 4.1: Schematic representation of the iterative solution of the set of
Hedin’s equations for G, Σ, W, P , and Γ [91].

interaction, Σ is the self-energy, and Γ the 3-point vertex function which in-
cludes information of electron-hole interaction. The self-dependence of eq. 4.34
is because each of them depends on the other four. Hedin’s equation need to
be solved iteratively:

1. Initialize the non-interacting Green’s function G0.

2. Calculate P , W , and Σ.

3. Evaluate Γ.

4. Update the Green’s function using the Dyson equation (eq. 4.34a).

5. Iterating until satisfactory convergence is obtained.

There is no complete solution for this set of equations. Consequently,
approximations are required [27, 70, 91].

4.7 The GW Approximation
The GW approximation signifies the perturbative expansion of self-energy in
terms of W as in Hedin’s approximation [90] and keeping only the first order
term so that the self-energy is obtained as product of G and W . Therefore
it is referred to as the GW approximation. The GW approximation can be
achieved by keeping only the diagonal terms of the vertex function Γ and
neglecting the vertex corrections, that is,

Γ(1, 2; 3) = δ(1, 2)δ(1, 3). (4.35)
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Accordingly, we have non-interacting quasielectron-quasihole pairs and
Hedin’s equation in the GW approximation can be given as

G(1, 2) = G0(1, 2) +
∫
d34 G0(1, 3)[VH(3)δ(3, 4) + Σ(3, 4)]G(4, 2) (4.36a)

P (1, 2) = −iG(1, 2)G(2, 1) (4.36b)

W (1, 2) = v(1, 2) +
∫
d34 v(1, 3)P (3, 4)W (4, 2) (4.36c)

Σ(1, 2) = iG(1, 2)W (1, 2) (4.36d)
Γ(1, 2; 3) = δ(1, 2)δ(1, 3). (4.36e)

The GW approximation was introduced by Hedin and Lundqvist [90, 39].
Note that the particle number and energy are conserved in the fully self-
consistent GW approximation. From eq. 4.36a one can start from the Green’s
function of non-interacting electrons with an effective single-particle potential
and iterate till convergence is achieved. Equation 4.36 is still very complic-
ated to be solved in practice. One can follow different approaches to solve
eq. 4.36. One way is nonself-consistent G0W0 in which Green’s function of
non-interacting electrons, G0, is used instead of updating G in every iteration,
and static approximation of screened Coulomb potential W is employed. In
other approach only G is updated in every iteration and not W . The result
of total energy calculations for a homogeneous electron gas from a fully self-
consistent GW is very close to the result from quantum Monte Carlo scheme,
however regarding spectroscopic properties, it fails in description of bandwidth
and quasiparticle excitation lifetime [27]. In order to go beyond GW, one needs
to consider vertex corrections [27, 70, 91].

4.8 Random Phase Approximation

The presence of other charged particles leads to screening of the initial long-
range Coulomb interactions, and hence the integral equation of polarization
P can be approximated at the lowest order. This is called the Random Phase
Approximation (RPA). Within the GW approximation the dielectric function
can be given by as

ε(r, r′, ω) = δ(r− r′)−
∫
dr′′ v(r− r′′)P (r′′, r′, w), (4.37)
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where v is the bare Coulomb potential and P is the polarizability operator.
In the GW approximation P is given by P (1, 2) = −iG(1, 2)G(2, 1), where in
the approximation of non-interacting electrons using the quasiparticle eigen-
functions can be written as

P (r, r′, w) =
∑
ij

(fi − fj)
φi(r)φ∗j (r)φj(r′)φ∗i (r′)

ω − ωij + iη
, (4.38)

where ωij = (εj − εi), fi are Fermi occupation numbers and εi are the eigen-
values of the non-interacting system. This approximation to P is in form of
RPA [27]. The dynamic Coulomb interaction (W ) within the RPA as a func-
tion of the dielectric function ε and the bare Coulomb interaction v is given
by:

W = ε−1v. (4.39)

Physically, RPA means that electrons respond to the total effective field as if
they were non-interacting [91].

4.9 GW in practice

The Fourier transform of the self-energy operator in the GW approximation,
eq. 4.36, can be evaluated as

Σ(r, r′, E) = i

2π

∫
e−iωηG(r, r′, E − ω)W (r, r′, ω) dω. (4.40)

where η is a positive infinitesimal number. In order to compute Σ one can
employ the Kohn-Sham wave functions and energies,{

−∇
2

2 + VPP(r) + VH(r) + Vxc(r)
}
φKS
i (r) = εKS

i φKS
i (r). (4.41)

and calculate G and W using φKS as

G(r, r′, ω) =
∑
i

φKS
i (r)φKS∗

i (r′)
ω − εi + iη sgn(εi − µ) , (4.42)

where eq. 4.42 is the Lehmann representation of the single-particle Green’s
function in non-interacting quasi-particle picture, and η is a positive infinites-
imal number. One approach to solve the equation of motion for quasi-particles

41



Many-Body Green’s Functions

in the GW approximation,{
−∇

2

2 + VPP(r) + VH(r)
}
φQP
i (r)

+
∫
dr′Σ(r, r′, εi)φQP

i (r) = εiφ
QP
i (r), (4.43)

is to expand φQP in terms of Kohn-Sham wave functions φKS,

|φQP
i 〉 =

∑
j

c
(i)
j |φ

KS
j 〉 . (4.44)

Using this basis set in eq. 4.43, the matrix elements of the quasi-particle
Hamiltonian can be written as

HQP
ii′ (ε) = εKS

i δii′ + 〈φKS
i |Σ− Vxc |φKS

i′ 〉 . (4.45)

Σ−Vxc in eq. 4.45 can be treated as a perturbation of Kohn-Sham energies εKS
i .

Accordingly, the equation of motion of the quasi-particle can be evaluated on
a post-DFT level perturbatively[27, 40, 41, 42, 91, 95].

4.10 Electron-Hole Pair Excitations with
Bethe-Salpeter Equation

Although in theGW approximation, the quasiparticle energies describe the en-
ergetics of the single-particle excitations quite accurately. This kind of single-
particle picture is not enough to describe optical excitations which involve
coupled excitations of an electron and hole. The macroscopic polarization
function PM is needed to describe the optical spectra. Considering static
screening and the absence of external fields, PM only depends on the differ-
ence of time-dependent variables. Considering Hedin’s equations for the vertex
function eq. 4.34e and polarization, eq. 4.34b, the Bethe-Salpeter equation for
polarization is given by

PM(t− t′) = L0(t− t′) +
∫
dt′′L0(t− t′′)ΞMPM(t′′ − t′), (4.46)

where L is the two-point correlation function or density correlation function
which describes the correlated propagation of two particles (electron-hole),
and L0 corresponds to free electron-hole pairs. It is given by
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P (12) = L0(12, 1′2′) = −iG(1, 2′)G(2, 1′), (4.47)

where ΞM denotes the static electron-hole interaction kernel. Equation 4.46
can be written as

PM
σσ′,σ2σ′2

(r1r′1, r2r′2; ω̃) =
∑
n

{
Gσ1σ′2

(r1r′2;ωn)Gσ2σ′1
(r2r′1;ωn − ω̃m)

+
∑

σ3σ4σ′3σ
′
4

∫
dr3 dr4 dr′3 dr′4Gσ1,σ4(r1r4;ωn)Gσ3σ′1

(r3r′1;ωn − ω̃m)

× ΞM
σ3σ4σ′3σ

′
4
(r3r4, r′3r′4)PM

σ′3σ
′
4σ2σ′2

(r′3r′4, r2r′2; ω̃m)
}
. (4.48)

Expanding electron-hole state in terms of quasi-particle wave functions
{φQP},

ΦS(re, rh) =
occ∑
α

virt∑
β

[ASαβφ
QP
β (re)φQP∗

α (rh) +BS
αβφ

QP
α (re)φQP∗

β (rh)], (4.49)

where α(valence states) and β(conduction states) represents the single-particle
occupied and virtual(empty) states, respectively, and Aαβ and Bαβ are the
resonant and anitresonant electron-hole amplitudes which indicate transitions
from an occupied to a virtual state and from a virtual to an occupied state,
respectively. Equation 4.48 can be transformed into an eigenvalue problem [27,
40, 41, 42, 91],

(
H ΞM

−ΞM∗ −H∗

)(
AS

BS

)
= ΩS

(
AS

BS

)
. (4.50)

H is the resonant matrix of transition. Its matrix elements are given by

H(αβ, α′β′) = [εQP
β − εQP

α ]δββ′δαα′ −Wαα′,ββ′︸ ︷︷ ︸
Kd

+ v̄αβ,α′β′︸ ︷︷ ︸
Kx

, (4.51)

where ΞM is the coupling matrix between the resonant and antiresonant trans-
itions:

ΞM(αα′, ββ′) = −Wαβ,α′β′︸ ︷︷ ︸
Kd

+ v̄αα′,ββ′︸ ︷︷ ︸
Kx

. (4.52)
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For details, please see equations (19.9) and (19.32) in Ref. [91]. Kd denotes
the statically screened Coulomb interaction and Kx represents electron-hole
exchange which is the short-range unscreened Coulomb repulsion.[91]. Ω is
the transition energy of the optical excitation. Note that in general α and β
depend on spin of quasi-particles, respectively.

The spin structure of the solutions of BSE is an important issue that we
briefly discuss here. Considering the Hilbert space of electron-hole pairs with
their spin structure, including four subspaces: v ↑ c ↑, v ↑ c ↓, v ↓ c ↑, and
v ↓ c ↓, the BSE Hamiltonian can be written is this general form:

D + Kd + Kx 0 0 Kx

0 D + Kd + Kx 0 0
0 0 D + Kd 0
Kx 0 0 D + Kd + Kx



v ↑ c ↑
v ↑ c ↓
v ↓ c ↑
v ↓ c ↓

 , (4.53)

where D is D = [εQP
c − εQP

v ]. Considering spin-singlet ( 1√
2(v ↑ c ↑ −v ↓ c ↓))

and spin-triplet (v ↑ c ↓, 1√
2(v ↑ c ↑ +v ↓ c ↓), v ↓ c ↑), a class of solutions (one

should note that the spin of a hole state in valence band v is the negative of
the spin of the electron which initially occupied that state), the Hamiltonian
becomes [εQP

c − εQP
v ] + Kd for spin triplet subset and [εQP

c − εQP
v ] + Kd + 2Kx

for spin singlet. Therefore, the BSE Hamiltonian can be decoupled for the
singlet and triplet states. Since Kx vanishes for spin-triplet transitions and is
nonzero and repulsive for spin-singlet transitions, the spin-singlet excitations
are higher in energies than the spin-triplet states. Evaluating the full BSE
with its spin structure, increases the number of basis sets by a factor of four
and hence the computation of BSE becomes more demanding.

Since the off-diagonal term ΞM in eq. 4.50 has been found to be very small
for many systems, one can neglect resonant-antiresonant coupling terms Ξ
when they are much smaller than H and hence the resonant and antiresonant
parts of full BSE decouple. This is the so-called Tamm-Dancoff Approximation
(TDA) [27, 40, 41, 42, 91, 95]. Within TDA, the electron-hole wavefunction
of the excitation S is given by

ΦS(re, rh) =
occ∑
α

virt∑
β

ASαβφ
QP
β (re)φQP∗

α (rh). (4.54)

The electron-hole amplitudes ASαβ and the associated transition energies ΩS
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can be obtained by solving

(εQP
β − εQP

α )ASαβ +
∑
α′β′

Keh
αβ,α′β′(ΩS)ASα′β′ = ΩSA

S
αβ. (4.55)

in whichKeh = ηKx+Kd (η = 2 for singlets, η = 0 for triplets) is the electron-
hole interaction kernel comprised of bare exchange (Kx) and screened direct
terms (Kd), respectively.

Figure 4.2 represents the flow chart for GW -BSE steps in order to calculate
the excitation energies ΩS . Having the structure of the molecule, first, the mo-
lecular orbitals and energies are determined by solving the Kohn-Sham equa-
tions. The single-particle Green’s function and the screened Coulomb potential
in RPA are computed using the Kohn-Sham molecular orbitals and energies.
Because DFT underestimates the fundamental HOMO-LUMO gap [53], the
self-energy and the resulting QP energies may deviate from the self-consistent
result. In order to avoid this deviation, an iterative procedure is employed in
which W is calculated from a scissor-shifted Kohn-Sham spectrum [53, 41].
From the resulting QP gap, a new value for the scissor-shift is determined and
this procedure is repeated until convergence is reached. For each step, the
QP energy levels are iterated and the Green’s function of eq. 4.42 and thus
the self-energy are updated. A one-shot G0W0 calculation from Kohn-Sham
energies may differ from iterated results by up to several 0.1 eV. Note that
this (limited) self-consistency treatment does not change the QP structure of
eq. 4.42 (due to satellite structures or other consequences of a self-consistent
spectral shape of G(ω)). Finally, the coupled electron-hole wave function and
excitation energies are computed using BSE within TDA.

4.11 Oscillator Strength

In order to describe the strengths of the optical transitions in molecules one
can employ the so-called oscillator strengths (f -values). Considering a classical
single-electron oscillator with oscillation frequency ωβα with classical radiative
decay rate γ = e2ω2

βα

6πε0mec3 , f-values “describes what fraction of the energy of the
classical oscillator should be ascribed to a given transition” [96]. For emission
it is defined by

Aβα = −3fβαγ, (4.56)

and for absorption as
gαfαβ = −gβfβα ≡ gf, (4.57)
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Self-consistent solutions  of Kohn-Sham equations 

Conformation 

Figure 4.2: Schematic representation of GW -BSE on the ground of Kohn-
Sham calculations.
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where fβα are the oscillator strengths and Aβα are the transition probabilities
from a upper quantum state 2 to a lower quantum state 1. g = 2J + 1 where
J is the angular momentum quantum number. For spin-singlet, J1 = 0 and
g = 1. For spin-triplet, J2 = 1 and g = 3.

From a quantum electrodynamic treatment, the f-values are given by

fβα = −2
3
ωβα
gβ

∑
mβ ,mα

| 〈βmβ|~r |αmα〉 |2. (4.58)

where ωβα are given by the energy differences of the quantum levels (εα− εβ)
and mα and mβ are the spin quantum numbers of levels α and β, respect-
ively. However, the electron-hole interaction is not present in the above dis-
cussion [96, 97]. The electron-hole interaction couples different electron-hole
configurations to the excitation S [95]. As such, the transition matrix elements
become

〈0|~r |S〉 =
∑
αβ

ASαβ 〈α|~r |β〉 , (4.59)

which is a sum of transition matrix elements of interband configurations. As
a result, the f-values for coupled electron-hole excitations with electron-hole
interaction in TDA approximation and in the absence of spin-orbit coupling
is given by

fS = 2
3ΩS

∑
S

| 〈0|~r |S〉 |2. (4.60)
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Chapter 5

Hybrid Quantum
Mechanics-Classical
Mechanics (QM/MM)

5.1 Introduction
Classical Molecular Dynamics (MD) is probably the most commonly used
computational technique to study macromolecules. It is based on predefined
potentials, force fields. For the reason that quantum mechanical methods are
computationally expensive, inevitably one needs to employ MD simulations
for systems with a lot of atoms. However, being able to describe electronic
excitations in molecules necessitates a quantum mechanical treatment of at
least a part of the system. One approach to describe these systems is to
employ the GW -BSE technique on a selected component of the system and
account for the classical environment (e.g. solvent molecules) by describing it
with a polarizable force field that interacts with the GW -BSE subpart. This
is the topic of the following chapter.

5.2 Classical Molecular Dynamics
In MD simulations, atoms are considered as classical objects evolving accord-
ing to Newton’s equation of motion [98, 99]. Hence, the energy of the system
is considered to be only a function of nuclear positions. The electronic degrees
of freedom are not treated explicitly. This simplification is valid for systems
where electronic properties are not considered to be dominant in the total
behavior of the system. This lets one to save computational time and study
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systems with a large number of atoms [98, 100, 101]. The Born-Oppenheimer
approximation [72], adiabatic approximation [102], and considering nuclei as
classical objects are approximations that lead to classical MD.

As a result of the aforementioned approximations, the movement of N
classical particles (atoms) in an effective potential V (RI), I = 1, 2, ..., N is
given by

FI [{R}] = MIR̈I = −∂V (RI)
∂RI

, (5.1)

where RI defines the position of atom I. The potential energy V (R) is usu-
ally divided into many-body terms which together with their parameters are
collectively called a force field [100]:

V FF ({RI}) =
N∑
I=1

v1(RI) +
N∑
I<I′

v2(RI ,RI′)

+
N∑

I<I′<I′′

v3(RI ,RI
′ ,RI′′) + . . . (5.2)

The terms in eq. 5.2 are single-particle, two-body, and three-body interac-
tion terms, respectively. Most often, the functional form of the potential
is considered to be a sum of bond stretching, angle bending, bond torsion
and non-bonded interactions, e.g., electrostatics and van der Waals interac-
tions [103, 101]

V (R) =
∑

bonds,i

kbond
2 (li − li,0)2 +

∑
angles,i

kθ
2 (θi − θi,0)2

+
∑

tosion,i

5∑
n=0

ktor,i
2 (−1)n(cos(nφ))

+
N∑
I=1

∑
J>I

{
4εIJ

[(σIJ
rIJ

)12
−
(σIJ
rIJ

)6]
+ qIqJ

4πε0rIJ

}
, (5.3)

where kbond, kθ, ktor, εIJ , and σIJ are force constants, that is, force field
parameters. Force field parameters can be evaluated from experimental data
and/or independent electronic structure calculations [101, 100].

The solution to the differential equations eq. 5.1 can be obtained using
numerical techniques in discrete time steps such as the Verlet algorithm [104].
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This algorithm is based on Taylor expansion of coordinate R around time t as

RI(t+ δt) = 2RI(t)−RI(t−∆t) + FI [{R(t)}]
MI

∆t2 +O(∆t4). (5.4)

Velocity can then be evaluated as

vI(t) = RI(t+ ∆t)−RI(t−∆t)
2∆t +O(∆t2). (5.5)

In equations 5.4 and 5.5, ∆t is the time step. The error for the positions is
proportional to ∆t4, and for the velocities ∆t2. ∆t should be chosen by using
the time scale of the fastest motion in the system as the guideline, for instance,
the high frequency hydrogen bond vibrations. Usually, one is not interested
in these motions, and one can constrain these bond lengths. Hence, one can
increase ∆t. Typically, a time step of 1 fs with typically non-constrained, and
2 fs with constrained bond lengths are used [98].

5.2.1 Periodic Boundary Conditions
Typically one desires to simulate macromolecules in a large box of solvent to
reduce the boundary effects on the measured properties. Moreover, due to
physical conditions such as dilution, the box size needs to be large. This is,
however, impractical and computationally expensive. In order to overcome
this difficulty one can use periodic boundary conditions (PBC) which involves
repeated identical copies of the simulation box.

5.2.2 Long-Range Interactions
Computing long-range interactions is challenging in MD simulations and spe-
cial treatments are required to calculate them [105]. The electrostatic potential
at position of atom I of a molecule consisting of N atoms with charge qJ in a
cubic box of length L and volume V = L3 with periodic boundary conditions
applied in all directions, is given by

V (rI) =
∑
m

N∑
J=1J 6=I

qJ
|rI − rJ + mL|

, (5.6)

where m = (mx,my,mz) ∈ Z is the index vector for the simulation box. Due
to PBC, atom I interacts with atom J and all of its images. This leads to
the sum over m. One needs to define the so-called minimum image condition
to avoid double counting [99]. Its computational cost for N atoms is of the
order of O(N2) since a sum over N(N − 1)/2 pairs is required [105]. In order
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to compute the electrostatic interactions, there are several approaches. They
are briefly discussed next:

1. In Cut-off Methods a cut-off length is chosen and electrostatic inter-
actions are only considered inside that cut-off region and disregarded
outside. The computational cost of this method is of the order of O(N).
They are however, inaccurate [105, 106].

2. In Reaction Field Methods [107, 108], a spherical cut-off is considered
for each atom and a homogeneous dielectric is introduced beyond it.
Electrostatic interactions inside the cut-off are calculated explicitly. This
method has improved accuracy relative to the cut-off method with a
computational cost of order O(N).

3. In Ewald summation [109] the Coulomb sum is described as two terms:
a short-range term computed in real space and a long-range term calcu-
lated in Fourier space [110]. The computational cost of this method is
higher than the simple truncation techniques and reaction field methods
and is of the order of O(N3/2) [98].

4. The Particle-Mesh Ewald Method [111] is based on Ewald summation.
To speed up computation, charges are projected on a grid using B-spline
interpolation. Fast Fourier Transform algorithm [112] is then utilized.
The computational cost of this approach is O(N log(N)) [101].

For a detailed description of algorithms for computing long range electro-
statics, and their pros and cons, please see Ref. [105, 106].

5.2.3 Statistical Ensembles

Classical molecular mechanics and quantum mechanics give information about
the state of the system. Statistical mechanics provides the necessary tools
to connect microscopic information to macroscopic observables of thermody-
namics and conformational properties. It introduces the concept of statistical
ensembles (introduced by Gibbs in 1876 [113] for the first time) which is a
set of all possible microstates of the system that have the same macroscopic
properties like total energy E, number of particles N, volume V, pressure P,
temperature T, and chemical potential µ. Macroscopic observables can be
calculated by taking an ensemble average. In this section a brief overview of
statistical ensembles is provided.
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• The Microcanonical Ensemble (NV E) defines a set of isolated systems
characterized by fixed number of particles N , volume V, and total en-
ergy E in which microstates of the system are on the constant energy
hypersurface. The probability of finding a microstate in vicinity (E0) of
the constant energy hypersurface (E), is given by [114]

1
Ω(N,V,E) , (5.7)

where Ω(N,V,E) is the total amount of microstates available for the
system. It is given by [114]

Ω(N,V,E) = 1
h3N

∫
E<H(x)<E+E0

dx, (5.8)

where h is the Planck’s constant. The points in phase space are denoted
by x. H is the Hamiltonian of the system. This constant energy con-
dition cannot be satisfied in real experiments and therefore ensembles
that can reflect experimental conditions need to be considered [114].

• In the Canonical Ensemble (NV T ) the system is characterized by con-
stant particle number N, volume V, and temperature T. The system is
in contact with a heat bath, allowing for energy fluctuations in order
to keep the temperature of the system fixed. The probability of finding
microstates of the system in a state with energy Er, is given by [114]

ρNV Tr = e−βEr∑
r e
−βEr (5.9)

where β = 1
kBT

, kB the Boltzmann constant. Note that discrete notation
for phase space is only for convenience and in general the phase space is
continuous.

Different strategies have been developed in order to perform MD sim-
ulations under NVT conditions. This requires a thermostat. Several
schemes have been developed by Andersen (1980) [115], Berendsen [116]
Nosé and Hoover [117, 118] (1984-1985), and Bussi et al in 2007 [119].
In this work [48, 49], we used the Langevin thermostat [120].

• Isothermal-Isobaric Ensemble (NPT ): Most experiments take place at
fixed temperature and fixed pressure. As such, the isothermal-isobaric
ensemble can reflect the latter condition through volume fluctuations.
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The probability distribution is given by [114]

ρNPTr = e−β(Er+PVr)∑
r e
−β(Er+PVr)

. (5.10)

Andersen [115] and afterwards Parrinello and Rahman [121] introduced
techniques to achieve the conditions of NPT ensemble in MD simula-
tions [101]. In this work [49], the Parrinello-Rahman [122] barostat was
employed.

5.3 Combined Quantum Mechanics (GW -BSE) and
Classical Mechanics

Studies of chemical reactions, (e.g. enzyme reactions), electron transfer and
electronic excitations in molecules that are embedded in a larger macromolec-
ular framework, are processes that require an explicit treatment of electrons
and, hence, quantum mechanical methods are needed. However, due to the
high computational cost of such techniques, they are limited to small molecules
and are not applicable to systems with a lot of atoms.

One approach to study these systems is to combine quantum mechanical
(QM) methods with molecular mechanic (MM) force fields (QM/MM). The
QM/MM approach was first introduced by Warshel and Levitt in 1976 in their
seminal paper [123]. One of the important phenomena that has gained a lot of
interest is to describe optical properties of conjugated polymers surrounded by
solvent molecules. Understanding how the solvent environment tunes optical
properties is crucial. In QM/MM approaches, the QM part is often solved
with DFT to study the ground state properties.

In this work [48, 49], electronic excitations are calculated based on Many
Body Green’s Functions theory within the GW approximation and the Bethe-
Salpeter equation (GW -BSE) [27]. In order to describe electronic excitations
of polymers, we present a QM/MM approach where the QM component is
based on GW -BSE techniques. Linking GW -BSE to a classical environment,
represented at atomistic resolution by a polarizable force field, allows for the
determination of optical properties from the self-consistent solution of the
coupled QM/MM system in realistic environments. With this new approach,
it is possible to disentangle the conformational (as a result of side chain-
solvent interactions) and electronic (due to local electric fields and polarization
effects) contributions to the absorption spectra. Such a combined QM and MM
approach can take advantage of accuracy of theGW -BSE to describe electronic
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excitations and of the computational efficiency of the MM calculations for the
environment.

However, the method for splitting the system into QM and MM sections is
not obvious. Commonly, hydrogen atoms are included to saturate the valence
orbitals of the atoms at the boundary of the QM and MM regions [124]. These
hydrogens will be treated quantum mechanically. The MM region acts like
an external field on the QM region. Another aspect in implementation of
QM/MM is the treatment of electrostatic coupling between MM and QM re-
gions. By representing the molecules in the MM region by a set of atomic
properties such as static multipole moments Qat (in spherical tensor represent-
ation [125], where t indicates the multipole rank and a the associated atom)
and polarizabilities, the MM region and the QM part can interact via classical
electrostatic potentials. Unlike intramolecular potential, intermolecular po-
tential is weak and can be approached perturbatively. The first-order term is
called electrostatic and the second-order term, polarization, the computation
of which [125] we briefly discuss in the following.

5.4 Electrostatic Contribution
Let us consider two molecules A and A′ at global positions ρA and ρA′ , which
consist of a set of atoms {a} and {a′} at positions a and a′ relative to A and
A′, respectively. The electrostatic potential of this system is given by [125]

HAA′ = 1
4πε0

∑
a∈A

∑
a′∈A′

qaqa′

|ρA′ + a′ − ρA − a| , (5.11)

where qa and qa′ are the charges on atom a and a′, respectively. Using spherical
tensor formulation for |ρA′ + a′ − ρA − a|−1 eq. 5.11 can be written as [125]

HAA′ = 1
4πε0

∑
l1l2

∑
m1m2m

(−1)l1
√

(2(l1 + l2) + 1)!
(2l1)!(2l2)!

∑
a∈A

qaRl1m1(a)︸ ︷︷ ︸
Q̂Aglobal
l1m1

×
∑
a′∈A′

qa′Rl2m2(a′)︸ ︷︷ ︸
Q̂A
′global

l2m2

Il1+l2,m(ρA′ − ρA)
(
l1 l2 l1 + l2
m1 m2 m

)
, (5.12)

where Rlm and Ilm are the regular and irregular spherical harmonics. Equa-
tion 5.12 is valid when |a′ − a| < |ρA′ − ρA|. Q̂global

lm is the multipole moment
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operator in the global coordinate system. Using the Wigner rotation matrix
Dl
mk(Ω) to transfer from global coordinate system to local coordinates of each

molecule, HAA′ can be written in the form below [125]

HAA′ = 1
4πε0

∑
l1l2

∑
k1k2

(
l1 + l2
l1

)
Q̂
A(L)
l1k1

Q̂
A′(L)
l2k2

S̄k1 k2
l1 l2 l1+l2 |ρA′ − ρA|−l1−l2−1,

(5.13)

where all the orientation dependence is included in S̄k1 k2
l1 l2 l1+l2 . By defining

the interaction tensor T as [125]

Tl1k1,l2k2 = 1
4πε0

(
l1 + l2
l1

)
S̄k1 k2
l1 l2 l1+l2 |ρA′ − ρA|−l1−l2−1, (5.14)

HAA′ is given by

HAA′ =
∑
l1l2

∑
k1k2

Q̂Al1k1Q̂
A′
l2k2Tl1k1,l2k2 . (5.15)

Using label t and u for sequential multipoles the interaction can be written
as [125]

HAA′ = Q̂At T
A A′
t u Q̂A

′
u (5.16)

For a detailed derivation of the above formulas, please see Ref. [125]. The
above derivation related to molecular multipole moments can be generalized
to atomic multipoles. At last, we note that CHELPG (CHarges from ELectro-
static Potentials using a Grid based method) point charges [126] are used in
this work. With this method the atomic charges are obtained in such a way
that they reproduce the molecular electrostatic potential at a number of grid
points outside the molecule.

5.5 Polarization Contribution
Due to the external fields generated by other molecules, the charge distribu-
tion of a molecule can change the charge distribution of other molecules and
induce polarization to the molecules. Using the Applequist model [127, 128],
molecular polarizabilities can be described using atomic polarizabilities. De-
scribing molecular polarizabilities using charge density susceptibility to ac-
count for movement of electrons from one atom to another in an external field

56



Hybrid Quantum Mechanics-Classical Mechanics (QM/MM)

and partition the molecule into regions a, leads to the induced moment given
by [125]

∆Qa′t′ = −
∑
at

αa
′a
t′t V

a
t , (5.17)

in which αa′at′t is called distributed polarizability and is given by [125]

αa
′a
t′t =

∫∫
d3r d3r′ wa′(r− a′)Rt′(r′ − a′)α(r′, r)wa(r− a)Rt(r− a), (5.18)

in which w is weight function which is defined for every region a and is 1 inside
a and 0 outside a. Operator Rt describes moment t of region a. α(r, r′) is
the charge density at r′ in response of variation in electrostatic potential at r.
α(r, r′) contains how multipole element Qa′t′ at atom a′ responds to the element
V a
t of the external field at atom a. V a

t describes t derivative of potential at
the center of region a. The electrostatic potential is given by

V a
t =

∑
A′ 6=A

T aa
′

tu Qa
′
u , (5.19)

and the polarization energy reads

∆EA = 1
2∆Qat (α−1)aa′tt′ ∆Qa′t′ . (5.20)

5.6 Total energy of the classical system

Within this framework, the total energy of the classical system of state (s)
composed of A molecules comprises external (electrostatic) and internal (po-
larization) contributions [125]

E
(s)
MM = E

(s)
ext + E

(s)
int , (5.21)

with

E
(s)
ext = 1

2
∑
A

∑
A′

(Qa(s)
t + ∆Qa(s)

t )T aa′tu (Qa′(s)u + ∆Qa′(s)u ), (5.22)

and
E

(s)
int = 1

2
∑
A

∑
A′

δAA′∆Q
a(s)
t (α−1)aa′tt′(s)∆Q

a′(s)
t′ . (5.23)

Herein, αaa′tt′ is the polarizability matrix describing the change in multipole mo-
ment t of atom a due to the field generated by moment t′ of atom a′. Induced
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moments are referred to as ∆Qat . The tensor T aa′tu represents the interaction
between the multipole moment Qat and Qa

′
u . To avoid overpolarization, in-

duced interactions are modified using Thole’s damping functions [129, 130].
The energy follows a variational principle with respect to the induced mo-
ments and is minimized in a self-consistent procedure via iterative updates of
∆Qat [125]:

∂(Eext + Eint)
∂(∆Qat )

=
∑
A

∑
A′

T abtu (Qau + ∆Qbu) + (α−1)aa′tt′ ∆Qa′t′ = 0 (5.24)

∆Qat = −
∑
A

∑
A′

αaa
′

tt′ T
a′b
t′u (Qbu + ∆Qbu), (5.25)

and the field V a
t is given by

V a
t = 1

2
∑
A

∑
A′

T a
′b

t′u (Qbu + ∆Qbu). (5.26)

Therefore the field depends on the polarized moments of the other molecules,
and hence it requires a self-consistent solutions [125].

5.7 Thole Damping

The Applequist model [127] of molecular polarizabilities using isotropic atom
polarizabilities appears to be successful [128, 129, 125], however once atoms
are closer to each other than a certain value the polarizability becomes in-
finite in this model. Nevertheless, this problem has not been encountered in
reality. Thole suggested that some processes that damp the interactions must
be responsible in influencing the interaction tensor T for small distances of
atoms. Based on this idea, he used an empirical approach to change the in-
teraction tensor such that it fits experimental data [129]. In his approach, he
employed a smeared spherical charge distribution with a total charge of unity
and introduced [125]

u = |ρA′ − ρA|
Saa′

Sab = ( αaαa
′

(4πε0)2 )
1
6 ,

which are dimensionless universal functions where αa and αa′ are the mean
polarizabilities for atom a and a′, respectively. The damped interaction tensor

58



Hybrid Quantum Mechanics-Classical Mechanics (QM/MM)

reads
T̃ aa

′
ij = fe|ρA′ − ρA|2δij − 3ft(ρA′ − ρA)i(ρA′ − ρA)j

4πε0|ρA′ − ρA|5
, (5.27)

with ft and fe as damping coefficients.

5.8 GW -BSE/MM in practice
In the QM/MM scheme used in this thesis, we restrict the static multipoles
to point charges and the induced moments to dipoles. Due to the inclusion
of polarization interactions, a two-level self-consistent approach is employed.
Within a single iteration stepm of the outer level, a QM level calculation (DFT
for neutral s = n, DFT+GW -BSE for excited s = x states) is performed in
the electric field generated by the total moments in the MM region, yielding
the QM energy E

m,(s)
QM = E

m,(s)
DFT + δsxΩm

S . The associated electron density
is represented by CHELPG point charges [126], which are then used to self-
consistently (inner level) determine new induced dipoles in the MM region.
Since the electron density already contains the polarization response to the
outside field, no atomic polarizabilities are assigned to the atoms of the QM
region in this step. After subtraction of terms related to interactions already
included in EQM (such as the energy of the QM charge distribution in the field
generated by the total MM multipoles) to avoid double-counting, the minim-
ized classical energy ĒmMM is used to update the total energy of the coupled
QM/MM system E

m,(s)
QMMM = E

m,(s)
DFT + δsxΩm

S + ĒmMM. The whole procedure is
repeated until the change of total energy ∆Em,(s)QMMM = |Em,(s)QMMM−E

m−1,(s)
QMMM |, as

well as those of the individual contributions is smaller than 10−4 eV. Figure 5.1
represents a schematic of the aformentioned setup.
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Partitioning  the system into MM part and QM part 

Polarization with Thole damping (iteratively)

self-consistent?

Step m

Complex MM morphology

DFT on QM

GW-BSE on QM

CHELPG Self-consistent
cycle

Yes

No

Figure 5.1: Schematic representation of Self-consistent GW -BSE/MM cycle.
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Chapter 6

Challenges in
quantum-classical studies of
excitons in polymeric system

6.1 Introduction
We recall that our goal is to investigate optical properties of a class of fluor-
escent polymers called poly para phenylene ethynylene (poly-PPE) in complex
morphologies. Poly-PPE (see the chemical structure in Figure 6.1) are a class
of strongly conjugated polymers with a rigid backbone consisting of aromatic
phenyl rings bridged by alternating single and triple carbon bonds and ab-
sorption and emission of light tunable from the ultraviolet (absorption) to the
visible (emission) range [19]. Poly-PPEs can be prepared in a variety of mor-
phologies, ranging from extended single chains to polydots, depending on the
choice of functionalizing side chains and solvent combinations for processing.

Electronic excitations pose a significant challenge [28, 29, 30, 31, 32, 33, 34,
35, 36] since typical DFT methods describe the ground state. An assessment

Figure 6.1: Chemical structure of poly para phenylene ethynylene (poly-PPE).
n is the number of repeat units along the polymer (degree of polymerization).

This chapter is based on the work that was published: Behnaz Bagheri, Björn Baumeier
and Mikko Karttunen, Phys. Chem. Chem. Phys., 18, 30297-30304 (2016).
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Figure 6.2: Chemical structures of diphenylethyne (DPE, top) and methylated
diphenylethyne (Me-DPE, bottom). It consists of two aromatic rings bridged
by a sequence of single bonds and very stiff triple bonds.

of the interplay between molecular electronic structure, morphological order,
and thermodynamic properties requires the knowledge of the material morpho-
logy at atomic resolution, as well as strategies to couple quantum mechanical
techniques to classical environments for accurate evaluation of electronic ex-
citations [52, 53, 54].

Using empirical atomistic potentials in multiscale simulations of excita-
tions based on quantum calculations requires that the structural description
at different levels of resolution are compatible with each other. For example,
bond length deviations or fluctuations in angles and torsions can lead to sub-
stantial artifacts if the backmapped/fine-grained geometries do not match the
potential energy surfaces (PES) of the underlying quantum mechanical system.
Such a situation regularly arises for conjugated polymers since conjugation
can depend sensitively on conformation. In (semi) flexible polymers, conjug-
ation along a single chain can be broken due to large out-of-plane torsions
between two repeat units. Broken conjugation and wave function localiza-
tion [23, 24, 25] are often intuitively interpreted based on a simple empirical
criterion, the dihedral angle between two adjacent repeat units [33]. In gen-
eral, details are specific to the backbone chemistry, functionalization by side
chains, and solute-solvent interactions. Characteristics of conjugation also dir-
ectly influence the localization behaviour of electronic excitations and hence
the electronic and optical properties of the polymer.

In this chapter, some of the underlying challenges pertaining to the transfer
of structural atomistic detail between quantum and all-atom resolutions are
demonstrated. In particular, we consider the calculation of optical properties
of poly-PPE which make them particularly attractive for use in fluorescence
imaging and sensing [20, 19, 21]. Due to the importance of backbone torsions
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on conjugation and hence excitations, we compare PESs for phenyl rotations in
diphenylethyne (DPE, see figure 1.4) obtained using density functional theory
(DFT) to the ones from all-atom simulations using the standard force field
and experimental data. Significant discrepancies were found and as a result,
the atomistic force field was re-parameterized. With this modified force field,
ground state geometries are optimized for n-PPE oligomers with n = 1, . . . , 10
and then used in GW -BSE calculations. The associated excitation energies
are benchmarked with results from quantum-mechanical treatment, revealing
qualitatively similar characteristics as a function of n but deviations at the
quantitative level.

6.2 Methodology
MM/MD calculations were performed using a force field of OPLS (optimized
potential for liquid simulations) [131, 132, 133] form with GROMACS sim-
ulation software version 4 [134]. The force field parameters are taken from
the polymer consistent force field [135, 136] (PCFF) as converted to OPLS
form in Refs. [137, 138]. We refer to it as PCFF* from now on. The OPLS
potential energy function consists of harmonic bond stretching (Vbond), angle
bending potential (Vangle), non-bonded terms (Vnon-bonded) including Lennard-
Jones (LJ) and electrostatics, proper and improper dihedral potential terms
(Vtorsion) [131, 132, 133]:

Vbond =
∑
i

kb,i(ri − r0,i)2 (6.1)

Vangle =
∑
i

kθ,i(θi − θ0,i)2 (6.2)

Vnon-bonded =
∑
i

∑
j>i

{qiqje2

rij
+ 4εij

[(σij
rij

)12
−
(σij
rij

)6]}
(6.3)

Vtorsion =
∑
i

[1
2k1,i(1 + cos(φi)) + 1

2k2,i(1− cos(2φi))

+ 1
2k3,i(1 + cos(3φi)) + 1

2k4,i(1− cos(4φi))
]

(6.4)

The parameters kb,i and kθ,i are the bond force constant for bond i and
angle force constant for angle i, respectively. r0 and θ0 are initial (refer-
ence,equilibrium) bond distance and angle bending, respectively. k1,i, k2,i, . . .

are the torsional force constants for each dihedral i. qie is the partial atomic
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charge of atom i in which e is the charge of one electron, σij are the LJ radii
and εij are the LJ energies (well-depth) and rij are the distances between
atom i and j. The geometric combination rules were used following the con-
vention adopted in OPLS force field [σij = (σiiσjj)

1
2 and εij = (εiiεjj)

1
2 ].

The intramolecular non-bonded interactions were evaluated for atom pairs
separated by three or more bonds. The 1,4-intramolecular interactions were
reduced [131, 132, 133] by a factor of 1/2.

To obtain relaxed scans of potential energy surfaces (PES) from MM/MD,
energy minimization of the DPE molecule in vacuum was performed using the
conjugate gradient method followed by a short MD run (100 ps) with constant
particle number (N) and temperature (T ). The Langevin thermostat [120]
with 1 fs time step and open boundary conditions were applied. Temperature
was kept at 10K with 10 fs damping constant. All LJ interactions were cut-off
at 1.2 nm. A plain cut-off scheme was used for electrostatic interactions with
2.0 nm real space cut-off: with open boundary conditions plain cut-off can
be used. For systems with periodic boundary conditions, the particle-mesh
Ewald (PME) [111, 139] should be used instead. For more discussion about
the importance of electrostatic interactions, please see Ref. [105]. The cut-off
distance for the short-range neighbor list was 1.2 nm and the neighbor lists
were updated at every step. The intention was to evaluate the ground state
energies of DPE molecules with different torsional angle between aromatic
rings. To do that, after the first energy minimization step, a short MD run at
very low temperature was used to bring the system out of possible local min-
ima. Then a second conjugate gradient energy minimization was performed
to obtain the ground state MM/MD PES. A detailed description on MM/MD
simulations is provided in chapter 5.

DFT optimizations and relaxed PES scans were performed using the B3LYP
exchange correlation functional [140, 141, 142, 143] and def2-TZVP basis
set [144] as implemented in the Orca package [145]. Due to the lack of
van der Waals (dispersion) interactions in standard DFT, Grimme’s DFT-
D3 method [146], was employed. A detailed description on DFT can be found
in chapter 3.

In order to calculate electronically excited states, many-body Green’s func-
tion theory in the GW approximation with the Bethe-Salpeter equation (GW -
BSE) [39] was employed, since static DFT [37] cannot describe coupled electron-
hole excitations. For details of the application to molecular systems, the reader
is referred to Refs. [27, 40, 41, 42, 43, 44]. The GW -BSE method is based on
a set of Green’s function equations of motion which contain electron-hole in-
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teraction (BSE) leading to the formation of excitons. It utilizes the DFT
molecular orbitals and energies to calculate the one-particle Green’s function
(G) and screened Coulomb interaction (W ) to obtain single-particle excitations
within the GW approximation as introduced by Hedin and Lundqvist [39]. An
electron-hole excitation cannot be described in an effective single-particle pic-
ture but instead requires explicit treatment of a coupled two-particle system.
To treat coupled excitation of an electron and hole, it uses an electron-hole
state, combining single electron and hole wave functions with certain amp-
litudes. The electron-hole amplitudes and associated transition energies can be
obtained by solving the Bethe-Salpeter equation [27, 41, 42]. For calculation of
excitation energies according to GW -BSE method, first DFT calculations were
performed using the Orca package [145], B3LYP functional [140, 141, 142, 143],
effective core potentials of the Stuttgart/Dresden type [147], and the associ-
ated basis sets that are augmented by additional polarization functions [148]
of d symmetry. The specialized GW -BSE implementation for isolated sys-
tems [40, 41, 42, 149] available in the VOTCA software package [150] is used
in all further steps related to the excitations. See chapter 4 for more details.
For molecular visualizations, Visual Molecular Dynamics (VMD) [151] and
Jmol [152] were used.

6.3 Results

6.3.1 Force field parametrization

Due to the influence of conformational details on the optical properties [50, 51]
in PPEs, one needs to determine if the force field yields reliable minimum
energy configurations. Hence, relaxed scans of potential energy surface (PES)
were obtained using both MM/MD and DFT.

The resulting PES are shown in figure 6.3. The PCFF* result (red tri-
angles) shows a minimum at 90◦, corresponding to twisted phenylene rings.
In contrast, the result of the DFT-based scan (black squares) indicates a
minimum energy configuration in which the two phenyl rings are co-planar,
which is also extracted from experiments [153, 19]. The force field predicts
a practically free rotation of phenylenes for T ≥ 0, while a barrier of around
∼ 4 kJ/mol (∼ 1.5 kBT) is obtained with DFT. The latter is comparable to
the one reported in Ref. [154]. The experimental potential barrier is around
∼ 2 kJ/mol [153, 19, 155]. Overall, the scans imply that the PCFF* force field
does not correctly model the ground state conformations of DPE, which can
have severe implications for the derived optical properties.
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Figure 6.3: Potential energy surface (PES) obtained by MM/MD and quantum
mechanical (QM) calculations. Red triangles show PES calculated using
PCCF∗ [138, 137] force field. Black squares are the QM results using
B3LYP+D3. Blue circles show PES obtained using our new modified force
field. The modified force field and B3LYP+D3 are in excellent agreement.

11 12 13 22

17

21 20

16

23 24

15

1918

14

89

4
5

101

2

6 7

3

Figure 6.4: Atomic structure of DPE. Gray spheres show carbon atoms and
white spheres indicate hydrogen atoms. The indices show atom number. There
is a triple bond between 12 and 13.

Table 6.1: Ryckaert-Bellemans [156] torsion parameters (eq. 6.4) in kJ/mol for
atom numbers 4-11-22-17, 3-11-22-14, 4-11-22-14 and 3-11-22-17, see figure 6.4
for the definition of atom numbers.

Torsion Type k0 k1 k2 k3 k4 k5

C-C-C-C 1.0685 0.0007 -1.0660 0.00004 -0.00375 -0.0004

66



Challenges in studies of excitons in PPE

-2

-1

0

1

2

3

4

0 20 40 60 80 100 120 140 160 180

0

1

E
ne

rg
y

(k
J/

m
ol

)

E
ne

rg
y

(k
T

@
29

8K
)

phenyl torsion (deg)

modified FF

B3LYP+D3

PCFF*

Figure 6.5: Potential energy surface (PES) obtained using the modified force
field (black squares), DFT calculations (blue circles), PCFF* force field (red
triangles). The modified force field gives reasonable agreement with the
B3LYP+D3. Dispersion interaction between the methyl side chains leads to
cis conformation (180◦) preference over trans conformation (0◦).

To remedy this situation, the existing force field is refined by the addi-
tion of a torsional potential between the two adjacent phenylenes (see fig-
ure 6.4 for definition of involved atoms). By fitting eq. 6.4 to the differ-
ences of DFT and PCFF* potential energy surfaces, corresponding Ryckaert-
Bellemans [156] force parameters, provided in Table 6.1, were obtained. The
PES is re-calculated with MM/MD using the modified force field, yielding the
scan as shown in figure 6.3 (blue circles). It is in good agreement with the
DFT result.

To assess the transferability of the modified force field, we repeat the above
scans of the torsional potential for para methylated-DPE (see chemical struc-
ture shown in figure 1.4). The PES resulting from both MD and DFT calcu-
lations are shown in figure 6.5. With the modified force field (blue circles) one
can observe a good agreement with the DFT data (black squares). Both ap-
proaches predict a minimum energy configuration at 180◦ twist. The energetic
preference of this cis conformation of Me-DPE over the trans conformation (0◦)
is driven by attractive dispersion interaction among the two CH3. While this
preference is also obtained with the original PCFF∗ force field (red triangles),
no barrier between cis and trans configurations is found. In terms of obtaining
minimum energy configurations and energy barriers in the PES, the modified
PCFF is clearly more reliable.
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Figure 6.6: Top: Optical absorption spectra for Me-DPE as a function of tor-
sional angle between phenylene rings based on (a) DFT optimized structures
and (b) MM/MD energy minimized structures. The lower energy excitations
in both (a) and (b) show the same dependency on the angle. Bottom: isosur-
faces (±5 × 10−3 e/Å3) of excitation electron density at 0◦ and 90◦ based
on DFT optimized structures. Red color corresponds to negative values (hole
density) and blue color corresponds to positive values (electron density). Elec-
tron and hole densities are extended along the molecule at 0◦ and 90◦ and no
localization of the excitation occurs. MAE(MAPE) of the energies underlying
the spectra: S1 0.13 eV(2.7%), S2 0.05 eV(1.1%), S3 0.05 eV(0.7%).

6.3.2 Optical excitations in single molecules
For systems such as solvated polymer chains, the system size makes the use
of classical simulations inevitable to obtain structural information. Even with
the modified force field at hand, it is not automatically guaranteed that the
use of the MM/MD geometries in QM/MM schemes does not lead to spurious
errors in the computed excitations. To further assess the level of reliability of
such calculations, the evolution of optical absorption properties of Me-DPE is
examined as a function of phenyl torsions based on the respectively optimized
geometries.

The optical absorption spectra resulting from GW -BSE are shown in fig-
ure 6.6. DFT optimized geometries were used in (a) and MD energy minimized
geometries using the modified force field were used in (b). The height of the
curves indicates the strength of the excitation. Comparing both results, it is
evident that the same dependency on the torsional angle is obtained by both
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Figure 6.7: Structure of (a) 1-PPE and (b) 2-PPE. The bond length indicated
by black is the result of DFT calculations and the bond length indicated by
red is the result of MM/MD simulations. The bonds in the phenyl rings and
the C−C bond connecting the ring to the ethyne are elongated by about 2% in
MD simulations compared to DFT. The length of the C≡C triple bond results
1.2 Å in both cases.

approaches. With increasing twist from 0 ◦ to 90 ◦ the main absorption peak
gradually shifts to higher energies while its strength decreases at the same
time until it vanishes at 90 ◦. Inspection of the electron and hole densities of
the excitations for co-planar and perpendicular (see bottom of figure 6.6) also
reveals no localization of the excitation during the rotation confirming that
the conjugation via the C≡C bond is indeed strong. The identical behavior of
the lowest energy excitations (which are typically those of interest) for both
MM/MD and DFT conformations indicates that the modified force field is
suitable for use in QM/MM calculations.

So far the analysis has been limited to small model systems. As a next
step towards more realistic system sizes, para phenylene ethynylene (PPE)
oligomers were investigated. The geometries of single n-PPE oligomers with
n = 1, . . . , 10 were optimized in vacuum using both DFT (def2-TZVP [144]
basis set and B3LYP functional with Grimme’s D3 dispersion corrections [146])
and MD on the basis of the modified PCFF force field in vacuum at 0K. Both
approaches yield planar configurations of the PPE backbone for all values of
n. While qualitatively identical, quantitative differences can be observed.
Most notably, the bonds in the phenyl rings and the C − C bond connecting
the ring to the ethyne are elongated by about 2% in MD compared to DFT.
In contrast, the length of the C ≡ C triple bond results 1.21Å in both cases
(see figure 6.7).

In the next step, GW -BSE calculations were performed to gauge the effect
of these differences on the electronic and optical properties of the oligomers.
The resulting electronic structure data, summarized in Tab. 6.2, illustrates
the effects of GW -BSE with respect to the calculation of excitation energies:
Taking the quasi-particle corrections to the Kohn-Sham energies into account
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Table 6.2: Electronic structure data for n-PPE oligomers with n = 1, . . . , 10
based on QM and MM optimized geometries: HOMO-LUMO gap from Kohn-
Sham (EKS

g ), quasi-particle (EQP
g ) energies, optical excitation energy (Ω), and

the contributions to it from free inter-level transitions (〈D〉) and electron-hole
interaction (〈Keh〉 = 〈Kd + 2Kx〉). All energies in eV.

QM optimized MM optimized
n EKS

g EQP
g Ω 〈D〉 〈Keh〉 EKS

g EQP
g Ω 〈D〉 〈Keh〉

1 4.67 8.46 5.15 9.11 -3.96 4.71 8.52 5.15 9.14 -3.99
2 3.80 7.07 4.17 7.49 -3.32 3.96 7.30 4.28 7.72 -3.44
3 3.42 6.45 3.73 6.84 -3.11 3.61 6.73 3.89 7.13 -3.24
4 3.22 6.12 3.50 6.51 -3.01 3.45 6.46 3.71 6.88 -3.17
5 3.10 5.92 3.36 6.32 -2.96 3.33 6.26 3.57 6.70 -3.13
6 3.02 5.79 3.27 6.21 -2.94 3.25 6.13 3.48 6.59 -3.11
7 2.97 5.69 3.21 6.13 -2.92 3.19 6.04 3.43 6.51 -3.08
8 2.94 5.63 3.17 6.09 -2.92 3.18 6.01 3.41 6.50 -3.07
9 2.90 5.58 3.13 6.04 -2.91 3.17 5.98 3.39 6.47 -3.08
10 2.88 5.53 3.11 6.01 -2.90 3.15 5.95 3.37 6.46 -3.09
∞ 3.08 3.33
Exp. 3.00 - 3.20
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Figure 6.8: Lowest optically active excitation energies in n-PPE as the num-
ber of repeat units is increased in from n=1 to n=10. Results obtained on
DFT (MM/MD) geometries are shown as green points (red triangles). For
comparison, results of TDDFT calculations using the B3LYP functional are
indicated as blue squares. The respective dashed lines indicate the fit to the
quantum-size model. The gray shaded area indicates the width of the exper-
imental data [19]. MEA(MAPE) of MM vs QM structures is 0.19 eV(5.6%).
MEA(MAPE) of TD-B3LYP vs GW -BSE is 0.53 eV(15.3%).
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increases the HOMO-LUMO gap for, e.g., the QM optimized 10-PPE from
2.88 eV to 5.53 eV, which reflects the well-known underestimation of the fun-
damental gap by DFT. The energy for the lowest optically active coupled
electron-hole excitation gives 3.11 eV. Due to the fact that the excitation is
not a pure HOMO-LUMO transition but has additional contributions from
lower occupied and higher virtual single-particle orbitals, the contribution of
the independent transitions, 〈D〉, is with 6.01 eV slightly larger than EQP

g . The
associated effectively attractive electron-hole interaction, 〈Keh〉 = 〈Kd+2Kx〉,
in this structure amounts to 2.90 eV. The obtained excitation energy is in good
agreement with the experimental values of 3.0-3.2 eV obtained from absorption
peaks of dilute solutions of PPE in good solvents.

The results shown in figure 6.8 exhibit a monotonous decrease with n for
both approaches. Such a strong size-dependence can be traced back to an in-
crease in the size of the conjugated system. From the particle-in-a-box model,
one can estimate, e.g., the optical excitation energy of an infinitely long chain
via Ω(n) = Ω∞ − a/n. By fitting the data for n > 3 to this model, a value
of ΩQM

∞ = 3.08 eV is obtained for QM geometries. For n > 7 the respective
excitation energies vary only slightly and approach the region in which experi-
mental absorption is measured in experiment [19]. This indicates that studying
more complex morphologies, i.e., solvated polymers, based on oligomers with
n = 10 is an adequate choice. For MM geometries, the absorption energies res-
ult slightly higher, evidenced by the estimate of ΩMM

∞ = 3.33 eV. Upon further
inspection, this offset of 0.25 eV with respect to ΩQM

∞ is a cumulative result
of slight discrepancies in bond length within the phenylenes and the C − C
bridge bonds (see figure 6.7). In conclusion, the use of geometries determined
using MM/MD in GW -BSE calculations can be expected to lead to slight
quantitative overestimates of excitation energies. Qualitatively, however, a
satisfying agreement is found. The results of TDDFT calculations using the
B3LYP functional is shown with blue squares in figure 6.8 for comparison.
The TDDFT result is very far from experimental results (gray shaded area).

6.4 Conclusions
A combination of atomistic (MM/MD) and DFT calculations were performed
to describe conformational properties of diphenylethyne (DPE), methylated-
DPE and poly para phenylene ethynylene (PPE). MM/MD simulations based
on PCFF* force field were not able to provide a good description of the ground
state conformation of the DPE molecule. Due to this, DFT calculations were
employed to develop force field parameters to improve the MM/MD simu-
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lations. The modified force field was able to describe the conformation of
methylated-DPE in agreement with DFT results. The GW -BSE method
was utilized to describe excited states of the methylated-DPE and n-PPE
polymer with n = 1, 2, . . . , 10. Optical excitations were obtained for the
methylated-DPE and nPPE based on MM/MD energy minimized structures
using the modified force field and DFT optimized geometries. The results
for methylated-DPE show that the lowest energy excitations based on the
MM/MD conformations and DFT optimized geometries follow the same pat-
tern. This nearly identical behavior for the lowest energy excitations indicates
that one can describe optical excitations using the GW -BSE method based on
MM/MD conformations. Results for the excitation energies for nPPE indicate
that there is an overall agreement between the results of GW -BSE based on
MM/MD energy minimized structures and DFT optimized geometries. There
is a discrepancy of around 0.25 eV between the two. This discrepancy is a cu-
mulative result of geometric differences between MM/MD and DFT structures.
Overall agreement between MM/MD and QM based excitations is enough to
validate the use MM/MD conformations as the basis for calculation of optical
excitations with GW -BSE method.
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Chapter 7

Solvent effects on optical
excitations of poly para
phenylene ethynylene

7.1 Introduction
In this chapter electronic excitations in dilute solutions of poly para phenylene
ethynylene (poly-PPE) are studied using a QM/MM approach combining
many-body Green’s functions theory within the GW approximation and the
Bethe-Salpeter equation with polarizable force field models. Oligomers up to
a length of 7.5 nm (10 repeat units) functionalized with nonyl side chains are
solvated in toluene and water, respectively. After equilibration using atomistic
molecular dynamics (MD), the system is partitioned into a quantum region
(backbone) embedded into a classical (side chains and solvent) environment.
Optical absorption properties are calculated solving the coupled QM/MM sys-
tem self-consistently and special attention is paid to the effects of solvents. The
model allows to differentiate the influence of oligomer conformation induced by
the solvation from electronic effects related to local electric fields and polariz-
ation. It is found that the electronic environment contributions are negligible
compared to the conformational dynamics of the conjugated PPE. An analysis
of the electron-hole wave function reveals a sensitivity of energy and localiza-
tion characteristics of the excited states to bends in the global conformation
of the oligomer rather than to the relative of phenyl rings along the backbone.

This chapter is based on the work that was published: Bagheri, B., Karttunen, M. &
Baumeier, B. Eur. Phys. J. Spec. Top. 225 1743-1756 (2016).
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7.2 Methodology

Classical molecular dynamics (MM/MD) simulations were performed using an
OPLS type (optimized potentials for liquid simulations) [131, 132, 133] force
field. The parameters were taken from Refs. [137, 138] in which PCFF (poly-
mer consistent force field) force field parameters were converted to OPLS form.
Modification for torsional potential parameters of the phenylene rings as eval-
uated in Ref. [48] were employed. The new modified force field is available at
www.softsimu.org/downloads.html. To study the behavior of PPE polymers
in explicit solvents, water molecules were described using the SPC/E [157]
model for water and the OPLS force field for toluene. Geometric mixing rules
[σij = (σiiσjj)

1
2 and εij = (εiiεjj)

1
2 ] for Lennard-Jones (LJ) diameters (σ)

and LJ energies (ε) were used for atoms of different species according to the
OPLS conventions [131, 132, 133]. The reader is referred to Ref. [158] for
more in-depth discussion on mixing rules. Non-bonded interactions between
atom pairs within a molecule separated by one or two bonds were excluded.
Interaction was reduced by a factor of 1/2 for atoms separated by three bonds
and more. Simulations were run using GROMACS version 5 [134]. A 1.2 nm
cutoff was employed for the real space part of electrostatics and Lennard-Jones
interactions. The long-range electrostatics was calculated using particle-mesh
Ewald (PME) [111, 139] with the reciprocal-space interactions evaluated on
a 0.16 grid with cubic interpolation of order 4. The importance of proper
treatment of electrostatics in MM/MD simulations is discussed in detail in
Ref. [105]. The velocity-Verlet algorithm [104] was employed to integrate the
equations of motions with 1 fs time step. A Langevin thermostat [120] with a
100 fs damping was used to keep the temperature of the system at 300K. The
systems were energy minimized using the steepest descents algorithm. 100 ps
simulations in constant particle number, volume and temperature (NVT) en-
semble at 300K were performed on the energy minimized systems. The simu-
lation box size was (15 × 13 × 13) nm3 for dinonyl-10-PPE. Simulations were
continued in constant particle number, pressure and temperature (NPT) en-
semble at 300K and 1 bar controlled by Parrinello-Rahman [122] barostat with
a coupling time constant of 2.0 ps. Molecular visualizations were done using
Visual Molecular Dynamics (VMD) software [151].

For practical calculations according to the GW -BSE method, first single-
point Kohn-Sham calculations are performed using ORCA [145], the B3LYP
functional [140, 141, 142, 143], effective core potentials of the Stuttgart/Dresden
type [147], and the associated basis sets that are augmented by additional
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(a) (b)toluene water

Figure 7.1: Structures of 2,5-dinonyl-10-PPE (a) in toluene and (b) in water
after 7.7 ns MD simulations. (a): In toluene, the side chains are dispersed and
separated from each other as well as the backbone. (b): In water, the side
chains start to aggregate toward the backbone.

polarization functions [148] of d symmetry. The use of ECPs offers a com-
putational advantage as the wave functions entering the GW procedure are
smooth close to the nuclei and do not require strongly localized basis functions,
keeping the numerical effort tractable. We confirmed that the Kohn-Sham en-
ergies obtained from ECP-based calculations do not deviate significantly from
all-electron results. All steps involving the actual GW -BSE calculations are
performed using the implementation for isolated systems [40, 41, 42, 149],
available in the VOTCA software package [150]. In VOTCA, the quantities
in the GW self-energy operator (dielectric matrix, exchange and correlation
terms) and the electron-hole interaction in the BSE are expressed in terms of
auxiliary atom-centered Gaussian basis functions. We include orbitals of s,
p, d symmetry with the decay constants α (in a.u.) 0.25, 0.90, 3.0 for C and
0.4 and 1.5 for H atoms, yielding converged excitation energies. It was also
confirmed that the addition of diffuse functions with decay constants smaller
than 0.06 a.u. to the wave function basis set does not affect the low-lying
excitations. For all systems considered in this chapter, polarizability is cal-
culated using the full manifold of occupied and virtual states in the random-
phase approximation. Quasiparticle corrections are calculated for the 2nocc
lowest-energy states, and nocc occupied and nocc virtual states are considered
in the Bethe-Salpeter equation. Further technical details can be found in
Refs [40, 41, 149].

7.3 Results
7.3.1 Structural properties of solvated 2,5-dinonyl-10-PPE
Conformations of 2,5-dinonyl-10-PPE were studied in explicit water and tolu-
ene. Water is a poor solvent for both the backbone and the side chains while
toluene is a good solvent for the backbone and a poor solvent for the side
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Figure 7.2: Orientations order parameter (eq. 7.1) for 10-PPE with nonyl side
chains in toluene solvent (blue circles) and water (green squares). The length
of MM/MD simulations for both was 7.7 ns. Time average for toluene case is
taken over frames of the last 1 ns trajectory with 100 ps between the frames.
In the case of water, the time average was taken over frames of the last 600 ps
of the trajectory with a 100 ps step.

chains [138, 137]. figure 7.1 shows the structure of 10-PPE (a) in toluene and
(b) in water at 7.7 ns. For clarity, water and toluene molecules are not shown.
In toluene, the backbone remains extended and the side chains are dispersed
and separated from each other as well as the backbone. This is in agreement
with the results of Ref. [138]. Structural studies using small angle neutron scat-
tering (SANS) have shown that dialkyl PPE forms a molecular solution with
an extended backbone at high temperature and low concentrations [138, 159].
In water (figure 7.1(b)), the side chains start to aggregate toward each other
and the backbone. This is in agreement with Ref. [137, 138]. Another import-
ant parameter is the correlation of aromatic rings along the backbone of PPE.
The interplay between the arrangements of aromatic rings in PPE polymers
and their electro-optical properties has been studied by several groups (see
e.g. [50, 51, 160]).

The orientational order parameter[161], given by

Pθ = 1
2〈3 cos2 θ − 1〉 (7.1)

is a measure to quantify how aromatic rings within PPE polymer backbone
are correlated. θ is the angle between the normal vectors to the planes of
two aromatic rings which are apart from each other by a distance ∆n. Pθ
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Figure 7.3: Example of GW -BSE/MM partitioning of the system. The oli-
gomer is embedded into a two-layer environment of solvent molecules. Mo-
lecules within a region R1 (red) are represented by both static atomic point
charges and polarizabilities, while then ones within the extended layer R2
(blue) are only represented by point charges.

describes the average alignment of aromatic rings. Since each vector normal
to the planes of the aromatic rings can be considered as a reference direction
to calculate θ and then Pθ, one needs to consider the vector normal to each
plane as a reference direction and take an average: there are two averages in
the calculation of Pθ, one of which is the time average over time frames and
the other one is over the selection of a vector normal to the plane of the rings.
Pθ can have values [−1

2 ,1] [161]. Pθ > 0 describes a co-planar alignment of
aromatic rings, while Pθ < 0 indicates perpendicular alignments. Pθ = 0 and
Pθ = 1 refer to completely random and fully co-planar alignment of the rings,
respectively [138, 137]. Figure 7.2 shows the order parameter versus ∆n for 10-
PPE with nonyl side chains in toluene and water after 7.7 ns. The time average
is taken over the frames of the last 1 ns (0.6 ns) of the MM/MD trajectory with
100 ps time step between the frames for 10-PPE in toluene (water). Having
a value of around 0.4 (0.2) in toluene (water) indicates a correlation between
the aromatic rings. This refers to an angle of around 39◦ and 47◦ for 10-PPE
in toluene and water, respectively. In Ref. [50], the authors discussed optical
properties of dialkyl and dialkoxy-PPEs in chloroform and dichloromethane,
and the average angle of aromatic rings using a configuration-coordinate model
in which they concluded the angle to be around 40 degrees.

7.3.2 Optical absorption of solvated 2,5-dinonyl-10-PPE
For the QM/MM calculations using the procedure described in Sec. 5.3, a two-
layer scheme is employed in the MM region. Within a cutoff R1 around the
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Figure 7.4: Total energies of the coupled QM/MM system (EmQMMM) for a rep-
resentative snapshot at each iteration step m of the self-consistent procedure
in neutral and excited states. The inset shows the respective energy differences
between two subsequent iteration steps.

QM part, atomic partial and polarizable interactions are taken into account.
In the more extended buffer region with R2 ≥ R1, only electrostatics are
active. An example for such a partitioning is depicted in figure 7.3. For a
snapshot taken from the MD simulated morphology of 10-PPE with nonyl
side chains in toluene, this approach is adopted using cutoffs of R1 = 2.5 nm
and R2 = 4.0 nm. The 10-PPE backbone is treated quantum-mechanically
while the side chains and solvent molecules belong to the MM region. To
split the functionalized oligomer into backbone and side chains, a link-atom
approach [162] with hydrogen saturation of the backbone-side chain bridge are
employed. Partial charges for the solvent molecules and side chain fragments
are determined from CHELPG [126] fits to the electrostatic potentials, while
the atomic Thole polarizabilities are parametrized to match the molecular
polarizability tensors obtained from DFT.

Figure 7.4 shows a typical evolution of total energies of the coupled QM/MM
system EQMMM during the self-consistency procedure. In the evaluation of the
total QM/MM energy, the contribution resulting from the interactions of the
static MM partial charges is neglected, since we are ultimately only interested
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in total energy differences. Note that we do, however, account for the effect
of the electric field of these charges on the polarizable quantum and classical
parts. The zero of the energy scale is defined to correspond to the total energy
of the neutral 10-PPE in vacuum (iteration m = 0). It is apparent that the
most significant change to the total energy in both neutral and excited states
occurs during the very first step of the calculation. This is further corrobor-
ated by considering the change of total energy at iteration m compared to the
previous iteration as shown in the inset of figure 7.4. Within three iterations
the respective changes are of the order of 0.01 eV and, more importantly, no
significant differences are observed for the two states. Overall, the effect of
polarization is small for the solvated 10-PPE and consequently, the excitation
energy is nearly unaffected by the environment. More precisely, the excita-
tion energy is 3.47 eV from the polarized QM/MM system, while a calculation
using pure static MM yields 3.44 eV. Omitting the environment altogether,
i.e., performing a GW -BSE calculation on the isolated oligomer conformation,
yields 3.45 eV. The fact that environment effects only have a negligible impact
on the calculated excitation energies can be attributed to a combination of the
diluteness of the solution and the associated randomness of local electric fields
and the small change of dipole moment between neutral and excited states.
Similar observations have been made, e.g., for the optically excited states of
push-pull oligomers embedded in a polarizable lattice [53].

Based on the above results, it is justified to limit the QM/MM setup
to only electrostatic interactions in the following. Having realized that the
direct electronic effects of solvent molecules on the excitations in 10-PPE are
small, the focus is now on indirect effects that originate from the influence
on the backbone conformations. To this end, 10-PPE in both toluene and
water is considered and sample the conformations at different time intervals
(∆t = 10 fs, 100 fs, 1 ps, and 10 ps), all starting from an identical starting point
t0 = 7.7 ns of our MD simulations are taken (see figure 7.5). For each of these
snapshots the absorption spectrum is calculated in a static MM environment
defined by R2 = 4 nm (implies R1 = 0 nm). The obtained discrete spectra
of excitation energies and associated oscillator strengths are broadened by
Gaussian functions with a FWHM (full width at half maximum) of 0.3 eV. It
is found that the absorption properties are insensitive to structural dynamics
of the backbone at time scales of 100 fs. Only for times exceeding about 500 fs
fluctuations in the peak positions and heights of the spectra can be observed
both in toluene and water. Figure 7.6 shows the evolution of the absorption
spectrum for the time steps ∆t = 1 ps, as well as the average over the eleven
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Figure 7.5: Simulated absorption spectra (broadened by Gaussian functions
with a FWHM of 0.3 eV) of 10-PPE in toluene in a static MM environment
(R2 = 4 nm) with a sampling time step (a) ∆t = 10 fs (b)∆t = 100 fs (c)∆t =
1 ps (d)∆t = 10 ps starting from t0 = 7.7 ns. The average over the eleven
respective snapshots is given in red.
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Figure 7.6: Simulated absorption spectra (broadened by Gaussian functions
with a FWHM of 0.3 eV) of 10-PPE in (a) toluene and (b) water calculated in
a static MM environment (R2 = 4 nm) with a sampling time step ∆t = 1 ps
starting from t0 = 7.7 ns. The average over the eleven respective snapshots is
given in red.
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Figure 7.7: Analysis of the excited state wave functions for representative
snapshots of 10-PPE in toluene. Top row: Isosurfaces of excitation elec-
tron density (±10−4e/Å3). Red color corresponds to negative values (hole
density), blue to positive values (electron density). Bottom rows: Isosurfaces
of the main single-particle excitations contributing to the electron-hole wave
functions (isovalue ±5× 10−3).

respective snapshots. While the dynamics of the backbone is comparatively
slow since it is to a significant extent constrained by the nonyl side chain
dynamics in both poor solvents, one can observe stronger fluctuations of the
absorption spectra in water as compared to toluene.

To understand the origin of these fluctuations with respect to backbone
conformations in more detail, the electron-hole wave functions of the excit-
ations is analyzed at times t = 4 ps and t = 5 ps, c.f. figure 7.6(a). In the
top row of figure 7.7 isosurfaces for the hole (red) and electron (blue) density
distributions are shown. The overall conformation of the 10-PPE exhibits a
characteristic bend as a result of the stress caused by side chain interactions.
At both times, the excitation appears to be localized at the apex of the bend,
more pronounced for the structure at 4 ps which is lower in energy by 0.13 eV.
The different characteristics can be attributed to a slightly stronger out-of-
plane bent angle between the phenylene and etynlene. Over all, co-planarity
of the phenyl rings along the backbone (or the lack thereof) does not appear
to affect the excitations significantly.

Analysis of the composition of the electron-hole wavefunction reveals strik-
ing differences between the two snapshots. The excitation shown in figure 7.7(a)
is formed to 60% by a transition between the two frontier orbitals. The isosur-
faces of these orbitals show that both HOMO and LUMO are practically ex-
tended along the full length of the backbone. Slight intensity variations can
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Figure 7.8: (a) Sample configuration of 2,5-dinonyl-10-PPE solvated in tolu-
ene. Nonyl side chains are indicated in red and solvent molecules are not
shown for clarity. (b) Definition of three types of rigid fragments used in back
mapping of the backbone conformations used in the QM/MM setup.

be noted with the HOMO being more attracted to the apex while the LUMO
is thinning out at the same spot. These variations give rise to the coupled
excitation being localized. At t = 5 ps, in contrast, there is not a single
dominant contribution to the electron-hole wavefunction. Rather, a superpos-
ition of several transitions is found, with HOMO-1 to LUMO and HOMO to
LUMO+1 transitions being most significant. As can be seen in figure 7.7(b)
conformational changes result in a different localization characteristics of the
underlying single-particle orbitals not at the apex but left and right from it,
respectively. As a pure transition between two localized states, such as the one
from HOMO-1 to LUMO, is energetically penalized by stronger exchange in-
teractions. By mixing in transitions between lower lying occupied and higher
unoccupied levels, an effectively more delocalized excitation is formed. An
analogous analysis of the respective excitations of 10-PPE in water, i.e, at
t = 9 ps and t = 10 ps, reveals qualitatively similar behaviour.

7.3.3 Absorption and emission of solvated 2,5-dinonyl-10-PPE
The 11 snapshots with a time step of 1 ps is taken from the classical MD tra-
jectory and each of the snapshots is partitioned into a quantum (the backbone)
and a classical region comprising the side chains and the solvent molecules.
QM and MM regions interact via static partial charge distributions. The aim
of this setup is to evaluate the excitations of the polymer backbone taking its
curved conformation into account while reducing discrepancies between the
force-field and QM geometries, as much as possible. At the same time, the
bridging carbon-carbon bond between the phenyl 2 and 5 positions and the
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Figure 7.9: Optical absorption (blue) and emission (blue) spectra for 2,5-
dinonyl-10-PPE in toluene as obtained from GW -BSE/MM calculations using
fragment based re-mapping. Both spectra are averages over 11 snapshots taken
every 1 ps, respectively. A Stokes shift (red shift) of 0.29 eV is found, which
compares well to experimental observations of 0.3-0.4 eV [19].

nonyl side chain, defining the boundary between QM and MM regions, needs
to be broken and the dangling bond saturated by hydrogen atom. This can
be achieved with the help of a re-mapping scheme based on the definition of
molecular fragments. Using centers of mass and gyration tensors, fragments of
optimized QM configurations were mapped onto the orientation and alignment
of the corresponding fragments in the MD configurations.

Figure 7.8(b) illustrates the re-mapping scheme for PPE. Each phenyl ring
(PHE), ethyne pair (ETH), and terminal methyl group (CH3) is defined as a
unique fragment. A 10-PPE backbone is hence subdivided into a total of 23
fragments (10 PHE, 11 ETH, 2 CH3) for mapping purposes.

With the re-mapped conformations at hand, the coupled GW -BSE/MM
system is solved and the absorption spectrum determined as an average over
the eleven snapshots. Individual spectra are broadened by Gaussian functions
with a FWHM of 0.3 eV and the resulting spectrum is shown as a blue line in
figure 7.9. It is characterized by a single peak at an energy of 3.64 eV, which is
larger than the value of 3.11 eV obtained for an isolated single oligomer. This
spectral blue shift is a direct result of the polymer’s curvature constrained by
the side chain interactions. With the re-mapping scheme it is also possible to
approximate emission spectra by using excited state QM geometries as a ref-
erence. The lack of analytical forces for GW -BSE makes the optimization of
the excited state geometries of molecules of the size of 10-PPE practically im-
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possible. Therefore, the geometry of the first excited state is optimized using
time-dependent DFT (TDDFT), with the same functional and basis set as in
the ground state. Numerical gradients of DFT/GW -BSE total energies basd
on the TDDFT optimized sturcture yields very small forces. Upon excita-
tion, electrons are promoted to higher, often anti-bonding, molecular orbitals
causing an extension of bonds. Constrained by side chains, a more general
modification of the overall conformation can (at least on short time scales)
not be expected. Solving the GW -BSE/MM system based with excited state
re-mapping yields the emission spectrum shown as a red line in figure 7.9.
While the no changes in the spectral shape can be noted, the peak position
of the emission is red-shifted by 0.29 eV compared to the absorption peak.
This Stokes shift is in good agreement with experimental data in the range of
0.3-0.4 eV [19].

7.4 Conclusion
Electronic excitations of PPE were computed using a QM/MM approach com-
bining many-body Green’s functions theory withinGW approximation and the
Bethe-Salpeter equation. Conformations of solvated PPE as obtained from
atomistic MD simulations were used in the mixed QM/MM setup in order to
determine optical excitations of solvated PPE.

Conformations of 2,5-dinonyl-10-PPE were studied in toluene and water.
The side chains were found to be dispersed from each other and from the
backbone in toluene. In water, the side chains tend to aggregate. Optical
excitations were calculated for 10-PPE in the QM/MM setup. The results
show that the electronic environment contributions are negligible compared to
the conformation dynamics of the conjugated PPE. From the analysis of the
electron-hole wave function, sensitivity of energy and localization character-
istics of the excited states to bends in global conformation of PPE polymer
was observed.

86



Chapter 8

Conformational studies of
solvated 2,5-dinonyl-10-PPE
and 2,5-diethylhexyl-10-PPE

8.1 Introduction
In chapter 7 we discussed how the conformation and the environment affect
the optical properties of PPEs with the emphasis on the influence of the clas-
sical environment. We showed that the electronic effects of the environment
resulting from local electrostatics: fields and polarization are negligible com-
pared to those from the conformational dynamics of the polymer. We also
determined that the localization characteristics of the excited states and their
energies are sensitive to small changes in the global conformation of a PPE
molecule rather than the relative arrangements of aromatic rings. Short sim-
ulations of PPE in toluene, in which the side chains were dispersed from the
extended backbone, were sufficient to reach these conclusions.

From experiment, the conformation of PPEs can be purposefully modified,
e.g. by functionalizing side chains and solvent combinations. The collapse of
a polymer is a result of intricate interactions between the side chains and
solvent, and the associated dynamics of the polymer backbone involves much
longer time scales than those addressed in chapter 7 [19, 20, 21]. To gain
more detailed insight into these interactions and how they lead to complex
conformations in PPEs, we study the behaviour of a short oligomer with 10
monomers (10-PPE) functionalized by nonyl and ethylhexyl side chains in
toluene and water, respectively. We focus on the effects of side-chain solvent
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(a) Nonyl (b) Ethylhexyl

Figure 8.1: Structures of (a) 2,5-dinonyl-10-PPE and (b) 2,5-diethylhexyl-10-
PPE in toluene after 66 ns and 20 ns MD simulations, respectively. In toluene,
the side chains (nonyl and ethylhexyl) are dispersed and separated from each
other as well as the backbone. The backbone forms an extended structure.
Toluene molecules are not shown for clarity.

interactions on morphological behaviour of PPEs. As will be discussed in
this chapter, the results show a variety of conformations depending on the
solvent and the side chains. We measure a set of quantities to characterize
these different conformations. At the end we investigate the effects of these
conformational changes on the absorption spectra.

8.2 Methodology
Classical MD simulations were performed on 2,5-diethylhexyl-10-PPE and 2,5-
dinonyl-10-PPE in SPC/E [157] water and toluene following the same protocol
described in chapter 7. The simulations for 10-PPE with nonyl side chains in
water were continued from the initial 7.7 ns [49] to longer times in a simulation
box of size (15×15×15) nm3 in the NpT ensemble. The simulation box size for
2,5-diethylhexyl-10-PPE side chain was (15×13×13) nm3. For the calculation
of optical spectra, the GW -BSE calculations were performed in the same way
as was described in chapter 7.

8.3 10-PPE with nonyl and ethylhexyl side chains
Toluene

Toluene is a poor solvent for both ethylhexyl and nonyl side chains and a good
solvent for the backbone [138, 137]. We recall that in chapter 7, the structure
of 2,5-dinonyl-10-PPE in explicit toluene exhibited an extended backbone with
dispersed nonyl side chains after 7.7 ns [49]. From there, MD simulations were
continued until 66 ns. Furthermore, conformations of 2,5-diethylhexyl-10-PPE
were studied in explicit toluene. Figure 8.1 shows representative snapshots
of the structures of both 2,5-dinonyl-10-PPE and 2,5-diethylhexyl-10-PPE in
toluene after 66 ns and 20 ns, respectively. For 2,5-dinonyl-10-PPE, the struc-
ture does not change significantly. Independent of the side chain, 10-PPE
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Figure 8.2: End-to-end distance of the PPE backbone with (a) ethylhexyl side
chains and (b) nonyl side chains in water. In the case of ethylhexyl side chains
the end-to-end distance is more uniform around 70Å. For nonyl side chains it
alters significantly due to fluctuating conformations of the polymer. The blue
dashed line shows the end-to-end distance of a fully extended backbone.

forms an extended backbone with side chains separated from each other and
dispersed from the backbone. These results agree with the results of Ref. [138]
and small angle neutron scattering (SANS) data at high temperature and low
concentrations for dialkyl PPE [138, 159].

From now on, we focus on the structural properties of 10-PPE in water.

Water

Water is a poor solvent for both the backbone and the two side chains [138,
137]. In order to describe conformational changes, the end-to-end distance is
measured to obtain information about the size and the shape of the polymers.

Ethylhexyl: Figure 8.2(a) shows the end-to-end distance of the 10-PPE
backbone with ethylhexyl side chains. Having a relatively constant value of
about 70Å as a function of time indicates that the backbone remains mainly
extended. This can also be seen from the snapshots in figure 8.3. While the
backbone remains primarily extended, the ethylhexyl side chains partially ag-
gregate toward the backbone.

Nonyl: The end-to-end distance is shown in figure 8.2(b). Significant fluc-
tuations occur, which imply conformational changes. Figure 8.4 shows repres-
entative snapshots of the polymer structure at different times. Until around
117 ns, the backbone is fully extended with the nonyl side chains aggregating
toward the backbone, which the end-to-end distance being around 65Å. At
around 120 ns the backbone starts to bend and fluctuates between different
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(a) 108 ns

(b) 126 ns

Figure 8.3: Structure of 2,5-diethylhexyl-10-PPE in water after (a) 108 ns and
(b) 126 ns MD simulation. In water, the ethylhexyl side chains aggregate
toward the backbone while the backbone remains extended. After 126 ns it
bends, however the bend is transient.

(a) 114 ns

(b) 120 ns

(c,1) 138 ns

(d) 151 ns

(c,2) 138 ns

Figure 8.4: Structures of 2,5-dinonyl-10-PPE in water at (a) 114 ns, (b)120 ns,
(c,1) 138 ns (side view), (c,2) 138 ns (top view) and (d)151 ns MD simulations.
The nonyl side chains tend to aggregate toward the backbone. The backbone
is extended at 114 ns. It starts to bend at around 120 ns forming an arc-like
structure. At 138 ns, it forms a helical-like structure with the nonyl side chains
all toward one side of the backbone. At 151 ns the helix has started to open.
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Figure 8.5: Water accessible surface area for 2,5-dinonyl-10-PPE (green line)
and 2,5-diethylhexyl-10-PPE (blue dashed line). The zero refers to 81 ns and
60 ns, respectively. For 10-PPE with nonyl side chains at 117 ns the accessible
surface area decreases slightly and at around 134 ns undergoes a noticeable de-
crease. In the case of 10-PPE with ethylhexyl it does not change significantly.

structures (arc-like structure and helical), of which none is permanent. These
structural fluctuations in the backbone may be affected by the local orienta-
tions of the nonyl side chains around the backbone. At 138 ns the backbone
forms a helical-structure and the side chains are all oriented toward the inside.
The end-to-end distance decreases to ≈ 40 Å. At 151 ns, the backbone still
has a helix-like configuration. The nonyl side chains align along the backbone.
The value of end-to-end distance increases to around 55Å. In the following we
discuss possible causes of the different behaviours.

Hydrophobic interactions play a crucial role in conformational properties.
Due to the exposure of the hydrophobic backbone and side chains to polar
water molecules, the solvation free energy contributes to the total free energy
of the system. Fully extended nonyl side chains (around 11Å) are longer
than the ethylhexyl ones (around 6Å), and hence, the number of hydrophobic
contacts of nonyl side chains is expected to be larger than ethylhexyl side
chains.

Calculation of solvent accessible surface area provides an estimate of the
number of water contacts. Figure 8.5 represents the calculated water accessible
surface area for 10-PPE with nonyl (green line) and ethylhexyl (blue dashed
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Figure 8.6: Chemical structure of PPE with the definition of tangent vec-
tors. The persistence length of polymer can be estimated by the correlation
of tangent-tangent vectors eq. 8.1. The persistence length is a measure of
stiffness of the backbone of a polymer.
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Figure 8.7: Correlation of tangent vectors along the polymer backbone in 10-
PPE with (a) nonyl side chains and (b) with ethylhexyl side chains in water.
In (a), the blue squares show the correlation during 81 ns-114 ns, which 2,5-
dinonyl-10-PPE exhibits an extended backbone. In 114 ns-147 ns the polymer
forms bent structures.

line) side chains, determined using the GROMACS implementation [163]. The
time zero refers to 81 ns for nonyl and to 60 ns for ethylhexyl PPE. The wa-
ter accessible surface area for nonyl side chains decreases slightly at around
117 ns. Around 134 ns it decreases more significantly, however at 160 ns, it
increases again. In the case of 10-PPE with ethylhexyl side chains it exhibits
small fluctuations during the 63 ns long trajectory.

In the next sections we describe the global behaviour of 10-PPE with nonyl
and ethylhexyl side chains in water by calculating the persistence length and
structure factor.
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8.3.1 Tangent-tangent correlation and persistence length

The persistence length lp as discussed in chapter 2, is a measure of how stiff
the backbone of a polymer is [164, 165, 55, 56]. In an ideal chain model (see
chapter 2), the polymer backbone can be described as a sequence of vectors vi
(tangent vector) with length l (see figure 8.6). The angle between neighbouring
vectors is ξ. lp characterizes the exponential decay of the backbone tangent-
tangent correlation function. The polymer behaves as a flexible coil if lp is
comparable to monomer size while it is semi-flexible if lp is much larger than
a monomer size [164, 165, 55, 56].

The tangent-tangent correlations of the backbone can be calculated as

cos (ξ) = 〈vi.vi+∆n〉, (8.1)

where l is the monomer size. There are two averages in eq. 8.1. 1) A time
average and 2) an average over all the pairs of i and i+ ∆n. The persistence
length can be estimated when cos(ξ) decays exponentially [164, 165, 56]

log(cos(ξ)) ∝ −n
lp
l. (8.2)

Figure 8.7(a) shows the tangent-tangent correlation for 2,5-dinonyl-10-PPE in
water for 81 ns-114 ns (blue squares) when the PPE backbone is extended and
for 114 ns-147 ns (red circles) in which the backbone forms a bent structure
(arc-like or helical). The different result for the two domains reveal that longer
sampling time is needed to explore its conformations. Estimated lp from 81 ns-
114 ns curve is around 9.8 nm and from 114 ns-147 curve is around 11Å.

Figure 8.7(b) shows the tangent-tangent correlation for 2,5-diethylhexyl-
10-PPE in water. The persistence length from this curve can be estimated to
be around 24.5 nm. The larger persistence length of 10-PPE with ethylhexyl
side chains compared to nonyl side chains reveals that 2,5-diethylhexyl-10-
PPE is stiffer. Our result for the persistence length are in the same range as
the result of electron paramagnetic resonance (EPR) measurements and light
scattering experiments that obtains a persistence length of the order of 11 nm
to 15 nm for different side chains [166, 167, 168].

8.3.2 Structure Factor

Experimentally, polymer conformations are usually studied using different
scattering experiments such as light scattering, small angle X-ray scattering
and small angle neutron scattering. These methods are based on contrast
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Figure 8.8: (a): The structure factor for PPE backbone for 2,5-diethylhexyl-
10-PPE (blue) and 2,5-dinonyl-10-PPE in water (red). The values q > 0.04Å−1

might be caused by the terminal ends. (b): In the intermediate q region
(q ∈ (0.04, 1.6)Å−1), S(q) exhibits a power law dependence (q−α). The power
α in different 3 ns time domains for PPE backbone with ethylhexyl side chain
(black) and nonyl side chain (red) in water. For both 2,5-diethylhexyl-10-PPE
and 2,5-dinonyl-10-PPE, α has a value around 1 and PPE backbone behaves
like a rigid rod.

between the polymer and its environment [55, 56] and provide information
about the shape of the polymer.

The structure factor can be computed using [169]

S(q) =
∫
g(r)eiq.rdr, (8.3)

where g(r) is the pair correlation function which gives the probability of finding
a monomer in a unit volume at a distance r of a given monomer [55]. q is the
scattering wavevector. By assuming that all the orientations of the polymer
is equally probable, the structure factor for low angle scattering can be obtain
as

S(q) =
∫
g(r)sin(qr)

qr
dr, (8.4)

and the scattering intensity can be computed as

I(q) = S(q)
S(0) =

∫
g(r) sin(qr)

qr dr∫∞
0 g(r)dr . (8.5)

We modified the GROMACS implementation [169] for calculating the scat-
tering intensity to make it work for our force field. S(q) as a function of q
calculated based on the positions of the bare backbone is shown in figure 8.8(a).
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Figure 8.9: (a): Orientation of the side chains relative to the local tangent of
the backbone (Sϑ) for 2,5-dinonyl-10-PPE (blue squares) and 2,5-diethylhexyl-
10-PPE (red circles). (b): Average vertical distance of the side chains with
respect to the respective local tangents for 2,5-dinonyl-10-PPE (blue squares)
and 2,5-diethylhexyl-10-PPE (red circles). The time zero refers to 81 ns for
nonyl case and 60 ns for ethylhexyl. (c): Schematic representation of the angle
ϑ and the vertical distance.

In the intermediate q region, S(q) exhibits a power law dependence q−α. The
values of α at different time regions of length 3 ns are shown in figure 8.8 (b). α
remains at a constant value of ≈ 1 for the PPE backbone with ethylhexyl side
chain. For the nonyl case there are larger fluctuations. The results support
that on average the backbone behaves like a rigid rod in both cases.

8.3.3 Correlation of the side chains along the backbone

We discussed that the water-side chains interactions might be the cause of dif-
ferent observed conformations. We seek to measure a quantity describing the
correlation of the alignments of the side chains with respect to the backbone.
Inspired by the nematic order parameter in liquid crystals, we define

Sϑ(t) = 1
2〈(3 cos2(ϑ(t))− 1)〉n. (8.6)
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Sϑ is the second Legendre polynomial [170] and ϑ(t) is the angle between
the orientation of the side chains to the local tangent of the backbone (see
figure 8.9(c)). The local tangent of the backbone is defined by a pair of carbon
atoms of the aromatic rings (the two carbon atoms that are connected to the
linkers) which build a vector along the backbone. The orientation of the side
chains is defined by a vector connecting the first carbon atom of the side chain
to the last one (see figure 8.9(c)). Sϑ tells us whether the arrangements of the
side chains toward the backbone are collective (non-zero) or random (zero).

The computed Sϑ for 10-PPE with nonyl (blue squares) and ethylhexyl (red
circles) side chains in water are shown in figure 8.9(a). The results indicate
a random orientation in both cases. Furthermore, the vertical distance of the
side chains to the local tangent of the backbone (see figure 8.9(c)) is calculated.
Figure 8.9(b) shows the results. The average vertical distance of the side chains
to the local tangent vector of the backbone changes. The backbone is extended
until 117 ns, with the average vertical distance around 5Å. However, once the
backbone starts to bend (after 120 ns), the vertical distance increases. The
vertical distance is more uniform for ethylhexyl side chains.

8.3.4 Dihedral-distribution
In chapter 6, we modified the existing force field in such a way that it yields reli-
able relaxed structures compared to experiments and quantum mechanical cal-
culations [48]. The force field was refined by adding a Ryckaert-Bellemans [156]
torsional potential between neighbouring phenylene rings of diphenylethyne
(DPE).

In this section we study the effects of different side chains and explicit
water solvent on the torsional potential profile. To this end, the dihedral
distribution and the corresponding potential of mean force were calculated. It
was also done for the bare backbone in explicit water to understand what are
the effect of side chains to the torsional potential profile. The corresponding
dihedral distributions are shown in figure 8.10(a).

The potential of mean force (U(φ)) can be evaluated by converting the
dihedral distribution using the Boltzmann factor [165]

P (φ) = e−βU(φ)∫
e−βU(φ′)dφ′

, (8.7)

where P (φ) is the probability distribution and β = 1
kBT

. By inverting eq. 8.7
we estimate of the effective potential of mean force.

The results are shown in figure 8.10(b). The resulting DFT calculations
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Figure 8.10: (a): Distribution of dihedral angles between the neighbouring
phenylene rings in 10-PPE with nonyl side chains (blue line) and ethylhexyl
side chains (red dashed line) in explicit water solvent during 63 ns and 66 ns,
respectively. The dihedral distribution for the bare backbone in water cal-
culated during 15 ns trajectory is shown with black line. (b): The effective
potential mean force calculated using Boltzmann factor eq. 8.7 for 10-PPE
with nonyl side chains (blue line), ethylhexyl side chains (red dashed line),
and bare backbone (black line) in explicit water using the dihedral distribu-
tion shown in (a). The green circles show the DFT potential energy surface
for DPE molecule that we added to the existing forcefield.
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using B3LYP-D3 for DPE at T = 0 K are shown for comparison. The DFT
calculation and therefore our modified force field for DPE gave a barrier of
around ≈ 4 kJmol−1 (≈ 1.5 kBT ) at 90◦ twist. The dihedral potential of mean
force for the bare backbone with 10 monomers in water matches the DFT one
(see figure 8.10). Therefore, we can conclude that the interaction between
water and the backbone does not affect the phenyl torsions.

The potential of mean force for 10-PPE with nonyl side chains follows
almost the same pattern as the DFT one. However, the barrier is increased
to ≈ 6 kJmol−1 (≈ 2.5 kBT ) and the minimum shifts toward ≈ −20◦. The
ethylhexyl side chains shift the minimum to ≈ 50◦ and decrease the barrier
to ≈ 3 kJmol−1 (≈ 1.2 kBT ). The potential of mean force for ethylhexyl side
chains is asymmetric with a local minimum at ≈ 110◦.

The torsional potential profile is strongly dependent of the type of side
chain. This asymmetric behaviour for ethylhexyl may be caused by its branched
structure. In the next section the order parameters for the phenylene rings
are calculated in order to understand the consequences of the changes in the
torsional potential profile in arrangements of the aromatic rings.

8.4 Orientational correlations
Order parameter

As we mentioned in chapter 7, the orientational order parameter [161] is given
by

Pθ = 1
2〈3 cos2 θ − 1〉. (8.8)

It is a measure of quantifying the correlations of aromatic rings within the
polymer backbone. θ is the angle between the normal vectors to the planes of
two aromatic rings which are separated by a distance ∆n. The calculation of
Pθ was described in chapter 7.

Figures 8.11 (a) and (b) show the order parameter versus ∆n for 2,5-
dinonyl-10-PPE in water for different portions of the MD trajectory. The
blue squares in figure 8.11(a) show the order parameter for a trajectory from
81 ns to 114 ns. In this domain the backbone is extended. Having a small
positive value characterizes a co-planar orientation of the aromatic rings. The
red circles and green triangles show the order parameter for a trajectory from
114 ns to 147 ns and 147 ns to 174 ns, respectively. The results demonstrate
that the orientation of the aromatic rings along the backbone and the global
structure of the backbone are not independent from each other.

In order to understand the different arrangements of the aromatic rings
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Figure 8.11: (a) and (b): Orientation order parameter Pθ for the normal
vectors to the aromatic rings (eq. 8.8) for 2,5-dinonyl-10-PPE in water for
different portions of the MD trajectory. (c): Order parameter Pζ for w vectors
(eq. 8.9) for 2,5-dinonyl-10-PPE in water.
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Figure 8.12: Chemical structure of PPE and the definition of w vectors for
the monomers. The order parameter (see eq. 8.9) of these vectors obtains
the arrangements of the rings with respect to the global conformation of the
polymer.

when the transition from extended structure to bent occurs, Pθ is calculated for
shorter time domains of 3 ns (figure 8.11(b)). In 105 ns-108 ns the backbone is
extended, in 117 ns-120 ns the backbone starts to form an arc-like structure and
147 ns-150 ns the helical backbone has started to open. The results show that
in the regions where the backbone is extended the rings are more randomly
oriented. In the regions in which the polymer bends, the arrangements of
aromatic rings are correlated.

The order parameter to the normal of the rings gives the relative arrange-
ments of the aromatic rings. However, it does not yield the arrangements of
the rings with respect to the global conformation of the polymer. Because of
that, the arrangement of aromatic rings along the backbone can be studied by
defining the order parameter for vectors wi and wi+∆n (see figure 8.12):

Pζ = 1
2〈3 cos2 ζ − 1〉, (8.9)

ζ is the angle between wi and wi+1. Figure 8.11(c) shows the calculated
Pζ for 2,5-dinonyl-10-PPE in water for 81 ns-114 ns (blue squares) in which
the PPE backbone is extended and for 114 ns-147 ns (red circles) in which
the backbone forms a bent structure. Pθ and Pζ have the same pattern for
extended backbone. For the domains that the backbone forms bent structure
Pθ and Pζ exhibit different behaviour.

In figure 8.13 the calculated order parameter for 2,5-diethylhexyl in water
are shown. Pζ and Pθ exhibit the same behaviour indicating an extended
backbone. Moreover, the value of Pθ and Pζ is around 0.2, which points to
correlations between aromatic rings. This value corresponds to an average
angle of around 47◦ between neighbouring aromatic rings. This agrees with
the result of section 8.3.4 for dihedral potential of mean force for ethylhexyl
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Figure 8.13: (a): order parameter Pθ for the normal of the aromatic rings for
2,5-diethylhexyl-10-PPE in water. (b): order parmeter Pζ for w vectors for
2,5-diethylhexyl-10-PPE in water.

side chains, which exhibits a minimum at 50◦.

Autocorrelation of the normal vectors to the rings

The autocorrelation function provides an estimate of the time scales that are
needed for the PPE to be equilibrated. We computed the autocorrelation
function 〈n(t)n(0)〉, where n(t) is the normal to the plane of the rings [171].
Figure 8.14 (a) shows the autocorrelation of 10-PPE with nonyl side chains
in water (blue circles). The red dashed line shows the fit to a triexponential
decay formula y = A1e

−t
τ1 + A2e

−t
τ2 + A3e

−t
τ3 where τ1, τ2, and τ3 are the

characteristic relaxation times. The fit yields the three time scales as the
follows: τ1 = 600.59 ps± 22.72 ps, τ2 = 6.41 ns± 0.16 ns, and τ3 = 25.74µs. τ3
corresponds to the dynamics of the global structure of the polymer in water,
and describes the relaxation time of the global structure of the backbone. τ2
represents the time required for the rotation of the rings along the backbone
to be uncorrelated. The fast motion of the terminal ends of the backbone is
related to τ1.

In figure 8.14 (b), the autocorrelation function for 10-PPE with ethyl-
hexyl side chains is shown (blue circles). The dashed line shows the fit
to a biexponential decay formula y = A1e

−t
τ1 + A2e

−t
τ2 . The following time

scales were obtained in 2,5-diethylhexyl-10-PPE: τ1 = 192.44 ps± 6.78 ps, and
τ2 = 7.59 ns ± 0.01 ns. In the ethylhexyl case there are only two time scales:
as for the nonyl case, τ2 is related to the time required for the motion of
phenylene rings to become uncorrelated. The fast time scale τ1 is related to
the motion of terminal ends of the backbone. A third time scale of the order of
O(µs) does not appear for PPE with ethylhexyl side chains, since the polymer
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Figure 8.14: (a): The autocorrelation for 10-PPE with nonyl side chains in
water (blue circles). The red dashed line shows the fit to triexponential decay
formula (y = A1e

−t
τ1 +A2e

−t
τ2 +A3e

−t
τ3 ) which yields τ1 = 600.59 ps± 22.72 ps,

τ2 = 6.41 ns ± 0.16 ns, τ3 = 25.74µs, A1 = 0.32, A2 = 0.46, and A3 = 0.2.
(b): Autocorrelation for 10-PPE with ethylhexyl side chains. The red dashed
line shows the fit to biexponential decay function (y = A1e

−t
τ1 + A2e

−t
τ2 ) with

the following time scales: τ1 = 192.44 ps ± 6.78 ps, τ2 = 7.59 ns ± 0.01 ns,
A1 = 0.138, A2 = 0.86.

does not bend due to a longer persistence length (lp ≈ 24.5 nm) than PPE
with nonyl side chains (lp ≈ 9.8 nm) (see section 8.3.1).

Autocorrelation of the tangent vectors

In order to obtain the time scales that are required for the dynamics of the
polymer along the backbone to be uncorrelated, the autocorrelation for the
tangent vectors 〈v(t)v(0)〉 (see figure 8.6 for the definition of tangent vectors)
was calculated and is shown in figure 8.15. In (a), the autocorrelation for
the nonyl side chains is shown with blue line. The red dashed line shows
the fit to a biexponential decay formula with the following time scales: τ1 =
5.91 ns ± 0.08 ns, and τ2 = 160.54 ns ± 0.96 ns. In (b), the autocorrelation of
2,5-diethylhexyl-10-PPE in water is shown. The fit yields the following time
scales: τ1 = 2.41 ns±0.03 ns, τ2 = 127.19 ns±0.14 ns. τ2 is the time scale that
is required for the dynamics of tangent vectors to be uncorrelated along the
backbone. This can be attributed to lp, which yields the length scale that the
tangent vectors lose their initial memory. τ1 is the time scale for the rotation
of tangent vectors to become uncorrelated.

8.5 Optical absorption
The result of QM/MM calculations on solvated 2,5-dinonyl-10-PPE in chapter 7,
using a two layer scheme for the MM region, revealed that the excitation en-
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Figure 8.15: Autocorrelation for the tangent vectors. (a): 2,5-dinonyl-10-PPE
(blue circles). (b): 2,5-diethylhexyl-10-PPE (blue circles). Red dashed line
shows the fit to biexponential decay function (y = A1e

−t
τ1 +A2e

−t
τ2 ) which yields

τ1 = 5.91 ns ± 0.08 ns, τ2 = 160.54 ns ± 0.96 ns, A1 = 0.08, and A2 = 0.89 for
2,5-dinonyl-10-PPE. For 2,5-diethylhexyl-10-PPE the fit yields the following:
τ1 = 2.41 ns± 0.03 ns, τ2 = 127.19 ns± 0.14 ns, A1 = 0.03, and A2 = 0.95.

ergies are hardly affected by the electrostatic environment but are strongly
influenced by the structural changes of the polymer. In this section we aim to
calculate the absorption spectra for different configurations of 2,5-dinonyl-10-
PPE.

We consider a purely static environment with cutoffs R2 = 4.0 nm and
R1 = 0 nm. The backbone is treated quantum mechanically while the solvent
and side chains belong to the MM region. The same procedure as described in
chapter 7 is employed. In chapter 7, we found that the absorption spectrum
is sensitive to structural dynamics of the backbone at time scales of 500 fs
and above. As such, 1 ps time scale may be adequate to see the changes
in absorption spectra as a result of the changes of the polymer structure.
Therefore, we sample the conformations with ∆t = 1 ps time intervals, starting
from t0 = 114 ns (extended), t0 = 138 ns (helix), and t0 = 151 ns (opened
helix).

The calculated discrete spectra of excitation energies and the associated
oscillator strengths are broadened by Gaussian functions with a FWHM of
0.3 eV. The evolution of the absorption spectrum for time steps of ∆t = 1 ps
for different starting points of MD simulations is shown in figure 8.16. At each
starting point t0, the dynamics of the backbone is very slow on time scales
of the order of 1 ps. For all three starting points, significant fluctuations in
the positions and the heights of the peaks emerge. At some time steps double
peaks appear while they later merge to a single one. This trend holds for
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Figure 8.16: Simulated absorption spectra (broadened by Gaussian functions
with a FWHM of 0.3 eV) of 10-PPE in water in a static MM environment
(R2 = 4 nm) with a sampling time step ∆t = 1 ps starting from (a) t0 = 114 ns
(b) t0 = 138 ns (c) t0 = 151 ns. The average over the fourteen respective
snapshots is given in green, red, and blue. The respective starting structure
is shown. (d) The average of the respective snapshots of (a) t0 = 114 ns (b)
t0 = 138 ns (c) t0 = 151 ns.
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Figure 8.17: (a): The structure of 2,5-dinonyl-10-PPE in water at 114 ns
(red), 114.003 ns (blue), and 114.014 ns (cyan). (b), (c), and (d): Analysis
of the excited state wave functions for the respective snapshots. Isosurfaces
(±10−4eÅ−3) of electron (blue) and hole (red) density distribution are shown.
The snapshots are chosen with respect to absorption spectra in figure 8.16 (a).

all three starting points. For each of the three starting points, the averages
of the respective fourteen snapshots are shown in figure 8.16 with green, red,
and blue lines, respectively. The electron-hole wavefunctions of the excita-
tions are sketched in figures 8.17, 8.18, and 8.19 for the three starting points,
respectively.

Figure 8.17 shows the isosurfaces for the hole (red) and the electron (blue)
density distributions for t0 = 114 ns and (b) t = 0 ps, (c) t = 3 ps, and (d)
t = 14 ps. S1 is the first lowest energy excitation and S2 is the second lowest
energy excitation. Figure 8.17 (a) shows the structure of the polymer at
the three respective times. We speculate that the localization characteristic
of excitations may be sensitive to the inhomogeneous stress caused by side
chains.

Figure 8.18 presents the isosurfaces of electron (blue) and hole (red) density
distribution for t0 = 138 ns and (b) t = 10 ps, (c) t = 12 ps, and (d)t =
14 ps. The isosurfaces of electron (blue) and hole (red) density distribution
for t0 = 151 ns and (b) t = 0 ps, (c)t = 8 ps, and (d)t = 14 ps are presented
in figure 8.19. S1 and S2 are the first and the second low energy excitations,
respectively. In these cases, the excitations appear to be localized at the apex
of the bends. In the bent patterns the co-planarity of the aromatic rings
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Figure 8.18: (a): The structure of 2,5-dinonyl-10-PPE in water at 138.010 ns
(red), 138.012 ns (blue), and 138.014 ns (cyan). (b), (c), and (d): Analysis
of the excited state wave functions for the respective snapshots. Isosurfaces
(±10−4eÅ−3) of electron (blue) and hole (red) density distribution are shown.
The snapshots are chosen with respect to absorption spectra in figure 8.16 (b).

(c) 151.008 ns(b) 151 ns (d) 151.014 ns

151 ns
151.008 ns
151.014 ns

(a)

Figure 8.19: (a): The structure of 2,5-dinonyl-10-PPE in water at 151 ns
(red), 151.008 ns (blue), and 151.014 ns (cyan). (b), (c), and (d): Analysis
of the excited state wave functions for the respective snapshots. Isosurfaces
(±10−4eÅ−3) of electron (blue) and hole (red) density distribution are shown.
The snapshots are chosen with respect to absorption spectra in figure 8.16 (c).
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does not change the excitations significantly. The excitation characteristics
are delicate to the dynamics of the backbone at the respective times.

8.6 Conclusion
The backbone of 10-PPE with nonyl side chains and with ethylhexyl side
chains in toluene remains extended and the side chains are dispersed from
each other and from the backbone. In water, 2,5-diethylhexyl-10-PPE forms
an overall extended backbone with side chains aggregated toward the back-
bone. 2,5-dinonyl-10-PPE in water exhibits a distinctive behaviour, from an
extended backbone to a bent backbone. A set of structural analysis were
performed on the conformations. We conclude that the bent structures of 2,5-
dinonyl-10-PPE in water is a result of side chain-water interactions. Due to
the stress caused by the side chains, the backbone bends. This effect does not
occur in 2,5-diethylhexyl-10-PPE because of shorter length of ethylhexyl side
chains (∼ 6 Å in a straight form) compared to nonyl ones (∼ 11 Å).

From the studies of structure factor for 10-PPE with both side chains in
water, we conclude that the backbone in both cases behaves like a rigid rod.
Further studies of dihedral distribution and effective potential of mean force for
the torsion of phenylene rings along the backbone revealed that the number of
rings along the backbone and the interaction between the backbone and water
does not change the torsional potential profile. However, due the interaction
between side chains and solvent the potential profile changes. As a result, the
interaction between side chains and water lead to particular conformational
behaviour of 2,5-dinonyl-10-PPE and 2,5-diethylhexyl-10-PPE.

The result of our QM/MM calculation with static environment shows that
the position of the peaks and the hight of them are very sensitive to the
dynamics of the backbone in all cases. In the bent structures the electron-hole
wave function appears to be localized around the apex of the bends in the
backbone conformation.
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Chapter 9

Conclusions

In this thesis, we focused on modelling the optical properties of a series of con-
jugated polymers called poly para phenylene ethynylenes (poly-PPE) in com-
plex morphologies. To this end, we used a multiscale approach that allows the
analysis of the interplay between morphologies and optical excitations. The
underlying challenges were addressed. In the following we present concluding
remarks and open problems for future work.

Looking back

The use of classical MD simulations to obtain conformations of polymer chains
in solvent is inevitable.

In chapter 6, we addressed the possible incompatibilities in molecular struc-
tures obtained from MD in QM/MM calculations.

Atomistic MD (with PCFF*) and DFT calculations were performed to de-
scribe the structural properties of diphenylethyne (DPE). With the PCFF*
force field is not possible to obtain a correct description of the ground state
structure of DPE. To remedy this problem, force field parameters were de-
veloped and added to the existing PCFF* force field [48]. The modified force
field [48] is able to describe the structure of DPE and methylated-DPE in
agreement with DFT results and experimental data.

Since our aim was to obtain optical properties based on MD conforma-
tions, the reliabilities of calculated spectra were studied by comparing the
results with the corresponding results obtained based on DFT structures. To
this end, the GW -BSE method was used to calculate the optical spectrum of
methylated-DPE based on the corresponding MD and DFT structures. The
results show that the behaviour of the lowest energy excitations follow the
same pattern.
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Further reliability checks were performed by calculating low energy ex-
citations for n-PPE (n = 1, 2, ..., 10) based on the MD structures and DFT
structures. We obtained an overall agreement between the two results.

Based on the results of chapter 6, we solvated a 10-PPE in water and
toluene. This was the topic of chapter 7. Conformations of solvated 10-PPE
with nonyl side chains were obtained from atomistic MD simulations with
our modified force field. The conformations of 2,5-dinonyl-10-PPE in toluene
exhibited dispersed side chains from the backbone. The backbone forms an
extended structure.

The results for the order parameter for the normal of the phenylene rings
demonstrate correlations between the torsions of the rings. The obtained
conformations were utilized in the mixed QM/MM setup where the QM part
is based on GW -BSE method.

The 10-PPE backbone was treated quantum mechanically while the side
chains and the solvent molecules belong to MM part. A two layer MM ap-
proach was used with cutoffs R1 = 2.5 nm and R2 = 4.0 nm to calculate
excitation energies of 2,5-dinonyl-10-PPE in toluene.

Within the R1 cutoff around the QM part, interactions from atomic partial
charges and polarization were taken into account, while within R2 polarization
effects are ignored. The results show that electrostatics and induced polariza-
tion is small and therefore, the excitations are unaffected by the environment.
Based on this result, we conclude that the environment can have indirect effects
on excitations by influencing the backbone and side chain conformations. The
calculated absorption spectra in a static environment (R1 = 0 nm, R2 = 4 nm)
show that the spectral properties are insensitive to the dynamics of the back-
bone on time scales of 100 fs. Only after 500 fs, fluctuations in the peak pos-
itions and heights of the spectra can be observed both in toluene and water.
An inspection of the electron-hole wave functions shows that the excitations
appear to be localized at the apex of the bend. The bend in the global struc-
ture of the backbone appears to be a result of the stress caused by the nonyl
side chains. We conclude that the co-planarity of the phenyl rings along the
backbone, or the lack of it, does not appear to affect the excitations signific-
antly.

PPE polymers can be purposefully modified, e.g. by the choice of func-
tionalizing side chains and solvent combinations. For a PPE polymer to form
a collapsed structure, solvent-side chains interactions are in an important
role [20, 19, 21]. As such, two kinds of side chains were considered, nonyl
and ethylhexyl. MD simulation for the 10-PPE solvated in water and tolu-
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ene, respectively, were performed. Structural analyses were performed on the
conformations. We conclude that the bent structure of 2,5-dinonyl-10-PPE
in water is a result of side chain-water interactions and due to stress caused
by the side chains. This effect is less visible in 2,5-diethylhexyl-10-PPE be-
cause of shorter ethylhexyl side chains (∼ 6 Å in a straight form) compared to
nonyl ones (∼ 11 Å). Further studies of dihedral distribution and potential of
mean force for the torsion of phenylene rings along the bare backbone (10-PPE
without side chains), 2,5-dinonyl-10-PPE, and 2,5-diethylhexyl-10-PPE result
are the following: the number of rings along the backbone and the interaction
between the backbone and water does not change the torsional potential pro-
file. However, due to the interactions between the side chains and solvent the
potential profile changes. As a result, the interactions between the side chains
and water lead to particular conformational behaviour of 2,5-dinonyl-10-PPE
and 2,5-diethylhexyl-10-PPE. The conformations of 2,5-dinonyl-10-PPE in wa-
ter were used in our QM/MM setup with static environment (R1 = 0 nm,
R2 = 4.0 nm). The results for optical spectrum show that the positions and
heights of the peaks are very sensitive to the dynamics of the backbone in all
cases. In the bent structures the electron hole wave function appears to be
localized around the apex of the bends in the backbone conformation.

Looking ahead

So far, the simulations of 2,5-dinonyl-10-PPE and 2,5-diethylhexyl-10-PPE in
water were run in the NpT ensemble for 183 ns and 126 ns, respectively. The
two solvents that were used in this thesis are both poor solvents for the side
chains. Solvating the PPE polymer in a good solvent and its effects in optical
properties can be possible next steps. Furthermore, the effects of different
side chains can be considered. In addition, in this thesis we used a PPE with
10 repeating units. The contour length of 10-PPE is very small compared
to the estimated persistence length. Therefore, the study of conformational
properties of longer chains should be considered. Furthermore, the dynamics
of the solvent around the polymer should be studied in more detail. In this
thesis, the SPC/E model of water was employed. One could study what are
the effects of different water models on conformations and optical properties.

Our result from calculations of optical properties revealed that the electron
hole wave functions of lowest energy excitations exhibited a characteristic loc-
alization around the apex of the bends in the backbone of PPE. The heights
and positions of the peaks are sensitive to the dynamics of the backbone. Ab
intio/MM simulations suggest a future study of the dynamics of the backbone
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and the solvent around it more accurately. The obtained conformations can
be utilized in the GW -BSE/MM setup for further spectral calculations.

Simulation of polymers in solutions involve physical and chemical phenom-
ena that occur at different length and time scales. For this purpose one could
define a region around the polymer to be considered at atomistic resolution.
Around this atomistic shell, a coarse grained region is considered. One pos-
sibility is to use Adaptive Resolution Simulations [172, 173] (AdResS), which
can decrease the computational cost. Within this approach, the resolution
of particles change once they pass from atomistic region to a coarse grained
region [174].

Considering the aforementioned description about AdResS simulations,
strategies can be developed in order to calculate the excitation energies of
PPE polymers considering solvents at different levels of resolution. In our
setup we only considered solvent molecules within a cutoff R2 region around
the solute. In order to consider the effects of the rest of the solvent, one could
develop a hybrid coarse grained, atomistic, quantum mechanical calculations
based on the GW -BSE method.

The final goal is to calculate optical properties of polydots made from
PPE in complex morphologies considering the effects of solvents. In order to
employ our hybrid GW -BSE/MM approach to a ploydot we need to divide
the polydot into smaller parts. The whole polydot cannot be described within
our GW -BSE calculations. As such, new strategies are required.
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Summary

Multiscale Modeling of Excitations in Polymeric Sys-
tems
In this thesis we employed a multiscale computational approach in order to
model the optical properties of a class of conjugated polymers called poly para
phenylene ethynylenes (poly-PPE) in complex morphologies. This approach
allows the analysis of the interplay between the morphologies and optical ex-
citations.

The use of classical MD simulations to obtain conformations of polymer
chains in solvent is inevitable. In chapter 6, we addressed the possible incom-
patibilities in molecular structures obtained fromMD in QM/MM calculations.

Atomistic MD (with PCFF*) and DFT calculations were performed to de-
scribe the structural properties of diphenylethyne (DPE). With the PCFF*
force field is not possible to obtain a correct description of the ground state
structure of DPE. To remedy this problem, force field parameters were de-
veloped and added to the existing PCFF* force field [48]. The modified force
field [48] is able to describe the structure of DPE and methylated-DPE in
agreement with DFT results and experimental data.

Since our aim was to obtain optical properties based on MD conforma-
tions, the reliabilities of calculated spectra were studied by comparing the
results with the corresponding results obtained based on DFT structures. To
this end, the GW -BSE method was used to calculate the optical spectrum of
methylated-DPE based on the corresponding MD and DFT structures. The
results show that the behaviour of the lowest energy excitations follow the same
pattern. Further reliability checks were performed by calculating low energy
excitations for n-PPE (n = 1, 2, ..., 10) based on the MD structures and DFT
structures. We obtained an overall agreement between the two results.

Based on the results of chapter 6, we solvated a 10-PPE in water and
toluene. This was the topic of chapter 7. Conformations of solvated 10-PPE
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with nonyl side chains were obtained from atomistic MD simulations with
our modified force field. The conformations of 2,5-dinonyl-10-PPE in toluene
exhibited dispersed side chains from the backbone. The backbone forms an
extended structure. The obtained conformations were utilized in the mixed
QM/MM setup where the QM part is based on GW -BSE method. The 10-
PPE backbone was treated quantum mechanically while the side chains and
the solvent molecules belong to MM part. A two layer MM approach was used
with cutoffs R1 = 2.5 nm and R2 = 4.0 nm to calculate excitation energies of
2,5-dinonyl-10-PPE in toluene.

Within the R1 cutoff around the QM part, interactions from atomic partial
charges and polarization were taken into account, while within R2 polarization
effects are ignored. The results show that electrostatics and induced polariza-
tion is small and therefore, the excitations are unaffected by the environment.
Based on this result, we conclude that the environment can have indirect effects
on excitations by influencing the backbone and side chain conformations. The
calculated absorption spectra in a static environment (R1 = 0 nm, R2 = 4 nm)
show that the spectral properties are insensitive to the dynamics of the back-
bone on time scales of 100 fs. Only after 500 fs, fluctuations in the peak pos-
itions and heights of the spectra can be observed both in toluene and water.
An inspection of the electron-hole wave functions shows that the excitations
appear to be localized at the apex of the bend. The bend in the global struc-
ture of the backbone appears to be a result of the stress caused by the nonyl
side chains. We conclude that the co-planarity of the phenyl rings along the
backbone, or the lack of it, does not appear to affect the excitations signific-
antly.

PPE polymers can be purposefully modified, e.g. by the choice of func-
tionalizing side chains and solvent combinations. For a PPE polymer to form
a collapsed structure, solvent-side chains interactions are in an important
role [20, 19, 21]. As such, two kinds of side chains were considered, nonyl
and ethylhexyl. MD simulation for the 10-PPE solvated in water and tolu-
ene, respectively, were performed. Structural analyses were performed on the
conformations. We conclude that the bent structure of 2,5-dinonyl-10-PPE
in water is a result of side chain-water interactions and due to stress caused
by the side chains. This effect is less visible in 2,5-diethylhexyl-10-PPE be-
cause of shorter ethylhexyl side chains (∼ 6 Å in a straight form) compared to
nonyl ones (∼ 11 Å). Further studies of dihedral distribution and potential of
mean force for the torsion of phenylene rings along the bare backbone (10-PPE
without side chains), 2,5-dinonyl-10-PPE, and 2,5-diethylhexyl-10-PPE result
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are the following: the number of rings along the backbone and the interaction
between the backbone and water does not change the torsional potential pro-
file. However, due to the interactions between the side chains and solvent the
potential profile changes. As a result, the interactions between the side chains
and water lead to particular conformational behaviour of 2,5-dinonyl-10-PPE
and 2,5-diethylhexyl-10-PPE. The conformations of 2,5-dinonyl-10-PPE in wa-
ter were used in our QM/MM setup with static environment (R1 = 0 nm,
R2 = 4.0 nm). The results for optical spectrum show that the positions and
heights of the peaks are very sensitive to the dynamics of the backbone in all
cases. In the bent structures the electron hole wave function appears to be
localized around the apex of the bends in the backbone conformation.
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